Please

 

cite

 

this

 

article

 

in

 

press

 

as:

 

Andrews,

 

P.W.,

 

et

 

al.,

 

Is

 

serotonin

 

an

 

upper

 

or

 

a

 

downer?

 

The

 

evolution

 

of

 

the

 

serotonergic

 

system

 

and

 

its

role

 

in

 

depression

 

and

 

the

 

antidepressant

 

response.

 

Neurosci.

 

Biobehav.

 

Rev.

 

(2015),

 

http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

ARTICLE IN PRESS

G Model

NBR

 

2124

 

1–25

Neuroscience

 

and

 

Biobehavioral

 

Reviews

 

xxx

 

(2015)

 

xxx–xxx

Contents

 

lists

 

available

 

at

 

ScienceDirect

Neuroscience

 

and

 

Biobehavioral

 

Reviews

j o u

 

r n

 

a l

 

h

 

o m

 

e p a g e :

 

w w w . e l s e v i e r . c o m / l o c a t e / n e u b i o r e v

Review

Is

 

serotonin

 

an

 

upper

 

or

 

a

 

downer?

 

The

 

evolution

 

of

 

the

 

serotonergic

system

 

and

 

its

 

role

 

in

 

depression

 

and

 

the

 

antidepressant

 

response

Paul

 

W.

 

Andrews

a

,

,

 

Aadil

 

Bharwani

a

,

 

Kyuwon

 

R.

 

Lee

a

,

 

Molly

 

Fox

b

,

Q1

J.

 

Anderson

 

Thomson

c

,

d

a

Department

 

of

 

Psychology,

 

Neuroscience

 

and

 

Behaviour,

 

McMaster

 

University,

 

1280

 

Main

 

Street

 

West,

 

Hamilton,

 

Ontario

 

L8S

 

4K1,

 

Canada

b

Department

 

of

 

Biological

 

Anthropology,

 

University

 

of

 

Cambridge,

 

Pembroke

 

Street,

 

Cambridge

 

CB2

 

3QY,

 

England,

 

United

 

Kingdom

Q2

c

Counseling

 

and

 

Psychological

 

Services,

 

University

 

of

 

Virginia

 

Student

 

Health,

 

Charlottesville,

 

VA,

 

USA

d

Institute

 

of

 

Law,

 

Psychiatry,

 

and

 

Public

 

Policy,

 

University

 

of

 

Virginia,

 

Charlottesville,

 

VA,

 

USA

a

 

r

 

t

 

i

 

c

 

l

 

e

 

i

 

n

 

f

 

o

Article

 

history:

Received

 

4

 

September

 

2013

Received

 

in

 

revised

 

form

 

8

 

January

 

2015

Accepted

 

15

 

January

 

2015

Available

 

online

 

xxx

Keywords:
Analysis
Depression
Serotonin
Energy

 

regulation

Learning
Plasticity
Working

 

memory

Distraction
Hippocampus
Prefrontal

 

cortex

Hypothalamus

a

 

b

 

s

 

t

 

r

 

a

 

c

 

t

The

 

role

 

of

 

serotonin

 

in

 

depression

 

and

 

antidepressant

 

treatment

 

remains

 

unresolved

 

despite

 

decades

of

 

research.

 

In

 

this

 

paper,

 

we

 

make

 

three

 

major

 

claims.

 

First,

 

serotonin

 

transmission

 

is

 

elevated

 

in

 

mul-

tiple

 

depressive

 

phenotypes,

 

including

 

melancholia,

 

a

 

subtype

 

associated

 

with

 

sustained

 

cognition.

 

The

primary

 

challenge

 

to

 

this

 

first

 

claim

 

is

 

that

 

the

 

direct

 

pharmacological

 

effect

 

of

 

most

 

symptom-reducing

medications,

 

such

 

as

 

the

 

selective

 

serotonin

 

reuptake

 

inhibitors

 

(SSRIs),

 

is

 

to

 

increase

 

synaptic

 

serotonin.

The

 

second

 

claim,

 

which

 

is

 

crucial

 

to

 

resolving

 

this

 

paradox,

 

is

 

that

 

the

 

serotonergic

 

system

 

evolved

to

 

regulate

 

energy.

 

By

 

increasing

 

extracellular

 

serotonin,

 

SSRIs

 

disrupt

 

energy

 

homeostasis

 

and

 

often

worsen

 

symptoms

 

during

 

acute

 

treatment.

 

Our

 

third

 

claim

 

is

 

that

 

symptom

 

reduction

 

is

 

not

 

achieved

 

by

the

 

direct

 

pharmacological

 

properties

 

of

 

SSRIs,

 

but

 

by

 

the

 

brain’s

 

compensatory

 

responses

 

that

 

attempt

to

 

restore

 

energy

 

homeostasis.

 

These

 

responses

 

take

 

several

 

weeks

 

to

 

develop,

 

which

 

explains

 

why

 

SSRIs

have

 

a

 

therapeutic

 

delay.

 

We

 

demonstrate

 

the

 

utility

 

of

 

our

 

claims

 

by

 

examining

 

what

 

happens

 

in

 

animal

models

 

of

 

melancholia

 

and

 

during

 

acute

 

and

 

chronic

 

SSRI

 

treatment.

©

 

2015

 

Published

 

by

 

Elsevier

 

Ltd.

Contents

1.

 

Introduction

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

2.

 

Serotonin

 

is

 

elevated

 

in

 

multiple

 

depressive

 

phenotypes

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

2.1.

 

In

 

people

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

2.1.1.

 

Polymorphism

 

in

 

the

 

SERT

 

gene

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

2.1.2.

 

5-HIAA

 

levels

 

in

 

the

 

jugular

 

vein

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

2.1.3.

 

Tryptophan

 

depletion

 

increases

 

DRN

 

activity

 

in

 

depressed

 

patients

 

taking

 

ADMs

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

2.1.4.

 

Increased

 

preference

 

for

 

carbohydrates

 

in

 

depression

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

2.1.5.

 

Tianeptine

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

2.1.6.

 

Anxiety

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

Abbreviations:

 

5-HT,

 

5-hydroxytryptamine

 

(serotonin);

 

DA,

 

dopamine;

 

NE,

 

norepinephrine;

 

ADM,

 

antidepressant

 

medication;

 

SSRIs,

 

selective

 

serotonin

 

reuptake

inhibitors;

 

SERT,

 

serotonin

 

transporter;

 

5-HIAA,

 

5-hydroxyindoleacetic

 

acid;

 

PFC,

 

prefrontal

 

cortex;

 

mPFCv,

 

ventral

 

part

 

of

 

the

 

rodent

 

medial

 

prefrontal

 

cortex;

 

DLPFC,

dorsolateral

 

prefrontal

 

cortex;

 

VLPFC,

 

ventrolateral

 

prefrontal

 

cortex;

 

DRN,

 

dorsal

 

raphe

 

nucleus;

 

PET,

 

positron

 

emission

 

tomography;

 

ATP,

 

adenosine

 

triphosphate;

 

BDNF,

brain-derived

 

neurotrophic

 

factor;

 

NET,

 

norepinephrine

 

transporter;

 

DAT,

 

dopamine

 

transporter.

