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The role of serotonin in depression and antidepressant treatment remains unresolved despite decades
of research. In this paper, we make three major claims. First, serotonin transmission is elevated in mul-
tiple depressive phenotypes, including melancholia, a subtype associated with sustained cognition. The
primary challenge to this first claim is that the direct pharmacological effect of most symptom-reducing
medications, such as the selective serotonin reuptake inhibitors (SSRIs), is to increase synaptic serotonin.
The second claim, which is crucial to resolving this paradox, is that the serotonergic system evolved

fo; ‘;‘;‘ZSS: to regulate energy. By increasing extracellular serotonin, SSRIs disrupt energy homeostasis and often
Depression worsen symptoms during acute treatment. Our third claim is that symptom reduction is not achieved by
Serotonin the direct pharmacological properties of SSRIs, but by the brain’s compensatory responses that attempt
Energy regulation to restore energy homeostasis. These responses take several weeks to develop, which explains why SSRIs
Learning have a therapeutic delay. We demonstrate the utility of our claims by examining what happens in animal
Plasticity models of melancholia and during acute and chronic SSRI treatment.
Working memory © 2015 Published by Elsevier Ltd.
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1. Introduction

Depression is a heterogeneous suite of states characterized
by sad mood and anhedonia (an inability to experience pleasure)
(Hyman, 2010; Insel and Charney, 2003). Depressive states share
some genes and neurobiology in common, but they otherwise dif-
fer in symptom and etiology (Akiskal and Akiskal, 2007; Dantzer
et al., 2008; Flint and Kendler, 2014; Lux and Kendler, 2010;
Maier and Watkins, 1998; Parker, 2000; Raison and Miller, 2013;
Sullivan et al., 2012). For instance, depressive symptoms can occur
in response to infection (called sickness behavior) or starvation
(Hart, 1988; Keys et al., 1950), though the symptoms are not con-
sidered pathological in these contexts (Andrews and Durisko, in
press; Dantzer, 2001; Engel and Schmale, 1972). In the fifth edition
of the Diagnostic and Statistical Manual for Mental Disorders (DSM-5),
the diagnostic category of major depression envelops some of the
symptomatic heterogeneity by allowing for variability in weight,
sleeping, and psychomotor activity (Table 1) (APA, 2013).

Episodes of major depression may be further subdivided into
more precise phenotypes. Melancholia (weight loss, insomnia, and
agitation/retardation) is considered by many to be the “biological
core of depression” (Akiskal and Akiskal, 2007, p. 46). It is the most
common and reliably diagnosed subtype, often accounting for 50%
or more of clinical episodes (Angst et al., 2007; Taylor and Fink,
2008; Xiang et al., 2012). Melancholia is associated with height-
ened hypothalamic-pituitary-adrenal (HPA) activity (Taylor and
Fink, 2008), which is a physiological indicator of stress (Chrousos,
2009). While it was formerly called endogenous depression, melan-
cholia is in fact associated with stressful life events that are often
serious or highly private in nature (Harkness and Monroe, 2002;
Leff et al., 1970; Mundt et al., 2000; Willner et al., 1990). Atypical
depression (weight gain, hypersomnia, and retardation) is the other

major subtype, but it is heterogeneous and not well understood
(Stewart et al., 2007).

Despite decades of research, the role serotonin plays in depres-
sive phenotypes has not been conclusively determined. The original
clue that monoamines (serotonin, norepinephrine, and dopamine)
were involved in depression came from two serendipitous dis-
coveries (Baumeister et al., 2003; Valenstein, 1998). First, during
the investigations of iproniazid as a treatment for tuberculo-
sis and imipramine as a treatment for schizophrenia, clinicians
reported that these drugs could reduce depressive symptoms. An
effort was then made to find a common pharmacological prop-
erty that could explain their antidepressant effect. Eventually,
researchers found that iproniazid inhibits the enzymes that break-
down the monoamines, while imipramine blocks the serotonin
transporter (SERT) and the norepinephrine transporter (NET). Sec-
ond, clinical observations suggested thatreserpine, a drug known to
deplete monoamines, increased depressive symptoms. These find-
ings appeared to solve the puzzle. By preventing the breakdown
of norepinephrine and serotonin, or preventing their clearance
from the synapse, iproniazid and imipramine appeared to increase
forebrain monoamine levels. The monoamine-enhancing effect of
antidepressant medications (ADMs), coupled with the depression-
inducing effects of reserpine, suggested that depression was caused
by reduced monoamine neurotransmission (Everett and Toman,
1959; Jacobsen, 1964; Schildkraut, 1965).

Other researchers soon suggested that serotonin was the most
important monoamine (Coppen, 1967). Often it is called the
‘monoamine hypothesis’ or the ‘serotonin hypothesis.” We refer to
it as the low serotonin hypothesis because it proposes a particular
direction. Researchers then focused on the creation of drugs
that could increase synaptic serotonin without perturbing other
monoamines by selectively binding to the serotonin transporter
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Table 1

The symptoms of major depression, according to the DSM-5. Episodes of major depression can have melancholic or atypical features.

Major depression Melancholic subtype

Atypical subtype

Sad mood

different from grief or loss
Anhedonia Anhedonia
Weight loss or gain Weight loss

Hypersomnia or insomnia

Psychomotor agitation or retardation
Fatigue

Excessive feelings of worthlessness or guilt
Difficulty concentrating

Suicidal ideation

Excessive guilt

Sad mood is worse in the morning and not reactive to positive events;

Insomnia with early morning waking
Psychomotor agitation or retardation

Sad mood is reactive; brightens in
response to positive events

Weight gain

Hypersomnia
Leaden paralysis

Sensitivity to interpersonal rejection

(SERT). This research effort was successful, and the selective
serotonin reuptake inhibitors (SSRIs) are now among the most
widely prescribed medications (Olfson and Marcus, 2009; Olfson
et al., 2002).

However, many problems with the low serotonin hypothesis
have prompted a reassessment of serotonin’s role in depression
(see Box 1). Although the idea that a single neurochemical is
the cause of depression is now considered simplistic, the low
serotonin hypothesis still lies at the foundation of most research
on depression (Albert et al,, 2012). It is generally thought that
reduced serotonin transmission is one of the more distal factors
in the neurological chain of events that regulate depressive symp-
toms (Krishnan and Nestler, 2008). The fact that ketamine (which

Box 1: Problems with the low serotonin hypothesis
There has been no direct test of the low serotonin hypothesis
in humans because it requires invasive techniques (see Section
4). Nevertheless, several findings have cast doubt on the low
serotonin hypothesis.

1. Some drugs that block serotonin reuptake (e.g., cocaine
and amphetamine) are not effective in treating depression
(Charney et al., 1981).

2. Researchers and historians have concluded that reserpine-
induced depression is a ‘myth’ (Baumeister et al., 2003), and
that it may actually have antidepressant properties (Healy,
2002). The only placebo controlled, randomized, parallel
group study of chronic reserpine treatment in anxious or
depressed people showed that reserpine had an antide-
pressant effect (Davies and Shepherd, 1955). Indeed, some
researchers argued that reserpine had antidepressant prop-
erties (Ayd, 1958), and it was used in the 1970s and 1980s to
manage refractory depression (Price et al., 1987).

3. SSRIs and other ADMs increase extracellular serotonin
within minutes to hours of the first dose (Bymaster et al.,
2002; Rutter and Auerbach, 1993), but they do not reduce
symptoms until after several weeks of continuous treatment
(Charney et al., 1981; Oswald et al., 1972). This pattern is
called the therapeutic delay.

4. The attempt to reduce serotonin through tryptophan deple-
tion fails to trigger depression in non-depressed participants
(Ruhe et al., 2007).

5. Neonatal exposure to SSRIs causes depressive symptoms in
adult rodents (Ansorge et al., 2004; Hansen et al., 1997).

6. Genetic downregulation of SERT, which increases synaptic
serotonin, is associated with an increase in depressive symp-
toms (Holmes et al., 2003).

7. Meta-analyses of published and unpublished studies show
that ADMs are only modestly more effective than placebo at
reducing depressive symptoms (Fournier et al., 2010; Khan
et al., 2002, 2005, 2011; Kirsch et al., 2008).

blocks a glutamate receptor) has rapid antidepressant effects lends
support to the hypothesis that depressive symptoms are more
proximally controlled by glutamate transmission in frontal regions
(Mahar et al., 2014; Popoli et al., 2012). Others propose serotonin
does not exert any regulatory control over depressive symptoms
(Kirsch, 2010; Lacasse and Leo, 2005). Still others have suggested
serotonin transmission is elevated in depression (Andrews and
Thomson, 2009; Petty et al., 1994; Zangen et al., 1997).

In this paper, we make three major claims. The first claim, dis-
cussed in Section 2, is that serotonin transmission is elevated in
multiple depressive phenotypes, including melancholia, infection,
and starvation. We refer to this as the high serotonin hypothesis.
What constitutes evidence of serotonin transmission is the key
to the evaluation of this hypothesis. Since depression is a per-
sistent state, reliable indices of stable serotonin transmission are
particularly relevant. The 5-HIAA/5-HT ratio is the most reliable
index of stable serotonin transmission, although 5-HIAA is also
used (Shannon et al.,, 1986). While the literature on depressed
patients is necessarily limited due to the methodological diffi-
culties measuring serotonin and 5-HIAA in the human brain, the
most pertinent studies support the high serotonin hypothesis. In
non-human animal models of depression—where these indices can
be measured more readily—abundant evidence supports the high
serotonin hypothesis.

The primary challenge for the high serotonin hypothesis is
explaining how ADMs, nearly all of which rapidly increase extra-
cellular serotonin, reduce depressive symptoms. Our second claim,
discussed in Section 3, is crucial to resolving this paradox. Specif-
ically, we argue that the evolved function of the serotonergic
system is energy regulation—which we define as the coordination
of metabolic processes with the storage, mobilization, distribution,
production and utilization of energetic resources to meet adaptive
demands (Table 2).

In the brain and throughout the body, serotonin is homeostati-
cally regulated (Best et al., 2010; Gershon and Tack, 2007; Mercado
and Kilic, 2010). The energy regulation hypothesis predicts that
the homeostatic equilibrium level of serotonin transmission is
elevated in situations that require limited energetic resources to
be reallocated among metabolically expensive processes: growth,
reproduction, physical activity, maintenance, immune function,
and cognition. Table 3 shows there is a stable increase in serotonin
transmission to the hypothalamus in both positive and negative
mood states where energy must be reallocated for prolonged
periods of time. Similarly, the effects of SSRIs are state-dependent.
Depending on the context, SSRIs can increase or decrease anxi-
ety (Robert et al., 2011), motor activity (Altemus et al., 1996; Page
et al., 1999), anhedonia (Branchi et al., 2013; Harrison et al., 2001),
and neurotrophin signaling (Bland et al., 2007; Freitas et al., 2013;
Hellweg et al., 2007; Rasmusson et al., 2002; Van Hoomissen et al.,
2003). Thus, serotonin cannot be simply described as an ‘upper’ or
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The serotonergic system and energy regulation. 9%
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Processes and systems regulated by serotonin < 7
Production of adenosine triphosphate (ATP) 2 60 B Reproduction
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Distribution of energetic resources & \“&"’q\\
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Baseline Sickness  Starvation Melancholia
Neuronal activity Behavior  Depression

Activation/inhibition

Tissue uptake
All major tissues in the body

Metabolically expensive processes
Growth

Maintenance

Reproduction

Immune function

Motor activity

Cognition

a ‘downer’; its symptomatic effects depend on the organism’s state
(i.e., whether it is infected, starving, satiated, physically exhausted,
sexually exhausted, etc.).

Table 4 lists the symptoms of three reliably diagnosed
depressive states: sickness behavior, starvation depression, and
melancholia. Each involves an altered balance between metabol-
ically expensive processes (Fig. 1). In sickness behavior, limited
energetic resources are devoted to immune function at the expense
of growth and reproduction. In starvation depression, energy is
devoted to maintenance functions at the expense of growth,
reproduction, and immune function. In melancholia, there is an
upregulation in sustained cognition at the expense of growth and
reproduction. The energy regulation hypothesis suggests serotonin
transmission is elevated in these states to coordinate tradeoffs in
energy allocation. In melancholia, this tradeoff is coordinated by
serotonin transmission to various regions, including the hypothal-
amus, amygdala, hippocampus and lateral prefrontal cortex (PFC)
(Fig. 2).In the hippocampus and lateral PFC, the processes involved
in sustained cognition are energetically expensive and can only be
sustained with aerobic glycolysis (the generation of lactate from the
metabolism of glucose stored in astrocytes).

Our third major claim, discussed in Section 4, is that the direct
pharmacological effects of SSRIs are not responsible for symptom
reduction. Rather, by rapidly increasing extracellular serotonin,

Table 3

States in which serotonin transmission to the hypothalamus is elevated. Indices of
elevated serotonin transmission include the ratio of 5-HIAA to serotonin (5-HIAA/5-
HT), extracellular 5-HIAA (5-HIAA), extracellular serotonin (5-HT), and activity of the
dorsal raphe nucleus (DRN). ‘REM’: rapid eye movement sleep.

