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a  b  s  t  r  a  c  t

The  role of  serotonin  in  depression  and  antidepressant  treatment  remains  unresolved  despite  decades
of  research.  In this  paper,  we  make  three  major  claims.  First,  serotonin  transmission  is  elevated  in  mul-
tiple  depressive  phenotypes,  including  melancholia,  a subtype  associated  with  sustained  cognition.  The
primary challenge  to this  first  claim  is that  the  direct  pharmacological  effect  of most  symptom-reducing
medications,  such  as the selective  serotonin  reuptake  inhibitors  (SSRIs),  is  to increase  synaptic  serotonin.
The second  claim,  which  is  crucial  to  resolving  this  paradox,  is  that  the  serotonergic  system  evolved
to  regulate  energy.  By  increasing  extracellular  serotonin,  SSRIs  disrupt  energy  homeostasis  and  often
worsen  symptoms  during  acute treatment.  Our  third  claim  is  that symptom  reduction  is  not  achieved  by
the direct  pharmacological  properties  of SSRIs,  but  by  the  brain’s  compensatory  responses  that  attempt
to  restore  energy  homeostasis.  These  responses  take  several  weeks  to develop,  which  explains  why  SSRIs
earning
lasticity
orking memory

istraction
ippocampus
refrontal cortex

have a  therapeutic  delay.  We  demonstrate  the  utility  of  our  claims  by  examining  what  happens  in animal
models  of  melancholia  and during  acute  and  chronic  SSRI  treatment.
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. Introduction

Depression is a heterogeneous suite of states characterized
y sad mood and anhedonia (an inability to experience pleasure)
Hyman, 2010; Insel and Charney, 2003). Depressive states share
ome genes and neurobiology in common, but they otherwise dif-
er in symptom and etiology (Akiskal and Akiskal, 2007; Dantzer
t al., 2008; Flint and Kendler, 2014; Lux and Kendler, 2010;
aier and Watkins, 1998; Parker, 2000; Raison and Miller, 2013;

ullivan et al., 2012). For instance, depressive symptoms can occur
n response to infection (called sickness behavior) or starvation
Hart, 1988; Keys et al., 1950), though the symptoms are not con-
idered pathological in these contexts (Andrews and Durisko, in
ress; Dantzer, 2001; Engel and Schmale, 1972). In the fifth edition
f the Diagnostic and Statistical Manual for Mental Disorders (DSM-5),
he diagnostic category of major depression envelops some of the
ymptomatic heterogeneity by allowing for variability in weight,
leeping, and psychomotor activity (Table 1) (APA, 2013).

Episodes of major depression may  be further subdivided into
ore precise phenotypes. Melancholia (weight loss, insomnia, and

gitation/retardation) is considered by many to be the “biological
ore of depression” (Akiskal and Akiskal, 2007, p. 46). It is the most
ommon and reliably diagnosed subtype, often accounting for 50%
r more of clinical episodes (Angst et al., 2007; Taylor and Fink,
008; Xiang et al., 2012). Melancholia is associated with height-
ned hypothalamic-pituitary-adrenal (HPA) activity (Taylor and
ink, 2008), which is a physiological indicator of stress (Chrousos,
009). While it was formerly called endogenous depression,  melan-
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an u
role in depression and the antidepressant response. Neurosci. Biobeha

holia is in fact associated with stressful life events that are often
erious or highly private in nature (Harkness and Monroe, 2002;
eff et al., 1970; Mundt et al., 2000; Willner et al., 1990). Atypical
epression (weight gain, hypersomnia, and retardation) is the other
 . .  . . .  . .  . . .  .  . . . . . . . . .  . . .  .  . . . . . . .  .  . . . . . .  .  . .  . . . .  .  .  . . .  .  . . . .  .  . .  .  . . . . . .  .  . . .  . .  .  .  .  00

major subtype, but it is heterogeneous and not well understood
(Stewart et al., 2007).

Despite decades of research, the role serotonin plays in depres-
sive phenotypes has not been conclusively determined. The original
clue that monoamines (serotonin, norepinephrine, and dopamine)
were involved in depression came from two  serendipitous dis-
coveries (Baumeister et al., 2003; Valenstein, 1998). First, during
the investigations of iproniazid as a treatment for tuberculo-
sis and imipramine as a treatment for schizophrenia, clinicians
reported that these drugs could reduce depressive symptoms. An
effort was  then made to find a common pharmacological prop-
erty that could explain their antidepressant effect. Eventually,
researchers found that iproniazid inhibits the enzymes that break-
down the monoamines, while imipramine blocks the serotonin
transporter (SERT) and the norepinephrine transporter (NET). Sec-
ond, clinical observations suggested that reserpine, a drug known to
deplete monoamines, increased depressive symptoms. These find-
ings appeared to solve the puzzle. By preventing the breakdown
of norepinephrine and serotonin, or preventing their clearance
from the synapse, iproniazid and imipramine appeared to increase
forebrain monoamine levels. The monoamine-enhancing effect of
antidepressant medications (ADMs), coupled with the depression-
inducing effects of reserpine, suggested that depression was caused
by reduced monoamine neurotransmission (Everett and Toman,
1959; Jacobsen, 1964; Schildkraut, 1965).

Other researchers soon suggested that serotonin was  the most
important monoamine (Coppen, 1967). Often it is called the
‘monoamine hypothesis’ or the ‘serotonin hypothesis.’ We  refer to
pper or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

it as the low serotonin hypothesis because it proposes a particular
direction. Researchers then focused on the creation of drugs
that could increase synaptic serotonin without perturbing other
monoamines by selectively binding to the serotonin transporter
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Table  1
The symptoms of major depression, according to the DSM-5. Episodes of major depression can have melancholic or atypical features.

Major depression Melancholic subtype Atypical subtype

Sad mood Sad mood is worse in the morning and not reactive to positive events;
different from grief or loss

Sad mood is reactive; brightens in
response to positive events

Anhedonia Anhedonia
Weight loss or gain Weight loss Weight gain
Hypersomnia or insomnia Insomnia with early morning waking Hypersomnia
Psychomotor agitation or retardation Psychomotor agitation or retardation Leaden paralysis
Fatigue
Excessive feelings of worthlessness or guilt Excessive guilt
Difficulty concentrating
Suicidal ideation

(
s
w
e

h
(
t
s
o
r
i
t

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126
SERT). This research effort was successful, and the selective
erotonin reuptake inhibitors (SSRIs) are now among the most
idely prescribed medications (Olfson and Marcus, 2009; Olfson

t al., 2002).
However, many problems with the low serotonin hypothesis

ave prompted a reassessment of serotonin’s role in depression
see Box 1). Although the idea that a single neurochemical is
he cause of depression is now considered simplistic, the low
erotonin hypothesis still lies at the foundation of most research
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an up
role in depression and the antidepressant response. Neurosci. Biobeha

n depression (Albert et al., 2012). It is generally thought that
educed serotonin transmission is one of the more distal factors
n the neurological chain of events that regulate depressive symp-
oms (Krishnan and Nestler, 2008). The fact that ketamine (which

Box 1: Problems with the low serotonin hypothesis
There has been no direct test of the low serotonin hypothesis
in humans because it requires invasive techniques (see Section
4). Nevertheless, several findings have cast doubt on the low
serotonin hypothesis.

1. Some drugs that block serotonin reuptake (e.g., cocaine
and amphetamine) are not effective in treating depression
(Charney et al., 1981).

2. Researchers and historians have concluded that reserpine-
induced depression is a ‘myth’ (Baumeister et al., 2003), and
that it may  actually have antidepressant properties (Healy,
2002). The only placebo controlled, randomized, parallel
group study of chronic reserpine treatment in anxious or
depressed people showed that reserpine had an antide-
pressant effect (Davies and Shepherd, 1955). Indeed, some
researchers argued that reserpine had antidepressant prop-
erties (Ayd, 1958), and it was used in the 1970s and 1980s to
manage refractory depression (Price et al., 1987).

3. SSRIs and other ADMs increase extracellular serotonin
within minutes to hours of the first dose (Bymaster et al.,
2002; Rutter and Auerbach, 1993), but they do not reduce
symptoms until after several weeks of continuous treatment
(Charney et al., 1981; Oswald et al., 1972). This pattern is
called the therapeutic delay.

4. The attempt to reduce serotonin through tryptophan deple-
tion fails to trigger depression in non-depressed participants
(Ruhe et al., 2007).

5. Neonatal exposure to SSRIs causes depressive symptoms in
adult rodents (Ansorge et al., 2004; Hansen et al., 1997).

6. Genetic downregulation of SERT, which increases synaptic
serotonin, is associated with an increase in depressive symp-
toms (Holmes et al., 2003).

7. Meta-analyses of published and unpublished studies show
that ADMs are only modestly more effective than placebo at
reducing depressive symptoms (Fournier et al., 2010; Khan
et al., 2002, 2005, 2011; Kirsch et al., 2008).

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163
Sensitivity to interpersonal rejection

blocks a glutamate receptor) has rapid antidepressant effects lends
support to the hypothesis that depressive symptoms are more
proximally controlled by glutamate transmission in frontal regions
(Mahar et al., 2014; Popoli et al., 2012). Others propose serotonin
does not exert any regulatory control over depressive symptoms
(Kirsch, 2010; Lacasse and Leo, 2005). Still others have suggested
serotonin transmission is elevated in depression (Andrews and
Thomson, 2009; Petty et al., 1994; Zangen et al., 1997).

In this paper, we make three major claims. The first claim, dis-
cussed in Section 2, is that serotonin transmission is elevated in
multiple depressive phenotypes, including melancholia, infection,
and starvation. We  refer to this as the high serotonin hypothesis.
What constitutes evidence of serotonin transmission is the key
to the evaluation of this hypothesis. Since depression is a per-
sistent state, reliable indices of stable serotonin transmission are
particularly relevant. The 5-HIAA/5-HT ratio is the most reliable
index of stable serotonin transmission, although 5-HIAA is also
used (Shannon et al., 1986). While the literature on depressed
patients is necessarily limited due to the methodological diffi-
culties measuring serotonin and 5-HIAA in the human brain, the
most pertinent studies support the high serotonin hypothesis. In
non-human animal models of depression—where these indices can
be measured more readily—abundant evidence supports the high
serotonin hypothesis.

The primary challenge for the high serotonin hypothesis is
explaining how ADMs, nearly all of which rapidly increase extra-
cellular serotonin, reduce depressive symptoms. Our  second claim,
discussed in Section 3, is crucial to resolving this paradox. Specif-
ically, we argue that the evolved function of the serotonergic
system is energy regulation—which we  define as the coordination
of metabolic processes with the storage, mobilization, distribution,
production and utilization of energetic resources to meet adaptive
demands (Table 2).

In the brain and throughout the body, serotonin is homeostati-
cally regulated (Best et al., 2010; Gershon and Tack, 2007; Mercado
and Kilic, 2010). The energy regulation hypothesis predicts that
the homeostatic equilibrium level of serotonin transmission is
elevated in situations that require limited energetic resources to
be reallocated among metabolically expensive processes: growth,
reproduction, physical activity, maintenance, immune function,
and cognition. Table 3 shows there is a stable increase in serotonin
transmission to the hypothalamus in both positive and negative
mood states where energy must be reallocated for prolonged
periods of time. Similarly, the effects of SSRIs are state-dependent.
Depending on the context, SSRIs can increase or decrease anxi-
ety (Robert et al., 2011), motor activity (Altemus et al., 1996; Page
per or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

et al., 1999), anhedonia (Branchi et al., 2013; Harrison et al., 2001),
and neurotrophin signaling (Bland et al., 2007; Freitas et al., 2013;
Hellweg et al., 2007; Rasmusson et al., 2002; Van Hoomissen et al.,
2003). Thus, serotonin cannot be simply described as an ‘upper’ or
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Table 2
The serotonergic system and energy regulation.

Processes and systems regulated by serotonin
Production of adenosine triphosphate (ATP)
Oxidative phosphorylation (slow, efficient)
Aerobic glycolysis (fast, inefficient)

Energy storage/mobilization
Insulin, glucagon, leptin secretion

Distribution of energetic resources
Vasoconstriction/vasodilation

Neuronal activity
Activation/inhibition

Tissue uptake
All major tissues in the body

Metabolically expensive processes
Growth
Maintenance
Reproduction
Immune function
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Fig. 1. Graphical representation of how depressed organisms make different
adaptive trade-offs in allocating limited energetic resources. (The numbers are hypo-
thetical and illustrative.) Relative to normal baseline: infection involves upregulated
immune function, while growth and reproduction are downregulated (Dantzer,
2001; Lochmiller and Deerenberg, 2000); in starvation, a higher proportion of ener-
getic reserves are devoted to maintenance (Ruiz-Núñez et al., 2013), while growth,
reproduction, and immune function are suppressed (Chandra, 1991; Holliday,
1989); melancholia involves an increase in cognition (Section 5) and possibly

the brain’s homeostatic mechanisms that attempt to restore energy
homeostasis (Fig. 3D). These compensatory changes take several
weeks to develop, which explains why symptoms fail to alleviate for
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 ‘downer’; its symptomatic effects depend on the organism’s state
i.e., whether it is infected, starving, satiated, physically exhausted,
exually exhausted, etc.).