∗ Corresponding

 

author.

 

Tel.:

 

+1

 

905

 

525

 

9140x20820;

 

fax:

 

+1

 

9055296225.

E-mail

 

address:

 

pandrews@mcmaster.ca

 

(P.W.

 

Andrews).

http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

0149-7634/©

 

2015

 

Published

 

by

 

Elsevier

 

Ltd.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Please

 

cite

 

this

 

article

 

in

 

press

 

as:

 

Andrews,

 

P.W.,

 

et

 

al.,

 

Is

 

serotonin

 

an

 

upper

 

or

 

a

 

downer?

 

The

 

evolution

 

of

 

the

 

serotonergic

 

system

 

and

 

its

role

 

in

 

depression

 

and

 

the

 

antidepressant

 

response.

 

Neurosci.

 

Biobehav.

 

Rev.

 

(2015),

 

http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

ARTICLE IN PRESS

G Model

NBR

 

2124

 

1–25

2

 

P.W.

 

Andrews

 

et

 

al.

 

/

 

Neuroscience

 

and

 

Biobehavioral

 

Reviews

 

xxx

 

(2015)

 

xxx–xxx

2.2.

 

In

 

non-human

 

animal

 

models

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

2.2.1.

 

Stressor

 

models

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

2.2.2.

 

Genetic

 

models

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

2.2.3.

 

Lesion

 

models

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

2.3.

 

Summary

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

3.

 

The

 

energy

 

regulation

 

function

 

of

 

the

 

serotonergic

 

system

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

3.1.

 

Overview

 

of

 

the

 

serotonergic

 

system

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

3.2.

 

The

 

evolution

 

of

 

serotonin

 

in

 

mitochondria

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

3.3.

 

The

 

mitochondrial

 

functions

 

of

 

serotonin

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

3.4.

 

What

 

is

 

the

 

function

 

of

 

the

 

serotonergic

 

system?

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

3.4.1.

 

Serotonin

 

and

 

energy

 

regulation .

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

3.4.2.

 

The

 

homeostatic

 

equilibrium

 

level

 

of

 

serotonin

 

transmission

 

is

 

increased

 

in

 

situations

 

requiring

 

a

 

rebalancing

 

of

metabolically

 

expensive

 

processes

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

4.

 

The

 

homeostatic

 

response

 

to

 

SSRIs

 

and

 

symptom

 

reduction

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

4.1.

 

Acute

 

SSRI

 

treatment

 

disrupts

 

energy

 

homeostasis

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

4.2.

 

The

 

brain’s

 

compensatory

 

responses

 

to

 

SSRI

 

treatment

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

4.3.

 

The

 

mechanisms

 

of

 

symptom

 

reduction

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

4.4.

 

Symptom

 

reduction

 

is

 

a

 

temporary

 

overshoot

 

of

 

the

 

homeostatic

 

equilibrium

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

4.5.

 

The

 

effects

 

of

 

SSRIs

 

during

 

recalibration

 

of

 

serotonin

 

transmission

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

5.

 

What

 

is

 

serotonin

 

doing

 

in

 

melancholia?

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

5.1.

 

Energy

 

is

 

reallocated

 

to

 

cognition

 

in

 

melancholia .

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

5.2.

 

The

 

situational

 

triggers

 

of

 

the

 

melancholic

 

state

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

5.3.

 

Serotonin

 

coordinates

 

the

 

mechanisms

 

promoting

 

rumination

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

5.3.1.

 

The

 

amygdala

 

and

 

orienting

 

attention

 

to

 

the

 

problem

 

that

 

triggered

 

the

 

episode

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

5.3.2.

 

The

 

nucleus

 

accumbens

 

and

 

anhedonia

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

5.3.3.

 

The

 

hypothalamus

 

reallocates

 

energy

 

to

 

rumination

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

5.3.4.

 

The

 

hippocampus

 

and

 

the

 

allocation

 

of

 

working

 

memory

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

5.3.5.

 

The

 

lateral

 

PFC

 

promotes

 

distraction-resistance

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

5.4.

 

The

 

effects

 

of

 

ADMs

 

on

 

the

 

melancholic

 

energy

 

allocation

 

pattern

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

6.

 

Conclusion

 

and

 

future

 

directions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

Acknowledgments .

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

Appendix

 

A

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

References

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

00

1.

 

Introduction

Depression

 

is

 

a

 

heterogeneous

 

suite

 

of

 

states

 

characterized

Q3

by

 

sad

 

mood

 

and

 

anhedonia

 

(an

 

inability

 

to

 

experience

 

pleasure)

(

Hyman,

 

2010;

 

Insel

 

and

 

Charney,

 

2003

).

 

Depressive

 

states

 

share

some

 

genes

 

and

 

neurobiology

 

in

 

common,

 

but

 

they

 

otherwise

 

dif-

fer

 

in

 

symptom

 

and

 

etiology

 

(

Akiskal

 

and

 

Akiskal,

 

2007;

 

Dantzer

et

 

al.,

 

2008;

 

Flint

 

and

 

Kendler,

 

2014;

 

Lux

 

and

 

Kendler,

 

2010;

Maier

 

and

 

Watkins,

 

1998;

 

Parker,

 

2000;

 

Raison

 

and

 

Miller,

 

2013;

Sullivan

 

et

 

al.,

 

2012

).

 

For

 

instance,

 

depressive

 

symptoms

 

can

 

occur

in

 

response

 

to

 

infection

 

(called

 

sickness

 

behavior)

 

or

 

starvation

(

Hart,

 

1988;

 

Keys

 

et

 

al.,

 

1950

),

 

though

 

the

 

symptoms

 

are

 

not

 

con-

sidered

 

pathological

 

in

 

these

 

contexts

 

(

Andrews

 

and

 

Durisko,

 

in

press;

 

Dantzer,

 

2001;

 

Engel

 

and

 

Schmale,

 

1972

).

 

In

 

the

 

fifth

 

edition

of

 

the

 

Diagnostic

 

and

 

Statistical

 

Manual

 

for

 

Mental

 

Disorders

 

(DSM-5),

the

 

diagnostic

 

category

 

of

 

major

 

depression

 

envelops

 

some

 

of

 

the

symptomatic

 

heterogeneity

 

by

 

allowing

 

for

 

variability

 

in

 

weight,

sleeping,

 

and

 

psychomotor

 

activity

 

(

Table

 

1

)

 

(

APA,

 

2013

).

Episodes

 

of

 

major

 

depression

 

may

 

be

 

further

 

subdivided

 

into

more

 

precise

 

phenotypes.