State Index References

Infection 5-HIAA/5-HT (Linthorst et al., 1995a)

Fasting/starvation 5-HIAA, 5-HT (Broocks et al., 1991;
Fetissov et al., 2000)

Satiation 5-HIAA, 5-HT (Meguid et al., 2000;

Orosco and Nicolaidis,
1994)

Physical exhaustion 5-HIAA, 5-HT (Blomstrand, 2011)

Sexual exhaustion 5-HIAA, 5-HT (Lorrain et al., 1997;
Mas et al., 1995)

Awake >REM DRN activity (Monti, 2010)

Female > male 5-HIAA/5-HT (Carlsson and Carlsson,
1988)

Proestrus 5-HIAA/5-HT (Kerdelhué et al., 1989)

Cold >warm 5-HIAA/5-HT (Ohtani et al., 1999)

Fig. 1. Graphical representation of how depressed organisms make different
adaptive trade-offsin allocating limited energetic resources. (The numbers are hypo-
thetical and illustrative.) Relative to normal baseline: infection involves upregulated
immune function, while growth and reproduction are downregulated (Dantzer,
2001; Lochmiller and Deerenberg, 2000); in starvation, a higher proportion of ener-
getic reserves are devoted to maintenance (Ruiz-Nufiez et al., 2013), while growth,
reproduction, and immune function are suppressed (Chandra, 1991; Holliday,
1989); melancholia involves an increase in cognition (Section 5) and possibly
immune function (Frank et al., 2013), while growth and reproduction are down-
regulated (Taylor and Fink, 2008).

SSRIs cause a disruption in energy homeostasis (the state-dependent
balance between energetically expensive processes that existed
prior to medication), and a worsening of symptoms. For instance, in
melancholia, serotonin transmission to the PFC causes an increase
in energetically expensive glutamatergic activity (Fig. 3B), which
is exacerbated during acute SSRI treatment (Fig. 3C). We argue that
symptom reduction is due to the compensatory changes made by
the brain’s homeostatic mechanisms that attempt to restore energy
homeostasis (Fig. 3D). These compensatory changes take several
weeks to develop, which explains why symptoms fail to alleviate for

Lateral PFC

Hippocampus
Allocate WM to
problem
1 BDNF signaling

Distraction-resistance
Analysis of problem

Amygdala
Attention directed
toward problem

Nucleus
accumbens
Linterest in other
things (anhedonia)

Hypothalamus
4 growth
 reproduction

4 physical activity

Dorsal raphe
nucleus

Serotonin
transmission

Fig. 2. The main projection regions for elevated serotonin transmission in rodent
models of melancholia (Adell et al., 1988; Amat et al., 1998a,b, 2005; Beitia et al.,
2005; Bekris et al., 2005; Blanchard et al., 1993; Bland et al., 2003a; Gamaro et al.,
2003; Lietal., 2012; Tannenbaum and Anisman, 2003; Tannenbaum et al., 2002), and
the hypothesized effects on symptoms (see Section 5). Increased serotonin trans-
mission coordinates multiple processes that promote sustained processing of the
problem that triggered the episode: (1) Transmission to the amygdala directs atten-
tion to the problem that triggered the episode. (2) Transmission to the hippocampus
promotes changes in synaptic plasticity involved in allocating working memory to
the triggering problem, and reducing BDNF signaling. (3) Transmission to the lateral
PFC is involved in processing of the problem and promoting the resistance to dis-
tracting stimuli. (4) Transmission to the nucleus accumbens produces anhedonia,
which reduces the interest in attending to alternative stimuli. (5) Transmission to
the hypothalamus downregulates other energetically expensive processes (growth,
reproduction) that could draw limited resources away from processing of the prob-
lem, which probably contributes to many psychomotor symptoms (e.g., reduced
eating and sexual activity, social withdrawal, lethargy).
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Table 4

Energy consumption of different tissues in humans (Aiello and Wheeler, 1995) and sheep (Krebs, 1950), as well as the uptake of serotonin (Axelrod and Inscoe, 1963) and
metabolism of serotonin (Cheifetz and Warsh, 1980) in these tissues.

Region Energy consumption Serotonin
Humans (W/kg) Sheep (QO3) 5-HT uptake in mice (ng/g) 5-HIAA in rats (ng/g)

Heart 323 - 295 155
Kidney 233 27.5 66.3 106
Liver 12.2 8.5 97 50
Gastrointestinal tract - 7.7 419
Lungs 6.7 5.4 778 754
Skeletal muscle 0.5 - 24 -
Spleen - 6.9 941 165
Skin 0.3 - 183 -
Brain 11.2 19.7 10.7 785

several weeks after the initiation of SSRI treatment (the therapeutic These techniques can measure dynamic changes in neurotrans-

delay). mission induced by pharmacological or physiological challenges if
In Section 5, we show how these claims help explain what is radiotracers measuring monoamine receptor or transporter den-
happening in non-human animal models of melancholia and dur- sity are sensitive to changes in endogenous monoamine levels
ing acute and chronic treatment with SSRIs. We conclude with (Paterson et al., 2010, 2013). This has been successfully applied
implications and suggestions for future research. to the dopaminergic system where such ligands are available
(Paterson etal.,2010). However, none of the ligands currently avail-

2. Serotonin is elevated in multiple depressive phenotypes able for the serotonin transporter and its receptors are reliable in

imaging endogenous serotonin levels (Paterson et al., 2010, 2013).
It is currently impossible to measure 5-HT in the living Thus, current neuroimaging techniques cannot reliably measure

human brain because it requires invasive techniques (Marsden, endogenous serotonin levels.

2010). Moreover, serotonin cannot cross the blood brain barrier In non-human animals, invasive techniques (cyclic voltam-

(Bouchard, 1972; Genot et al., 1981), so peripheral measures do metry, microdialysis) can be used, but most only measure extra-

not accurately reflect brain levels. cellular neurotransmitter concentrations (Robinson et al., 2003).
Some studies use molecular in vivo neuroimaging techniques Extracellular concentrations are a poor index of serotonin transmis-

to attempt to infer changes in endogenous serotonin levels sion, which ideally requires the ability to measure the rate at which

(Bhagwagar et al., 2007; Savitz et al., 2009; Stockmeier, 2003). serotonin is released into the synapse. Extracellular concentrations

(A)Non-depressed
equilibrium

{B) Depressed
equilibrium

(C) Acute SSRI
treatment

(D) Chronic SSRI
treatment

Synthasis
inhibited  §3R|

Tonically
activated

Fig. 3. Hypothetical serotonin and glutamate patterns in projection regions (e.g., the lateral PFC) over the course of depression and SSRI treatment. (A) Equilibrium serotonin
and glutamate transmission in the non-depressed state. (B) Equilibrium transmission of serotonin and glutamate in the depressed state. Indirect evidence in humans suggests
that the equilibrium transmission of serotonin is elevated (Barton et al., 2008), and this is supported by abundant evidence in multiple non-human animal models (e.g., Amat
et al., 2005). One effect of sustained serotonin transmission is to activate cortical networks, which are primarily glutamatergic (Puig and Gulledge, 2011). Current research
suggests depression is associated with elevated glutamatergic activity in many regions (Alcaro et al., 2010; Sanacora et al., 2012). (C) During acute SSRI treatment, blockade
of the serotonin transporter (SERT) shifts the balance of serotonin into the extracellular compartment. Extracellular serotonin is therefore perturbed above the depressed
equilibrium. Since SERT blockade mimics the effects of a sustained increase in serotonin transmission, glutamatergic activity rises above the depressed equilibrium (Fu et al.,
2012) and symptoms often worsen (Cusin et al., 2007; Oswald et al., 1972). (D) Over prolonged (chronic) SSRI treatment, the brain’s homeostatic mechanisms attempt to
reverse the excess glutamatergic activity by inhibiting the synthesis of serotonin, which eventually brings extracellular serotonin back to the depressed equilibrium (Popa
etal., 2010; Smith et al., 2000), and tonically activating the 5-HT;4 heteroreceptor (de Bortoli et al., 2013; Lopez et al., 1998; Shen et al., 2002; Vicente and Zangrossi Jr, 2014).
These homeostatic responses reduce glutamatergic activity and produce the antidepressant response.
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reflect: (1) the rate at which serotonin is released into the synapse
(transmission); and (2) the rate at which it is cleared from the
synapse. Thus, synaptic serotonin can accrete without an increase
in serotonin transmission (e.g., if SERT functioning is downregu-
lated). Conversely, synaptic serotonin concentrations can decline
despite elevated transmission if the rate of clearance is faster.

Single-unit recording techniques allow researchers to measure
the rate of neuronal firing of individual neurons, which should gen-
erally correspond to the rate of synaptic release. But neurons in
midbrain nuclei may release several neurotransmitters, so single-
unit recordings must be used in conjunction with other techniques
(e.g., voltammetry) to determine the rate and type of neurotrans-
mitters that are released (Armstrong-James et al., 1980; Cheer et al.,
2005). In short, it is often impractical to directly measure the rate
serotonin is released into the synapse.

To deal with these difficulties, researchers have attempted to
identify indices of sustained serotonin transmission (Shannon et al.,
1986). This research is particularly relevant because depression is
more persistent than many other emotional states. Shannon and
colleagues (1986) assessed different indices of serotonin transmis-
sion to the amygdala, nucleus accumbens, and hypothalamus in
response to electrical stimulation of neurons in the dorsal raphe
nucleus (DRN), which is the primary source of serotonergic neurons
projecting to forebrain regions. The 5-HIAA/5-HT ratio was the only
index sensitive to the duration and frequency of electrical stimu-
lation. The effect was driven by an increase in 5-HIAA, although
there was a non-significant decrease in serotonin. Consequently,
the 5-HIAA/5-HT ratio is the most reliable index of sustained sero-
tonin transmission, although 5-HIAA can also be used (Barton et al.,
2008; Dominguez et al.,2003; Kerdelhué et al., 1989; Winberget al.,
1992).

In the absence of information on the 5-HIAA/5-HT ratio or 5-
HIAA levels, we rely on the extracellular concentration of serotonin
despite its limitations.

2.1. In people

We are unaware of any evidence attempting to assess serotonin
transmission in humans during starvation depression or sickness
behavior. However, several lines of evidence suggest that serotonin
transmission is elevated in patients with major depression.

2.1.1. Polymorphism in the SERT gene

The polymorphism in the promoter region of the SERT gene has
two major variants: the short (s) and the long (1) alleles (Munafo
et al., 2009). The polymorphism has transcriptional and functional
consequences, with the s-allele resulting in lower densities of trans-
porter mRNA and protein, and slower clearance of serotonin from
the synaptic cleft (Murphy et al., 2004). By reducing serotonin reup-
take, the s-allele keeps extracellular levels of serotonin higher than
the l-allele. Consistent with the high serotonin hypothesis, the s-
allele is associated with a slightly increased risk of depression in
response to stressors (Karg et al., 2011).

2.1.2. 5-HIAA levels in the jugular vein

The level of 5-HIAA in the cerebrospinal fluid is an unreliable
indicator of brain serotonin transmission because it is contami-
nated by peripheral sources (Barton et al., 2008). However, the level
of 5-HIAA in the jugular vein is less contaminated because this vein
directly drains blood from the brain. In an important study, a group
of Australian researchers found that, relative to non-depressed con-
trols, there was a higher overflow of 5-HIAA in the jugular veins
of human subjects who met DSM-IV criteria for major depression
(Barton et al., 2008). 5-HIAA overflow decreased over 12 weeks of
treatment with an SSRI. Finally, among the depressed patients, 5-
HIAA overflow was 2.4 times greater for carriers of the s-allele of

the serotonin transporter polymorphism than for those who were
homozygous for the l-allele. The authors concluded that the pat-
tern of results “appear to run counter to...the conventional view
that [major depression] is caused by a relative reduction in brain
monoaminergic neuronal activity” (Barton et al., 2008, p. 42). This
study provides converging evidence of increased serotonin trans-
mission in the brains of depressed patients.

2.1.3. Tryptophan depletion increases DRN activity in depressed
patients taking ADMs

While tryptophan depletion does not trigger depressive symp-
toms in non-depressed people (Box 1), it does trigger depressive
symptoms in remitted patients who have currently or previously
used serotonergic ADMs (Ruhe et al., 2007). In such patients, it does
not suppress DRN activity, as the low serotonin hypothesis predicts.
Rather, it activates the DRN (Morris et al., 1999), which is consistent
with the high serotonin hypothesis. Perhaps tryptophan depletion
causes a local decrease in serotonin around the DRN, deactivating
the 5-HT; autoreceptor and disinhibiting serotonin transmission
to forebrain regions.

2.1.4. Increased preference for carbohydrates in depression

The high serotonin hypothesis is also supported less directly by
the increased preference depressed patients have for carbohydrate
over fat and protein (Christensen, 2001; Christensen and Brooks,
2006; Christensen and Pettijohn, 2001). This preference for carbo-
hydrate rich food is consistent across depressed patients, regardless
of the individual variability in appetite (i.e., increased or decreased
appetite). Moreover, the intensity of this preference correlates to
the severity of depression (Christensen and Somers, 1996).

