
89

American Economic Review: Papers & Proceedings 2015, 105(5): 89–93
http://dx.doi.org/10.1257/aer.p20151066

Politics does not lead to a broadly shared con-
sensus. It has to yield a decision, whether or not 
a consensus prevails. As a result, political insti-
tutions create incentives for participants to exag-
gerate disagreements between factions. Words 
that are evocative and ambiguous better serve 
factional interests than words that are analytical 
and precise.

Science is a process that does lead to a broadly 
shared consensus. It is arguably the only social 
process that does. Consensus forms around the-
oretical and empirical statements that are true. 
Tight links between words from natural lan-
guage and symbols from the formal language of 
mathematics encourage the use of words that are 
analytical and precise.

For the last two decades, growth theory has 
made no scientific progress toward a consensus. 
The challenge is how to model the scale effects 
introduced by nonrival ideas. Mobile telephony 
is the update to the pin factory, the demonstra-
tion that scale effects are too important to ignore. 
To accommodate them, many growth theorists 
have embraced monopolistic competition, but 
an influential group of traditionalists continues 
to support price taking with external increas-
ing returns. The question posed here is why the 
methods of science have failed to resolve the 
disagreement between these two groups.

Economists usually stick to science. Robert 
Solow (1956) was engaged in science when he 
developed his mathematical theory of growth. 
But they can get drawn into academic politics. 
Joan Robinson (1956) was engaged in academic 
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politics when she waged her campaign against 
capital and the aggregate production function.

Academic politics, like any other type of pol-
itics, is better served by words that are evocative 
and ambiguous, but if an argument is transpar-
ently political, economists interested in science 
will simply ignore it. The style that I am calling 
mathiness lets academic politics masquerade 
as science. Like mathematical theory, mathi-
ness uses a mixture of words and symbols, but 
instead of making tight links, it leaves ample 
room for slippage between statements in natu-
ral versus formal language and between state-
ments with theoretical as opposed to empirical 
content.

Solow’s (1956) mathematical theory of 
growth mapped the word “capital” onto a vari-
able in his mathematical equations, and onto 
both data from national income accounts and 
objects like machines or structures that some-
one could observe directly. The tight connection 
between the word and the equations gave the 
word a precise meaning that facilitated equally 
tight connections between theoretical and empir-
ical claims. Gary Becker’s (1962) mathematical 
theory of wages gave the words “human capital” 
the same precision and established the same two 
types of tight connection—between words and 
math and between theory and evidence. In this 
case as well, the relevant evidence ranged from 
aggregate data to formal microeconomic data to 
direct observation.

In contrast, McGrattan and Prescott (2010) 
give a label—location—to their proposed new 
input in production, but the mathiness that they 
present does not provide the microeconomic 
foundation needed to give the label meaning. 
The authors chose a word that had already 
been given a precise meaning by mathemati-
cal theories of product differentiation and eco-
nomic geography, but their formal equations are 
 completely different, so neither of those mean-
ings carries over.
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The mathiness in their paper also offers lit-
tle guidance about the connections between its 
theoretical and empirical statements. The quan-
tity of location has no unit of measurement. The 
term does not refer to anything a person could 
observe. In a striking (but instructive) use of 
slippage between theoretical and the empirical 
claims, the authors assert, with no explanation, 
that the national supply of location is propor-
tional to the number of residents. This raises 
questions that the equations of the model do not 
address. If the dependency ratio and population 
increase, holding the number of working age 
adults and the supply of labor constant, what 
mechanism leads to an increase in output?

McGrattan and Prescott (2010) is one of sev-
eral papers by traditionalists that use mathiness 
to campaign for price-taking models of growth. 
The natural inference is that their use of mathi-
ness signals a shift from science to academic 
politics, presumably because they were losing 
the scientific debate. If so, the paralysis and 
polarization in the theory of growth is not sign 
of a problem with science. It is the expected out-
come in politics.

If mathiness were used infrequently to 
slow convergence to a new scientific consen-
sus, it would do localized, temporary damage. 
Unfortunately, the market for lemons tells us 
that as the quantity increases, mathiness could 
do permanent damage because it takes costly 
effort to distinguish mathiness from mathemat-
ical theory.