 

Melancholia

 

(weight

 

loss,

 

insomnia,

 

and

agitation/retardation)

 

is

 

considered

 

by

 

many

 

to

 

be

 

the

 

“biological

core

 

of

 

depression”

 

(

Akiskal

 

and

 

Akiskal,

 

2007

,

 

p.

 

46).

 

It

 

is

 

the

 

most

common

 

and

 

reliably

 

diagnosed

 

subtype,

 

often

 

accounting

 

for

 

50%

or

 

more

 

of

 

clinical

 

episodes

 

(

Angst

 

et

 

al.,

 

2007;

 

Taylor

 

and

 

Fink,

2008;

 

Xiang

 

et

 

al.,

 

2012

).

 

Melancholia

 

is

 

associated

 

with

 

height-

ened

 

hypothalamic-pituitary-adrenal

 

(HPA)

 

activity

 

(

Taylor

 

and

Fink,

 

2008

),

 

which

 

is

 

a

 

physiological

 

indicator

 

of

 

stress

 

(

Chrousos,

2009

).

 

While

 

it

 

was

 

formerly

 

called

 

endogenous

 

depression,

 

melan-

cholia

 

is

 

in

 

fact

 

associated

 

with

 

stressful

 

life

 

events

 

that

 

are

 

often

serious

 

or

 

highly

 

private

 

in

 

nature

 

(

Harkness

 

and

 

Monroe,

 

2002;

Leff

 

et

 

al.,

 

1970;

 

Mundt

 

et

 

al.,

 

2000;

 

Willner

 

et

 

al.,

 

1990

).

 

Atypical

depression

 

(weight

 

gain,

 

hypersomnia,

 

and

 

retardation)

 

is

 

the

 

other

major

 

subtype,

 

but

 

it

 

is

 

heterogeneous

 

and

 

not

 

well

 

understood

(

Stewart

 

et

 

al.,

 

2007

).

Despite

 

decades

 

of

 

research,

 

the

 

role

 

serotonin

 

plays

 

in

 

depres-

sive

 

phenotypes

 

has

 

not

 

been

 

conclusively

 

determined.

 

The

 

original

clue

 

that

 

monoamines

 

(serotonin,

 

norepinephrine,

 

and

 

dopamine)

were

 

involved

 

in

 

depression

 

came

 

from

 

two

 

serendipitous

 

dis-

coveries

 

(

Baumeister

 

et

 

al.,

 

2003;

 

Valenstein,

 

1998

).

 

First,

 

during

the

 

investigations

 

of

 

iproniazid

 

as

 

a

 

treatment

 

for

 

tuberculo-

sis

 

and

 

imipramine

 

as

 

a

 

treatment

 

for

 

schizophrenia,

 

clinicians

reported

 

that

 

these

 

drugs

 

could

 

reduce

 

depressive

 

symptoms.

 

An

effort

 

was

 

then

 

made

 

to

 

find

 

a

 

common

 

pharmacological

 

prop-

erty

 

that

 

could

 

explain

 

their

 

antidepressant

 

effect.

 

Eventually,

researchers

 

found

 

that

 

iproniazid

 

inhibits

 

the

 

enzymes

 

that

 

break-

down

 

the

 

monoamines,

 

while

 

imipramine

 

blocks

 

the

 

serotonin

transporter

 

(SERT)

 

and

 

the

 

norepinephrine

 

transporter

 

(NET).

 

Sec-

ond,

 

clinical

 

observations

 

suggested

 

that

 

reserpine,

 

a

 

drug

 

known

 

to

deplete

 

monoamines,

 

increased

 

depressive

 

symptoms.

 

These

 

find-

ings

 

appeared

 

to

 

solve

 

the

 

puzzle.

 

By

 

preventing

 

the

 

breakdown

of

 

norepinephrine

 

and

 

serotonin,

 

or

 

preventing

 

their

 

clearance

from

 

the

 

synapse,

 

iproniazid

 

and

 

imipramine

 

appeared

 

to

 

increase

forebrain

 

monoamine

 

levels.

 

The

 

monoamine-enhancing

 

effect

 

of

antidepressant

 

medications

 

(ADMs),

 

coupled

 

with

 

the

 

depression-

inducing

 

effects

 

of

 

reserpine,

 

suggested

 

that

 

depression

 

was

 

caused

by

 

reduced

 

monoamine

 

neurotransmission

 

(

Everett

 

and

 

Toman,

1959;

 

Jacobsen,

 

1964;

 

Schildkraut,

 

1965

).

Other

 

researchers

 

soon

 

suggested

 

that

 

serotonin

 

was

 

the

 

most

important

 

monoamine

 

(

Coppen,

 

1967

).

 

Often

 

it

 

is

 

called

 

the

‘monoamine

 

hypothesis’

 

or

 

the

 

‘serotonin

 

hypothesis.’

 

We

 

refer

 

to

it

 

as

 

the

 

low

 

serotonin

 

hypothesis

 

because

 

it

 

proposes

 

a

 

particular

direction.

 

Researchers

 

then

 

focused

 

on

 

the

 

creation

 

of

 

drugs

that

 

could

 

increase

 

synaptic

 

serotonin

 

without

 

perturbing

 

other

monoamines

 

by

 

selectively

 

binding

 

to

 

the

 

serotonin

 

transporter

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Please

 

cite

 

this

 

article

 

in

 

press

 

as:

 

Andrews,

 

P.W.,

 

et

 

al.,

 

Is

 

serotonin

 

an

 

upper

 

or

 

a

 

downer?

 

The

 

evolution

 

of

 

the

 

serotonergic

 

system

 

and

 

its

role

 

in

 

depression

 

and

 

the

 

antidepressant

 

response.

 

Neurosci.

 

Biobehav.

 

Rev.

 

(2015),

 

http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

ARTICLE IN PRESS

G Model

NBR

 

2124

 

1–25

P.W.

 

Andrews

 

et

 

al.

 

/

 

Neuroscience

 

and

 

Biobehavioral

 

Reviews

 

xxx

 

(2015)

 

xxx–xxx

 

3

Table

 

1

The

 

symptoms

 

of

 

major

 

depression,

 

according

 

to

 

the

 

DSM-5.

 

Episodes

 

of

 

major

 

depression

 

can

 

have

 

melancholic

 

or

 

atypical

 

features.