The relative increase in carbohydrates intake causes brain sero-
tonin levels to increase (Christensen and Somers, 1996; Fernstrom
and Wurtman, 1997). Upon carbohydrate intake, insulin levels
increase, stimulating the uptake of large neutral amino acids
(LNAAs)—including valine, leucine, and isoleucine—into skeletal
muscle and out of the bloodstream. The exception is tryptophan,
which is not taken up into the skeletal muscle along with other
LNAAs because it is the only amino acid that binds to serum
albumin. Thus, while most of the other LNAAs are in the form
of free plasma amino acids—and so readily taken up into the
muscle tissue—approximately 80-90% of circulating tryptophan
is normally bound to serum albumin (Fuller and Roush, 1973;
Tricklebank et al., 1979) until tryptophan is released during the
perfusion of brain capillaries. All LNAAs are in competition for
transport across the blood brain barrier, and by increasing the
tryptophan:LNAA ratio in the blood, carbohydrates enhance the
transport of tryptophan into brain tissue (Heine et al., 1995). Since
tryptophan is a crucial precursor of serotonin, this can increase
serotonin levels in the brain.

The low serotonin hypothesis proposes that individuals are
craving carbohydrates to improve mood and seek relief in depres-
sive symptoms by increasing serotonin (Leibenluft et al., 1993).
However, if this were true, then a prolonged increase in carbo-
hydrate intake should be an effective treatment for depression by
increasing the available amount of serotonin. Thus, the symptoms
of depressed patients on high carbohydrate diets should ameliorate
over time relative to depressed patients on low carbohydrate diets.
However, high carbohydrate diets appear to increase depressive
symptoms rather than reduce them (Cheatham et al., 2009). More-
over, in a 3-week dietary intervention, depressed patients with a
restricted intake of sucrose and caffeine, which also increases extra-
cellular serotonin (Nehlig et al., 1992), experienced a persistent
amelioration in depressive symptoms (Christensen and Burrows,
1990). Thus, it seems more plausible that “the consumption of
sweet carbohydrates may contribute to the development and/or
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maintenance of emotional distress” (Christensen and Pettijohn,
2001, p. 164).

2.1.5. Tianeptine

The fact that the antidepressant tianeptine has reuptake-
enhancing properties is consistent with the high serotonin
hypothesis. Its efficacy in reducing depressive symptoms, both
short term and long term, is comparable to other ADMs (McEwen
et al., 2010). However, as with other ADMs, there is a therapeu-
tic delay (Waintraub et al., 2002). Moreover, the mechanism by
which tianeptine reduces symptoms is unclear (McEwen et al.,
2010). Despite its reuptake-enhancing properties, neither acute
nor chronic treatment with tianeptine causes actual extracellular
serotonin levels to fall in rodents (Malagie et al., 2000).

2.1.6. Anxiety

Depression and anxiety tend to co-occur (Belzer and Schneier,
2004). Among people satisfying the current criteria for social anxi-
ety disorder, for instance, the rates of major depression range from
36 to 58%. Conversely, among those with major depression, the
rates of social anxiety range from 20 to 45%. If subclinical symptoms
were to be included, the rates of co-occurrence would be higher.
While depression is co-morbid with many conditions, the associ-
ation with anxiety is unique because multiple studies of human
twins have found that depression and anxiety have virtually iden-
tical genetic architectures (Kendler and Prescott, 2006). We should
therefore expect that genetic variants in the serotonergic system
should affect the risk of depression and anxiety in the same direc-
tion. Indeed, the s-allele in the serotonin transporter polymorphism
is associated with an increased risk of anxiety as well as depression
in humans (Furmark et al., 2004).

Further evidence that depression and anxiety bear the same
direction of association with serotonin comes from another inter-
nal jugular venous sampling study from the Australian group (Esler
et al,, 2007). They found a 4-fold increase in 5-HIAA in patients
diagnosed with panic disorder compared to healthy subjects. They
also found a strong positive correlation between 5-HIAA and the
severity of symptoms, as well as reduced 5-HIAA with chronic
SSRI administration. The authors suggested that the increase in
whole brain serotonin turnover in patients with panic disorder
“most likely derived not from impaired serotonin reuptake, but
from increased firing in serotonergic midbrain raphe neurons pro-
jecting to both subcortical brain regions and the cerebral cortex” (p.
295).Indeed, many researchers consider anxiety to be a state of ele-
vated serotonin transmission (Deakin and Graeff, 1991; Guimaraes
et al., 2010; Hale et al., 2012; Wise et al., 1972).

2.2. In non-human animal models

Further support for the high serotonin hypothesis is garnered
from non-human animal models of depression, including stressor,
genetic, and lesion models.

2.2.1. Stressor models

2.2.1.1. Starvation. Starvation triggers depressive symptoms in
humans (Keys et al., 1950). During periods of fasting and starvation,
extracellular 5-HIAA and serotonin increase in the hypothalamus
(Broocks et al., 1991; Fetissov et al., 2000). During prolonged star-
vation, the ability to synthesize serotonin could be reduced by a
lack of dietary tryptophan. However, the metabolism of muscle
tissue could liberate tryptophan to replace declining serotonin lev-
els. In arctic charr, serotonin declined in the telencephalon under
four weeks of starvation, but the 5-HIAA/5-HT ratio was unal-
tered (Winberg et al., 1992). Since body weight declined by nearly
20%, we suggest that muscle metabolism during starvation helps
maintain serotonin transmission. To help maintain extracellular

serotonin levels, the starving brain also appears to downregulate
the density of the serotonin transporter (Huether et al., 1997).

2.2.1.2. Infection and immune challenge. Infection also triggers
depressive symptoms (Dantzer, 2001; Hart, 1988). During immune
challenge, the 5-HIAA/5-HT ratio is elevated in the hypothalamus
(Dunn et al., 1989; Linthorst et al., 1995a; Mefford and Heyes, 1990)
and remains elevated while the organism is sick (Dunn, 2006). The
5-HIAA/5-HTratio is elevated in the hippocampus as well (Linthorst
et al., 1995b). By themselves, pyrogenic cytokines also increase
serotonin transmission. IL-1[3 has been found to increase 5-HIAA in
the PFC, nucleus accumbens and hippocampus (Merali et al., 1997),
while IL-6 has been found to increase the 5-HIAA/5-HT ratio in the
brain stem, hypothalamus and striatum (Wang and Dunn, 1998;
Zhang et al., 2001).

2.2.1.3. Inescapable shock. Inescapable shock is a common rodent
model of depression, and it increases extracellular serotonin in
the medial PFC (Amat et al., 2005), ventral hippocampus and dor-
sal periaqueductal gray (Amat et al., 1998b), basolateral amygdala
(Amat et al., 1998a), and nucleus accumbens (Bland et al., 2003b).
Inescapable shock also increases the activity of serotonergic neu-
rons, as indexed by c-Fos expression (Grahn et al., 1999), suggesting
that the increase in extracellular serotonin is caused by an increase
in transmission. Since the 5-HIAA/5-HT ratio is our main index of
serotonin transmission, it is perhaps more telling that inescapable
shock increases this ratio across many regions, including the locus
coeruleus, brain stem, thalamus, hypothalamus, striatum, frontal
cortex, and hippocampus (Adell et al., 1988).

2.2.1.4. Chronic social defeat. In rats, chronic social defeat has been
found to increase extracellular serotonin in the DRN (Amat et al.,
2010), 5-HIAA levels in the amygdala and hippocampus, and the
5-HIAA/5-HT ratio in the midbrain and hypothalamus (Blanchard
et al., 1993). In mice, chronic social defeat has been found to
increase the 5-HIAA/5-HT ratio in the hypothalamus and hip-
pocampus (Beitia et al., 2005; Keeney et al., 2006).

2.2.1.5. Chronic mild stress. In chronic mild stress, serotonin trans-
mission (asindexed by 5-HIAA or the 5-HIAA/5-HT ratio) is elevated
in many regions, including the PFC, hypothalamus, hippocampus,
and amygdala (Bekris et al., 2005; Gamaro et al., 2003; Li et al,,
2012; Tannenbaum and Anisman, 2003; Tannenbaum et al., 2002).

2.2.1.6. Chronic restraint stress. Chronic restraint stress also shows
evidence of elevated serotonin transmission in some regions,
although there are also many null effects (O’'Mahony et al., 2011;
Torres et al., 2002). The mixed evidence is probably due to the
fact that rodents are more likely to habituate to chronic restraint
than other models, thereby lessening its depressogenic impact
(Bergstrom et al., 2008; Marin et al., 2007).

2.2.1.7. Maternal separation and social isolation. Some depression
models involve examining how rodents respond to a stressor after
having been raised apart from their mothers or in social isolation. In
a study using this paradigm, there were no differences in serotonin
transmission between maternally separated rats and control rats at
baseline (Daniels et al., 2004). However, after exposure to arestraint
stressor, the maternally separated rats had a higher 5-HIAA/5-HT
ratio in the frontal cortex and hypothalamus, and 5-HIAA levels
were elevated in the frontal cortex and hippocampus.
Brush-tailed rats (Octodon degus) raised in social isolation show
increased innervation of serotonergic fibers to the infralimbic
region of the mPFC (Braun et al., 1999). Hooded Lister rats raised
in social isolation also showed an increase in serotonin release (as
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measured by voltammetry and microdialysis) in the frontal cor-
tex in response to KCl and fenfluramine (Crespi et al., 1992), and
an increase in extracellular serotonin in the nucleus accumbens in
response to a conditioned stress paradigm (Fulford and Marsden,
1997).

2.2.1.8. Neonatal SSRI exposure. Interestingly, neonatal exposure
to SSRIs is a model of depression that is also consistent with the
high serotonin hypothesis. Adult rats exposed to SSRIs as neonates
show increased serotonin transmission (indexed by the 5-HIAA/5-
HT ratio) in the hypothalamus (Feenstra et al., 1996; Hilakivi et al.,
1987), and exhibit a depressive behavioral profile (Ansorge et al.,
2004; Hansen et al., 1997).

2.2.2. Genetic models

2.2.2.1. The Flinders Sensitive Line. In the Flinders Sensitive Line rat,
a breed that exhibits many depressive symptoms (Table 4), sero-
tonin and 5-HIAA levels are elevated in the PFC, hippocampus and
other regions relative to control rats (Zangen et al., 1997).

2.2.2.2. The congenital learned helplessness breed. We have been
unable to find any evidence on serotonin transmission in rats
bred for congenital learned helplessness. We predict that the 5-
HIAA/5-HT ratio will be elevated in multiple regions, particularly
the hypothalamus, PFC and hippocampus.

2.2.2.3. SERT and 5-HT;4 knockouts. Rodents that have had the
genes for SERT or the 5-HT;, receptor knocked out express higher
levels of depressive symptoms (Heisler et al., 1998; Holmes et al.,
2003; Ramboz et al., 1998). Consistent with the high serotonin
hypothesis, 5-HT;5 knockouts were found to have higher 5-HIAA
levels in multiple brain regions, including the olfactory bulb, subs-
tantia nigra, thalamus, locus coeruleus, and the dorsal and medial
raphe nuclei (Ase et al., 2000). While there are differences in the
levels of serotonin and 5-HIAA in SERT knockout mice and SERT
knockout rats (Olivier et al., 2008), the ratio of 5-HIAA/5-HT is ele-
vated in multiple brain regions in both species (Fabre et al., 2000;
Homberg et al., 2007).

2.2.3. Lesion models

2.2.3.1. Olfactory bulbectomy. Olfactory bulbectomy is the only
model of depression to show reduced a 5-HIAA/5-HT ratio in multi-
ple brainregions (Song and Leonard, 2005). This is because olfactory
bulbectomy causes DRN neurons to degenerate so there is less
capacity to transmit serotonin (Song and Leonard, 2005). However,
itis possible that the remaining DRN neurons transmit serotonin at
a heightened rate, which would be consistent with the high sero-
tonin hypothesis. Indeed, there is an increase in the innervation of
serotonin fibers and the synthesis of serotonin in cortical and limbic
regions following olfactory bulbectomy (Watanabe et al., 2003).

2.2.3.2. Lesion of the DRN. Lesion of the DRN is not a model of
depression, which is problematic for the low serotonin hypothesis.
For instance, rats with electrolytic lesion of the DRN were less anhe-
donic (assessed by intake of a sucrose solution) than sham-operated
controls (Wirtshafter and Asin, 1991). Given the state-dependent
effects of serotonin, we do not expect DRN lesion to have simple
effects on depressive symptoms. But DRN lesion should inhibit the
production of depressive symptoms in response to depressogenic
stressors. Indeed, DRN lesion inhibits the development of depres-
sive symptoms in the inescapable shock, chronic social defeat, and
chronic mild stress models (Chung et al., 1999; Maier et al., 1993;
Yalcin et al., 2008).