Table 4 lists the symptoms of three reliably diagnosed
epressive states: sickness behavior, starvation depression, and
elancholia. Each involves an altered balance between metabol-

cally expensive processes (Fig. 1). In sickness behavior, limited
nergetic resources are devoted to immune function at the expense
f growth and reproduction. In starvation depression, energy is
evoted to maintenance functions at the expense of growth,
eproduction, and immune function. In melancholia, there is an
pregulation in sustained cognition at the expense of growth and
eproduction. The energy regulation hypothesis suggests serotonin
ransmission is elevated in these states to coordinate tradeoffs in
nergy allocation. In melancholia, this tradeoff is coordinated by
erotonin transmission to various regions, including the hypothal-
mus, amygdala, hippocampus and lateral prefrontal cortex (PFC)
Fig. 2). In the hippocampus and lateral PFC, the processes involved
n sustained cognition are energetically expensive and can only be
ustained with aerobic glycolysis (the generation of lactate from the
etabolism of glucose stored in astrocytes).
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an u
role in depression and the antidepressant response. Neurosci. Biobeha

Our third major claim, discussed in Section 4, is that the direct
harmacological effects of SSRIs are not responsible for symptom
eduction. Rather, by rapidly increasing extracellular serotonin,

able 3
tates in which serotonin transmission to the hypothalamus is elevated. Indices of
levated serotonin transmission include the ratio of 5-HIAA to serotonin (5-HIAA/5-
T), extracellular 5-HIAA (5-HIAA), extracellular serotonin (5-HT), and activity of the
orsal raphe nucleus (DRN). ‘REM’: rapid eye movement sleep.

State Index References

Infection 5-HIAA/5-HT (Linthorst et al., 1995a)
Fasting/starvation 5-HIAA, 5-HT (Broocks et al., 1991;

Fetissov et al., 2000)
Satiation 5-HIAA, 5-HT (Meguid et al., 2000;

Orosco and Nicolaidis,
1994)

Physical exhaustion 5-HIAA, 5-HT (Blomstrand, 2011)
Sexual exhaustion 5-HIAA, 5-HT (Lorrain et al., 1997;

Mas  et al., 1995)
Awake > REM DRN activity (Monti, 2010)
Female > male 5-HIAA/5-HT (Carlsson and Carlsson,

1988)
Proestrus 5-HIAA/5-HT (Kerdelhué et al., 1989)
Cold > warm 5-HIAA/5-HT (Ohtani et al., 1999)
immune function (Frank et al., 2013), while growth and reproduction are down-
regulated (Taylor and Fink, 2008).

SSRIs cause a disruption in energy homeostasis (the state-dependent
balance between energetically expensive processes that existed
prior to medication), and a worsening of symptoms. For instance, in
melancholia, serotonin transmission to the PFC causes an increase
in energetically expensive glutamatergic activity (Fig. 3B), which
is exacerbated during acute SSRI treatment (Fig. 3C). We  argue that
symptom reduction is due to the compensatory changes made by
pper or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

Fig. 2. The main projection regions for elevated serotonin transmission in rodent
models of melancholia (Adell et al., 1988; Amat et al., 1998a,b, 2005; Beitia et al.,
2005; Bekris et al., 2005; Blanchard et al., 1993; Bland et al., 2003a; Gamaro et al.,
2003; Li et al., 2012; Tannenbaum and Anisman, 2003; Tannenbaum et al., 2002), and
the  hypothesized effects on symptoms (see Section 5). Increased serotonin trans-
mission coordinates multiple processes that promote sustained processing of the
problem that triggered the episode: (1) Transmission to the amygdala directs atten-
tion to the problem that triggered the episode. (2) Transmission to the hippocampus
promotes changes in synaptic plasticity involved in allocating working memory to
the triggering problem, and reducing BDNF signaling. (3) Transmission to the lateral
PFC  is involved in processing of the problem and promoting the resistance to dis-
tracting stimuli. (4) Transmission to the nucleus accumbens produces anhedonia,
which reduces the interest in attending to alternative stimuli. (5) Transmission to
the hypothalamus downregulates other energetically expensive processes (growth,
reproduction) that could draw limited resources away from processing of the prob-
lem, which probably contributes to many psychomotor symptoms (e.g., reduced
eating and sexual activity, social withdrawal, lethargy).
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Table  4
Energy consumption of different tissues in humans (Aiello and Wheeler, 1995) and sheep (Krebs, 1950), as well as the uptake of serotonin (Axelrod and Inscoe, 1963) and
metabolism of serotonin (Cheifetz and Warsh, 1980) in these tissues.

Region Energy consumption Serotonin

Humans (W/kg) Sheep (QO2) 5-HT uptake in mice (ng/g) 5-HIAA in rats (ng/g)

Heart 32.3 – 295 155
Kidney  23.3 27.5 66.3 106
Liver 12.2 8.5 97  50
Gastrointestinal tract – 7.7 419
Lungs  6.7 5.4 778 754
Skeletal  muscle 0.5 – 24 –
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Spleen – 6.9 

Skin  0.3 – 

Brain 11.2 19.7

everal weeks after the initiation of SSRI treatment (the therapeutic
elay).

In Section 5, we show how these claims help explain what is
appening in non-human animal models of melancholia and dur-

ng acute and chronic treatment with SSRIs. We  conclude with
mplications and suggestions for future research.

. Serotonin is elevated in multiple depressive phenotypes

It is currently impossible to measure 5-HT in the living
uman brain because it requires invasive techniques (Marsden,
010). Moreover, serotonin cannot cross the blood brain barrier
Bouchard, 1972; Genot et al., 1981), so peripheral measures do
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an up
role in depression and the antidepressant response. Neurosci. Biobeha

ot accurately reflect brain levels.
Some studies use molecular in vivo neuroimaging techniques

o attempt to infer changes in endogenous serotonin levels
Bhagwagar et al., 2007; Savitz et al., 2009; Stockmeier, 2003).

ig. 3. Hypothetical serotonin and glutamate patterns in projection regions (e.g., the later
nd  glutamate transmission in the non-depressed state. (B) Equilibrium transmission of se
hat  the equilibrium transmission of serotonin is elevated (Barton et al., 2008), and this is 

t  al., 2005). One effect of sustained serotonin transmission is to activate cortical networ
uggests depression is associated with elevated glutamatergic activity in many regions (A
f  the serotonin transporter (SERT) shifts the balance of serotonin into the extracellular 

quilibrium. Since SERT blockade mimics the effects of a sustained increase in serotonin tr
012) and symptoms often worsen (Cusin et al., 2007; Oswald et al., 1972). (D) Over pro
everse  the excess glutamatergic activity by inhibiting the synthesis of serotonin, which 

t  al., 2010; Smith et al., 2000), and tonically activating the 5-HT1A heteroreceptor (de Bor
hese  homeostatic responses reduce glutamatergic activity and produce the antidepressa
941 165
18.3 –
10.7 785

These techniques can measure dynamic changes in neurotrans-
mission induced by pharmacological or physiological challenges if
radiotracers measuring monoamine receptor or transporter den-
sity are sensitive to changes in endogenous monoamine levels
(Paterson et al., 2010, 2013). This has been successfully applied
to the dopaminergic system where such ligands are available
(Paterson et al., 2010). However, none of the ligands currently avail-
able for the serotonin transporter and its receptors are reliable in
imaging endogenous serotonin levels (Paterson et al., 2010, 2013).
Thus, current neuroimaging techniques cannot reliably measure
endogenous serotonin levels.

In non-human animals, invasive techniques (cyclic voltam-
metry, microdialysis) can be used, but most only measure extra-
per or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

cellular neurotransmitter concentrations (Robinson et al., 2003).
Extracellular concentrations are a poor index of serotonin transmis-
sion, which ideally requires the ability to measure the rate at which
serotonin is released into the synapse. Extracellular concentrations

al PFC) over the course of depression and SSRI treatment. (A) Equilibrium serotonin
rotonin and glutamate in the depressed state. Indirect evidence in humans suggests
supported by abundant evidence in multiple non-human animal models (e.g., Amat
ks, which are primarily glutamatergic (Puig and Gulledge, 2011). Current research
lcaro et al., 2010; Sanacora et al., 2012). (C) During acute SSRI treatment, blockade
compartment. Extracellular serotonin is therefore perturbed above the depressed
ansmission, glutamatergic activity rises above the depressed equilibrium (Fu et al.,
longed (chronic) SSRI treatment, the brain’s homeostatic mechanisms attempt to
eventually brings extracellular serotonin back to the depressed equilibrium (Popa
toli et al., 2013; Lopez et al., 1998; Shen et al., 2002; Vicente and Zangrossi Jr, 2014).
nt response.
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eflect: (1) the rate at which serotonin is released into the synapse
transmission); and (2) the rate at which it is cleared from the
ynapse. Thus, synaptic serotonin can accrete without an increase
n serotonin transmission (e.g., if SERT functioning is downregu-
ated). Conversely, synaptic serotonin concentrations can decline
espite elevated transmission if the rate of clearance is faster.

Single-unit recording techniques allow researchers to measure
he rate of neuronal firing of individual neurons, which should gen-
rally correspond to the rate of synaptic release. But neurons in
idbrain nuclei may  release several neurotransmitters, so single-

nit recordings must be used in conjunction with other techniques
e.g., voltammetry) to determine the rate and type of neurotrans-

itters that are released (Armstrong-James et al., 1980; Cheer et al.,
005). In short, it is often impractical to directly measure the rate
erotonin is released into the synapse.

To deal with these difficulties, researchers have attempted to
dentify indices of sustained serotonin transmission (Shannon et al.,
986). This research is particularly relevant because depression is
ore persistent than many other emotional states. Shannon and

olleagues (1986) assessed different indices of serotonin transmis-
ion to the amygdala, nucleus accumbens, and hypothalamus in
esponse to electrical stimulation of neurons in the dorsal raphe
ucleus (DRN), which is the primary source of serotonergic neurons
rojecting to forebrain regions. The 5-HIAA/5-HT ratio was the only

ndex sensitive to the duration and frequency of electrical stimu-
ation. The effect was driven by an increase in 5-HIAA, although
here was a non-significant decrease in serotonin. Consequently,
he 5-HIAA/5-HT ratio is the most reliable index of sustained sero-
onin transmission, although 5-HIAA can also be used (Barton et al.,
008; Dominguez et al., 2003; Kerdelhué et al., 1989; Winberg et al.,
992).

In the absence of information on the 5-HIAA/5-HT ratio or 5-
IAA levels, we rely on the extracellular concentration of serotonin
espite its limitations.

.1. In people

We  are unaware of any evidence attempting to assess serotonin
ransmission in humans during starvation depression or sickness
ehavior. However, several lines of evidence suggest that serotonin
ransmission is elevated in patients with major depression.

.1.1. Polymorphism in the SERT gene
The polymorphism in the promoter region of the SERT gene has

wo major variants: the short (s) and the long (l) alleles (Munafo
t al., 2009). The polymorphism has transcriptional and functional
onsequences, with the s-allele resulting in lower densities of trans-
orter mRNA and protein, and slower clearance of serotonin from
he synaptic cleft (Murphy et al., 2004). By reducing serotonin reup-
ake, the s-allele keeps extracellular levels of serotonin higher than
he l-allele. Consistent with the high serotonin hypothesis, the s-
llele is associated with a slightly increased risk of depression in
esponse to stressors (Karg et al., 2011).

.1.2. 5-HIAA levels in the jugular vein
The level of 5-HIAA in the cerebrospinal fluid is an unreliable

ndicator of brain serotonin transmission because it is contami-
ated by peripheral sources (Barton et al., 2008). However, the level
f 5-HIAA in the jugular vein is less contaminated because this vein
irectly drains blood from the brain. In an important study, a group
f Australian researchers found that, relative to non-depressed con-
rols, there was a higher overflow of 5-HIAA in the jugular veins
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an u
role in depression and the antidepressant response. Neurosci. Biobeha

f human subjects who met  DSM-IV criteria for major depression
Barton et al., 2008). 5-HIAA overflow decreased over 12 weeks of
reatment with an SSRI. Finally, among the depressed patients, 5-
IAA overflow was 2.4 times greater for carriers of the s-allele of
 PRESS
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the serotonin transporter polymorphism than for those who  were
homozygous for the l-allele. The authors concluded that the pat-
tern of results “appear to run counter to.  . .the conventional view
that [major depression] is caused by a relative reduction in brain
monoaminergic neuronal activity” (Barton et al., 2008, p. 42). This
study provides converging evidence of increased serotonin trans-
mission in the brains of depressed patients.

2.1.3. Tryptophan depletion increases DRN activity in depressed
patients taking ADMs

While tryptophan depletion does not trigger depressive symp-
toms in non-depressed people (Box 1), it does trigger depressive
symptoms in remitted patients who  have currently or previously
used serotonergic ADMs (Ruhe et al., 2007). In such patients, it does
not suppress DRN activity, as the low serotonin hypothesis predicts.
Rather, it activates the DRN (Morris et al., 1999), which is consistent
with the high serotonin hypothesis. Perhaps tryptophan depletion
causes a local decrease in serotonin around the DRN, deactivating
the 5-HT1A autoreceptor and disinhibiting serotonin transmission
to forebrain regions.

2.1.4. Increased preference for carbohydrates in depression
The high serotonin hypothesis is also supported less directly by

the increased preference depressed patients have for carbohydrate
over fat and protein (Christensen, 2001; Christensen and Brooks,
2006; Christensen and Pettijohn, 2001). This preference for carbo-
hydrate rich food is consistent across depressed patients, regardless
of the individual variability in appetite (i.e., increased or decreased
appetite). Moreover, the intensity of this preference correlates to
the severity of depression (Christensen and Somers, 1996).