Major

 

depression

 

Melancholic

 

subtype

 

Atypical

 

subtype

Sad

 

mood

 

Sad

 

mood

 

is

 

worse

 

in

 

the

 

morning

 

and

 

not

 

reactive

 

to

 

positive

 

events;

different

 

from

 

grief

 

or

 

loss

Sad

 

mood

 

is

 

reactive;

 

brightens

 

in

response

 

to

 

positive

 

events

Anhedonia

 

Anhedonia

Weight

 

loss

 

or

 

gain

 

Weight

 

loss

 

Weight

 

gain

Hypersomnia

 

or

 

insomnia

 

Insomnia

 

with

 

early

 

morning

 

waking

 

Hypersomnia

Psychomotor

 

agitation

 

or

 

retardation

 

Psychomotor

 

agitation

 

or

 

retardation

 

Leaden

 

paralysis

Fatigue
Excessive

 

feelings

 

of

 

worthlessness

 

or

 

guilt

Excessive

 

guilt

Difficulty

 

concentrating

Suicidal

 

ideation

Sensitivity

 

to

 

interpersonal

 

rejection

(SERT).

 

This

 

research

 

effort

 

was

 

successful,

 

and

 

the

 

selective

serotonin

 

reuptake

 

inhibitors

 

(SSRIs)

 

are

 

now

 

among

 

the

 

most

widely

 

prescribed

 

medications

 

(

Olfson

 

and

 

Marcus,

 

2009;

 

Olfson

et

 

al.,

 

2002

).

However,

 

many

 

problems

 

with

 

the

 

low

 

serotonin

 

hypothesis

have

 

prompted

 

a

 

reassessment

 

of

 

serotonin’s

 

role

 

in

 

depression

(see

 

Box

 

1

).

 

Although

 

the

 

idea

 

that

 

a

 

single

 

neurochemical

 

is

the

 

cause

 

of

 

depression

 

is

 

now

 

considered

 

simplistic,

 

the

 

low

serotonin

 

hypothesis

 

still

 

lies

 

at

 

the

 

foundation

 

of

 

most

 

research

on

 

depression

 

(

Albert

 

et

 

al.,

 

2012

).

 

It

 

is

 

generally

 

thought

 

that

reduced

 

serotonin

 

transmission

 

is

 

one

 

of

 

the

 

more

 

distal

 

factors

in

 

the

 

neurological

 

chain

 

of

 

events

 

that

 

regulate

 

depressive

 

symp-

toms

 

(

Krishnan

 

and

 

Nestler,

 

2008

).

 

The

 

fact

 

that

 

ketamine

 

(which

Box

 

1:

 

Problems

 

with

 

the

 

low

 

serotonin

 

hypothesis

There

 

has

 

been

 

no

 

direct

 

test

 

of

 

the

 

low

 

serotonin

 

hypothesis

in

 

humans

 

because

 

it

 

requires

 

invasive

 

techniques

 

(see

 

Section

4

).

 

Nevertheless,

 

several

 

findings

 

have

 

cast

 

doubt

 

on

 

the

 

low

serotonin

 

hypothesis.

1.

 

Some

 

drugs

 

that

 

block

 

serotonin

 

reuptake

 

(e.g.,

 

cocaine

and

 

amphetamine)

 

are

 

not

 

effective

 

in

 

treating

 

depression

(

Charney

 

et

 

al.,

 

1981

).

2.

 

Researchers

 

and

 

historians

 

have

 

concluded

 

that

 

reserpine-

induced

 

depression

 

is

 

a

 

‘myth’

 

(

Baumeister

 

et

 

al.,

 

2003

),

 

and

that

 

it

 

may

 

actually

 

have

 

antidepressant

 

properties

 

(

Healy,

2002

).

 

The

 

only

 

placebo

 

controlled,

 

randomized,

 

parallel

group

 

study

 

of

 

chronic

 

reserpine

 

treatment

 

in

 

anxious

 

or

depressed

 

people

 

showed

 

that

 

reserpine

 

had

 

an

 

antide-

pressant

 

effect

 

(

Davies

 

and

 

Shepherd,

 

1955

).

 

Indeed,

 

some

researchers

 

argued

 

that

 

reserpine

 

had

 

antidepressant

 

prop-

erties

 

(

Ayd,

 

1958

),

 

and

 

it

 

was

 

used

 

in

 

the

 

1970s

 

and

 

1980s

 

to

manage

 

refractory

 

depression

 

(

Price

 

et

 

al.,

 

1987

).

3.

 

SSRIs

 

and

 

other

 

ADMs

 

increase

 

extracellular

 

serotonin

within

 

minutes

 

to

 

hours

 

of

 

the

 

first

 

dose

 

(

Bymaster

 

et

 

al.,

2002;

 

Rutter

 

and

 

Auerbach,

 

1993

),

 

but

 

they

 

do

 

not

 

reduce

symptoms

 

until

 

after

 

several

 

weeks

 

of

 

continuous

 

treatment

(

Charney

 

et

 

al.,

 

1981;

 

Oswald

 

et

 

al.,

 

1972

).

 

This

 

pattern

 

is

called

 

the

 

therapeutic

 

delay.

4.

 

The

 

attempt

 

to

 

reduce

 

serotonin

 

through

 

tryptophan

 

deple-

tion

 

fails

 

to

 

trigger

 

depression

 

in

 

non-depressed

 

participants

(

Ruhe

 

et

 

al.,

 

2007

).

5.

 

Neonatal

 

exposure

 

to

 

SSRIs

 

causes

 

depressive

 

symptoms

 

in

adult

 

rodents

 

(

Ansorge

 

et

 

al.,

 

2004;

 

Hansen

 

et

 

al.,

 

1997

).

6.

 

Genetic

 

downregulation

 

of

 

SERT,

 

which

 

increases

 

synaptic

serotonin,

 

is

 

associated

 

with

 

an

 

increase

 

in

 

depressive

 

symp-

toms

 

(

Holmes

 

et

 

al.,

 

2003

).

7.

 

Meta-analyses

 

of

 

published

 

and

 

unpublished

 

studies

 

show

that

 

ADMs

 

are

 

only

 

modestly

 

more

 

effective

 

than

 

placebo

 

at

reducing

 

depressive

 

symptoms

 

(

Fournier

 

et

 

al.,

 

2010;

 

Khan

et

 

al.,

 

2002,

 

2005,

 

2011;

 

Kirsch

 

et

 

al.,

 

2008

).

blocks

 

a

 

glutamate

 

receptor)

 

has

 

rapid

 

antidepressant

 

effects

 

lends

support

 

to

 

the

 

hypothesis

 

that

 

depressive

 

symptoms

 

are

 

more

proximally

 

controlled

 

by

 

glutamate

 

transmission

 

in

 

frontal

 

regions

(

Mahar

 

et

 

al.,

 

2014;

 

Popoli

 

et

 

al.,

 

2012

).

 

Others

 

propose

 

serotonin

does

 

not

 

exert

 

any

 

regulatory

 

control

 

over

 

depressive

 

symptoms

(

Kirsch,

 

2010;

 

Lacasse

 

and

 

Leo,

 

2005

).

 

Still

 

others

 

have

 

suggested

serotonin

 

transmission

 

is

 

elevated

 

in

 

depression

 

(

Andrews

 

and

Thomson,

 

2009;

 

Petty

 

et

 

al.,

 

1994;

 

Zangen

 

et

 

al.,

 

1997

).