2.3. Summary

In humans, the strongest evidence that serotonin transmis-
sion is elevated in depression and anxiety comes from the jugular
sampling studies of 5-HIAA, which is a commonly used index of
sustained serotonin transmission. This is strongly supported by
the numerous studies in non-human animal models demonstrating
elevations in 5-HIAA/5-HT, 5-HIAA, and even extracellular sero-
tonin in many brain regions.

The principle challenge to the high serotonin hypothesis is the
fact that the direct pharmacological properties of most antidepres-
sants increase extracellular serotonin, most commonly by SERT
blockade. We argue that this puzzle cannot be resolved without
understanding the evolved function of the serotonergic system, to
which we now turn.

3. The energy regulation function of the serotonergic
system

In this section of the paper, we propose a novel hypothesis for
the evolved function of the serotonergic system, which includes
serotonin, its receptors, SERT, and other components that help reg-
ulate serotonin or its effects. Our hypothesis owes much to the
research of Efrain Azmitia on the evolution of serotonin (Azmitia,
2001, 2007, 2010). One of our novel contributions is to explicitly
identify the evolution of the mitochondrion as the likely point on
the tree of life where serotonin evolved. This key fact helped shape
our energy regulation hypothesis for the serotonergic system.

3.1. Overview of the serotonergic system

In the brain, the dorsal raphe nucleus (DRN) is the main source
of serotonergic neurons that project to forebrain regions (Hornung,
2010). Tryptophan is the crucial precursor used to synthesize
serotonin. Animals cannot synthesize tryptophan, so they must
acquire it from their diet (Azmitia, 2010), and it goes through three
main metabolic pathways: (1) protein synthesis; (2) the kynure-
nine pathway; and (3) the serotonin pathway. Of the tryptophan
not used in protein synthesis, 99% goes down the kynurenine
pathway (Stone and Darlington, 2002). The remaining 1% is con-
verted to serotonin in two steps. First, tryptophan is converted
to 5-hydroxytryptophan by tryptophan hydroxylase. Second, 5-
hydroxytryptophan is converted to serotonin by aromatic L-amino
acid decarboxylase (AADC).

There are no enzymes for breaking down serotonin in the
extracellular space so it must be transported inside the cell. Most
extracellular serotonin is transported into the pre-synaptic neuron
by SERT (D’Souza and Craig, 2010). Serotonin is primarily broken
down to 5-HIAA by the monoamine oxidase A (MAO-A) enzyme,
which is located in mitochondria.

SERT is widely expressed throughout the body (Lin et al., 2006).
In the periphery, SERT is commonly expressed in many organs that
take up serotonin from the bloodstream (Gershon and Tack, 2007;
Mercado and Kilic, 2010; Wilson et al., 2002).

Several aspects of the serotonergic system contribute to the abil-
ity to produce diverse state-dependent effects. First, the DRN has
several anatomically distinct subdivisions (Hale and Lowry, 2011),
which can cause differential transmission to forebrain regions. For
instance, activation of the caudal and dorsal DRN has anxiogenic
effects, while activation of the ventrolateral DRN/ventrolateral
periaqueductal gray has anxiolytic effects (Hale et al., 2012).

Second, the large number of serotonin receptors arguably gives
the serotonergic system greater regulatory flexibility than any
other neurotransmitter system in the brain. There are 14 sero-
tonin receptors that fall into seven classes (Barnes and Sharp,
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1999). The 5-HT; and 5-HTs classes are inhibitory, while the 5-
HT,, 5-HT3, 5-HT4, 5-HTg and 5-HT7 classes are excitatory. Multiple
serotonin receptor types are commonly co-expressed on a variety
of cells throughout the brain and the periphery (Basura et al., 2001;
Bickmeyer et al., 2002; Bonsi et al., 2007; Hannon and Hoyer, 2008;
Irving et al., 2007; Kellermann et al., 1996; Noh and Han, 1998;
Wright et al., 1995). Serotonin receptors can also form homodimers
and heterodimers, the functional consequences of which are not
fully understood (Albizu et al., 2011; Herrick-Davis, 2013; Renner
et al., 2012). The complex control that can be achieved with the
diversity of receptor function supports the role of the serotonin
system in energy regulation.

Third, the temporal firing patterns of serotonergic neurons may
have different postsynaptic effects. For instance, prolonged expo-
sure to serotonin (but not other neurotransmitters) can cause
phasically firing neurons to transition to a repetitive, prolonged
(tonic) firing pattern (Garraway and Hochman, 2001a). A sustained
increase in serotonin transmission has a similar excitatory effect
on cortical networks in the PFC (Puig and Gulledge, 2011). 5-HT,p
receptors mediate the tonic increase in glutamatergic activity (Puig
and Gulledge, 2011), while 5-HT, ¢ receptors mediate the tonic
increase in motorneuron activity (Harvey et al., 2006a,b; Liu et al.,
2011).

3.2. The evolution of serotonin in mitochondria

It is very likely that serotonin evolved in mitochondria or their
immediate ancestors. First, serotonin is found in plants, animals,
and fungi, so the latest it could have evolved was in the unicellular
eukaryotic precursor to multicellular organisms, which is about one
billion years ago (Azmitia, 2010). Second, the synthesis of serotonin
requires oxygen (Azmitia, 2010), which is also important in mito-
chondrial function. Third, MAO-A is localized to the inner surface of
the outer mitochondrial membrane (Russell et al., 1979; Wang and
Edmondson, 2011), which suggests a mitochondrial origin because
serotonin must be inside the mitochondrion to be metabolized.
Indeed, the mitochondrion may be the most common intracellular
location of serotonin (Das and Steinberg, 1985), and at least some
mitochondria contain the enzymes for synthesizing serotonin (Basu
et al,, 2008; Ichiyama et al., 1970).

Surprisingly, the genes for the synthesizing enzymes are not
located in the mitochondrial genome (Boore, 1999) but in the
nuclear genome (Craig et al., 1991; Sumi-Ichinose et al., 1992). How
could serotonin evolve in mitochondria if the genes for the synthe-
sizing enzymes are not located in the mitochondrial genome? Of
particular importance is AADC, which catalyzes the final step.

AADC belongs to a class of enzymes called pyridoxal phos-
phate (PLP)-dependent carboxylase enzymes (Jackson, 1990).
Mitochondria and PLP-dependent carboxylases have a common
phylogenetic origin. Mitochondria evolved approximately 2 billion
years ago from an a-proteobacterium that formed an endosymbi-
otic relationship with an ill-defined larger bacterium (Emelyanov,
2001). Similarly, PLP-dependent carboxylases evolved from -
proteobacteria (lyer et al., 2004; Jackson, 1990). Thus, AADC
evolved from the PLP-dependent carboxylase precursor, proba-
bly in the mitochondrion. As mitochondria evolved and became
more integrated with the endosymbiotic host, some mitochondrial
genes were lost, and some were transferred to the nuclear genome
(Andersson et al., 2003; Emelyanov, 2001). During this process, the
AADC gene was transferred to the nuclear genome and deleted from
the mitochondrial genome (Iyer et al., 2004).

3.3. The mitochondrial functions of serotonin

What does serotonin do in mitochondria? Serotonin increases
the potential across the inner mitochondrial membrane, although

the precise mechanisms by which this is achieved are unknown
(Basu et al., 2008). Serotonin may affect mitochondrial function
as the precursor to melatonin. Mitochondria have the enzymes
that convert serotonin to melatonin, and melatonin increases the
efficiency of energy production by accelerating electron transport
(Tanetal.,, 2013). Electron transport generates reactive oxygen and
nitrogen species that can damage the mitochondrion and other cel-
lular structures (Tan et al., 2013), and serotonin and melatonin both
have powerful antioxidant properties (Park et al., 2002).

3.4. What is the function of the serotonergic system?

The serotonergic system affects so many processes that some
researchers despair of ever identifying a unifying function. Based
on the foregoing, serotonin probably evolved first to regulate mito-
chondrial activity. This function could, in principle, affect every
major system, organ, and metabolic process in the body. Moreover,
it is so important that it is highly likely that any subsequent func-
tions of the serotonergic system were at least consistent with this
original function, and probably facilitate it (for a similar point, see
Azmitia, 2010).

Mitochondria face adaptive challenges within multicellular
organisms, and the serotonergic system could have evolved to solve
these problems. Multicellular organisms are composed of special-
ized cells with different functions that respond to environmental
contingencies, and these responses depend on ATP produced by
mitochondria (or glycolysis in the cytosol). Multicellular organisms
must therefore coordinate the distribution of important energetic
resources (glucose, fatty acids, amino acids) throughout the organ-
ism with regional mitochondrial activity patterns. We propose
that the serotonergic system evolved to promote energy regulation,
which we define as the coordination of metabolic processes with
the distribution and utilization of limited energetic resources to
meet adaptive demands.

Other prominent hypotheses for serotonin propose that it
evolved to promote homeostasis (Azmitia, 2007) or phenotypic
plasticity (Branchi, 2011; Homberg, 2012). While it is undeniable
that serotonin can affect homeostasis and phenotypic plasticity,
this is true of all biochemicals: it makes little sense to single out
the serotonergic system for these functions. However, the seroto-
nergic system is unique in that it can simultaneously coordinate
the production, storage, mobilization, distribution, and utilization
of energy. Arguably, no other biochemical system in the body can
do this.

3.4.1. Serotonin and energy regulation

3.4.1.1. Glucose metabolism. Serotonin regulates the two major
metabolic pathways for generating ATP from glucose. In addition to
affecting electron transport in mitochondria (oxidative phosphory-
lation), serotonin can upregulate or downregulate the production of
ATP from glucose in the cytosol from glycolysis (Ashkenazy-Shahar
and Beitner, 1997; Assouline-Cohen et al., 1998; Beitneretal., 1983;
Coelhoetal.,2007,2012; Lilling and Beitner, 1990; Mansour, 1962).
This process is often called aerobic glycolysis because it can take
place in the presence of oxygen, even though it does not use oxy-
gen. Oxidative phosphorylation is more efficient because it extracts
more molecules of ATP from every molecule of glucose, but aerobic
glycolysis is rapid and generates ATP at a faster rate than oxida-
tive phosphorylation (Pfeiffer et al., 2001). In addition to being
faster, glycolysis may produce less reactive oxygen species that can
harm the cell or the mitochondrion (Brand and Hermfisse, 1997).
In the brain, aerobic glycolysis involves the breakdown of glycogen
stored in astrocytes, which then transport the endproduct (lactate)
to neurons that preferentially use it as a fuel source (Magistretti and
Ransom, 2002).In astrocytes, serotonin regulates aerobic glycolysis
through the 5-HTq4 heteroreceptor (Uehara et al., 2006).
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3.4.1.2. Blood glucose homeostasis. Serotonin has bidirectional con-
trol over glucose homeostasis in the bloodstream by regulating
glucagon and insulin secretion from pancreatic cells (Adeghate
et al.,, 1999; Coulie et al., 1998; Sugimoto et al., 1996; Yamada and
Sugimoto, 2000; Yamada et al., 1995).

3.4.1.3. Lipid storage and metabolism. Serotonin also has bidirec-
tional control over the homeostatic regulation of stores of body fat
through the leptin signaling pathways involved in lipid metabolism
(Donovan and Tecott, 2013).

3.4.1.4. The vascular system. Serotonin also exerts control over the
vascular system. While mainly known for its vasoconstrictive prop-
erties, serotonin is also a vasodilator (Cohen et al., 1996), which
gives it bidirectional control over the distribution of energetic
resources. Serotonin also regulates vascular networks in plants
(Kang et al., 2007, 2009), and future research should test whether
serotonin has a similar function in fungal hyphae.

3.4.1.5. Neuronal activity. Neurons are major consumers of energy
in the brain, and serotonin exerts complex bidirectional effects
on neuronal growth, differentiation, and death (Azmitia, 2001).
Moreover, inhibitory and excitatory serotonin receptors are often
co-expressed on cholinergic, glutamatergic, GABAergic, dopami-
nergic, and motor neurons, so serotonin also has bidirectional
control over neuronal activity (Fink and Gothert, 2007; Puig and
Gulledge, 2011).

3.4.1.6. Organ function. Many organs have large energetic
demands, and serotonin is either produced or taken up from
the bloodstream by every major organ in the body (Table 4).
Indeed, the uptake of serotonin in lung tissue, platelet cells, and
chromaffin granules of the adrenal medulla is positively correlated
with the level of ATP production in those tissues (Bankston and
Guidotti, 1996; Born and Gillson, 1959; Fisher et al., 1974).

3.4.1.7. Metabolically expensive processes. Serotonin also controls
the expenditure of energy by regulating metabolically expensive
processes—growth, development, reproduction, immune function,
and the stress response (Azmitia, 2007), probably by affecting
hypothalamic function. The hypothalamus regulates the timing and
coordination of these processes (Chrousos, 2009; Cyr and Eales,
1996; Sower et al., 2009; Tsang et al., 2014; Yang, 2010), and it con-
tains some of the highest concentrations of serotonin in the brain
(Bogdanski et al., 1957; Brown et al., 1979; Paasonen et al., 1957).