The market for mathematical theory can sur-
vive a few lemon articles filled with mathiness. 
Readers will put a small discount on any article 
with mathematical symbols, but will still find 
it worth their while to work through and verify 
that the formal arguments are correct, that the 
connection between the symbols and the words 
is tight, and that the theoretical concepts have 
implications for measurement and observation. 
But after readers have been disappointed too 
often by mathiness that wastes their time, they 
will stop taking seriously any paper that contains 
mathematical symbols. In response, authors will 
stop doing the hard work that it takes to supply 
real mathematical theory. If no one is putting in 
the work to distinguish between mathiness and 
mathematical theory, why not cut a few corners 
and take advantage of the slippage that mathi-
ness allows? The market for mathematical the-
ory will collapse. Only mathiness will be left. It 

will be worth little, but cheap to produce, so it 
might survive as entertainment.

Economists have a collective stake in flushing 
mathiness out into the open. We will make faster 
scientific progress if we can continue to rely on 
the clarity and precision that math brings to our 
shared vocabulary, and if, in our analysis of data 
and observations, we keep using and refining the 
powerful abstractions that mathematical theory 
highlights—abstractions like physical capital, 
human capital, and nonrivalry.

I. Scale Effects

In 1970, there were zero mobile phones. 
Today, there are more than 6 billion. This is the 
kind of development that a theory of growth 
should help us understand.

Let  q  stand for individual consumption of 
mobile phone services. For  a ∈ [0, 1],  let  
p = D(q) =  q   −a   be the inverse individ-
ual demand curve with all-other-goods as 
numeraire. Let  N  denote the number of people in 
the market. Once the design for a mobile phone 
exists, let the inverse supply curve for an aggre-
gate quantity  Q = qN  take the form  p = S(Q)  
=  Q   b   for  b ∈ [0, ∞]. 

If the price and quantity of mobile phones are 
determined by equating  D(q) = m × S(Nq),  so 
that  m ≥ 1  captures any markup of price rela-
tive to marginal cost, the surplus  S  created by the 
discovery of mobile telephony takes the form

  S = C(a, b, m) ×  N     
a(1+b)
 _____ 

a+b
   , 

where  C(a, b, m)  is a messy algebraic expres-
sion. Surplus scales as  N  to a power between  a  
and  1 . If  b = 0,  so that the supply curve for the 
devices is horizontal, surplus scales linearly in  
N .  If, in addition,  a =   1 __ 2  ,  the expression for sur-
plus simplifies to

  S =   2m − 1 _____ 
 m   2 

   N. 

With these parameters, a tax or a monopoly 
markup that increases  m  from  1  to  2  causes  S  to 
change by the factor  0.75 . An increase in  N  from 
something like   10   2   people in a village to   10   10   
people in a connected global market causes  S  to 
change by the factor   10   8  .

Effects this big tend to focus the mind.
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II. The Fork in Growth Theory

The traditional way to include a scale effect 
was proposed by Marshall (1890). One writes 
the production of telephone services at each 
of a large number of firms in an industry as  
 g(X ) f (x) , where the list  x  contains the inputs 
that the firm controls and the list  X  has inputs 
for the entire industry. One obvious problem 
with this approach is that it offers no basis for 
determining the extent is of the spillover bene-
fits from the term  g(X ) . Do they require face-to-
face interaction? Production in the same city, the 
same country, or anywhere?

If we split  x = (a, z)  into a nonrival input  a  
and rival inputs  z,  a standard replication argu-
ment implies that  f  must be homogeneous of 
degree  1  in the rival inputs  z . Euler’s theorem 
then implies that the value of output equals the 
compensation paid to the rival inputs  z .  In a full 
equilibrium analysis, anything that looks like 
producer surplus or “Marshallian rent” is in fact 
part of the compensation paid to the rival inputs.

It follows that there can be no nonrival input  
a  that the firm can use yet exclude other firms 
from using. Production for an individual firm 
must take the form  A f (z)  where  A  is both non-
rival and fully nonexcludable, hence a public 
good.

I started by my work on growth using price 
taking and external increasing returns, but 
switched to monopolistic competition because 
it allows for the possibility that ideas can be at 
least partially excludable. Partial excludability 
offers a much more precise way to think about 
spillovers. Nonrivalry, which is logically inde-
pendent, is the defining characteristic of an idea 
and the source of the scale effects that are cen-
tral to any plausible explanation of recent expe-
rience with mobile telephony or more generally, 
of the broad sweep of human history (Jones and 
Romer 2010).

In models that allow for partial excludability 
of nonrival goods, ideas need not be treated as 
pure public goods. In these models, firms have 
an incentive to discover a new idea like a mobile 
phone (Romer 1990) or to encourage interna-
tional diffusion of such an idea once it exists 
(Romer 1994). In such models, one can ask why 
some valuable nonrival ideas diffuse much more 
slowly than mobile telephony and how policy 
can influence the rate of diffusion by changing 
the incentives that firms face.