In

 

this

 

paper,

 

we

 

make

 

three

 

major

 

claims.

 

The

 

first

 

claim,

 

dis-

cussed

 

in

 

Section

 

2

,

 

is

 

that

 

serotonin

 

transmission

 

is

 

elevated

 

in

multiple

 

depressive

 

phenotypes,

 

including

 

melancholia,

 

infection,

and

 

starvation.

 

We

 

refer

 

to

 

this

 

as

 

the

 

high

 

serotonin

 

hypothesis.

What

 

constitutes

 

evidence

 

of

 

serotonin

 

transmission

 

is

 

the

 

key

to

 

the

 

evaluation

 

of

 

this

 

hypothesis.

 

Since

 

depression

 

is

 

a

 

per-

sistent

 

state,

 

reliable

 

indices

 

of

 

stable

 

serotonin

 

transmission

 

are

particularly

 

relevant.

 

The

 

5-HIAA/5-HT

 

ratio

 

is

 

the

 

most

 

reliable

index

 

of

 

stable

 

serotonin

 

transmission,

 

although

 

5-HIAA

 

is

 

also

used

 

(

Shannon

 

et

 

al.,

 

1986

).

 

While

 

the

 

literature

 

on

 

depressed

patients

 

is

 

necessarily

 

limited

 

due

 

to

 

the

 

methodological

 

diffi-

culties

 

measuring

 

serotonin

 

and

 

5-HIAA

 

in

 

the

 

human

 

brain,

 

the

most

 

pertinent

 

studies

 

support

 

the

 

high

 

serotonin

 

hypothesis.

 

In

non-human

 

animal

 

models

 

of

 

depression—where

 

these

 

indices

 

can

be

 

measured

 

more

 

readily—abundant

 

evidence

 

supports

 

the

 

high

serotonin

 

hypothesis.

The

 

primary

 

challenge

 

for

 

the

 

high

 

serotonin

 

hypothesis

 

is

explaining

 

how

 

ADMs,

 

nearly

 

all

 

of

 

which

 

rapidly

 

increase

 

extra-

cellular

 

serotonin,

 

reduce

 

depressive

 

symptoms.

 

Our

 

second

 

claim,

discussed

 

in

 

Section

 

3

,

 

is

 

crucial

 

to

 

resolving

 

this

 

paradox.

 

Specif-

ically,

 

we

 

argue

 

that

 

the

 

evolved

 

function

 

of

 

the

 

serotonergic

system

 

is

 

energy

 

regulation—which

 

we

 

define

 

as

 

the

 

coordination

of

 

metabolic

 

processes

 

with

 

the

 

storage,

 

mobilization,

 

distribution,

production

 

and

 

utilization

 

of

 

energetic

 

resources

 

to

 

meet

 

adaptive

demands

 

(

Table

 

2

).

In

 

the

 

brain

 

and

 

throughout

 

the

 

body,

 

serotonin

 

is

 

homeostati-

cally

 

regulated

 

(

Best

 

et

 

al.,

 

2010;

 

Gershon

 

and

 

Tack,

 

2007;

 

Mercado

and

 

Kilic,

 

2010

).

 

The

 

energy

 

regulation

 

hypothesis

 

predicts

 

that

the

 

homeostatic

 

equilibrium

 

level

 

of

 

serotonin

 

transmission

 

is

elevated

 

in

 

situations

 

that

 

require

 

limited

 

energetic

 

resources

 

to

be

 

reallocated

 

among

 

metabolically

 

expensive

 

processes:

 

growth,

reproduction,

 

physical

 

activity,

 

maintenance,

 

immune

 

function,

and

 

cognition.

 

Table

 

3

 

shows

 

there

 

is

 

a

 

stable

 

increase

 

in

 

serotonin

transmission

 

to

 

the

 

hypothalamus

 

in

 

both

 

positive

 

and

 

negative

mood

 

states

 

where

 

energy

 

must

 

be

 

reallocated

 

for

 

prolonged

periods

 

of

 

time.

 

Similarly,

 

the

 

effects

 

of

 

SSRIs

 

are

 

state-dependent.

Depending

 

on

 

the

 

context,

 

SSRIs

 

can

 

increase

 

or

 

decrease

 

anxi-

ety

 

(

Robert

 

et

 

al.,

 

2011

),

 

motor

 

activity

 

(

Altemus

 

et

 

al.,

 

1996;

 

Page

et

 

al.,

 

1999

),

 

anhedonia

 

(

Branchi

 

et

 

al.,

 

2013;

 

Harrison

 

et

 

al.,

 

2001

),

and

 

neurotrophin

 

signaling

 

(

Bland

 

et

 

al.,

 

2007;

 

Freitas

 

et

 

al.,

 

2013;

Hellweg

 

et

 

al.,

 

2007;

 

Rasmusson

 

et

 

al.,

 

2002;

 

Van

 

Hoomissen

 

et

 

al.,

2003

).

 

Thus,

 

serotonin

 

cannot

 

be

 

simply

 

described

 

as

 

an

 

‘upper’

 

or

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

Please

 

cite

 

this

 

article

 

in

 

press

 

as:

 

Andrews,

 

P.W.,

 

et

 

al.,

 

Is

 

serotonin

 

an

 

upper

 

or

 

a

 

downer?

 

The

 

evolution

 

of

 

the

 

serotonergic

 

system

 

and

 

its

role

 

in

 

depression

 

and

 

the

 

antidepressant

 

response.

 

Neurosci.

 

Biobehav.

 

Rev.

 

(2015),

 

http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

ARTICLE IN PRESS

G Model

NBR

 

2124

 

1–25

4

 

P.W.

 

Andrews

 

et

 

al.

 

/

 

Neuroscience

 

and

 

Biobehavioral

 

Reviews

 

xxx

 

(2015)

 

xxx–xxx

Table

 

2

The

 

serotonergic

 

system

 

and

 

energy

 

regulation.

Processes

 

and

 

systems

 

regulated

 

by

 

serotonin

Production

 

of

 

adenosine

 

triphosphate

 

(ATP)

Oxidative

 

phosphorylation

 

(slow,

 

efficient)

Aerobic

 

glycolysis

 

(fast,

 

inefficient)

Energy

 

storage/mobilization

Insulin,

 

glucagon,

 

leptin

 

secretion

Distribution

 

of

 

energetic

 

resources

Vasoconstriction/vasodilation

Neuronal

 

activity

Activation/inhibition

Tissue

 

uptake

All

 

major

 

tissues

 

in

 

the

 

body

Metabolically

 

expensive

 

processes

Growth
Maintenance
Reproduction
Immune

 

function

Motor

 

activity

Cognition

a

 

‘downer’;

 

its

 

symptomatic

 

effects

 

depend

 

on

 

the

 

organism’s

 

state

(i.e.,

 

whether

 

it

 

is

 

infected,

 

starving,

 

satiated,

 

physically

 

exhausted,

sexually

 

exhausted,

 

etc.).