Important metabolic processes are disturbed when serotonin
transmission is disrupted. For instance, monoamine transmis-
sion to the hypothalamus is completely inhibited in REM sleep
(Parmeggiani, 2011). During this time, important physiological
parameters also become less regulated—blood pressure, heart rate,
breathing and body temperature (Parmeggiani, 2011). Despite this,
the brain’s total energy consumption during REM sleep is nearly
the same level as during the awake state (Buchsbaum et al.,
1989; Madsen et al., 1991). Similarly, Kanarik and colleagues have
found that serotonergic lesions induced by the neurotoxin para-
chloroamphetamine trigger a compensatory response 28 days later
in which cytochrome oxidase c expression was increased in mul-
tiple regions of the rat brain (Kanarik, 2011; Kanarik et al., 2008).
Together, both lines of evidence suggest serotonin increases the
energetic efficiency of metabolic processes.

3.4.2. The homeostatic equilibrium level of serotonin
transmission is increased in situations requiring a rebalancing of
metabolically expensive processes

Based on the foregoing, we propose that the homeostatic equi-
librium level of serotonin transmission increases in situations that

require a shift in the balance of metabolically expensive processes
to adaptively respond to environmental contingencies. The hypo-
thalamus should be a common site of increased transmission due
to its role in coordinating these processes.

In a recent study, muscle glycogen levels were depleted by
82-90% in adult male rats during exhaustive exercise, while brain
glycogen levels decreased by 50-64%. During recovery, glycogen
reserves were replenished through a supercompensatory response
(Matsui et al., 2012). Interestingly, during exercise there is an
increase in serotonin transmission to the hypothalamus and other
brain regions (Blomstrand, 2011). Another study found that sero-
tonin levels in the lateral hypothalamus increase during exercise
and return to baseline during recovery (Smriga et al., 2002),
which mirrors what happens to glycogen levels. Indeed, ele-
vated serotonin levels during exercise are associated with fatigue
(Blomstrand, 2011), an indicator of energetic stress. We suggest
that serotonin is elevated during exercise because the fall in glyco-
gen forces a reprioritization in energy allocation. During recovery,
serotonin levels fall as glycogen is replenished and allocation pat-
terns normalize.

The association with energetic stress is not limited to negative
situations. Male rats become unresponsive to new mating opportu-
nities for nearly two days after about 3.5 h of ad libitum copulation
with successive estrous females (Mas et al., 1995). The most likely
reason for the unresponsiveness is the depletion of viable sperm.
Since spermatogenesis is energetically expensive (Dowling and
Simmons, 2012; Olsson et al., 1997), sperm depleted males must
devote less energy to mating effort and devote more to sper-
matogenesis. During the period of sexual exhaustion, serotonin
is elevated in the hypothalamus and returns to baseline as sex-
ual responsiveness resumes (Hull et al., 2004; Lorrain et al., 1997;
Mas et al., 1995). Consistent with the role of serotonin in rebalanc-
ing metabolically expensive processes, elevated serotonin levels in
the hypothalamus promote spermatogenesis (Aragon et al., 2005;
Shishkina and Dygalo, 2000) and inhibit mating behavior (Hull et al.,
2004).

In short, the effects of enhanced serotonin transmission are
state-dependent. Physical exhaustion, sexual exhaustion, and
many other states show evidence of enhanced serotonin trans-
mission (Table 3), yet their symptom profiles differ in important
ways. Under the energy regulation hypothesis, state-dependence
is expected because situational demands determine how energy
should be adaptively reallocated.

State-dependence can explain some inconsistent findings.
Homberg and colleagues have shown that the serotonergic system
affects rodents’ cognitive flexibility, including reversal learning,
attentional set shifting, the ability to form and update represen-
tations of stimulus-reward or response-reward contingencies,
the inhibition of inappropriate responses, and the ability to post-
pone immediate reward for a larger delayed reward (Homberg,
2012; Homberg and Lesch, 2011; Nonkes et al., 2012; Nonkes
and Homberg, 2013). They argue that the serotonergic system
integrates past learning with incoming information from the
environment to regulate attention, focusing on the processing of
stimuli most relevant to the organism’s survival and reproduc-
tion (‘vigilance behavior’). Their hypothesis is consistent with a
larger body of evidence implicating the serotonergic system in
learning and memory systems (Altman and Normile, 1988; Cassel,
2010). However, the direction of association is unclear, with
some studies reporting a positive association between cognitive
flexibility and serotonin transmission, and other studies reporting
a negative association (Altman and Normile, 1988; Cassel, 2010;
Homberg, 2012). The bidirectional findings are explicable by
the hypothesis that the serotonergic system is part of the adap-
tive energy-regulation machinery that balances cognition with
other metabolically expensive processes—growth, maintenance,
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immune function, reproduction—as the situation demands. In
Section 5, we discuss how serotonin coordinates the cognitive
changes that take place in melancholia.

4. The homeostatic response to SSRIs and symptom
reduction

In this section, we argue that depressive symptoms are reduced
over several weeks of SSRI treatment, not by their direct pharma-
cological properties, but due to the compensatory responses of the
brain attempting to restore energy homeostasis.

4.1. Acute SSRI treatment disrupts energy homeostasis

The total content of serotonin in the brain is composed of
the intracellular pool and the extracellular pool. With acute SSRI
treatment, SERT blockade prevents reuptake from the synapse,
increasing extracellular serotonin within minutes to hours of
administration (Bymaster et al., 2002; Rutter and Auerbach, 1993).
Put another way, the distribution of serotonin is rapidly shifted to
the extracellular pool, and extracellular levels are perturbed from
their homeostatic equilibrium (Fig. 3C).

The increase in extracellular serotonin causes corresponding
disruptions to energy homeostasis. In rodents, acute SSRI treatment
has been shown to increase glutamatergic activity in the rodent
prefrontal cortex (Fu et al., 2012), promote glycolytic activity in the
hippocampus (Webhofer et al., 2013), inhibit oxidative phosphor-
ylation in liver and brain mitochondria (Curti et al., 1999; Souza
et al., 1994), and inhibit the consumption of blood-borne glucose
throughout the brain (Freo et al., 2000).

4.2. The brain’s compensatory responses to SSRI treatment

The brain attempts to restore energy homeostasis through
a number of compensatory responses. These compensatory
responses take several weeks to develop, which could make them
important in the therapeutic delay. One such change is a decline
in extracellular serotonin during chronic SSRI treatment that even-
tually comes back to the premedication equilibrium (Fig. 6) (Popa
etal., 2010; Smith et al., 2000). This decline is due to the fact that all
ADM classes inhibit the synthesis of serotonin (Bosker et al., 2010;
Esteban et al., 1999; Honig et al., 2009; Moret and Briley, 1996;
Muck-Seler et al., 1996; Siesser et al., 2013; Yamane et al., 1999,
2001). Over chronic treatment, the cumulative effects of the inhibi-
tion of synthesis cause total (intracellular + extracellular) serotonin
levels to decline (Fig. 7) (Bosker et al., 2010; Honig et al., 2009;
Marsteller et al., 2007; Siesser et al., 2013).

Over several weeks of ADM treatment, the 5-HT 5 heterore-
ceptor also becomes tonically activated in many forebrain regions
(Fig.3D)(Beck etal., 1997; de Bortoli et al., 2006, 2013; Elena Castro
et al., 2003; Jongsma et al., 2006; Lopez et al., 1998; Shen et al.,
2002; Vicente and Zangrossi Jr, 2014; Welner et al., 1989; Zanoveli
et al., 2005, 2007, 2010). This is a postsynaptic effect, so it is not
easily explained as an attempt to restore serotonin homeostasis.
This is more readily explained as a compensatory response to the
disruptions in the allocation of energy caused by acute treatment.

Specifically, most cortical neurons are glutamatergic, so activa-
tion of the 5-HT; 5 heteroreceptor, which is inhibitory, counteracts
the stimulatory effect of serotonin on glutamatergic neurons
induced by acute SSRI treatment (Fu et al.,, 2012). The grad-
ual decline in extracellular serotonin from peak value also helps
reverse SSRI-stimulated glutamatergic activity in cortical regions
(Fig.3D). These alterations, and possibly others, help restore energy
homeostasis after perturbation by SSRI treatment. Indeed, while
acute SSRI treatment increases glutamatergic activity in rodent

models of depression (Fu et al., 2012), chronic treatment decreases
it (Bonanno et al., 2005; Mallei et al., 2011; Musazzi et al., 2010).

This pattern, in which acute and chronic SSRI treatments have
opposing phenotypic effects, is a fairly widespread phenomenon.
ADMs of all major classes reduce aggression in rodents during
acute treatment, but increase aggression over chronic treatment
(Mitchell, 2005). In healthy volunteers, a single dose of the SSRI
citalopram potentiates anxiety, while chronic treatment inhibits it
(Grillon et al., 2007, 2009). Similarly, acute and chronic paroxetine
treatments exert diametrically opposing effects on the excitability
of motor cortex (Gerdelat-Mas et al., 2005; Loubinoux et al., 2002).
Acute SSRI treatment stabilizes microtubule structure and poten-
tiates the hippocampal-PFC synapse, while the opposite effects are
seen over chronic treatment (Bianchi et al., 2009; Cai et al., 2013).
BDNF signaling is decreased with acute SSRI treatment, and chronic
treatment increases it (De Foubert et al., 2004; Khundakar and
Zetterstrom, 2006).

The opposing effects are theoretically important because the
acute effects are more likely to be due to the direct pharmaco-
logical properties of these drugs. That acute SSRI treatment has
widespread phenotypic effects is further evidence that they disrupt
energy homeostasis. Conversely, the opposing effects that occur
over chronic treatment are more likely to be due to the brain’s
compensatory responses that attempt to restore homeostasis.

The opposing effects are difficult for the phenotypic plasticity
hypothesis to explain. As it is currently described (Branchi, 2011),
there is no reason to predict that chronic SSRI treatment should
reverse the phenotypic effects of acute treatment. Rather, the most
obvious prediction is that chronic treatment will exacerbate the
effects of acute treatment, simply because phenotypic changes have
more time to develop.

4.3. The mechanisms of symptom reduction

We hypothesize that it is the brain’s compensatory responses to
SSRI treatment, rather than the direct pharmacological properties
of SSRIs, that are responsible for reducing depressive symptoms.
Others have suggested the symptom-reducing effects of SSRIs are
attributable to the brain’s attempts to re-establish homeostasis
(Hyman and Nestler, 1996). We differ slightly in that we propose
that the brain is attempting to restore energy homeostasis rather
than serotonin homeostasis. The return of extracellular serotonin to
equilibrium conditions is only one component of the homeostatic
response to the energy dysregulation caused by SSRI treatment.

If our hypothesis is correct, SSRIs (and perhaps other ADMs)
could have opposing effects on depressive symptoms during acute
and chronic treatment. Efficacy studies usually do not report the
relative effect of ADMs over placebo on depressive symptoms dur-
ing the early stages of treatment. However, anecdotal evidence sug-
gests that symptoms often worsen before they get better (Haslam
et al., 2004). The anecdotal evidence is supported by two pertinent
studies. In one placebo-controlled study, imipramine was less effec-
tive than placebo during the first week of treatment (Oswald et al.,
1972). Imipramine only outperformed placebo over several weeks
of treatment. In another study, 30.4% of participants experienced a
worsening of depressive symptoms (defined as an increase of five
points or more on the Hamilton Depression Research Scale; HDRS)
within the first weeks of fluoxetine treatment (Cusin et al., 2007).
This is perhaps a surprising finding given the large placebo effect
in depression (Kirsch et al., 2008), which could obscure any phar-
macological effects that increase symptoms. Moreover, the require-
ment that the increase be at least five HDRS points is stringent since
antidepressant drugs must only reduce symptoms by three HDRS
points more than placebo to be deemed clinically significant in the
United Kingdom (Excellence, 2004). Indeed, since an increase in
depressive symptoms is likely to have a Poisson distribution, the
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proportion of participants who experienced any increase in symp-
toms during early treatment is likely to have been much higher.

The initial worsening of symptoms is theoretically important
because this is when the largest increases in extracellular sero-
tonin occur (Fig. 6). It is only over several weeks of treatment
that depressive symptoms reduce, during which the trajectory of
extracellular serotonin is declining from its peak value (Fig. 6).
That the therapeutic delay of ADMs might be related to the down-
ward trajectory in serotonin has been noted by other authors. In a
study involving Flinders Sensitive Line rats, the symptom-reducing
effects of chronic desipramine administration were associated with
areduction in total (intracellular + extracellular) serotonin content
in PFC, hippocampus, and nucleus accumbens. The authors sug-
gested that “decreasing 5-HT levels in limbic regions is important
for the therapeutic effect of antidepressants” (Zangen et al., 1997,
p. 2482). Similarly, in a primate microdialysis study, extracellular
serotonin levels in the hippocampus and other brain regions grad-
ually returned to baseline over chronic treatment with fluoxetine.
The authors suggested that the brain’s compensatory responses
“may contribute to the therapeutic actions of this drug in human
depression” (Smith et al., 2000, p. 470).