The relative increase in carbohydrates intake causes brain sero-
tonin levels to increase (Christensen and Somers, 1996; Fernstrom
and Wurtman, 1997). Upon carbohydrate intake, insulin levels
increase, stimulating the uptake of large neutral amino acids
(LNAAs)—including valine, leucine, and isoleucine—into skeletal
muscle and out of the bloodstream. The exception is tryptophan,
which is not taken up into the skeletal muscle along with other
LNAAs because it is the only amino acid that binds to serum
albumin. Thus, while most of the other LNAAs are in the form
of free plasma amino acids—and so readily taken up into the
muscle tissue—approximately 80–90% of circulating tryptophan
is normally bound to serum albumin (Fuller and Roush, 1973;
Tricklebank et al., 1979) until tryptophan is released during the
perfusion of brain capillaries. All LNAAs are in competition for
transport across the blood brain barrier, and by increasing the
tryptophan:LNAA ratio in the blood, carbohydrates enhance the
transport of tryptophan into brain tissue (Heine et al., 1995). Since
tryptophan is a crucial precursor of serotonin, this can increase
serotonin levels in the brain.

The low serotonin hypothesis proposes that individuals are
craving carbohydrates to improve mood and seek relief in depres-
sive symptoms by increasing serotonin (Leibenluft et al., 1993).
However, if this were true, then a prolonged increase in carbo-
hydrate intake should be an effective treatment for depression by
increasing the available amount of serotonin. Thus, the symptoms
of depressed patients on high carbohydrate diets should ameliorate
over time relative to depressed patients on low carbohydrate diets.
However, high carbohydrate diets appear to increase depressive
symptoms rather than reduce them (Cheatham et al., 2009). More-
over, in a 3-week dietary intervention, depressed patients with a
restricted intake of sucrose and caffeine, which also increases extra-
pper or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

cellular serotonin (Nehlig et al., 1992), experienced a persistent
amelioration in depressive symptoms (Christensen and Burrows,
1990). Thus, it seems more plausible that “the consumption of
sweet carbohydrates may  contribute to the development and/or
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aintenance of emotional distress” (Christensen and Pettijohn,
001, p. 164).

.1.5. Tianeptine
The fact that the antidepressant tianeptine has reuptake-

nhancing properties is consistent with the high serotonin
ypothesis. Its efficacy in reducing depressive symptoms, both
hort term and long term, is comparable to other ADMs (McEwen
t al., 2010). However, as with other ADMs, there is a therapeu-
ic delay (Waintraub et al., 2002). Moreover, the mechanism by
hich tianeptine reduces symptoms is unclear (McEwen et al.,

010). Despite its reuptake-enhancing properties, neither acute
or chronic treatment with tianeptine causes actual extracellular
erotonin levels to fall in rodents (Malagie et al., 2000).

.1.6. Anxiety
Depression and anxiety tend to co-occur (Belzer and Schneier,

004). Among people satisfying the current criteria for social anxi-
ty disorder, for instance, the rates of major depression range from
6 to 58%. Conversely, among those with major depression, the
ates of social anxiety range from 20 to 45%. If subclinical symptoms
ere to be included, the rates of co-occurrence would be higher.
hile depression is co-morbid with many conditions, the associ-

tion with anxiety is unique because multiple studies of human
wins have found that depression and anxiety have virtually iden-
ical genetic architectures (Kendler and Prescott, 2006). We should
herefore expect that genetic variants in the serotonergic system
hould affect the risk of depression and anxiety in the same direc-
ion. Indeed, the s-allele in the serotonin transporter polymorphism
s associated with an increased risk of anxiety as well as depression
n humans (Furmark et al., 2004).

Further evidence that depression and anxiety bear the same
irection of association with serotonin comes from another inter-
al jugular venous sampling study from the Australian group (Esler
t al., 2007). They found a 4-fold increase in 5-HIAA in patients
iagnosed with panic disorder compared to healthy subjects. They
lso found a strong positive correlation between 5-HIAA and the
everity of symptoms, as well as reduced 5-HIAA with chronic
SRI administration. The authors suggested that the increase in
hole brain serotonin turnover in patients with panic disorder

most likely derived not from impaired serotonin reuptake, but
rom increased firing in serotonergic midbrain raphe neurons pro-
ecting to both subcortical brain regions and the cerebral cortex” (p.
95). Indeed, many researchers consider anxiety to be a state of ele-
ated serotonin transmission (Deakin and Graeff, 1991; Guimaraes
t al., 2010; Hale et al., 2012; Wise et al., 1972).

.2. In non-human animal models

Further support for the high serotonin hypothesis is garnered
rom non-human animal models of depression, including stressor,
enetic, and lesion models.

.2.1. Stressor models

.2.1.1. Starvation. Starvation triggers depressive symptoms in
umans (Keys et al., 1950). During periods of fasting and starvation,
xtracellular 5-HIAA and serotonin increase in the hypothalamus
Broocks et al., 1991; Fetissov et al., 2000). During prolonged star-
ation, the ability to synthesize serotonin could be reduced by a
ack of dietary tryptophan. However, the metabolism of muscle
issue could liberate tryptophan to replace declining serotonin lev-
ls. In arctic charr, serotonin declined in the telencephalon under
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an up
role in depression and the antidepressant response. Neurosci. Biobeha

our weeks of starvation, but the 5-HIAA/5-HT ratio was unal-
ered (Winberg et al., 1992). Since body weight declined by nearly
0%, we suggest that muscle metabolism during starvation helps
aintain serotonin transmission. To help maintain extracellular
 PRESS
havioral Reviews xxx (2015) xxx–xxx 7

serotonin levels, the starving brain also appears to downregulate
the density of the serotonin transporter (Huether et al., 1997).

2.2.1.2. Infection and immune challenge. Infection also triggers
depressive symptoms (Dantzer, 2001; Hart, 1988). During immune
challenge, the 5-HIAA/5-HT ratio is elevated in the hypothalamus
(Dunn et al., 1989; Linthorst et al., 1995a; Mefford and Heyes, 1990)
and remains elevated while the organism is sick (Dunn, 2006). The
5-HIAA/5-HT ratio is elevated in the hippocampus as well (Linthorst
et al., 1995b). By themselves, pyrogenic cytokines also increase
serotonin transmission. IL-1� has been found to increase 5-HIAA in
the PFC, nucleus accumbens and hippocampus (Merali et al., 1997),
while IL-6 has been found to increase the 5-HIAA/5-HT ratio in the
brain stem, hypothalamus and striatum (Wang and Dunn, 1998;
Zhang et al., 2001).

2.2.1.3. Inescapable shock. Inescapable shock is a common rodent
model of depression, and it increases extracellular serotonin in
the medial PFC (Amat et al., 2005), ventral hippocampus and dor-
sal periaqueductal gray (Amat et al., 1998b), basolateral amygdala
(Amat et al., 1998a), and nucleus accumbens (Bland et al., 2003b).
Inescapable shock also increases the activity of serotonergic neu-
rons, as indexed by c-Fos expression (Grahn et al., 1999), suggesting
that the increase in extracellular serotonin is caused by an increase
in transmission. Since the 5-HIAA/5-HT ratio is our main index of
serotonin transmission, it is perhaps more telling that inescapable
shock increases this ratio across many regions, including the locus
coeruleus, brain stem, thalamus, hypothalamus, striatum, frontal
cortex, and hippocampus (Adell et al., 1988).

2.2.1.4. Chronic social defeat. In rats, chronic social defeat has been
found to increase extracellular serotonin in the DRN (Amat et al.,
2010), 5-HIAA levels in the amygdala and hippocampus, and the
5-HIAA/5-HT ratio in the midbrain and hypothalamus (Blanchard
et al., 1993). In mice, chronic social defeat has been found to
increase the 5-HIAA/5-HT ratio in the hypothalamus and hip-
pocampus (Beitia et al., 2005; Keeney et al., 2006).

2.2.1.5. Chronic mild stress. In chronic mild stress, serotonin trans-
mission (as indexed by 5-HIAA or the 5-HIAA/5-HT ratio) is elevated
in many regions, including the PFC, hypothalamus, hippocampus,
and amygdala (Bekris et al., 2005; Gamaro et al., 2003; Li et al.,
2012; Tannenbaum and Anisman, 2003; Tannenbaum et al., 2002).

2.2.1.6. Chronic restraint stress. Chronic restraint stress also shows
evidence of elevated serotonin transmission in some regions,
although there are also many null effects (O’Mahony et al., 2011;
Torres et al., 2002). The mixed evidence is probably due to the
fact that rodents are more likely to habituate to chronic restraint
than other models, thereby lessening its depressogenic impact
(Bergström et al., 2008; Marin et al., 2007).

2.2.1.7. Maternal separation and social isolation. Some depression
models involve examining how rodents respond to a stressor after
having been raised apart from their mothers or in social isolation. In
a study using this paradigm, there were no differences in serotonin
transmission between maternally separated rats and control rats at
baseline (Daniels et al., 2004). However, after exposure to a restraint
stressor, the maternally separated rats had a higher 5-HIAA/5-HT
ratio in the frontal cortex and hypothalamus, and 5-HIAA levels
were elevated in the frontal cortex and hippocampus.
per or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

Brush-tailed rats (Octodon degus)  raised in social isolation show
increased innervation of serotonergic fibers to the infralimbic
region of the mPFC (Braun et al., 1999). Hooded Lister rats raised
in social isolation also showed an increase in serotonin release (as
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easured by voltammetry and microdialysis) in the frontal cor-
ex in response to KCl and fenfluramine (Crespi et al., 1992), and
n increase in extracellular serotonin in the nucleus accumbens in
esponse to a conditioned stress paradigm (Fulford and Marsden,
997).

.2.1.8. Neonatal SSRI exposure. Interestingly, neonatal exposure
o SSRIs is a model of depression that is also consistent with the
igh serotonin hypothesis. Adult rats exposed to SSRIs as neonates
how increased serotonin transmission (indexed by the 5-HIAA/5-
T ratio) in the hypothalamus (Feenstra et al., 1996; Hilakivi et al.,
987), and exhibit a depressive behavioral profile (Ansorge et al.,
004; Hansen et al., 1997).

.2.2. Genetic models

.2.2.1. The Flinders Sensitive Line. In the Flinders Sensitive Line rat,
 breed that exhibits many depressive symptoms (Table 4), sero-
onin and 5-HIAA levels are elevated in the PFC, hippocampus and
ther regions relative to control rats (Zangen et al., 1997).

.2.2.2. The congenital learned helplessness breed. We  have been
nable to find any evidence on serotonin transmission in rats
red for congenital learned helplessness. We  predict that the 5-
IAA/5-HT ratio will be elevated in multiple regions, particularly

he hypothalamus, PFC and hippocampus.

.2.2.3. SERT and 5-HT1A knockouts. Rodents that have had the
enes for SERT or the 5-HT1A receptor knocked out express higher
evels of depressive symptoms (Heisler et al., 1998; Holmes et al.,
003; Ramboz et al., 1998). Consistent with the high serotonin
ypothesis, 5-HT1A knockouts were found to have higher 5-HIAA

evels in multiple brain regions, including the olfactory bulb, subs-
antia nigra, thalamus, locus coeruleus, and the dorsal and medial
aphe nuclei (Ase et al., 2000). While there are differences in the
evels of serotonin and 5-HIAA in SERT knockout mice and SERT
nockout rats (Olivier et al., 2008), the ratio of 5-HIAA/5-HT is ele-
ated in multiple brain regions in both species (Fabre et al., 2000;
omberg et al., 2007).

.2.3. Lesion models

.2.3.1. Olfactory bulbectomy. Olfactory bulbectomy is the only
odel of depression to show reduced a 5-HIAA/5-HT ratio in multi-

le brain regions (Song and Leonard, 2005). This is because olfactory
ulbectomy causes DRN neurons to degenerate so there is less
apacity to transmit serotonin (Song and Leonard, 2005). However,
t is possible that the remaining DRN neurons transmit serotonin at

 heightened rate, which would be consistent with the high sero-
onin hypothesis. Indeed, there is an increase in the innervation of
erotonin fibers and the synthesis of serotonin in cortical and limbic
egions following olfactory bulbectomy (Watanabe et al., 2003).

.2.3.2. Lesion of the DRN. Lesion of the DRN is not a model of
epression, which is problematic for the low serotonin hypothesis.
or instance, rats with electrolytic lesion of the DRN were less anhe-
onic (assessed by intake of a sucrose solution) than sham-operated
ontrols (Wirtshafter and Asin, 1991). Given the state-dependent
ffects of serotonin, we do not expect DRN lesion to have simple
ffects on depressive symptoms. But DRN lesion should inhibit the
roduction of depressive symptoms in response to depressogenic
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an u
role in depression and the antidepressant response. Neurosci. Biobeha

tressors. Indeed, DRN lesion inhibits the development of depres-
ive symptoms in the inescapable shock, chronic social defeat, and
hronic mild stress models (Chung et al., 1999; Maier et al., 1993;
alcin et al., 2008).
 PRESS
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2.3. Summary

In humans, the strongest evidence that serotonin transmis-
sion is elevated in depression and anxiety comes from the jugular
sampling studies of 5-HIAA, which is a commonly used index of
sustained serotonin transmission. This is strongly supported by
the numerous studies in non-human animal models demonstrating
elevations in 5-HIAA/5-HT, 5-HIAA, and even extracellular sero-
tonin in many brain regions.