Table

 

4

 

lists

 

the

 

symptoms

 

of

 

three

 

reliably

 

diagnosed

depressive

 

states:

 

sickness

 

behavior,

 

starvation

 

depression,

 

and

melancholia.

 

Each

 

involves

 

an

 

altered

 

balance

 

between

 

metabol-

ically

 

expensive

 

processes

 

(

Fig.

 

1

).

 

In

 

sickness

 

behavior,

 

limited

energetic

 

resources

 

are

 

devoted

 

to

 

immune

 

function

 

at

 

the

 

expense

of

 

growth

 

and

 

reproduction.

 

In

 

starvation

 

depression,

 

energy

 

is

devoted

 

to

 

maintenance

 

functions

 

at

 

the

 

expense

 

of

 

growth,

reproduction,

 

and

 

immune

 

function.

 

In

 

melancholia,

 

there

 

is

 

an

upregulation

 

in

 

sustained

 

cognition

 

at

 

the

 

expense

 

of

 

growth

 

and

reproduction.

 

The

 

energy

 

regulation

 

hypothesis

 

suggests

 

serotonin

transmission

 

is

 

elevated

 

in

 

these

 

states

 

to

 

coordinate

 

tradeoffs

 

in

energy

 

allocation.

 

In

 

melancholia,

 

this

 

tradeoff

 

is

 

coordinated

 

by

serotonin

 

transmission

 

to

 

various

 

regions,

 

including

 

the

 

hypothal-

amus,

 

amygdala,

 

hippocampus

 

and

 

lateral

 

prefrontal

 

cortex

 

(PFC)

(

Fig.

 

2

).

 

In

 

the

 

hippocampus

 

and

 

lateral

 

PFC,

 

the

 

processes

 

involved

in

 

sustained

 

cognition

 

are

 

energetically

 

expensive

 

and

 

can

 

only

 

be

sustained

 

with

 

aerobic

 

glycolysis

 

(the

 

generation

 

of

 

lactate

 

from

 

the

metabolism

 

of

 

glucose

 

stored

 

in

 

astrocytes).

Our

 

third

 

major

 

claim,

 

discussed

 

in

 

Section

 

4

,

 

is

 

that

 

the

 

direct

pharmacological

 

effects

 

of

 

SSRIs

 

are

 

not

 

responsible

 

for

 

symptom

reduction.

 

Rather,

 

by

 

rapidly

 

increasing

 

extracellular

 

serotonin,

Table

 

3

States

 

in

 

which

 

serotonin

 

transmission

 

to

 

the

 

hypothalamus

 

is

 

elevated.

 

Indices

 

of

elevated

 

serotonin

 

transmission

 

include

 

the

 

ratio

 

of

 

5-HIAA

 

to

 

serotonin

 

(5-HIAA/5-

HT),

 

extracellular

 

5-HIAA

 

(5-HIAA),

 

extracellular

 

serotonin

 

(5-HT),

 

and

 

activity

 

of

 

the

dorsal

 

raphe

 

nucleus

 

(DRN).

 

‘REM’:

 

rapid

 

eye

 

movement

 

sleep.

State

 

Index

 

References

Infection

 

5-HIAA/5-HT

 

(

Linthorst

 

et

 

al.,

 

1995a

)

Fasting/starvation

 

5-HIAA,

 

5-HT

 

(

Broocks

 

et

 

al.,

 

1991;

Fetissov

 

et

 

al.,

 

2000

)

Satiation

 

5-HIAA,

 

5-HT

 

(

Meguid

 

et

 

al.,

 

2000;

Orosco

 

and

 

Nicolaidis,

1994

)

Physical

 

exhaustion

5-HIAA,

 

5-HT

 

(

Blomstrand,

 

2011

)

Sexual

 

exhaustion

 

5-HIAA,

 

5-HT

 

(

Lorrain

 

et

 

al.,

 

1997;

Mas

 

et

 

al.,

 

1995

)

Awake

 

>

 

REM

 

DRN

 

activity

 

(

Monti,

 

2010

)

Female

 

>

 

male

 

5-HIAA/5-HT

 

(

Carlsson

 

and

 

Carlsson,

1988

)

Proestrus

 

5-HIAA/5-HT

 

(

Kerdelhué

 

et

 

al.,

 

1989

)

Cold

 

>

 

warm

 

5-HIAA/5-HT

 

(

Ohtani

 

et

 

al.,

 

1999

)

Fig.

 

1.

 

Graphical

 

representation

 

of

 

how

 

depressed

 

organisms

 

make

 

different

adaptive

 

trade-offs

 

in

 

allocating

 

limited

 

energetic

 

resources.

 

(The

 

numbers

 

are

 

hypo-

thetical

 

and

 

illustrative.)

 

Relative

 

to

 

normal

 

baseline:

 

infection

 

involves

 

upregulated

immune

 

function,

 

while

 

growth

 

and

 

reproduction

 

are

 

downregulated

 

(

Dantzer,

2001;

 

Lochmiller

 

and

 

Deerenberg,

 

2000

);

 

in

 

starvation,

 

a

 

higher

 

proportion

 

of

 

ener-

getic

 

reserves

 

are

 

devoted

 

to

 

maintenance

 

(

Ruiz-Nú ˜

nez

 

et

 

al.,

 

2013

),

 

while

 

growth,

reproduction,

 

and

 

immune

 

function

 

are

 

suppressed

 

(

Chandra,

 

1991;

 

Holliday,

1989

);

 

melancholia

 

involves

 

an

 

increase

 

in

 

cognition

 

(Section

 

5

)

 

and

 

possibly

immune

 

function

 

(

Frank

 

et

 

al.,

 

2013

),

 

while

 

growth

 

and

 

reproduction

 

are

 

down-

regulated

 

(

Taylor

 

and

 

Fink,

 

2008

).

SSRIs

 

cause

 

a

 

disruption

 

in

 

energy

 

homeostasis

 

(the

 

state-dependent

balance

 

between

 

energetically

 

expensive

 

processes

 

that

 

existed

prior

 

to

 

medication),

 

and

 

a

 

worsening

 

of

 

symptoms.

 

For

 

instance,

 

in

melancholia,

 

serotonin

 

transmission

 

to

 

the

 

PFC

 

causes

 

an

 

increase

in

 

energetically

 

expensive

 

glutamatergic

 

activity

 

(

Fig.

 

3

B),

 

which

is

 

exacerbated

 

during

 

acute

 

SSRI

 

treatment

 

(

Fig.

 

3

C).

 

We

 

argue

 

that

symptom

 

reduction

 

is

 

due

 

to

 

the

 

compensatory

 

changes

 

made

 

by

the

 

brain’s

 

homeostatic

 

mechanisms

 

that

 

attempt

 

to

 

restore

 

energy

homeostasis

 

(

Fig.