As many growth theorists followed trade 
theorists and explored aggregate models with 
monopolistic competition, the traditionalists 
who worked on models with a microeconomic 
foundation maintained their commitment to price 
taking and adhered to the restriction of 0 percent 
excludability of ideas required for Marshallian 
external increasing returns. Perhaps because of 
unresolved questions about the extent of spill-
overs, attention turned to models of idea flows 
that require face-to-face interaction. Because 
incentives in these models motivate neither 
discovery nor diffusion, agents exchange ideas 
in the same way that gas molecules exchange 
energy—involuntarily, through random encoun-
ters. Given the sharp limits imposed by the 
mathematics of their formal framework, it is no 
surprise that traditionalists were attracted to the 
extra degrees of freedom that come from letting 
the words slip free of the math.

III. Examples of Mathiness

McGrattan and Prescott (2010) establish 
loose links between a word with no meaning 
and new mathematical results. The mathiness 
in “Perfectly Competitive Innovation” (Boldrin 
and Levine 2008) takes the adjectives from 
the title of the paper, which have a well estab-
lished, tight connection to existing mathemati-
cal results, and links them to a very different set 
of mathematical results. In an initial period, the 
innovator in their model is a monopolist, the sole 
supplier of a newly developed good. The authors 
force the monopolist to take a specific price for 
its own good as given by imposing price taking 
as an assumption about behavior.

In addition to using words that do not align 
with their formal model, Boldrin and Levine 
(2008) make broad verbal claims that are discon-
nected from any formal analysis. For example, 
they claim that the argument based on Euler’s 
theorem does not apply because price equals 
marginal cost only in the absence of capacity 
constraints. Robert Lucas uses the same kind of 
untethered verbal claim to dismiss any role for 
books or blueprints in a model of ideas: “Some 
knowledge can be ‘embodied’ in books, blue-
prints, machines, and other kinds of physical 
capital, and we know how to introduce capital 
into a growth model, but we also know that 
doing so does not by itself provide an engine 
of sustained growth.” (Lucas 2009, p.6). In 
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each case, well-known models show that these 
verbal claims are false. Any two-sector growth 
model will show how Marshall’s style of partial 
equilibrium analysis leads Boldrin and Levine 
astray. Any endogenous growth model with an 
expanding variety of capital goods or a ladder 
of capital goods of improving quality serves as a 
counter-example to the result that Lucas claims 
that we know.

In Lucas and Moll (2014), the mathiness 
involves both words that are disconnected from 
the formal results and a mathematical model that 
is not well specified. The baseline model in their 
paper relies on an assumption  P  that invokes a 
distribution for the initial stock of knowledge 
across workers that is unbounded, with a fat 
Pareto tail. Given this assumption, Lucas and 
Moll show that the diffusion of knowledge from 
random encounters between workers generates 
a growth rate  g[P](t)  that converges to  γ > 0  as  
t  goes to infinity.

Assumption  P  is hard to justify because it 
requires that at time zero, someone is already 
using every productive technology that will ever 
be used at any future date. So the authors offer 
“an alternative interpretation that we argue is 
observationally equivalent: knowledge at time 0 
is bounded but new knowledge arrives at arbi-
trarily low frequency.” (Lucas and Moll 2014, 
p.11). In this alternative, there is a collection of 
economies that all start with an assumption  B  
(for bounded initial knowledge.) By itself, this 
assumption implies that the growth rate goes 
to zero as everyone learns all there is to know. 
However, new knowledge, drawn from a distri-
bution with a Pareto tail, is injected at the rate  β  , 
so a  B  economy eventually turns into a  P  econ-
omy. As the arrival rate  β  gets arbitrarily low, 
an arbitrarily long period of time has to elapse 
before the switch from  B  to  P  takes place. (See 
the online Appendix for details.)

For a given value of  β > 0,  let  β : B ⇒ P  
denote a specific economy from this collection. 
Any observation on the growth rate has to take 
place at a finite date  T.  If  T  is large enough,  
 g[P](T )  will be close to  γ,  but  g[β : B ⇒ P](T )  
will be arbitrarily close to 0 for an arbitrarily 
low arrival rate  β.  This means that any set of 
observations on growth rates will show that the  
P  economy is observably different from any 
economy  β : B ⇒ P  with a low enough value 
of  β.  They are not observationally equivalent in 
any conventional sense.