The principle challenge to the high serotonin hypothesis is the
fact that the direct pharmacological properties of most antidepres-
sants increase extracellular serotonin, most commonly by SERT
blockade. We  argue that this puzzle cannot be resolved without
understanding the evolved function of the serotonergic system, to
which we now turn.

3. The energy regulation function of the serotonergic
system

In this section of the paper, we  propose a novel hypothesis for
the evolved function of the serotonergic system, which includes
serotonin, its receptors, SERT, and other components that help reg-
ulate serotonin or its effects. Our hypothesis owes much to the
research of Efrain Azmitia on the evolution of serotonin (Azmitia,
2001, 2007, 2010). One of our novel contributions is to explicitly
identify the evolution of the mitochondrion as the likely point on
the tree of life where serotonin evolved. This key fact helped shape
our energy regulation hypothesis for the serotonergic system.

3.1. Overview of the serotonergic system

In the brain, the dorsal raphe nucleus (DRN) is the main source
of serotonergic neurons that project to forebrain regions (Hornung,
2010). Tryptophan is the crucial precursor used to synthesize
serotonin. Animals cannot synthesize tryptophan, so they must
acquire it from their diet (Azmitia, 2010), and it goes through three
main metabolic pathways: (1) protein synthesis; (2) the kynure-
nine pathway; and (3) the serotonin pathway. Of the tryptophan
not used in protein synthesis, 99% goes down the kynurenine
pathway (Stone and Darlington, 2002). The remaining 1% is con-
verted to serotonin in two  steps. First, tryptophan is converted
to 5-hydroxytryptophan by tryptophan hydroxylase. Second, 5-
hydroxytryptophan is converted to serotonin by aromatic l-amino
acid decarboxylase (AADC).

There are no enzymes for breaking down serotonin in the
extracellular space so it must be transported inside the cell. Most
extracellular serotonin is transported into the pre-synaptic neuron
by SERT (D’Souza and Craig, 2010). Serotonin is primarily broken
down to 5-HIAA by the monoamine oxidase A (MAO-A) enzyme,
which is located in mitochondria.

SERT is widely expressed throughout the body (Lin et al., 2006).
In the periphery, SERT is commonly expressed in many organs that
take up serotonin from the bloodstream (Gershon and Tack, 2007;
Mercado and Kilic, 2010; Wilson et al., 2002).

Several aspects of the serotonergic system contribute to the abil-
ity to produce diverse state-dependent effects. First, the DRN has
several anatomically distinct subdivisions (Hale and Lowry, 2011),
which can cause differential transmission to forebrain regions. For
instance, activation of the caudal and dorsal DRN has anxiogenic
effects, while activation of the ventrolateral DRN/ventrolateral
periaqueductal gray has anxiolytic effects (Hale et al., 2012).
pper or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

Second, the large number of serotonin receptors arguably gives
the serotonergic system greater regulatory flexibility than any
other neurotransmitter system in the brain. There are 14 sero-
tonin receptors that fall into seven classes (Barnes and Sharp,
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999). The 5-HT1 and 5-HT5 classes are inhibitory, while the 5-
T2, 5-HT3, 5-HT4, 5-HT6 and 5-HT7 classes are excitatory. Multiple

erotonin receptor types are commonly co-expressed on a variety
f cells throughout the brain and the periphery (Basura et al., 2001;
ickmeyer et al., 2002; Bonsi et al., 2007; Hannon and Hoyer, 2008;

rving et al., 2007; Kellermann et al., 1996; Noh and Han, 1998;
right et al., 1995). Serotonin receptors can also form homodimers

nd heterodimers, the functional consequences of which are not
ully understood (Albizu et al., 2011; Herrick-Davis, 2013; Renner
t al., 2012). The complex control that can be achieved with the
iversity of receptor function supports the role of the serotonin
ystem in energy regulation.

Third, the temporal firing patterns of serotonergic neurons may
ave different postsynaptic effects. For instance, prolonged expo-
ure to serotonin (but not other neurotransmitters) can cause
hasically firing neurons to transition to a repetitive, prolonged
tonic) firing pattern (Garraway and Hochman, 2001a). A sustained
ncrease in serotonin transmission has a similar excitatory effect
n cortical networks in the PFC (Puig and Gulledge, 2011). 5-HT2A
eceptors mediate the tonic increase in glutamatergic activity (Puig
nd Gulledge, 2011), while 5-HT2A/2C receptors mediate the tonic
ncrease in motorneuron activity (Harvey et al., 2006a,b; Liu et al.,
011).

.2. The evolution of serotonin in mitochondria

It is very likely that serotonin evolved in mitochondria or their
mmediate ancestors. First, serotonin is found in plants, animals,
nd fungi, so the latest it could have evolved was in the unicellular
ukaryotic precursor to multicellular organisms, which is about one
illion years ago (Azmitia, 2010). Second, the synthesis of serotonin
equires oxygen (Azmitia, 2010), which is also important in mito-
hondrial function. Third, MAO-A is localized to the inner surface of
he outer mitochondrial membrane (Russell et al., 1979; Wang and
dmondson, 2011), which suggests a mitochondrial origin because
erotonin must be inside the mitochondrion to be metabolized.
ndeed, the mitochondrion may  be the most common intracellular
ocation of serotonin (Das and Steinberg, 1985), and at least some

itochondria contain the enzymes for synthesizing serotonin (Basu
t al., 2008; Ichiyama et al., 1970).

Surprisingly, the genes for the synthesizing enzymes are not
ocated in the mitochondrial genome (Boore, 1999) but in the
uclear genome (Craig et al., 1991; Sumi-Ichinose et al., 1992). How
ould serotonin evolve in mitochondria if the genes for the synthe-
izing enzymes are not located in the mitochondrial genome? Of
articular importance is AADC, which catalyzes the final step.

AADC belongs to a class of enzymes called pyridoxal phos-
hate (PLP)-dependent carboxylase enzymes (Jackson, 1990).
itochondria and PLP-dependent carboxylases have a common

hylogenetic origin. Mitochondria evolved approximately 2 billion
ears ago from an �-proteobacterium that formed an endosymbi-
tic relationship with an ill-defined larger bacterium (Emelyanov,
001). Similarly, PLP-dependent carboxylases evolved from �-
roteobacteria (Iyer et al., 2004; Jackson, 1990). Thus, AADC
volved from the PLP-dependent carboxylase precursor, proba-
ly in the mitochondrion. As mitochondria evolved and became
ore integrated with the endosymbiotic host, some mitochondrial

enes were lost, and some were transferred to the nuclear genome
Andersson et al., 2003; Emelyanov, 2001). During this process, the
ADC gene was transferred to the nuclear genome and deleted from

he mitochondrial genome (Iyer et al., 2004).
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an up
role in depression and the antidepressant response. Neurosci. Biobeha

.3. The mitochondrial functions of serotonin

What does serotonin do in mitochondria? Serotonin increases
he potential across the inner mitochondrial membrane, although
 PRESS
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the precise mechanisms by which this is achieved are unknown
(Basu et al., 2008). Serotonin may  affect mitochondrial function
as the precursor to melatonin. Mitochondria have the enzymes
that convert serotonin to melatonin, and melatonin increases the
efficiency of energy production by accelerating electron transport
(Tan et al., 2013). Electron transport generates reactive oxygen and
nitrogen species that can damage the mitochondrion and other cel-
lular structures (Tan et al., 2013), and serotonin and melatonin both
have powerful antioxidant properties (Park et al., 2002).

3.4. What is the function of the serotonergic system?

The serotonergic system affects so many processes that some
researchers despair of ever identifying a unifying function. Based
on the foregoing, serotonin probably evolved first to regulate mito-
chondrial activity. This function could, in principle, affect every
major system, organ, and metabolic process in the body. Moreover,
it is so important that it is highly likely that any subsequent func-
tions of the serotonergic system were at least consistent with this
original function, and probably facilitate it (for a similar point, see
Azmitia, 2010).

Mitochondria face adaptive challenges within multicellular
organisms, and the serotonergic system could have evolved to solve
these problems. Multicellular organisms are composed of special-
ized cells with different functions that respond to environmental
contingencies, and these responses depend on ATP produced by
mitochondria (or glycolysis in the cytosol). Multicellular organisms
must therefore coordinate the distribution of important energetic
resources (glucose, fatty acids, amino acids) throughout the organ-
ism with regional mitochondrial activity patterns. We  propose
that the serotonergic system evolved to promote energy regulation,
which we define as the coordination of metabolic processes with
the distribution and utilization of limited energetic resources to
meet adaptive demands.

Other prominent hypotheses for serotonin propose that it
evolved to promote homeostasis (Azmitia, 2007) or phenotypic
plasticity (Branchi, 2011; Homberg, 2012). While it is undeniable
that serotonin can affect homeostasis and phenotypic plasticity,
this is true of all biochemicals: it makes little sense to single out
the serotonergic system for these functions. However, the seroto-
nergic system is unique in that it can simultaneously coordinate
the production, storage, mobilization, distribution, and utilization
of energy. Arguably, no other biochemical system in the body can
do this.

3.4.1. Serotonin and energy regulation
3.4.1.1. Glucose metabolism. Serotonin regulates the two  major
metabolic pathways for generating ATP from glucose. In addition to
affecting electron transport in mitochondria (oxidative phosphory-
lation), serotonin can upregulate or downregulate the production of
ATP from glucose in the cytosol from glycolysis (Ashkenazy-Shahar
and Beitner, 1997; Assouline-Cohen et al., 1998; Beitner et al., 1983;
Coelho et al., 2007, 2012; Lilling and Beitner, 1990; Mansour, 1962).
This process is often called aerobic glycolysis because it can take
place in the presence of oxygen, even though it does not use oxy-
gen. Oxidative phosphorylation is more efficient because it extracts
more molecules of ATP from every molecule of glucose, but aerobic
glycolysis is rapid and generates ATP at a faster rate than oxida-
tive phosphorylation (Pfeiffer et al., 2001). In addition to being
faster, glycolysis may  produce less reactive oxygen species that can
harm the cell or the mitochondrion (Brand and Hermfisse, 1997).
In the brain, aerobic glycolysis involves the breakdown of glycogen
per or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

stored in astrocytes, which then transport the endproduct (lactate)
to neurons that preferentially use it as a fuel source (Magistretti and
Ransom, 2002). In astrocytes, serotonin regulates aerobic glycolysis
through the 5-HT1A heteroreceptor (Uehara et al., 2006).
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.4.1.2. Blood glucose homeostasis. Serotonin has bidirectional con-
rol over glucose homeostasis in the bloodstream by regulating
lucagon and insulin secretion from pancreatic cells (Adeghate
t al., 1999; Coulie et al., 1998; Sugimoto et al., 1996; Yamada and
ugimoto, 2000; Yamada et al., 1995).

.4.1.3. Lipid storage and metabolism. Serotonin also has bidirec-
ional control over the homeostatic regulation of stores of body fat
hrough the leptin signaling pathways involved in lipid metabolism
Donovan and Tecott, 2013).

.4.1.4. The vascular system. Serotonin also exerts control over the
ascular system. While mainly known for its vasoconstrictive prop-
rties, serotonin is also a vasodilator (Cohen et al., 1996), which
ives it bidirectional control over the distribution of energetic
esources. Serotonin also regulates vascular networks in plants
Kang et al., 2007, 2009), and future research should test whether
erotonin has a similar function in fungal hyphae.

.4.1.5. Neuronal activity. Neurons are major consumers of energy
n the brain, and serotonin exerts complex bidirectional effects
n neuronal growth, differentiation, and death (Azmitia, 2001).
oreover, inhibitory and excitatory serotonin receptors are often

o-expressed on cholinergic, glutamatergic, GABAergic, dopami-
ergic, and motor neurons, so serotonin also has bidirectional
ontrol over neuronal activity (Fink and Gothert, 2007; Puig and
ulledge, 2011).

.4.1.6. Organ function. Many organs have large energetic
emands, and serotonin is either produced or taken up from
he bloodstream by every major organ in the body (Table 4).
ndeed, the uptake of serotonin in lung tissue, platelet cells, and
hromaffin granules of the adrenal medulla is positively correlated
ith the level of ATP production in those tissues (Bankston and
uidotti, 1996; Born and Gillson, 1959; Fisher et al., 1974).

.4.1.7. Metabolically expensive processes. Serotonin also controls
he expenditure of energy by regulating metabolically expensive
rocesses—growth, development, reproduction, immune function,
nd the stress response (Azmitia, 2007), probably by affecting
ypothalamic function. The hypothalamus regulates the timing and
oordination of these processes (Chrousos, 2009; Cyr and Eales,
996; Sower et al., 2009; Tsang et al., 2014; Yang, 2010), and it con-
ains some of the highest concentrations of serotonin in the brain
Bogdanski et al., 1957; Brown et al., 1979; Paasonen et al., 1957).