 

3

D).

 

These

 

compensatory

 

changes

 

take

 

several

weeks

 

to

 

develop,

 

which

 

explains

 

why

 

symptoms

 

fail

 

to

 

alleviate

 

for

Fig.

 

2.

 

The

 

main

 

projection

 

regions

 

for

 

elevated

 

serotonin

 

transmission

 

in

 

rodent

models

 

of

 

melancholia

 

(

Adell

 

et

 

al.,

 

1988;

 

Amat

 

et

 

al.,

 

1998a,b,

 

2005;

 

Beitia

 

et

 

al.,

2005;

 

Bekris

 

et

 

al.,

 

2005;

 

Blanchard

 

et

 

al.,

 

1993;

 

Bland

 

et

 

al.,

 

2003a;

 

Gamaro

 

et

 

al.,

2003;

 

Li

 

et

 

al.,

 

2012;

 

Tannenbaum

 

and

 

Anisman,

 

2003;

 

Tannenbaum

 

et

 

al.,

 

2002

),

 

and

the

 

hypothesized

 

effects

 

on

 

symptoms

 

(see

 

Section

 

5

).

 

Increased

 

serotonin

 

trans-

mission

 

coordinates

 

multiple

 

processes

 

that

 

promote

 

sustained

 

processing

 

of

 

the

problem

 

that

 

triggered

 

the

 

episode:

 

(1)

 

Transmission

 

to

 

the

 

amygdala

 

directs

 

atten-

tion

 

to

 

the

 

problem

 

that

 

triggered

 

the

 

episode.

 

(2)

 

Transmission

 

to

 

the

 

hippocampus

promotes

 

changes

 

in

 

synaptic

 

plasticity

 

involved

 

in

 

allocating

 

working

 

memory

 

to

the

 

triggering

 

problem,

 

and

 

reducing

 

BDNF

 

signaling.

 

(3)

 

Transmission

 

to

 

the

 

lateral

PFC

 

is

 

involved

 

in

 

processing

 

of

 

the

 

problem

 

and

 

promoting

 

the

 

resistance

 

to

 

dis-

tracting

 

stimuli.

 

(4)

 

Transmission

 

to

 

the

 

nucleus

 

accumbens

 

produces

 

anhedonia,

which

 

reduces

 

the

 

interest

 

in

 

attending

 

to

 

alternative

 

stimuli.

 

(5)

 

Transmission

 

to

the

 

hypothalamus

 

downregulates

 

other

 

energetically

 

expensive

 

processes

 

(growth,

reproduction)

 

that

 

could

 

draw

 

limited

 

resources

 

away

 

from

 

processing

 

of

 

the

 

prob-

lem,

 

which

 

probably

 

contributes

 

to

 

many

 

psychomotor

 

symptoms

 

(e.g.,

 

reduced

eating

 

and

 

sexual

 

activity,

 

social

 

withdrawal,

 

lethargy).

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

Please

 

cite

 

this

 

article

 

in

 

press

 

as:

 

Andrews,

 

P.W.,

 

et

 

al.,

 

Is

 

serotonin

 

an

 

upper

 

or

 

a

 

downer?

 

The

 

evolution

 

of

 

the

 

serotonergic

 

system

 

and

 

its

role

 

in

 

depression

 

and

 

the

 

antidepressant

 

response.

 

Neurosci.

 

Biobehav.

 

Rev.

 

(2015),

 

http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

ARTICLE IN PRESS

G Model

NBR

 

2124

 

1–25

P.W.

 

Andrews

 

et

 

al.

 

/

 

Neuroscience

 

and

 

Biobehavioral

 

Reviews

 

xxx

 

(2015)

 

xxx–xxx

 

5

Table

 

4

Energy

 

consumption

 

of

 

different

 

tissues

 

in

 

humans

 

(

Aiello

 

and

 

Wheeler,

 

1995

)

 

and

 

sheep

 

(

Krebs,

 

1950

),

 

as

 

well

 

as

 

the

 

uptake

 

of

 

serotonin

 

(

Axelrod

 

and

 

Inscoe,

 

1963

)

 

and

metabolism

 

of

 

serotonin

 

(

Cheifetz

 

and

 

Warsh,

 

1980

)

 

in

 

these

 

tissues.

Region

 

Energy

 

consumption

 

Serotonin

Humans

 

(W/kg)

 

Sheep

 

(QO

2

)

 

5-HT

 

uptake

 

in

 

mice

 

(ng/g)

 

5-HIAA

 

in

 

rats

 

(ng/g)

Heart

 

32.3

 

 

295

 

155

Kidney

 

23.3

 

27.5

 

66.3

 

106

Liver

12.2

8.5

97

 

50

Gastrointestinal

 

tract

 

 

7.7

 

419

Lungs

 

6.7

 

5.4

 

778

 

754

Skeletal

 

muscle

 

0.5

 

 

24

 

Spleen

 

 

6.9

 

941

 

165

Skin

 

0.3

 

 

18.3

 

Brain

 

11.2

19.7

10.7

785

several

 

weeks

 

after

 

the

 

initiation

 

of

 

SSRI

 

treatment

 

(the

 

therapeutic

delay).

In

 

Section

 

5

,

 

we

 

show

 

how

 

these

 

claims

 

help

 

explain

 

what

 

is

happening

 

in

 

non-human

 

animal

 

models

 

of

 

melancholia

 

and

 

dur-

ing

 

acute

 

and

 

chronic

 

treatment

 

with

 

SSRIs.

 

We

 

conclude

 

with

implications

 

and

 

suggestions

 

for

 

future

 

research.

2.

 

Serotonin

 

is

 

elevated

 

in

 

multiple

 

depressive

 

phenotypes

It

 

is

 

currently

 

impossible

 

to

 

measure

 

5-HT

 

in

 

the

 

living

human

 

brain

 

because

 

it

 

requires

 

invasive

 

techniques

 

(

Marsden,

2010

).

 

Moreover,

 

serotonin

 

cannot

 

cross

 

the

 

blood

 

brain

 

barrier

(

Bouchard,

 

1972;

 

Genot

 

et

 

al.,

 

1981

),

 

so

 

peripheral

 

measures

 

do

not

 

accurately

 

reflect

 

brain

 

levels.

Some

 

studies

 

use

 

molecular

 

in

 

vivo

 

neuroimaging

 

techniques

to

 

attempt

 

to

 

infer

 

changes

 

in

 

endogenous

 

serotonin

 

levels

(

Bhagwagar

 

et

 

al.,

 

2007;

 

Savitz

 

et

 

al.,

 

2009;

 

Stockmeier,

 

2003

).