In short, the upward trajectory in serotonin during initial ADM
treatment is often associated with a worsening of symptoms, while
the downward trajectory over chronic treatment is associated with
symptom reduction. This pattern can be explained by the energy
regulation hypothesis. The acute (direct) effects of SSRI treatment
disrupt energy homeostasis by exacerbating glutamatergic activ-
ity in front regions, which, according to the glutamate hypothesis
(Popoli et al., 2012), should worsen symptoms. The brain devel-
ops compensatory responses over chronic treatment that reverse
the energy disruptions and reduce symptoms. Specifically, both the
reduction in the synthesis of serotonin and the tonic activation of
the 5-HT;, heteroreceptor act to reverse the elevated glutamater-
gic activity induced by the direct effects of SSRI treatment. If the
5-HT;5 heteroreceptor is still activated as extracellular serotonin
returns to baseline over chronic treatment, glutamatergic activ-
ity would fall below equilibrium conditions (Fig. 3D), producing
an actual antidepressant effect. We therefore explain the symp-
tom reducing effects of ADMs as due to the brain’s attempts to
restore energy homeostasis. Alterations to the serotonergic system
are needed to accomplish this, but these alterations cannot all be
explained in terms of restoring serotonin homeostasis.

4.4. Symptom reduction is a temporary overshoot of the
homeostatic equilibrium

When a homeostatic mechanism is perturbed, it often exhibits
a dampened oscillation around its equilibrium, as in the case of
a spring that is released from a compressed position. We sug-
gest this is what is happening over the course of SSRI treatment.
Acute treatment often causes a worsening of symptoms rela-
tive to the premedicated state. Over chronic treatment (several
weeks) symptoms are alleviated relative to the premedicated state,
and symptoms return to the premedicated baseline over more
prolonged treatment periods. Indeed, ADM users commonly expe-
rience relapses over months or years of treatment (Byrne and
Rothschild, 1998). In one study of fluoxetine, the relapse rate was
35% at six months and 46% at 12 months (McGrath et al., 2006). In
another study, the relapse rate over two years of continuous ADM
treatment was 60% (Bockting et al., 2008).

4.5. The effects of SSRIs during recalibration of serotonin
transmission

Homeostasis requires the brain to produce compensatory
responses to interventions that perturb serotonin from equilibrium

(e.g., SSRIs). However, what happens when SSRIs are initiated while
the equilibrium is changing? Under those conditions, the brain may
not interpret the synaptic-enhancing effects of SSRIs as a pertur-
bation, but rather as part of the recalibration of equilibrium, and
the brain may not produce compensatory responses. If so, then
acute and chronic SSRI treatment may produce similar phenotypic
effects.

A recent study allows the opportunity to compare the pheno-
typic effects of SSRIs when they are initiated during environmental
change (i.e., a possible recalibrational period) or during a con-
tinuation of the same environmental conditions (Branchi et al.,
2013). Rats were randomly assigned to a sequence of conditions
involving chronic mild stress (CMS) and/or an enriched environ-
ment (EE) and exposed to the SSRI fluoxetine for three weeks. The
authors reported that fluoxetine exerted greater effects on anhe-
donia (assessed by changes in the preference for saccharine) and
hippocampal BDNF signaling when initiated as the rats’ environ-
ment changed (i.e., during the transition from EE to CMS or from
CMS to EE) than when initiated during a continuation of the same
environment (i.e., EE to EE, CMS to CMS). Importantly, acute (1-3
days) and chronic (>3 days) fluoxetine treatment did not affect
anhedonia differently when initiated concurrently with environ-
mental change (EE to CMS, or CMS to EE).

Branchi and colleagues interpret their findings in terms of the
phenotypic plasticity hypothesis, which is reasonable because the
rats were exposed to an altered environment that required a
response (i.e., a phenotypic change). However, we have argued
that the energy regulation hypothesis more accurately describes
serotonin’s unique effects because all biochemicals are involved in
phenotypic plasticity or homeostasis. Interestingly, fluoxetine pro-
duced significant changes in corticosterone in all four conditions
(EE to EE, EE to CMS, CMS to EE, CMS to CMS) regardless of whether
it was administered during a constant or a changing environment.
Branchi and colleagues argue that corticosterone “is more sensi-
tive than anhedonia and BDNF to the effects of the combination of
the drug and the environment, being altered even after a period
of habituation” (p. 6). This finding is more naturally explained by
the energy regulation hypothesis since corticosterone is involved
in mobilizing energetic resources.

5. What is serotonin doing in melancholia?

Since the effects of serotonin are state-dependent, we demon-
strate the utility of our hypotheses in explaining what happens
in the melancholic state. In melancholia, the symptoms reflect a
trade-off in which energy is reallocated toward cognition at the
expense of growth and reproduction. We suggest that the eleva-
tion in serotonin transmission coordinates this trade-off and helps
explain many of the symptoms of melancholia.

5.1. Energy is reallocated to cognition in melancholia

The fact that melancholia is highly associated with sustained
activation of the HPA axis (Taylor and Fink, 2008) indicates that
melancholia is energetically expensive. One may wonder what this
energy is used for since growth and sexual activity are generally
inhibited (Taylor and Fink, 2008). We may gain insight into this
question by considering the symptoms of melancholia and other
depressive syndromes (Table 4). Of particular interest is the com-
parison between melancholia and sickness behavior because they
share a great many symptoms in common as well as genes and neu-
robiology. This similarity has led some to suggest depression is a
dysregulation in the immune response (Dantzer et al., 2008; Maier
and Watkins, 1998; Wager-Smith and Markou, 2011) or an adaptive
response to social stressors that predict the risk of infection (Raison
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and Miller, 2013). However, these hypotheses are difficult to recon-
cile with the few symptomatic differences that exist between the
phenotypes (Andrews and Durisko, in press). Cognition is gener-
ally impaired in sick organisms, and they spend more of their time
in slow wave sleep (Dantzer, 2001; Larson and Dunn, 2001). Con-
versely, melancholia is associated with an increase in rumination
(Jackson, 1983; Nelson and Mazure, 1985) and rapid eye movement
(REM) sleep (Steiger and Kimura, 2010; Taylor and Fink, 2008).

These differences suggest that cognition is altered in melancho-
lia (Andrews and Durisko, in press). Rumination refers to persistent,
distraction-resistant thoughts about the problems associated with
the episode (Andrews and Thomson, 2009). Rumination involves
an analytical processing style in which complex problems are bro-
ken into smaller, more manageable components, which are then
sequentially studied (Andrews and Thomson, 2009; Barbic et al.,
2014). To keep track of the components of a problem, analysis
requires working memory, a memory system in which information
is kept active because it is useful in ongoing processing (Baddeley,
2007). As working memory load increases, tasks become more vul-
nerable to interruption because it is easier for irrelevant stimuli
to displace task-relevant information (Kane and Engle, 2002). The
distraction-resistant nature of rumination may promote analysis by
reducing the vulnerability to interruption (Andrews and Thomson,
2009). Finally, the increase in REM sleep also points to complex
information processing, because REM sleep promotes consolida-
tion of hippocampal memory representations encoding complex
information (Rasch and Born, 2013).

The symptomatic differences between melancholia and sick-
ness behavior suggest that the melancholic brain has been primed
by evolution to process complex information (Andrews and
Durisko, in press; Andrews and Thomson, 2009). Indeed, the
cognitive aspect of melancholia may be phylogenetically ancient
(Andrews and Durisko, in press). Of the non-human animal models
of depression, inescapable shock exhibits the closest symptomatic
correspondence with human melancholia (Table 4). This corre-
spondence extends to a complex information processing style
that may be analogous to analytical rumination. Early research
suggested that inescapable shock led to a cognitively helpless
state—the learned helplessness hypothesis (Seligman, 1975). How-
ever, this hypothesis has been refuted (Shors, 2004). Rather, the
uncontrollably stressed organism gives up on tactics it has learned
are futile and searches its environment for alternatives (Lee and
Maier, 1988; Minor et al., 1984). When given a task in which cues
in its environment are relevant, uncontrollably stressed organisms
often outperform control groups (Lee and Maier, 1988; Minor
et al.,, 1984; Rodd et al., 1997). In one study, a complex pattern of
behavior led researchers to suggest that inescapably shocked rats
may be “more prone to test hypotheses” about their control over
the environment (Minor et al., 1984, p. 553).

One indicator that the melancholic cognitive pattern is metabol-
ically expensive comes from the fact that, in melancholic patients
and rodent models, glutamatergic activity is elevated and GABAer-
gic activity is reduced in many brain regions (Alcaro et al., 2010;
Petty and Sherman, 1981; Sanacora et al., 2004, 2012). Since glu-
tamate is the most excitatory neurotransmitter in the brain, and
GABA is the most inhibitory, this pattern suggests increased energy
consumption. In neuroimaging studies, depressed patients show
higher resting activity in the default mode network (Kiithn and
Gallinat, 2013), which is related to social cognition (Lieberman,
2013). They also show higher resting activity and increased func-
tional connectivity in the network involved in self-reflection and
attentionally demanding tasks (Schilbach et al., 2014; Zhou et al.,
2010). These two networks are rarely co-activated (Lieberman,
2013), and this is probably an energetically expensive state.

Another clue that melancholia is energetically expensive is
the fact that it is supported by glycolysis. Rodent models of
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Fig. 4. Indirect evidence of aerobic glycolysis in major depression. The sample con-
sists of unmedicated patients meeting diagnostic criteria for major depression with
the melancholic subtype (black squares) and two samples of non-depressed con-
trols (open circle and open square). The y-axis is the [1°0]-water PET signal in the
left VLPFC, and the x-axis is the score on the Hamilton Depression Rating Scale.
Relative to the control groups, the ['>O]-water PET signal is elevated in the melan-
cholic patients, but the signal declines with the severity of depressive symptoms.
Since aerobic glycolysis does not use oxygen, the pattern suggests that, among the
melancholic patients, aerobic glycolysis increases with symptoms. The error bars on
the control groups represent the standard error of the means.

From Drevets et al. (1992).

depression show increased expression of glycolytic genes and an
increase in glycolytic metabolism (Mallei et al., 2011; Uehara et al.,
2006, 2007).

An increased reliance on aerobic glycolysis to support rumi-
nation explains some puzzling findings in neuroimaging studies
of melancholic and depressed patients. PET studies using
['8F]fluorodeoxyglucose (FDG) tend to show hypoactivity in the
DLPFC and other frontal regions (Fitzgerald et al., 2008). This might
seem inconsistent with an increase in energy devoted to cognition,
since the DLPFC is associated with working memory and executive
function (Nee et al., 2013). However, aerobic glycolysis can dra-
matically alter the interpretation of neuroimaging signals (Dienel,
2012; Pellerin et al., 2007). Studies using [ 1F]-FDG PET may under-
estimate energy consumption by 50% or more because astrocytes
readily incorporate labeled glucose, and much of the labeled lac-
tate produced by aerobic glycolysis diffuses into the bloodstream
and escapes the brain (Dienel, 2012). All brain regions utilize a
mixture of aerobic glycolysis and oxidative phosphorylation, but
the highest resting rates of aerobic glycolysis occur in the DLPFC
and VLPFC, while the amygdala and hippocampus have relatively
low resting rates (Goyal et al., 2014; Vaishnavi et al., 2010). Thus,
the lower ['8F]-FDG PET signal in the DLPFC of depressed patients
probably reflects an increase in aerobic glycolysis, and a decrease in
oxidative phosphorylation, rather than actual hypoactivity. Indeed,
two neuroimaging studies (Drevets et al., 1992; Dunn et al., 2005)
show patterns suggesting that aerobic glycolysis is positively asso-
ciated with depressive symptoms in patients diagnosed with major
depression (Figs. 4 and 5).

An increase in aerobic glycolysis also provides an elegant expla-
nation for why c-Fos and cytochrome oxidase ¢ expression are
reduced in rodent models of depression, especially in regions
associated with cognition and the stress response (Kanarik et al.,
2011; Shumake et al., 2000, 2001, 2002, 2003; Stone et al., 2007).
Cytochrome oxidase c¢ and c-Fos expression are both indices of
oxidative phosphorylation, which is reduced as glucose is metabo-
lized through aerobic glycolysis.

It seems likely that the increase in aerobic glycolysis in melan-
cholia supports changes in synaptic connectivity. Aerobic glycolysis
is associated with increased expression of genes involved in pro-
moting synaptic plasticity (Goyal et al., 2014). This finding is
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Fig. 5. Further indirect evidence that aerobic glycolysis increases with depressive
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blood flow (assessed by ['50]-water PET) is correlated with glucose consumption
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oxygen consumption to glucose consumption is considered evidence of aerobic gly-
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increases with depressive symptoms.

From Dunn et al. (2005).
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Fig. 7. Total (intracellular + extracellular) serotonin content in different brain tis-
sues declines with chronic citalopram treatment. Gray bars represent 15 days
of citalopram treatment (50 mg/ml) plus 2 days of washout. White bars repre-
sent 17 days of citalopram treatment (50 mg/ml). Black bars represent chronic
saline treatment. Acad=anterior cingulate cortex; NAc=nucleus accumbens;
CP =caudate/putamen; dHC=dorsal hippocampus; vHC=ventral hippocampus;
Amy =amygdala; PVN = paraventricular nucleus of the hypothalamus; DRN = dorsal
raphe nucleus; MRN = median raphe nucleus.