Important metabolic processes are disturbed when serotonin
ransmission is disrupted. For instance, monoamine transmis-
ion to the hypothalamus is completely inhibited in REM sleep
Parmeggiani, 2011). During this time, important physiological
arameters also become less regulated—blood pressure, heart rate,
reathing and body temperature (Parmeggiani, 2011). Despite this,
he brain’s total energy consumption during REM sleep is nearly
he same level as during the awake state (Buchsbaum et al.,
989; Madsen et al., 1991). Similarly, Kanarik and colleagues have
ound that serotonergic lesions induced by the neurotoxin para-
hloroamphetamine trigger a compensatory response 28 days later
n which cytochrome oxidase c expression was increased in mul-
iple regions of the rat brain (Kanarik, 2011; Kanarik et al., 2008).
ogether, both lines of evidence suggest serotonin increases the
nergetic efficiency of metabolic processes.

.4.2. The homeostatic equilibrium level of serotonin
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an u
role in depression and the antidepressant response. Neurosci. Biobeha

ransmission is increased in situations requiring a rebalancing of
etabolically expensive processes

Based on the foregoing, we propose that the homeostatic equi-
ibrium level of serotonin transmission increases in situations that
 PRESS
havioral Reviews xxx (2015) xxx–xxx

require a shift in the balance of metabolically expensive processes
to adaptively respond to environmental contingencies. The hypo-
thalamus should be a common site of increased transmission due
to its role in coordinating these processes.

In a recent study, muscle glycogen levels were depleted by
82–90% in adult male rats during exhaustive exercise, while brain
glycogen levels decreased by 50–64%. During recovery, glycogen
reserves were replenished through a supercompensatory response
(Matsui et al., 2012). Interestingly, during exercise there is an
increase in serotonin transmission to the hypothalamus and other
brain regions (Blomstrand, 2011). Another study found that sero-
tonin levels in the lateral hypothalamus increase during exercise
and return to baseline during recovery (Smriga et al., 2002),
which mirrors what happens to glycogen levels. Indeed, ele-
vated serotonin levels during exercise are associated with fatigue
(Blomstrand, 2011), an indicator of energetic stress. We suggest
that serotonin is elevated during exercise because the fall in glyco-
gen forces a reprioritization in energy allocation. During recovery,
serotonin levels fall as glycogen is replenished and allocation pat-
terns normalize.

The association with energetic stress is not limited to negative
situations. Male rats become unresponsive to new mating opportu-
nities for nearly two days after about 3.5 h of ad libitum copulation
with successive estrous females (Mas  et al., 1995). The most likely
reason for the unresponsiveness is the depletion of viable sperm.
Since spermatogenesis is energetically expensive (Dowling and
Simmons, 2012; Olsson et al., 1997), sperm depleted males must
devote less energy to mating effort and devote more to sper-
matogenesis. During the period of sexual exhaustion, serotonin
is elevated in the hypothalamus and returns to baseline as sex-
ual responsiveness resumes (Hull et al., 2004; Lorrain et al., 1997;
Mas  et al., 1995). Consistent with the role of serotonin in rebalanc-
ing metabolically expensive processes, elevated serotonin levels in
the hypothalamus promote spermatogenesis (Aragon et al., 2005;
Shishkina and Dygalo, 2000) and inhibit mating behavior (Hull et al.,
2004).

In short, the effects of enhanced serotonin transmission are
state-dependent. Physical exhaustion, sexual exhaustion, and
many other states show evidence of enhanced serotonin trans-
mission (Table 3), yet their symptom profiles differ in important
ways. Under the energy regulation hypothesis, state-dependence
is expected because situational demands determine how energy
should be adaptively reallocated.

State-dependence can explain some inconsistent findings.
Homberg and colleagues have shown that the serotonergic system
affects rodents’ cognitive flexibility, including reversal learning,
attentional set shifting, the ability to form and update represen-
tations of stimulus-reward or response-reward contingencies,
the inhibition of inappropriate responses, and the ability to post-
pone immediate reward for a larger delayed reward (Homberg,
2012; Homberg and Lesch, 2011; Nonkes et al., 2012; Nonkes
and Homberg, 2013). They argue that the serotonergic system
integrates past learning with incoming information from the
environment to regulate attention, focusing on the processing of
stimuli most relevant to the organism’s survival and reproduc-
tion (‘vigilance behavior’). Their hypothesis is consistent with a
larger body of evidence implicating the serotonergic system in
learning and memory systems (Altman and Normile, 1988; Cassel,
2010). However, the direction of association is unclear, with
some studies reporting a positive association between cognitive
flexibility and serotonin transmission, and other studies reporting
a negative association (Altman and Normile, 1988; Cassel, 2010;
pper or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

Homberg, 2012). The bidirectional findings are explicable by
the hypothesis that the serotonergic system is part of the adap-
tive energy-regulation machinery that balances cognition with
other metabolically expensive processes—growth, maintenance,
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mmune function, reproduction—as the situation demands. In
ection 5, we discuss how serotonin coordinates the cognitive
hanges that take place in melancholia.

. The homeostatic response to SSRIs and symptom
eduction

In this section, we argue that depressive symptoms are reduced
ver several weeks of SSRI treatment, not by their direct pharma-
ological properties, but due to the compensatory responses of the
rain attempting to restore energy homeostasis.

.1. Acute SSRI treatment disrupts energy homeostasis

The total content of serotonin in the brain is composed of
he intracellular pool and the extracellular pool. With acute SSRI
reatment, SERT blockade prevents reuptake from the synapse,
ncreasing extracellular serotonin within minutes to hours of
dministration (Bymaster et al., 2002; Rutter and Auerbach, 1993).
ut another way, the distribution of serotonin is rapidly shifted to
he extracellular pool, and extracellular levels are perturbed from
heir homeostatic equilibrium (Fig. 3C).

The increase in extracellular serotonin causes corresponding
isruptions to energy homeostasis. In rodents, acute SSRI treatment
as been shown to increase glutamatergic activity in the rodent
refrontal cortex (Fu et al., 2012), promote glycolytic activity in the
ippocampus (Webhofer et al., 2013), inhibit oxidative phosphor-
lation in liver and brain mitochondria (Curti et al., 1999; Souza
t al., 1994), and inhibit the consumption of blood-borne glucose
hroughout the brain (Freo et al., 2000).

.2. The brain’s compensatory responses to SSRI treatment

The brain attempts to restore energy homeostasis through
 number of compensatory responses. These compensatory
esponses take several weeks to develop, which could make them
mportant in the therapeutic delay. One such change is a decline
n extracellular serotonin during chronic SSRI treatment that even-
ually comes back to the premedication equilibrium (Fig. 6) (Popa
t al., 2010; Smith et al., 2000). This decline is due to the fact that all
DM classes inhibit the synthesis of serotonin (Bosker et al., 2010;
steban et al., 1999; Honig et al., 2009; Moret and Briley, 1996;
uck-Seler et al., 1996; Siesser et al., 2013; Yamane et al., 1999,

001). Over chronic treatment, the cumulative effects of the inhibi-
ion of synthesis cause total (intracellular + extracellular) serotonin
evels to decline (Fig. 7) (Bosker et al., 2010; Honig et al., 2009;

arsteller et al., 2007; Siesser et al., 2013).
Over several weeks of ADM treatment, the 5-HT1A heterore-

eptor also becomes tonically activated in many forebrain regions
Fig. 3D) (Beck et al., 1997; de Bortoli et al., 2006, 2013; Elena Castro
t al., 2003; Jongsma et al., 2006; Lopez et al., 1998; Shen et al.,
002; Vicente and Zangrossi Jr, 2014; Welner et al., 1989; Zanoveli
t al., 2005, 2007, 2010). This is a postsynaptic effect, so it is not
asily explained as an attempt to restore serotonin homeostasis.
his is more readily explained as a compensatory response to the
isruptions in the allocation of energy caused by acute treatment.

Specifically, most cortical neurons are glutamatergic, so activa-
ion of the 5-HT1A heteroreceptor, which is inhibitory, counteracts
he stimulatory effect of serotonin on glutamatergic neurons
nduced by acute SSRI treatment (Fu et al., 2012). The grad-
al decline in extracellular serotonin from peak value also helps
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an up
role in depression and the antidepressant response. Neurosci. Biobeha

everse SSRI-stimulated glutamatergic activity in cortical regions
Fig. 3D). These alterations, and possibly others, help restore energy
omeostasis after perturbation by SSRI treatment. Indeed, while
cute SSRI treatment increases glutamatergic activity in rodent
 PRESS
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models of depression (Fu et al., 2012), chronic treatment decreases
it (Bonanno et al., 2005; Mallei et al., 2011; Musazzi et al., 2010).

This pattern, in which acute and chronic SSRI treatments have
opposing phenotypic effects, is a fairly widespread phenomenon.
ADMs of all major classes reduce aggression in rodents during
acute treatment, but increase aggression over chronic treatment
(Mitchell, 2005). In healthy volunteers, a single dose of the SSRI
citalopram potentiates anxiety, while chronic treatment inhibits it
(Grillon et al., 2007, 2009). Similarly, acute and chronic paroxetine
treatments exert diametrically opposing effects on the excitability
of motor cortex (Gerdelat-Mas et al., 2005; Loubinoux et al., 2002).
Acute SSRI treatment stabilizes microtubule structure and poten-
tiates the hippocampal-PFC synapse, while the opposite effects are
seen over chronic treatment (Bianchi et al., 2009; Cai et al., 2013).
BDNF signaling is decreased with acute SSRI treatment, and chronic
treatment increases it (De Foubert et al., 2004; Khundakar and
Zetterström, 2006).

The opposing effects are theoretically important because the
acute effects are more likely to be due to the direct pharmaco-
logical properties of these drugs. That acute SSRI treatment has
widespread phenotypic effects is further evidence that they disrupt
energy homeostasis. Conversely, the opposing effects that occur
over chronic treatment are more likely to be due to the brain’s
compensatory responses that attempt to restore homeostasis.

The opposing effects are difficult for the phenotypic plasticity
hypothesis to explain. As it is currently described (Branchi, 2011),
there is no reason to predict that chronic SSRI treatment should
reverse the phenotypic effects of acute treatment. Rather, the most
obvious prediction is that chronic treatment will exacerbate the
effects of acute treatment, simply because phenotypic changes have
more time to develop.

4.3. The mechanisms of symptom reduction

We hypothesize that it is the brain’s compensatory responses to
SSRI treatment, rather than the direct pharmacological properties
of SSRIs, that are responsible for reducing depressive symptoms.
Others have suggested the symptom-reducing effects of SSRIs are
attributable to the brain’s attempts to re-establish homeostasis
(Hyman and Nestler, 1996). We  differ slightly in that we  propose
that the brain is attempting to restore energy homeostasis rather
than serotonin homeostasis. The return of extracellular serotonin to
equilibrium conditions is only one component of the homeostatic
response to the energy dysregulation caused by SSRI treatment.

If our hypothesis is correct, SSRIs (and perhaps other ADMs)
could have opposing effects on depressive symptoms during acute
and chronic treatment. Efficacy studies usually do not report the
relative effect of ADMs over placebo on depressive symptoms dur-
ing the early stages of treatment. However, anecdotal evidence sug-
gests that symptoms often worsen before they get better (Haslam
et al., 2004). The anecdotal evidence is supported by two pertinent
studies. In one placebo-controlled study, imipramine was  less effec-
tive than placebo during the first week of treatment (Oswald et al.,
1972). Imipramine only outperformed placebo over several weeks
of treatment. In another study, 30.4% of participants experienced a
worsening of depressive symptoms (defined as an increase of five
points or more on the Hamilton Depression Research Scale; HDRS)
within the first weeks of fluoxetine treatment (Cusin et al., 2007).
This is perhaps a surprising finding given the large placebo effect
in depression (Kirsch et al., 2008), which could obscure any phar-
macological effects that increase symptoms. Moreover, the require-
ment that the increase be at least five HDRS points is stringent since
per or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

antidepressant drugs must only reduce symptoms by three HDRS
points more than placebo to be deemed clinically significant in the
United Kingdom (Excellence, 2004). Indeed, since an increase in
depressive symptoms is likely to have a Poisson distribution, the
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roportion of participants who experienced any increase in symp-
oms during early treatment is likely to have been much higher.

The initial worsening of symptoms is theoretically important
ecause this is when the largest increases in extracellular sero-
onin occur (Fig. 6). It is only over several weeks of treatment
hat depressive symptoms reduce, during which the trajectory of
xtracellular serotonin is declining from its peak value (Fig. 6).
hat the therapeutic delay of ADMs might be related to the down-
ard trajectory in serotonin has been noted by other authors. In a

tudy involving Flinders Sensitive Line rats, the symptom-reducing
ffects of chronic desipramine administration were associated with

 reduction in total (intracellular + extracellular) serotonin content
n PFC, hippocampus, and nucleus accumbens. The authors sug-
ested that “decreasing 5-HT levels in limbic regions is important
or the therapeutic effect of antidepressants” (Zangen et al., 1997,
. 2482). Similarly, in a primate microdialysis study, extracellular
erotonin levels in the hippocampus and other brain regions grad-
ally returned to baseline over chronic treatment with fluoxetine.
he authors suggested that the brain’s compensatory responses
may contribute to the therapeutic actions of this drug in human
epression” (Smith et al., 2000, p. 470).