The mathiness here involves more than a 
nonstandard interpretation of the phrase “obser-
vationally equivalent.” The underlying formal 
result is that calculating the double limit in one 
order   lim  β→0  

   ( lim  T→∞      g[β : B ⇒ P])  yields one 
answer,  γ  , which is also the limiting growth rate 
in the  P  economy. However, calculating it in 
the other order,   lim  T→∞     ( lim  β→0  

    g[β : B ⇒ P]),  
gives a different answer,  0.  Lucas and Moll 
(2014) use the first calculation to justify their 
claim about observational equivalence. An argu-
ment that takes the math seriously would note 
that the double limit does not exist and would 
caution against trying to give an interpretation to 
the value calculated using one order or the other.

IV. A New Equilibrium in the Market for 
Mathematical Economics

As is noted in an addendum, Lucas (2009) 
contains a flaw in a proof. The proof requires that 
a fraction    α __ γ    be less than  1.  The same page has an 

expression for  γ,   γ = α   γ
 ____ γ + δ    , and because  α, γ,  

and  δ  are all positive, it implies that    α __ γ    is greater 
than  1.  Anyone who does math knows that it is 
distressingly easy to make an oversight like this. 
It is not a sign of mathiness by the author. But 
the fact that this oversight was not picked up at 
the working paper stage or in the process leading 
up to publication may tell us something about 
the new equilibrium in economics. Neither col-
leagues who read working papers, nor review-
ers, nor journal editors, are paying attention to 
the math.

After reading their working paper, I told 
Lucas and Moll about the discontinuity in the 
limit and the problem it posed for their claim 
about observational equivalence. They left their 
limit argument in the paper without noting 
the discontinuity and the Journal of Political 
Economy published it this way. This may reflect 
a judgment by the authors and the editors that at 
least in the theory of growth, we are already in a 
new equilibrium in which readers expect mathi-
ness and accept it.

One final bit of evidence comes from Piketty 
and Zucman (2014), who cite a result from a 
growth model: with a fixed saving rate, when the 
growth rate falls by one-half, the ratio of wealth 
to income doubles. They note that their formula  
W/Y = s/g  assumes that national income 
and the saving rate  s  are both measured net of 
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 depreciation. They observe that the formula has 
to be modified to  W/Y = s/(g + δ),  with a 
depreciation rate  δ,  when it is stated in terms of 
the gross saving rate and gross national income.

From Krusell and Smith (2014), I learned 
more about this calculation. If the growth rate 
falls and the net saving rate remains constant, 
the gross saving rate has to increase. For exam-
ple, with a fixed net saving rate of  10 percent  
and a depreciation rate of  3 percent,  a reduction 
in the growth rate from  3 percent  to  1.5 percent  
implies an increase in the gross saving rate from  
18 percent  to  25 percent.  This means that the 
expression  s/(g + δ)  increases by a factor  1.33  
because of the direct effect of the fall in  g  and by 
a factor  1.38  because of the induced change in  s .  
A third factor, equal to  1.09  , arises because the 
fall in  g  also increases the ratio of gross income 
to net income. These three factors, which when 
multiplied equal  2,  decompose the change in  
W/Y  calculated in net terms into equivalent 
changes for a model with variables measured in 
gross terms.

Piketty and Zucman (2014) present their data 
and empirical analysis with admirable clarity 
and precision. In choosing to present the theory 
in less detail, they too may have responded to 
the expectations in the new equilibrium: empir-
ical work is science; theory is entertainment. 
Presenting a model is like doing a card trick. 
Everybody knows that there will be some sleight 
of hand. There is no intent to deceive because 
no one takes it seriously. Perhaps our norms will 
soon be like those in professional magic; it will 
be impolite, perhaps even an ethical breach, to 
reveal how someone’s trick works.

When I learned mathematical economics, a 
different equilibrium prevailed. Not universally, 
but much more so than today, when economic 
theorists used math to explore abstractions, 
it was a point of pride to do so with clarity, 
precision, and rigor. Then too, a faction like 
Robinson’s that risked losing a battle might 
resort to mathiness as a last-ditch defense, but 
doing so carried a risk. Reputations suffered.

If we have already reached the lemons market 
equilibrium where only mathiness is on offer, 
future generations of economists will suffer. 
After all, how would Piketty and Zucman have 

organized their look at history without access 
to the abstraction we know as capital? Where 
would we be now if Robert Solow’s math had 
been swamped by Joan Robinson’s mathiness?
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