Data are from Bosker et al. (2010).

consistent with evidence that dendritic spines, which regulate
synaptic strength, contain glycolytic enzymes and the transporters
for lactate (Pierre et al., 2009; Wu et al., 1997), yet rarely con-
tain mitochondria (Li et al., 2004; Sheng and Hoogenraad, 2007).
In depressed patients, there is abundant evidence of altered con-
nectivity in cortico-limbic structures, including the hippocampus
and lateral PFC (Schilbach et al., 2014; Sheline et al., 2010; Steffens
etal, 2011; Zeng et al., 2012; Zhou et al., 2010). Rodent models of
melancholia confirm changes in hippocampal plasticity (Cai et al.,
2013; Kim et al., 1996; Shors et al., 1989; Xu et al., 1997).

In summary, the melancholic brain appears to be reconfiguring
to learn solutions to complex problems. The processes involved in
this learning appear to be so energetically expensive that growth
and reproduction are downregulated. We argue that the processes
involved in making these trade-offs are coordinated by serotonin.
We first discuss how serotonin is triggered in melancholia.

5.2. The situational triggers of the melancholic state

While we have little understanding of the stressors that trig-
ger melancholia in humans, there is greater understanding of
how stressors affect the serotonergic system in rodent models of
melancholia. The ventral region of the rat medial PFC (mPFCv)
regulates depressive symptoms in response to inescapable shock
and chronic social defeat (Amat et al., 2005; Covington et al.,
2010). Inescapable shock triggers an increase in the homeostatic
equilibrium of serotonin transmission (Section 2.2.1.3), which is
mechanistically achieved by a glutamatergic projection from the
mPFCv that synapses with GABA interneurons in the DRN (Varela
et al., 2012). When the shock is escapable, this projection is acti-
vated, GABA interneurons limit the transmission of serotonin to the
mPFCv to a brief pulse, and no depressive symptoms are triggered.
When the shock is inescapable, the projection is not activated, the
transmission of serotonin is sustained (i.e., the homeostatic equi-
librium has been elevated), and depressive symptoms are triggered
(Amat et al., 2005).

Inescapable shock may seem like a situation where sustained
analysis is fruitless, because nothing can be done to avoid the shock.
But this overlooks an obvious informational asymmetry: while the
researcher knows that the rat cannot escape, the rat may not. In
the inescapable shock paradigm, the rat learns that struggling or
pressing a lever does not help it to escape the shock. The rat turns
its attention to external cues, possibly evaluating the environment
to better understand the situation (Lee and Maier, 1988; Minor
et al., 1984). Similarly, in humans, depression is associated with
a loss of control (Edwards and Weary, 1998; Jacobson et al., 1999;
Lyubomirsky et al., 1999), and attention is directed toward regain-
ing control (Weary et al., 1993).

5.3. Serotonin coordinates the mechanisms promoting
rumination

Analytical rumination involves a number of sub-processes
(Andrews and Durisko, in press; Andrews and Thomson, 2009;
Barbicetal.,2014): (1) attention is oriented toward threats or prob-
lems; (2) interest in stimuli unrelated to the problem is reduced
(anhedonia); (3) other energetically expensive activities are down-
regulated; (4) working memory is allocated to the problem; and
(5) working memory processes are less likely to be disrupted by
problem-irrelevant stimuli (distraction-resistance). We discuss each
of these processes, and how serotonin is involved in coordinating
them in rodent models of melancholia.

5.3.1. The amygdala and orienting attention to the problem that

triggered the episode
The orientation of attention to problems that triggered the

episode likely involves heightened amygdala activity, which is
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consistently found in depressed patients (Whalen et al., 2002).
The amygdala is associated with emotionally salient stimuli,
but it is more generally involved in evaluating the environment
with respect to important goals and orienting the brain toward
situations for which additional information would be useful
(Whalen et al., 2007). Thus, heightened serotonin transmission to
the amygdala in rodent models of melancholia (Amat et al., 1998a;
Blanchard et al., 1993) probably plays a role in directing attention
to problems that the organism is facing.

5.3.2. The nucleus accumbens and anhedonia

Sustained analytical processing of complex problems may not
offer immediate reward because they are not easy to solve. Attend-
ing to activities that do offer more of an immediate reward (e.g.,
eating, sex, companionship) would therefore tend to interfere with
attempts to problem solve. Elsewhere, we have argued that anhe-
donia promotes uninterrupted analytical rumination by reducing
the motivation to engage in hedonic activities (Andrews and
Thomson, 2009). The nucleus accumbens regulates anhedonia and
other motivation-related behaviors, and dopamine transmission
is thought to play an important role in this region (Der-Avakian
and Markou, 2012; Salamone et al., 2005). In the inescapable shock
and the Flinders Sensitive Line models, indices of serotonin trans-
mission are elevated in the nucleus accumbens, while dopamine
transmission is reduced (Bland et al., 2003b; Zangen et al., 1997).
Moreover, serotonin plays a causal role in anhedonia by regulating
dopamine levels (Zangen et al., 2001).

5.3.3. The hypothalamus reallocates energy to rumination

The hypothalamus affects major metabolic processes, includ-
ing growth, development, reproduction, immune function, and the
stress response (Chrousos, 2009; Cyr and Eales, 1996; Sower et al.,
2009; Tsang et al., 2014; Yang, 2010), and indices of serotonin
transmission to the hypothalamus are elevated in rodent models of
melancholia (Adell et al., 1988; Beitia et al., 2005; Blanchard et al.,
1993; Keeney et al., 2006). Chronic activation of the HPA axis sup-
presses both the growth and reproductive axes (Chrousos, 1998),
so elevated serotonin transmission to this region probably plays a
role in inhibiting appetite and sexual activity in melancholia. The
hypothalamus also undoubtedly plays a role in the alterations in
sleeping patterns, such as the increase in REM sleep.

5.3.4. The hippocampus and the allocation of working memory

The working memory system is an important function of the
lateral PFC (Courtney et al.,, 1998). Amongst its many afferent
projections, this region receives ipsilateral projections from the
ventral CA1 region of the hippocampus (Cavada et al., 1983; Rosene
and Vanhoesen, 1977). This synapse, henceforth referred to as the
HC-PFC synapse, is susceptible to various forms of plasticity, includ-
ing long-term potentiation (LTP) and long-term depression (LTD)
(Hirsch and Crepel, 1990; Laroche et al., 1990).

Changes in the plasticity of the HC-PFC synapse subserve the
working memory system (Burette et al., 2000; Laroche et al., 2000).
For instance, several studies have found that LTD in this synapse is
associated with improved performance on working memory tasks
(Burette et al., 2000; Laroche et al., 2000). A broad reduction in the
strength of this synapse, which may be accompanied by potenti-
ation of a subset of hippocampal inputs to the PFC, may enhance
the signal to noise ratio of transmitted information (Laroche et al.,
2000), improving the transmission of task-relevant signals while
reducing the transmission of distracting sensory-driven activity.
Moreover, in tasks that do not require the long-term storage of
newly acquired information, synaptic depression may also repre-
sent an ‘anti-consolidation’ signal. Since the putative function of
analytical rumination is to learn how to manage stressors, long-
term memory consolidation (mediated by hippocampal LTP) would

seem most appropriate after processing is completed. Thus, LTP
should be inhibited during ongoing analysis.

The synaptic changes in the hippocampus during depressed
states are consistent with this working memory model of analyti-
cal rumination. First, LTD is generally upregulated in the CA1 region
of the hippocampus in the inescapable shock model of depression,
while LTP is inhibited (Kim et al., 1996; Shors et al., 1989; Xu et al.,
1997). Moreover, a subset of synapses undergoes a more transient
form of potentiation. In the chronic mild stress model of depres-
sion, the temporoammonic-CA1 pathway is selectively potentiated
(Cai et al., 2013). Since potentiation of the temporoammonic-CA1
synapse promotes hippocampal output from the CA1, this mecha-
nism may enable the transmission of pertinent signals from the
hippocampus to working memory areas of the PFC. Thus, hip-
pocampal LTD, along with potentiation of a subset of synapses,
may enhance the signal-to-noise ratio of information transmitted
to working memory areas of the PFC. This may promote analyt-
ical rumination by maintaining problem-relevant information in
working memory.

Serotonin transmission to the hippocampus is elevated in many
rodent models (Section 2.2.1). In these models, serotonin appears to
coordinate the changes in synaptic plasticity. In chronic mild stress,
serotonin induces a transient potentiation in the hippocampus and
mPFC (Cai et al., 2013). Since this form of potentiation competes
with the same pathways as LTP (Cai et al., 2013). LTP is reduced as
well. Future research should test the generality of these findings in
other rodent models of depression, particularly inescapable shock.
Although the precise mechanism for triggering hippocampal LTD is
unknown, we predict that it is triggered by a sustained elevation in
serotonin transmission. For instance, elevated serotonin can trigger
LTD in motor neurons (Garraway and Hochman, 2001b).

5.3.4.1. An energetic trade-off between synaptic plasticity and neu-
rogenesis. An ongoing area of research attempts to understand
hippocampal volume shrinkage during depression (Groves, 2007;
Krishnan and Nestler, 2008). This seems to involve a reduction in
brain-derived neurotrophic factor (BDNF), which promotes neu-
rogenesis. For instance, humans and mice with a genetic variant
that leads to lower expression of BDNF have smaller hippocampal
volumes (Chen et al., 2006).

We suggest hippocampal neurogenesis is downregulated in
melancholia to give energetic priority to the synaptic changes that
underlie analytical rumination. A provocative study found that hip-
pocampal neurogenesis in adult bonnet macaques is negatively
associated with overall body weight (Perera et al., 2011b), sug-
gesting that neurogenesis may be so metabolically expensive that
it comes at the expense of the growth of other tissues. The most
energetically expensive aspect of neurogenesis may be the hyper-
plastic phase where neurons undergo heightened LTP (Ge et al,,
2007). Since the changes in synaptic plasticity that underlie ana-
lytical rumination are also energetically expensive (Section 5.1), it
may be difficult for the brain to energetically support both neu-
rogenesis and synaptic plasticity simultaneously. BDNF signaling
tends to be inhibited in severe (but not mild) stressor models of
depression (Bland et al., 2007; Larsen et al., 2010), which suggests
that there is an increasing trade-off as stress becomes more severe.
Since LTD involves a shrinkage of dendritic spines and elimination
of synapses (Sheng and Ertiirk, 2014; Zhou et al., 2004), neurogene-
sis may be mechanistically incompatible with the synaptic changes
that underlie analytical rumination. Indeed, BDNF has an inhibitory
effect on LTD in the hippocampus and visual cortex (Aicardi et al.,
2004; Akaneya et al., 1996; Ikegaya et al., 2002; Rodrigues et al.,
2014).

We further suggest that serotonin mediates this energetic trade-
off. Rats lacking SERT express lower hippocampal BDNF levels,
showing that BDNF signaling is under serotonergic control (Molteni
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et al., 2010). We predict that elevated serotonin transmission pro-
motes the alterations in synaptic plasticity in melancholia and
inhibits hippocampal neurogenesis.

5.3.5. The lateral PFC promotes distraction-resistance

To reduce interference with working memory processes, neu-
rons in the left lateral PFC must fire continuously during the period
of vulnerability to distraction (Courtney et al., 1998; D’Esposito
et al., 2000; Dolcos et al., 2007; Funahashi et al., 1997; Jonides and
Nee, 2006; Rao et al., 1997). However, sustained neuronal firing
poses two problems, and aerobic glycolysis helps solve them.

First, the neurons need a source of energy that can support
sustained firing. Neurons do not store glucose, and under many
conditions they receive energy from the passive diffusion of glu-
cose from nearby arterioles (Nehlig and Coles, 2007). When passive
diffusion is the predominant means by which neurons obtain their
energy, neuronal activity is positively correlated (or coupled) with
blood flow. However, as neuronal activity becomes more intense
and sustained, passive diffusion is not fast enough to support sus-
tained neuronal firing (Pellerin et al., 2007; Shulman et al.,2001a,b).
Instead, neurons rely increasingly on lactate produced by aerobic
glycolysis in nearby astrocytes (Pellerin et al., 2007). The energy is
produced at a much faster rate than is needed to support sustained
neuronal firing (Shulman et al., 2001b), and the excess is dispersed
through the bloodstream (Dienel, 2012).

The second problem caused by the sustained firing of left VLPFC
neurons derives from the fact that the large majority (about 80%) of
cortical neurons are glutamatergic (Somogyi et al., 1998). High lev-
els of synaptic glutamate are toxic and can trigger apoptosis (Hara
and Snyder, 2007). Thus, although sustained neuronal activity in
the left VLPFC is crucial to prevent disruption of analysis, the accu-
mulation of synaptic glutamate can trigger neuronal death. This
problem is also solved by astrocytes, which clear glutamate from
the synapse, convert it to a less toxic form (glutamine), and finally
transport it back to the neuron where it is recycled by the neu-
ron (Magistretti and Ransom, 2002). The energy needed to support
glutamate-glutamine cycling probably comes from aerobic glycol-
ysis (Magistretti and Ransom, 2002).