In short, the upward trajectory in serotonin during initial ADM
reatment is often associated with a worsening of symptoms, while
he downward trajectory over chronic treatment is associated with
ymptom reduction. This pattern can be explained by the energy
egulation hypothesis. The acute (direct) effects of SSRI treatment
isrupt energy homeostasis by exacerbating glutamatergic activ-

ty in front regions, which, according to the glutamate hypothesis
Popoli et al., 2012), should worsen symptoms. The brain devel-
ps compensatory responses over chronic treatment that reverse
he energy disruptions and reduce symptoms. Specifically, both the
eduction in the synthesis of serotonin and the tonic activation of
he 5-HT1A heteroreceptor act to reverse the elevated glutamater-
ic activity induced by the direct effects of SSRI treatment. If the
-HT1A heteroreceptor is still activated as extracellular serotonin
eturns to baseline over chronic treatment, glutamatergic activ-
ty would fall below equilibrium conditions (Fig. 3D), producing
n actual antidepressant effect. We  therefore explain the symp-
om reducing effects of ADMs as due to the brain’s attempts to
estore energy homeostasis. Alterations to the serotonergic system
re needed to accomplish this, but these alterations cannot all be
xplained in terms of restoring serotonin homeostasis.

.4. Symptom reduction is a temporary overshoot of the
omeostatic equilibrium

When a homeostatic mechanism is perturbed, it often exhibits
 dampened oscillation around its equilibrium, as in the case of
 spring that is released from a compressed position. We  sug-
est this is what is happening over the course of SSRI treatment.
cute treatment often causes a worsening of symptoms rela-

ive to the premedicated state. Over chronic treatment (several
eeks) symptoms are alleviated relative to the premedicated state,

nd symptoms return to the premedicated baseline over more
rolonged treatment periods. Indeed, ADM users commonly expe-
ience relapses over months or years of treatment (Byrne and
othschild, 1998). In one study of fluoxetine, the relapse rate was
5% at six months and 46% at 12 months (McGrath et al., 2006). In
nother study, the relapse rate over two years of continuous ADM
reatment was 60% (Bockting et al., 2008).

.5. The effects of SSRIs during recalibration of serotonin
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an u
role in depression and the antidepressant response. Neurosci. Biobeha

ransmission

Homeostasis requires the brain to produce compensatory
esponses to interventions that perturb serotonin from equilibrium
 PRESS
havioral Reviews xxx (2015) xxx–xxx

(e.g., SSRIs). However, what happens when SSRIs are initiated while
the equilibrium is changing? Under those conditions, the brain may
not interpret the synaptic-enhancing effects of SSRIs as a pertur-
bation, but rather as part of the recalibration of equilibrium, and
the brain may  not produce compensatory responses. If so, then
acute and chronic SSRI treatment may  produce similar phenotypic
effects.

A recent study allows the opportunity to compare the pheno-
typic effects of SSRIs when they are initiated during environmental
change (i.e., a possible recalibrational period) or during a con-
tinuation of the same environmental conditions (Branchi et al.,
2013). Rats were randomly assigned to a sequence of conditions
involving chronic mild stress (CMS) and/or an enriched environ-
ment (EE) and exposed to the SSRI fluoxetine for three weeks. The
authors reported that fluoxetine exerted greater effects on anhe-
donia (assessed by changes in the preference for saccharine) and
hippocampal BDNF signaling when initiated as the rats’ environ-
ment changed (i.e., during the transition from EE to CMS or from
CMS  to EE) than when initiated during a continuation of the same
environment (i.e., EE to EE, CMS  to CMS). Importantly, acute (1–3
days) and chronic (>3 days) fluoxetine treatment did not affect
anhedonia differently when initiated concurrently with environ-
mental change (EE to CMS, or CMS  to EE).

Branchi and colleagues interpret their findings in terms of the
phenotypic plasticity hypothesis, which is reasonable because the
rats were exposed to an altered environment that required a
response (i.e., a phenotypic change). However, we have argued
that the energy regulation hypothesis more accurately describes
serotonin’s unique effects because all biochemicals are involved in
phenotypic plasticity or homeostasis. Interestingly, fluoxetine pro-
duced significant changes in corticosterone in all four conditions
(EE to EE, EE to CMS, CMS  to EE, CMS  to CMS) regardless of whether
it was  administered during a constant or a changing environment.
Branchi and colleagues argue that corticosterone “is more sensi-
tive than anhedonia and BDNF to the effects of the combination of
the drug and the environment, being altered even after a period
of habituation” (p. 6). This finding is more naturally explained by
the energy regulation hypothesis since corticosterone is involved
in mobilizing energetic resources.

5. What is serotonin doing in melancholia?

Since the effects of serotonin are state-dependent, we  demon-
strate the utility of our hypotheses in explaining what happens
in the melancholic state. In melancholia, the symptoms reflect a
trade-off in which energy is reallocated toward cognition at the
expense of growth and reproduction. We  suggest that the eleva-
tion in serotonin transmission coordinates this trade-off and helps
explain many of the symptoms of melancholia.

5.1. Energy is reallocated to cognition in melancholia

The fact that melancholia is highly associated with sustained
activation of the HPA axis (Taylor and Fink, 2008) indicates that
melancholia is energetically expensive. One may wonder what this
energy is used for since growth and sexual activity are generally
inhibited (Taylor and Fink, 2008). We  may  gain insight into this
question by considering the symptoms of melancholia and other
depressive syndromes (Table 4). Of particular interest is the com-
parison between melancholia and sickness behavior because they
share a great many symptoms in common as well as genes and neu-
pper or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

robiology. This similarity has led some to suggest depression is a
dysregulation in the immune response (Dantzer et al., 2008; Maier
and Watkins, 1998; Wager-Smith and Markou, 2011) or an adaptive
response to social stressors that predict the risk of infection (Raison
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Fig. 4. Indirect evidence of aerobic glycolysis in major depression. The sample con-
sists of unmedicated patients meeting diagnostic criteria for major depression with
the  melancholic subtype (black squares) and two samples of non-depressed con-
trols (open circle and open square). The y-axis is the [15O]-water PET signal in the
left VLPFC, and the x-axis is the score on the Hamilton Depression Rating Scale.
Relative to the control groups, the [15O]-water PET signal is elevated in the melan-
cholic patients, but the signal declines with the severity of depressive symptoms.
Since aerobic glycolysis does not use oxygen, the pattern suggests that, among the
melancholic patients, aerobic glycolysis increases with symptoms. The error bars on
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nd Miller, 2013). However, these hypotheses are difficult to recon-
ile with the few symptomatic differences that exist between the
henotypes (Andrews and Durisko, in press). Cognition is gener-
lly impaired in sick organisms, and they spend more of their time
n slow wave sleep (Dantzer, 2001; Larson and Dunn, 2001). Con-
ersely, melancholia is associated with an increase in rumination
Jackson, 1983; Nelson and Mazure, 1985) and rapid eye movement
REM) sleep (Steiger and Kimura, 2010; Taylor and Fink, 2008).

These differences suggest that cognition is altered in melancho-
ia (Andrews and Durisko, in press). Rumination refers to persistent,
istraction-resistant thoughts about the problems associated with
he episode (Andrews and Thomson, 2009). Rumination involves
n analytical processing style in which complex problems are bro-
en into smaller, more manageable components, which are then
equentially studied (Andrews and Thomson, 2009; Barbic et al.,
014). To keep track of the components of a problem, analysis
equires working memory, a memory system in which information
s kept active because it is useful in ongoing processing (Baddeley,
007). As working memory load increases, tasks become more vul-
erable to interruption because it is easier for irrelevant stimuli
o displace task-relevant information (Kane and Engle, 2002). The
istraction-resistant nature of rumination may  promote analysis by
educing the vulnerability to interruption (Andrews and Thomson,
009). Finally, the increase in REM sleep also points to complex

nformation processing, because REM sleep promotes consolida-
ion of hippocampal memory representations encoding complex
nformation (Rasch and Born, 2013).

The symptomatic differences between melancholia and sick-
ess behavior suggest that the melancholic brain has been primed
y evolution to process complex information (Andrews and
urisko, in press; Andrews and Thomson, 2009). Indeed, the
ognitive aspect of melancholia may  be phylogenetically ancient
Andrews and Durisko, in press). Of the non-human animal models
f depression, inescapable shock exhibits the closest symptomatic
orrespondence with human melancholia (Table 4). This corre-
pondence extends to a complex information processing style
hat may  be analogous to analytical rumination. Early research
uggested that inescapable shock led to a cognitively helpless
tate—the learned helplessness hypothesis (Seligman, 1975). How-
ver, this hypothesis has been refuted (Shors, 2004). Rather, the
ncontrollably stressed organism gives up on tactics it has learned
re futile and searches its environment for alternatives (Lee and
aier, 1988; Minor et al., 1984). When given a task in which cues

n its environment are relevant, uncontrollably stressed organisms
ften outperform control groups (Lee and Maier, 1988; Minor
t al., 1984; Rodd et al., 1997). In one study, a complex pattern of
ehavior led researchers to suggest that inescapably shocked rats
ay  be “more prone to test hypotheses” about their control over

he environment (Minor et al., 1984, p. 553).
One indicator that the melancholic cognitive pattern is metabol-

cally expensive comes from the fact that, in melancholic patients
nd rodent models, glutamatergic activity is elevated and GABAer-
ic activity is reduced in many brain regions (Alcaro et al., 2010;
etty and Sherman, 1981; Sanacora et al., 2004, 2012). Since glu-
amate is the most excitatory neurotransmitter in the brain, and
ABA is the most inhibitory, this pattern suggests increased energy
onsumption. In neuroimaging studies, depressed patients show
igher resting activity in the default mode network (Kühn and
allinat, 2013), which is related to social cognition (Lieberman,
013). They also show higher resting activity and increased func-
ional connectivity in the network involved in self-reflection and
ttentionally demanding tasks (Schilbach et al., 2014; Zhou et al.,
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an up
role in depression and the antidepressant response. Neurosci. Biobeha

010). These two networks are rarely co-activated (Lieberman,
013), and this is probably an energetically expensive state.

Another clue that melancholia is energetically expensive is
he fact that it is supported by glycolysis. Rodent models of
the  control groups represent the standard error of the means.

From Drevets et al. (1992).

depression show increased expression of glycolytic genes and an
increase in glycolytic metabolism (Mallei et al., 2011; Uehara et al.,
2006, 2007).

An increased reliance on aerobic glycolysis to support rumi-
nation explains some puzzling findings in neuroimaging studies
of melancholic and depressed patients. PET studies using
[18F]fluorodeoxyglucose (FDG) tend to show hypoactivity in the
DLPFC and other frontal regions (Fitzgerald et al., 2008). This might
seem inconsistent with an increase in energy devoted to cognition,
since the DLPFC is associated with working memory and executive
function (Nee et al., 2013). However, aerobic glycolysis can dra-
matically alter the interpretation of neuroimaging signals (Dienel,
2012; Pellerin et al., 2007). Studies using [18F]-FDG PET may under-
estimate energy consumption by 50% or more because astrocytes
readily incorporate labeled glucose, and much of the labeled lac-
tate produced by aerobic glycolysis diffuses into the bloodstream
and escapes the brain (Dienel, 2012). All brain regions utilize a
mixture of aerobic glycolysis and oxidative phosphorylation, but
the highest resting rates of aerobic glycolysis occur in the DLPFC
and VLPFC, while the amygdala and hippocampus have relatively
low resting rates (Goyal et al., 2014; Vaishnavi et al., 2010). Thus,
the lower [18F]-FDG PET signal in the DLPFC of depressed patients
probably reflects an increase in aerobic glycolysis, and a decrease in
oxidative phosphorylation, rather than actual hypoactivity. Indeed,
two neuroimaging studies (Drevets et al., 1992; Dunn et al., 2005)
show patterns suggesting that aerobic glycolysis is positively asso-
ciated with depressive symptoms in patients diagnosed with major
depression (Figs. 4 and 5).

An increase in aerobic glycolysis also provides an elegant expla-
nation for why c-Fos and cytochrome oxidase c expression are
reduced in rodent models of depression, especially in regions
associated with cognition and the stress response (Kanarik et al.,
2011; Shumake et al., 2000, 2001, 2002, 2003; Stone et al., 2007).
Cytochrome oxidase c and c-Fos expression are both indices of
oxidative phosphorylation, which is reduced as glucose is metabo-
lized through aerobic glycolysis.
per or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

It seems likely that the increase in aerobic glycolysis in melan-
cholia supports changes in synaptic connectivity. Aerobic glycolysis
is associated with increased expression of genes involved in pro-
moting synaptic plasticity (Goyal et al., 2014). This finding is
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Fig. 5. Further indirect evidence that aerobic glycolysis increases with depressive
symptoms. The sample consists of eight unmedicated patients meeting DSM-IV
criteria for major depression. The y-axis represents the degree to which cerebral
blood flow (assessed by [15O]-water PET) is correlated with glucose consumption
(assessed by [18F]-FDG PET). The x-axis represents severity of depressive symptoms
as  measured by the Hamilton Depression Rating Scale. Since a decline in the ratio of
oxygen consumption to glucose consumption is considered evidence of aerobic gly-
colysis (Shulman et al., 2001a), the negative slope suggests that aerobic glycolysis
increases with depressive symptoms.

From Dunn et al. (2005).

Fig. 6. Extracellular serotonin levels in the hippocampus of BALB/c mice exposed to
plain drinking water (control) or fluoxetine (fluox) in their drinking water (fluox)
for 28 days. By 28 days, fluoxetine exposed rats were statistically indistinguishable
from control rats.

From Popa et al. (2010).

Fig. 7. Total (intracellular + extracellular) serotonin content in different brain tis-
sues declines with chronic citalopram treatment. Gray bars represent 15 days
of  citalopram treatment (50 mg/ml) plus 2 days of washout. White bars repre-
sent 17 days of citalopram treatment (50 mg/ml). Black bars represent chronic
saline treatment. Acad = anterior cingulate cortex; NAc = nucleus accumbens;
CP  = caudate/putamen; dHC = dorsal hippocampus; vHC = ventral hippocampus;
Amy  = amygdala; PVN = paraventricular nucleus of the hypothalamus; DRN = dorsal
raphe nucleus; MRN  = median raphe nucleus.

Data are from Bosker et al. (2010).
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consistent with evidence that dendritic spines, which regulate
synaptic strength, contain glycolytic enzymes and the transporters
for lactate (Pierre et al., 2009; Wu  et al., 1997), yet rarely con-
tain mitochondria (Li et al., 2004; Sheng and Hoogenraad, 2007).
In depressed patients, there is abundant evidence of altered con-
nectivity in cortico-limbic structures, including the hippocampus
and lateral PFC (Schilbach et al., 2014; Sheline et al., 2010; Steffens
et al., 2011; Zeng et al., 2012; Zhou et al., 2010). Rodent models of
melancholia confirm changes in hippocampal plasticity (Cai et al.,
2013; Kim et al., 1996; Shors et al., 1989; Xu et al., 1997).

In summary, the melancholic brain appears to be reconfiguring
to learn solutions to complex problems. The processes involved in
this learning appear to be so energetically expensive that growth
and reproduction are downregulated. We  argue that the processes
involved in making these trade-offs are coordinated by serotonin.
We  first discuss how serotonin is triggered in melancholia.

5.2. The situational triggers of the melancholic state

While we  have little understanding of the stressors that trig-
ger melancholia in humans, there is greater understanding of
how stressors affect the serotonergic system in rodent models of
melancholia. The ventral region of the rat medial PFC (mPFCv)
regulates depressive symptoms in response to inescapable shock
and chronic social defeat (Amat et al., 2005; Covington et al.,
2010). Inescapable shock triggers an increase in the homeostatic
equilibrium of serotonin transmission (Section 2.2.1.3), which is
mechanistically achieved by a glutamatergic projection from the
mPFCv that synapses with GABA interneurons in the DRN (Varela
et al., 2012). When the shock is escapable, this projection is acti-
vated, GABA interneurons limit the transmission of serotonin to the
mPFCv to a brief pulse, and no depressive symptoms are triggered.
When the shock is inescapable, the projection is not activated, the
transmission of serotonin is sustained (i.e., the homeostatic equi-
librium has been elevated), and depressive symptoms are triggered
(Amat et al., 2005).

Inescapable shock may  seem like a situation where sustained
analysis is fruitless, because nothing can be done to avoid the shock.
But this overlooks an obvious informational asymmetry: while the
researcher knows that the rat cannot escape, the rat may  not. In
the inescapable shock paradigm, the rat learns that struggling or
pressing a lever does not help it to escape the shock. The rat turns
its attention to external cues, possibly evaluating the environment
to better understand the situation (Lee and Maier, 1988; Minor
et al., 1984). Similarly, in humans, depression is associated with
a loss of control (Edwards and Weary, 1998; Jacobson et al., 1999;
Lyubomirsky et al., 1999), and attention is directed toward regain-
ing control (Weary et al., 1993).

5.3. Serotonin coordinates the mechanisms promoting
rumination

Analytical rumination involves a number of sub-processes
(Andrews and Durisko, in press; Andrews and Thomson, 2009;
Barbic et al., 2014): (1) attention is oriented toward threats or prob-
lems; (2) interest in stimuli unrelated to the problem is reduced
(anhedonia); (3) other energetically expensive activities are down-
regulated; (4) working memory is allocated to the problem; and
(5) working memory processes are less likely to be disrupted by
problem-irrelevant stimuli (distraction-resistance). We  discuss each
of these processes, and how serotonin is involved in coordinating
them in rodent models of melancholia.
pper or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

5.3.1. The amygdala and orienting attention to the problem that
triggered the episode

The orientation of attention to problems that triggered the
episode likely involves heightened amygdala activity, which is
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onsistently found in depressed patients (Whalen et al., 2002).
he amygdala is associated with emotionally salient stimuli,
ut it is more generally involved in evaluating the environment
ith respect to important goals and orienting the brain toward

ituations for which additional information would be useful
Whalen et al., 2007). Thus, heightened serotonin transmission to
he amygdala in rodent models of melancholia (Amat et al., 1998a;
lanchard et al., 1993) probably plays a role in directing attention
o problems that the organism is facing.

.3.2. The nucleus accumbens and anhedonia
Sustained analytical processing of complex problems may  not

ffer immediate reward because they are not easy to solve. Attend-
ng to activities that do offer more of an immediate reward (e.g.,
ating, sex, companionship) would therefore tend to interfere with
ttempts to problem solve. Elsewhere, we have argued that anhe-
onia promotes uninterrupted analytical rumination by reducing
he motivation to engage in hedonic activities (Andrews and
homson, 2009). The nucleus accumbens regulates anhedonia and
ther motivation-related behaviors, and dopamine transmission
s thought to play an important role in this region (Der-Avakian
nd Markou, 2012; Salamone et al., 2005). In the inescapable shock
nd the Flinders Sensitive Line models, indices of serotonin trans-
ission are elevated in the nucleus accumbens, while dopamine

ransmission is reduced (Bland et al., 2003b; Zangen et al., 1997).
oreover, serotonin plays a causal role in anhedonia by regulating

opamine levels (Zangen et al., 2001).

.3.3. The hypothalamus reallocates energy to rumination
The hypothalamus affects major metabolic processes, includ-

ng growth, development, reproduction, immune function, and the
tress response (Chrousos, 2009; Cyr and Eales, 1996; Sower et al.,
009; Tsang et al., 2014; Yang, 2010), and indices of serotonin
ransmission to the hypothalamus are elevated in rodent models of

elancholia (Adell et al., 1988; Beitia et al., 2005; Blanchard et al.,
993; Keeney et al., 2006). Chronic activation of the HPA axis sup-
resses both the growth and reproductive axes (Chrousos, 1998),
o elevated serotonin transmission to this region probably plays a
ole in inhibiting appetite and sexual activity in melancholia. The
ypothalamus also undoubtedly plays a role in the alterations in
leeping patterns, such as the increase in REM sleep.

.3.4. The hippocampus and the allocation of working memory
The working memory system is an important function of the

ateral PFC (Courtney et al., 1998). Amongst its many afferent
rojections, this region receives ipsilateral projections from the
entral CA1 region of the hippocampus (Cavada et al., 1983; Rosene
nd Vanhoesen, 1977). This synapse, henceforth referred to as the
C-PFC synapse, is susceptible to various forms of plasticity, includ-

ng long-term potentiation (LTP) and long-term depression (LTD)
Hirsch and Crepel, 1990; Laroche et al., 1990).

Changes in the plasticity of the HC-PFC synapse subserve the
orking memory system (Burette et al., 2000; Laroche et al., 2000).

or instance, several studies have found that LTD in this synapse is
ssociated with improved performance on working memory tasks
Burette et al., 2000; Laroche et al., 2000). A broad reduction in the
trength of this synapse, which may  be accompanied by potenti-
tion of a subset of hippocampal inputs to the PFC, may  enhance
he signal to noise ratio of transmitted information (Laroche et al.,
000), improving the transmission of task-relevant signals while
educing the transmission of distracting sensory-driven activity.
oreover, in tasks that do not require the long-term storage of
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an up
role in depression and the antidepressant response. Neurosci. Biobeha

ewly acquired information, synaptic depression may also repre-
ent an ‘anti-consolidation’ signal. Since the putative function of
nalytical rumination is to learn how to manage stressors, long-
erm memory consolidation (mediated by hippocampal LTP) would
 PRESS
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seem most appropriate after processing is completed. Thus, LTP
should be inhibited during ongoing analysis.

The synaptic changes in the hippocampus during depressed
states are consistent with this working memory model of analyti-
cal rumination. First, LTD is generally upregulated in the CA1 region
of the hippocampus in the inescapable shock model of depression,
while LTP is inhibited (Kim et al., 1996; Shors et al., 1989; Xu et al.,
1997). Moreover, a subset of synapses undergoes a more transient
form of potentiation. In the chronic mild stress model of depres-
sion, the temporoammonic-CA1 pathway is selectively potentiated
(Cai et al., 2013). Since potentiation of the temporoammonic-CA1
synapse promotes hippocampal output from the CA1, this mecha-
nism may  enable the transmission of pertinent signals from the
hippocampus to working memory areas of the PFC. Thus, hip-
pocampal LTD, along with potentiation of a subset of synapses,
may enhance the signal-to-noise ratio of information transmitted
to working memory areas of the PFC. This may  promote analyt-
ical rumination by maintaining problem-relevant information in
working memory.

Serotonin transmission to the hippocampus is elevated in many
rodent models (Section 2.2.1). In these models, serotonin appears to
coordinate the changes in synaptic plasticity. In chronic mild stress,
serotonin induces a transient potentiation in the hippocampus and
mPFC (Cai et al., 2013). Since this form of potentiation competes
with the same pathways as LTP (Cai et al., 2013). LTP is reduced as
well. Future research should test the generality of these findings in
other rodent models of depression, particularly inescapable shock.
Although the precise mechanism for triggering hippocampal LTD is
unknown, we  predict that it is triggered by a sustained elevation in
serotonin transmission. For instance, elevated serotonin can trigger
LTD in motor neurons (Garraway and Hochman, 2001b).

5.3.4.1. An energetic trade-off between synaptic plasticity and neu-
rogenesis. An ongoing area of research attempts to understand
hippocampal volume shrinkage during depression (Groves, 2007;
Krishnan and Nestler, 2008). This seems to involve a reduction in
brain-derived neurotrophic factor (BDNF), which promotes neu-
rogenesis. For instance, humans and mice with a genetic variant
that leads to lower expression of BDNF have smaller hippocampal
volumes (Chen et al., 2006).

We  suggest hippocampal neurogenesis is downregulated in
melancholia to give energetic priority to the synaptic changes that
underlie analytical rumination. A provocative study found that hip-
pocampal neurogenesis in adult bonnet macaques is negatively
associated with overall body weight (Perera et al., 2011b), sug-
gesting that neurogenesis may  be so metabolically expensive that
it comes at the expense of the growth of other tissues. The most
energetically expensive aspect of neurogenesis may  be the hyper-
plastic phase where neurons undergo heightened LTP (Ge et al.,
2007). Since the changes in synaptic plasticity that underlie ana-
lytical rumination are also energetically expensive (Section 5.1), it
may  be difficult for the brain to energetically support both neu-
rogenesis and synaptic plasticity simultaneously. BDNF signaling
tends to be inhibited in severe (but not mild) stressor models of
depression (Bland et al., 2007; Larsen et al., 2010), which suggests
that there is an increasing trade-off as stress becomes more severe.
Since LTD involves a shrinkage of dendritic spines and elimination
of synapses (Sheng and Ertürk, 2014; Zhou et al., 2004), neurogene-
sis may  be mechanistically incompatible with the synaptic changes
that underlie analytical rumination. Indeed, BDNF has an inhibitory
effect on LTD in the hippocampus and visual cortex (Aicardi et al.,
2004; Akaneya et al., 1996; Ikegaya et al., 2002; Rodrigues et al.,
per or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

2014).
We  further suggest that serotonin mediates this energetic trade-

off. Rats lacking SERT express lower hippocampal BDNF levels,
showing that BDNF signaling is under serotonergic control (Molteni
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t al., 2010). We  predict that elevated serotonin transmission pro-
otes the alterations in synaptic plasticity in melancholia and

nhibits hippocampal neurogenesis.

.3.5. The lateral PFC promotes distraction-resistance
To reduce interference with working memory processes, neu-

ons in the left lateral PFC must fire continuously during the period
f vulnerability to distraction (Courtney et al., 1998; D’Esposito
t al., 2000; Dolcos et al., 2007; Funahashi et al., 1997; Jonides and
ee, 2006; Rao et al., 1997). However, sustained neuronal firing
oses two problems, and aerobic glycolysis helps solve them.

First, the neurons need a source of energy that can support
ustained firing. Neurons do not store glucose, and under many
onditions they receive energy from the passive diffusion of glu-
ose from nearby arterioles (Nehlig and Coles, 2007). When passive
iffusion is the predominant means by which neurons obtain their
nergy, neuronal activity is positively correlated (or coupled) with
lood flow. However, as neuronal activity becomes more intense
nd sustained, passive diffusion is not fast enough to support sus-
ained neuronal firing (Pellerin et al., 2007; Shulman et al., 2001a,b).
nstead, neurons rely increasingly on lactate produced by aerobic
lycolysis in nearby astrocytes (Pellerin et al., 2007). The energy is
roduced at a much faster rate than is needed to support sustained
euronal firing (Shulman et al., 2001b), and the excess is dispersed
hrough the bloodstream (Dienel, 2012).

The second problem caused by the sustained firing of left VLPFC
eurons derives from the fact that the large majority (about 80%) of
ortical neurons are glutamatergic (Somogyi et al., 1998). High lev-
ls of synaptic glutamate are toxic and can trigger apoptosis (Hara
nd Snyder, 2007). Thus, although sustained neuronal activity in
he left VLPFC is crucial to prevent disruption of analysis, the accu-

ulation of synaptic glutamate can trigger neuronal death. This
roblem is also solved by astrocytes, which clear glutamate from
he synapse, convert it to a less toxic form (glutamine), and finally
ransport it back to the neuron where it is recycled by the neu-
on (Magistretti and Ransom, 2002). The energy needed to support
lutamate-glutamine cycling probably comes from aerobic glycol-
sis (Magistretti and Ransom, 2002).