Aerobic glycolysis also has ramifications for blood flow pat-
terns. Since aerobic glycolysis produces excess lactate and does
not use oxygen (Shulman et al., 2001b), maintaining a tight cou-
pling between neuronal activity and cerebral blood flow would
be highly inefficient, since blood borne glucose and oxygen could
be utilized elsewhere. Consequently, neuronal activity becomes
decoupled from regional blood flow under conditions of prolonged,
intense neuronal activity (Shulman et al., 2001a,b). Here again,
astrocytes are mechanistically involved. They have processes that
connect to nearby capillaries, and they are able to affect local blood
flow (Magistretti and Ransom, 2002).

We examine how these processes are regulated by serotonin
in rodents. However, the rat brain is packaged differently from
the primate brain (Uylings et al., 2003). The rat mPFCv is the
likely homologue to the human lateral PFC (Brown and Bowman,
2002; Kesner, 2000; Uylings et al., 2003). Indeed, the rat mPFCv is
involved inregulating the resistance to distracting stimuli (Gisquet-
Verrier and Delatour, 2006), and it regulates depressive symptoms
in inescapable shock and chronic social defeat (Amat et al., 2005;
Covington et al., 2010). Inescapable shock triggers elevated sero-
tonin transmission to the mPFCv (Amat et al., 2005).

5.3.5.1. Serotonin and glutamatergic activity in the rodent mPFCv.
Serotonin clearly regulates glutamatergic activity in the mPFCv
(Puig and Gulledge, 2011). For our purposes, the crucial issue is
whether glutamatergic activity increases or decreases with a sus-
tained elevation in serotonin transmission. In general, serotonin
has a net excitatory effect on networks of cortical neurons, and

this effect is mediated by activation of 5-HT,a receptors (Puig
and Gulledge, 2011). Serotonin produces a similar effect in motor
neurons (Garraway and Hochman, 2001a; Harvey et al., 2006a,b;
Liu et al., 2011). We predict that a sustained elevation in sero-
tonin transmission triggers a tonic increase in mPFCv glutamatergic
activity.

5.3.5.2. Serotonin and aerobic glycolysis. Serotonin stimulates aer-
obic glycolysis in various regions of the rodent brain (Darvesh and
Gudelsky, 2003). Inescapable shock triggers aerobic glycolysis in
the mPFCv, and this effect is mediated through the 5-HT;4 het-
eroreceptor (Uehara et al., 2006).

5.3.5.3. Serotonin and glutamate clearance. We know of no direct
tests of how serotonin affects glutamate clearance from the
synapse, so the role of serotonin in glutamate-glutamine cycling
is unclear.

5.3.5.4. Serotonininvasoconstriction. Serotonin promotes vasocon-
striction and vasodilation throughout the brain and the periphery,
often mediated by the 5-HT;5 heteroreceptor (Cohen et al., 1996).

5.4. The effects of ADMs on the melancholic energy allocation
pattern

As we have articulated the problem, antidepressants must
reverse the melancholic energy allocation pattern to reduce symp-
toms. To summarize this pattern, the symptoms of melancholia
promote sustained cognition (analytical rumination) while growth
and reproductive activity are suppressed. This cognitive activ-
ity requires altered synaptic plasticity in the HC-PFC synapse
(increased LTD and serotonin-induced potentiation, decreased LTP)
and sustained glutamatergic activity in the lateral PFC. These pro-
cesses are so energetically expensive they require an upregulation
in glycolysis, and cannot simultaneously support the growth of new
neurons. Moreover, neurogenesis may functionally interfere with
plasticity because many of the changes in synaptic connectivity
require LTD and dendritic pruning.

The direct pharmacological properties of SSRIs do not appear
to effect a reversal in this pattern. Rather, acute SSRI treatment
tends to exacerbate it—LTP and BDNF signaling are inhibited, while
serotonin-induced potentiation is increased (Cai et al., 2013; De
Foubert et al., 2004; Shakesby et al., 2002). Reversal (increased LTP
and BDNF signaling, and decreased serotonin potentiation) only
occurs over chronic SSRI treatment (Bhagya et al., 2011; Cai et al,,
2013; De Foubert et al., 2004). Altogether, the pattern suggests that
the reversal is due to the brain’s compensatory responses to SSRI
treatment.

Furthermore, we suggest that eventual reversal of the energy
allocation pattern explains why promoting neurogenesis is cru-
cial to symptom reduction in some models (Perera et al., 2011a;
Santarelli et al., 2003). This finding appeared to support the
hypothesis that reduced neurogenesis was a mechanistic cause of
depression (Duman et al., 1997). However, further research showed
that the ablation of neurogenesis is insufficient to trigger depressive
symptoms (Jayatissa et al.,2009; Surget et al., 2008). This, and other
findings, have cast doubt on the neurogenic hypothesis for depres-
sion (Groves, 2007; Mahar et al., 2014). Our approach elegantly
explains this pattern. ADMs only reduce symptoms to the degree
they induce a sufficiently strong compensatory response by the
brain to suppress the allocation of energy devoted to sustained cog-
nition. However, the ablation of hippocampal neurogenesis does
not trigger depressive symptoms because it does not, by itself, pro-
mote sustained cognition.
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6. Conclusion and future directions

The reigning paradigm conceptualizes depression as a state of
reduced serotonin transmission. In this paper we have reviewed a
large body of evidence indicating that the opposite appears to be
true. For the depressive phenotypes we have considered—sickness
behavior, starvation depression, and melancholia—serotonin trans-
mission to multiple brain regions appears to be elevated. Others
have suggested serotonin transmission is elevated in depression
(Andrews and Thomson, 2009; Petty et al.,, 1994; Zangen et al.,
1997), but this is the first in-depth review of the high serotonin
hypothesis.

There are, of course, several caveats to this claim. First, serotonin
cannot be simply described as an ‘upper’ or a ‘downer’. Evidence
of elevated serotonin transmission can be found in both positive
and negative states (Table 3). Alterations in other biochemical
systems are probably needed to differentiate negative and posi-
tive mood states. For instance, depressive states seem to involve
elevated serotonin and reduced dopamine transmission in the
nucleus accumbens (Bland et al., 2003b; Zangen et al., 1997). Con-
versely, acute cocaine administration produces a euphoric mood
and increases both extracellular serotonin and dopamine in the
nucleus accumbens (Li et al., 1996).

Second, serotonin is probably a distal factor in the causal path-
way that regulates depression and other energetically expensive
states. Consequently, alterations in serotonin transmission are
probably neither necessary nor sufficient to regulate depressive
symptoms; researchers can affect depressive symptoms by altering
more proximate mechanisms, such as glutamate transmission.
Nevertheless, we propose that altered serotonin transmission is
part of the evolved process by which depression and other ener-
getically expensive states are regulated.

Third, the findings reviewed herein may not be generalizable to
other depressed states. For instance, we did not consider atypical
depression because it is heterogeneous (Stewart et al., 2007), and
we lack valid non-human animal models for it. Still, we predict that
serotonin transmission is also elevated in atypical depression phen-
otypes, because we suspect that they also involve the prolonged
reallocation of energy.

Fourth, the evidence most relevant for evaluating the high and
low serotonin hypotheses comes from studies on non-human ani-
mals. While some debate persists about the validity of animal
models of depression, they are invaluable tools in the study of the
neurobiology of depression (Berton et al., 2012). Nevertheless, the
study by Barton and colleagues (2008) provided converging evi-
dence of elevated serotonin transmission (indexed by 5-HIAA levels
in the jugular vein) in patients meeting current diagnostic criteria
for major depression.

Fifth, by necessity our review relies on indices of serotonin
transmission. As discussed above, we are currently unable to mea-
sure serotonin in a living human brain without invasive techniques.
However, even with the development of safe, non-invasive in vivo
techniques for measuring serotonin concentrations, we would still
have to rely on indices, such as the 5-HIAA/5-HT ratio. The devel-
opment of techniques that would allow the direct measurement of
serotonin transmission in the human brain is a long way off.

With these caveats in mind, the high serotonin and energy reg-
ulation hypotheses conjointly explain why depressive symptoms

commonly worsen in acute treatment when serotonin levels are at
their highest. They also explain the therapeutic delay as the result of
the compensatory responses that attempt to restore energy homeo-
stasis.

Future research should map out how the serotonergic system
and depressive symptoms change over acute, chronic, and more
prolonged SSRI treatment, and after discontinuation of the treat-
ment. Since serotonin has state-dependent effects, it is important
to control for the baseline state. We suggest using a well-developed
model of depression, such as inescapable shock or chronic social
defeat, as the baseline state. Once the compensatory changes have
been compellingly mapped out, we predict that disrupting the com-
pensatory responses will prevent or delay the antidepressant effect.

Finally, the energy regulation hypothesis suggests many poten-
tial lines of research that could be important in understanding what
serotonin is doing in depressed states. We highlight two such areas.
First, in addition to serotonin, melancholia involves the heightened,
sustained secretion of cortisol. Serotonin and cortisol both affect
aerobic glycolysis and oxidative phosphorylation. Aerobic glycol-
ysis occurs in the cytosol and the endproduct is lactate, which
must be converted back to pyruvate before it can go through oxida-
tive phosphorylation in the mitochondrion, so there is a trade-off
between the two processes (Andersson et al., 2003; Pfeiffer et al.,
2001). Serotonin and cortisol may interact to regulate and influence
the balance between these processes, and this should be investi-
gated.

Second, we have been unable to find any research on how sero-
tonin enters the mitochondrion. That strikes us as a glaring gap
in our knowledge. Since aerobic glycolysis and oxidative phos-
phorylation occurs in different intracellular compartments, it may
be important to understand how the intracellular distributions of
serotonin are regulated. At stake is the interpretation of neuroimag-
ing studies of depression, which depend upon the balance between
aerobic glycolysis and oxidative phosphorylation (Section 5.1).

In summary, we propose that depressed states are high sero-
tonin phenomena, which challenges the prominent role the low
serotonin hypothesis continues to have in depression research
(Albert et al., 2012). We also propose that the direct serotonin-
enhancing effects of antidepressants disturb energy homeostasis
and worsen symptoms. We argue that symptom reduction, which
only occurs over chronic treatment, is attributable to the com-
pensatory responses of the brain attempting to restore energy
homeostasis. Understanding the true relationship between sero-
tonin and depressed states will be important in understanding the
etiology of those states and developing effective treatments.
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Table A1

The symptomatic similarity between sickness behavior, starvation depression, melancholia, and four commonly studied rat models of depression: inescapable shock, chronic

social defeat, chronic mild stress, and the Flinders Sensitive Line. A “?” indicates data are not available.

“_»

indicates no statistically significant change in the symptom.

Symptoms Sickness Starvation Melancholia Inescapable Chronic social Chronic mild Flinders
behavior depression shock defeat stress Sensitive Line
Anhedonia 116 A4 130 132 410 432 122
Weight |>16 s 130 132 AU 132 122
Sexual behavior |>16 IR 130 134 AU 132 19
Sleep duration 41 -18 130 123 1o 13 2
REM sleep 16 118 130 123 ? 43 12
Slow wave sleep 116 118 130 13 L1 3 2
Passive coping Yes® ? Yes?? Yes3? ? Yes3? Yes??
Motor activity }>16 1819 130 12 U 132 22
HPA axis 13 127 130 132 410 432 422
Body temperature 1516 126 125 16 113 431 No28
Preference for carbohydrate 13 1 14 7 _21 433 "
Altered focus of attention Yes'> Yes'4 Yes! Yes!7:20 ? ? ?
Complex information processing No>16 ? Yes! Yes?20-29 ? ? ?

References: ' Andrews and Thomson (2009); 2Benca et al. (1996); 3Cheeta et al. (1997); 4Christensen and Brooks (2006); >Dantzer (2001); 6Deak et al. (1997); 7Dess (1992);
8Exner et al. (2000); °Ferreira-Nuno et al. (2002); '°Fuchs and Fliigge (2002); ""Hart (1988); '2Jackson et al. (1978); 3 Keeney et al. (2001); #Keys et al. (1950); '>Kramer
et al. (2002); '8Larson and Dunn (2001); 17Lee and Maier (1988); '®MacFadyen et al. (1973); '®Meunier et al. (2007); 2°Minor et al. (1984); 2'Moles et al. (2006); 22Neumann
etal.(2011); 220’'Malley et al. (2013); 2Overmann (1976); 2°Rausch et al. (2003); 26Rising et al. (1992); 27 Schwartz and Seeley (1997); 28Shayit et al. (2003); 2°Shors (2004);
30Taylor and Fink (2008); 3!Ushijima et al. (2006); 32Vollmayr and Henn (2003); 33Willner et al. (1998); 34Yan et al. (2010).
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