Aerobic glycolysis also has ramifications for blood flow pat-
erns. Since aerobic glycolysis produces excess lactate and does
ot use oxygen (Shulman et al., 2001b), maintaining a tight cou-
ling between neuronal activity and cerebral blood flow would
e highly inefficient, since blood borne glucose and oxygen could
e utilized elsewhere. Consequently, neuronal activity becomes
ecoupled from regional blood flow under conditions of prolonged,

ntense neuronal activity (Shulman et al., 2001a,b). Here again,
strocytes are mechanistically involved. They have processes that
onnect to nearby capillaries, and they are able to affect local blood
ow (Magistretti and Ransom, 2002).

We examine how these processes are regulated by serotonin
n rodents. However, the rat brain is packaged differently from
he primate brain (Uylings et al., 2003). The rat mPFCv is the
ikely homologue to the human lateral PFC (Brown and Bowman,
002; Kesner, 2000; Uylings et al., 2003). Indeed, the rat mPFCv is

nvolved in regulating the resistance to distracting stimuli (Gisquet-
errier and Delatour, 2006), and it regulates depressive symptoms

n inescapable shock and chronic social defeat (Amat et al., 2005;
ovington et al., 2010). Inescapable shock triggers elevated sero-
onin transmission to the mPFCv (Amat et al., 2005).

.3.5.1. Serotonin and glutamatergic activity in the rodent mPFCv.
erotonin clearly regulates glutamatergic activity in the mPFCv
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an u
role in depression and the antidepressant response. Neurosci. Biobeha

Puig and Gulledge, 2011). For our purposes, the crucial issue is
hether glutamatergic activity increases or decreases with a sus-

ained elevation in serotonin transmission. In general, serotonin
as a net excitatory effect on networks of cortical neurons, and
 PRESS
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this effect is mediated by activation of 5-HT2A receptors (Puig
and Gulledge, 2011). Serotonin produces a similar effect in motor
neurons (Garraway and Hochman, 2001a; Harvey et al., 2006a,b;
Liu et al., 2011). We  predict that a sustained elevation in sero-
tonin transmission triggers a tonic increase in mPFCv glutamatergic
activity.

5.3.5.2. Serotonin and aerobic glycolysis. Serotonin stimulates aer-
obic glycolysis in various regions of the rodent brain (Darvesh and 

Gudelsky, 2003). Inescapable shock triggers aerobic glycolysis in
the mPFCv, and this effect is mediated through the 5-HT1A het-
eroreceptor (Uehara et al., 2006).

5.3.5.3. Serotonin and glutamate clearance. We know of no direct
tests of how serotonin affects glutamate clearance from the
synapse, so the role of serotonin in glutamate-glutamine cycling
is unclear.

5.3.5.4. Serotonin in vasoconstriction. Serotonin promotes vasocon-
striction and vasodilation throughout the brain and the periphery,
often mediated by the 5-HT1A heteroreceptor (Cohen et al., 1996).

5.4. The effects of ADMs on the melancholic energy allocation
pattern

As we have articulated the problem, antidepressants must
reverse the melancholic energy allocation pattern to reduce symp-
toms. To summarize this pattern, the symptoms of melancholia
promote sustained cognition (analytical rumination) while growth
and reproductive activity are suppressed. This cognitive activ-
ity requires altered synaptic plasticity in the HC-PFC synapse
(increased LTD and serotonin-induced potentiation, decreased LTP)
and sustained glutamatergic activity in the lateral PFC. These pro-
cesses are so energetically expensive they require an upregulation
in glycolysis, and cannot simultaneously support the growth of new
neurons. Moreover, neurogenesis may functionally interfere with
plasticity because many of the changes in synaptic connectivity
require LTD and dendritic pruning.

The direct pharmacological properties of SSRIs do not appear
to effect a reversal in this pattern. Rather, acute SSRI treatment
tends to exacerbate it—LTP and BDNF signaling are inhibited, while
serotonin-induced potentiation is increased (Cai et al., 2013; De
Foubert et al., 2004; Shakesby et al., 2002). Reversal (increased LTP
and BDNF signaling, and decreased serotonin potentiation) only
occurs over chronic SSRI treatment (Bhagya et al., 2011; Cai et al.,
2013; De Foubert et al., 2004). Altogether, the pattern suggests that
the reversal is due to the brain’s compensatory responses to SSRI
treatment.

Furthermore, we  suggest that eventual reversal of the energy
allocation pattern explains why promoting neurogenesis is cru-
cial to symptom reduction in some models (Perera et al., 2011a;
Santarelli et al., 2003). This finding appeared to support the
hypothesis that reduced neurogenesis was a mechanistic cause of
depression (Duman et al., 1997). However, further research showed
that the ablation of neurogenesis is insufficient to trigger depressive
symptoms (Jayatissa et al., 2009; Surget et al., 2008). This, and other
findings, have cast doubt on the neurogenic hypothesis for depres-
sion (Groves, 2007; Mahar et al., 2014). Our approach elegantly
explains this pattern. ADMs only reduce symptoms to the degree
they induce a sufficiently strong compensatory response by the
pper or a downer? The evolution of the serotonergic system and its
v. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

brain to suppress the allocation of energy devoted to sustained cog-
nition. However, the ablation of hippocampal neurogenesis does
not trigger depressive symptoms because it does not, by itself, pro-
mote sustained cognition.
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. Conclusion and future directions

The reigning paradigm conceptualizes depression as a state of
educed serotonin transmission. In this paper we have reviewed a
arge body of evidence indicating that the opposite appears to be
rue. For the depressive phenotypes we have considered—sickness
ehavior, starvation depression, and melancholia—serotonin trans-
ission to multiple brain regions appears to be elevated. Others

ave suggested serotonin transmission is elevated in depression
Andrews and Thomson, 2009; Petty et al., 1994; Zangen et al.,
997), but this is the first in-depth review of the high serotonin
ypothesis.

There are, of course, several caveats to this claim. First, serotonin
annot be simply described as an ‘upper’ or a ‘downer’. Evidence
f elevated serotonin transmission can be found in both positive
nd negative states (Table 3). Alterations in other biochemical
ystems are probably needed to differentiate negative and posi-
ive mood states. For instance, depressive states seem to involve
levated serotonin and reduced dopamine transmission in the
ucleus accumbens (Bland et al., 2003b; Zangen et al., 1997). Con-
ersely, acute cocaine administration produces a euphoric mood
nd increases both extracellular serotonin and dopamine in the
ucleus accumbens (Li et al., 1996).

Second, serotonin is probably a distal factor in the causal path-
ay that regulates depression and other energetically expensive

tates. Consequently, alterations in serotonin transmission are
robably neither necessary nor sufficient to regulate depressive
ymptoms; researchers can affect depressive symptoms by altering
ore proximate mechanisms, such as glutamate transmission.
evertheless, we propose that altered serotonin transmission is
art of the evolved process by which depression and other ener-
etically expensive states are regulated.

Third, the findings reviewed herein may  not be generalizable to
ther depressed states. For instance, we did not consider atypical
epression because it is heterogeneous (Stewart et al., 2007), and
e lack valid non-human animal models for it. Still, we predict that

erotonin transmission is also elevated in atypical depression phen-
types, because we suspect that they also involve the prolonged
eallocation of energy.

Fourth, the evidence most relevant for evaluating the high and
ow serotonin hypotheses comes from studies on non-human ani-

als. While some debate persists about the validity of animal
odels of depression, they are invaluable tools in the study of the

eurobiology of depression (Berton et al., 2012). Nevertheless, the
tudy by Barton and colleagues (2008) provided converging evi-
ence of elevated serotonin transmission (indexed by 5-HIAA levels

n the jugular vein) in patients meeting current diagnostic criteria
or major depression.

Fifth, by necessity our review relies on indices of serotonin
ransmission. As discussed above, we are currently unable to mea-
ure serotonin in a living human brain without invasive techniques.
owever, even with the development of safe, non-invasive in vivo

echniques for measuring serotonin concentrations, we  would still
ave to rely on indices, such as the 5-HIAA/5-HT ratio. The devel-
Please cite this article in press as: Andrews, P.W., et al., Is serotonin an up
role in depression and the antidepressant response. Neurosci. Biobeha

pment of techniques that would allow the direct measurement of
erotonin transmission in the human brain is a long way off.

With these caveats in mind, the high serotonin and energy reg-
lation hypotheses conjointly explain why depressive symptoms
 PRESS
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commonly worsen in acute treatment when serotonin levels are at
their highest. They also explain the therapeutic delay as the result of
the compensatory responses that attempt to restore energy homeo-
stasis.

Future research should map  out how the serotonergic system
and depressive symptoms change over acute, chronic, and more
prolonged SSRI treatment, and after discontinuation of the treat-
ment. Since serotonin has state-dependent effects, it is important
to control for the baseline state. We suggest using a well-developed
model of depression, such as inescapable shock or chronic social
defeat, as the baseline state. Once the compensatory changes have
been compellingly mapped out, we predict that disrupting the com-
pensatory responses will prevent or delay the antidepressant effect.

Finally, the energy regulation hypothesis suggests many poten-
tial lines of research that could be important in understanding what
serotonin is doing in depressed states. We  highlight two such areas.
First, in addition to serotonin, melancholia involves the heightened,
sustained secretion of cortisol. Serotonin and cortisol both affect
aerobic glycolysis and oxidative phosphorylation. Aerobic glycol-
ysis occurs in the cytosol and the endproduct is lactate, which
must be converted back to pyruvate before it can go through oxida-
tive phosphorylation in the mitochondrion, so there is a trade-off
between the two processes (Andersson et al., 2003; Pfeiffer et al.,
2001). Serotonin and cortisol may  interact to regulate and influence
the balance between these processes, and this should be investi-
gated.

Second, we  have been unable to find any research on how sero-
tonin enters the mitochondrion. That strikes us as a glaring gap
in our knowledge. Since aerobic glycolysis and oxidative phos-
phorylation occurs in different intracellular compartments, it may
be important to understand how the intracellular distributions of
serotonin are regulated. At stake is the interpretation of neuroimag-
ing studies of depression, which depend upon the balance between
aerobic glycolysis and oxidative phosphorylation (Section 5.1).

In summary, we  propose that depressed states are high sero-
tonin phenomena, which challenges the prominent role the low
serotonin hypothesis continues to have in depression research
(Albert et al., 2012). We  also propose that the direct serotonin-
enhancing effects of antidepressants disturb energy homeostasis
and worsen symptoms. We  argue that symptom reduction, which
only occurs over chronic treatment, is attributable to the com-
pensatory responses of the brain attempting to restore energy
homeostasis. Understanding the true relationship between sero-
tonin and depressed states will be important in understanding the
etiology of those states and developing effective treatments.
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See Table A1.
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Table A1
The symptomatic similarity between sickness behavior, starvation depression, melancholia, and four commonly studied rat models of depression: inescapable shock, chronic
social  defeat, chronic mild stress, and the Flinders Sensitive Line. A “?” indicates data are not available. “–” indicates no statistically significant change in the symptom.

Symptoms Sickness
behavior

Starvation
depression

Melancholia Inescapable
shock

Chronic social
defeat

Chronic mild
stress

Flinders
Sensitive Line

Anhedonia ↑5,16 ↑14 ↑30 ↑32 ↑10 ↑32 ↑22

Weight ↓5,16 ↓14 ↓30 ↓32 ↓10 ↓32 ↓22

Sexual behavior ↓5,16 ↓14 ↓30 ↓34 ↓10 ↓32 ↓9

Sleep duration ↑11 –18 ↓30 ↓23 ↓10 ↓3 –2

REM sleep ↓16 ↓18 ↑30 ↑23 ? ↑3 ↑2

Slow wave sleep ↑16 ↑18 ↓30 ↓23 ↓10 –3 –2

Passive coping Yes5 ? Yes22 Yes32 ? Yes32 Yes22

Motor activity ↓5,16 ↑8,19 ↓30 ↓12 ↓10 ↓32 ↓22

HPA axis ↑5 ↑27 ↑30 ↑32 ↑10 ↑32 ↑22

Body temperature ↑5,16 ↓26 ↑25 ↑6 ↑13 ↑31 No28

Preference for carbohydrate ↑5 ↓24 ↑4 ↑7 –21 ↑33 ?
Altered focus of attention Yes15 Yes14 Yes1 Yes17,20 ? ? ?
Complex information processing No5,16 ? Yes1 Yes20,29 ? ? ?

References: 1Andrews and Thomson (2009); 2Benca et al. (1996); 3Cheeta et al. (1997); 4Christensen and Brooks (2006); 5Dantzer (2001); 6Deak et al. (1997); 7Dess (1992);
8Exner et al. (2000); 9Ferreira-Nuno et al. (2002); 10Fuchs and Flügge (2002); 11Hart (1988); 12Jackson et al. (1978); 13Keeney et al. (2001); 14Keys et al. (1950); 15Kramer
et  al. (2002); 16Larson and Dunn (2001); 17Lee and Maier (1988); 18MacFadyen et al. (1973); 19Meunier et al. (2007); 20Minor et al. (1984); 21Moles et al. (2006); 22Neumann
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