These

 

techniques

 

can

 

measure

 

dynamic

 

changes

 

in

 

neurotrans-

mission

 

induced

 

by

 

pharmacological

 

or

 

physiological

 

challenges

 

if

radiotracers

 

measuring

 

monoamine

 

receptor

 

or

 

transporter

 

den-

sity

 

are

 

sensitive

 

to

 

changes

 

in

 

endogenous

 

monoamine

 

levels

(

Paterson

 

et

 

al.,

 

2010,

 

2013

).

 

This

 

has

 

been

 

successfully

 

applied

to

 

the

 

dopaminergic

 

system

 

where

 

such

 

ligands

 

are

 

available

(

Paterson

 

et

 

al.,

 

2010

).

 

However,

 

none

 

of

 

the

 

ligands

 

currently

 

avail-

able

 

for

 

the

 

serotonin

 

transporter

 

and

 

its

 

receptors

 

are

 

reliable

 

in

imaging

 

endogenous

 

serotonin

 

levels

 

(

Paterson

 

et

 

al.,

 

2010,

 

2013

).

Thus,

 

current

 

neuroimaging

 

techniques

 

cannot

 

reliably

 

measure

endogenous

 

serotonin

 

levels.

In

 

non-human

 

animals,

 

invasive

 

techniques

 

(cyclic

 

voltam-

metry,

 

microdialysis)

 

can

 

be

 

used,

 

but

 

most

 

only

 

measure

 

extra-

cellular

 

neurotransmitter

 

concentrations

 

(

Robinson

 

et

 

al.,

 

2003

).

Extracellular

 

concentrations

 

are

 

a

 

poor

 

index

 

of

 

serotonin

 

transmis-

sion,

 

which

 

ideally

 

requires

 

the

 

ability

 

to

 

measure

 

the

 

rate

 

at

 

which

serotonin

 

is

 

released

 

into

 

the

 

synapse.

 

Extracellular

 

concentrations

Fig.

 

3.

 

Hypothetical

 

serotonin

 

and

 

glutamate

 

patterns

 

in

 

projection

 

regions

 

(e.g.,

 

the

 

lateral

 

PFC)

 

over

 

the

 

course

 

of

 

depression

 

and

 

SSRI

 

treatment.

 

(A)

 

Equilibrium

 

serotonin

and

 

glutamate

 

transmission

 

in

 

the

 

non-depressed

 

state.

 

(B)

 

Equilibrium

 

transmission

 

of

 

serotonin

 

and

 

glutamate

 

in

 

the

 

depressed

 

state.

 

Indirect

 

evidence

 

in

 

humans

 

suggests

that

 

the

 

equilibrium

 

transmission

 

of

 

serotonin

 

is

 

elevated

 

(

Barton

 

et

 

al.,

 

2008

),

 

and

 

this

 

is

 

supported

 

by

 

abundant

 

evidence

 

in

 

multiple

 

non-human

 

animal

 

models

 

(e.g.,

 

Amat

et

 

al.,

 

2005

).

 

One

 

effect

 

of

 

sustained

 

serotonin

 

transmission

 

is

 

to

 

activate

 

cortical

 

networks,

 

which

 

are

 

primarily

 

glutamatergic

 

(

Puig

 

and

 

Gulledge,

 

2011

).

 

Current

 

research

suggests

 

depression

 

is

 

associated

 

with

 

elevated

 

glutamatergic

 

activity

 

in

 

many

 

regions

 

(

Alcaro

 

et

 

al.,

 

2010;

 

Sanacora

 

et

 

al.,

 

2012

).

 

(C)

 

During

 

acute

 

SSRI

 

treatment,

 

blockade

of

 

the

 

serotonin

 

transporter

 

(SERT)

 

shifts

 

the

 

balance

 

of

 

serotonin

 

into

 

the

 

extracellular

 

compartment.

 

Extracellular

 

serotonin

 

is

 

therefore

 

perturbed

 

above

 

the

 

depressed

equilibrium.

 

Since

 

SERT

 

blockade

 

mimics

 

the

 

effects

 

of

 

a

 

sustained

 

increase

 

in

 

serotonin

 

transmission,

 

glutamatergic

 

activity

 

rises

 

above

 

the

 

depressed

 

equilibrium

 

(

Fu

 

et

 

al.,

2012

)

 

and

 

symptoms

 

often

 

worsen

 

(

Cusin

 

et

 

al.,

 

2007;

 

Oswald

 

et

 

al.,

 

1972

).

 

(D)

 

Over

 

prolonged

 

(chronic)

 

SSRI

 

treatment,

 

the

 

brain’s

 

homeostatic

 

mechanisms

 

attempt

 

to

reverse

 

the

 

excess

 

glutamatergic

 

activity

 

by

 

inhibiting

 

the

 

synthesis

 

of

 

serotonin,

 

which

 

eventually

 

brings

 

extracellular

 

serotonin

 

back

 

to

 

the

 

depressed

 

equilibrium

 

(

Popa

et

 

al.,

 

2010;

 

Smith

 

et

 

al.,

 

2000

),

 

and

 

tonically

 

activating

 

the

 

5-HT

1A

heteroreceptor

 

(

de

 

Bortoli

 

et

 

al.,

 

2013;

 

Lopez

 

et

 

al.,

 

1998;

 

Shen

 

et

 

al.,

 

2002;

 

Vicente

 

and

 

Zangrossi

 

Jr,

 

2014

).

These

 

homeostatic

 

responses

 

reduce

 

glutamatergic

 

activity

 

and

 

produce

 

the

 

antidepressant

 

response.

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

Please

 

cite

 

this

 

article

 

in

 

press

 

as:

 

Andrews,

 

P.W.,

 

et

 

al.,

 

Is

 

serotonin

 

an

 

upper

 

or

 

a

 

downer?

 

The

 

evolution

 

of

 

the

 

serotonergic

 

system

 

and

 

its

role

 

in

 

depression

 

and

 

the

 

antidepressant

 

response.

 

Neurosci.

 

Biobehav.

 

Rev.

 

(2015),

 

http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

ARTICLE IN PRESS

G Model

NBR

 

2124

 

1–25

6

 

P.W.

 

Andrews

 

et

 

al.

 

/

 

Neuroscience

 

and

 

Biobehavioral

 

Reviews

 

xxx

 

(2015)

 

xxx–xxx

reflect:

 

(1)

 

the

 

rate

 

at

 

which

 

serotonin

 

is

 

released

 

into

 

the

 

synapse

(transmission);

 

and

 

(2)

 

the

 

rate

 

at

 

which

 

it

 

is

 

cleared

 

from

 

the

synapse.

 

Thus,

 

synaptic

 

serotonin

 

can

 

accrete

 

without

 

an

 

increase

in

 

serotonin

 

transmission

 

(e.g.,

 

if

 

SERT

 

functioning

 

is

 

downregu-

lated).

 

Conversely,

 

synaptic

 

serotonin

 

concentrations

 

can

 

decline

despite

 

elevated

 

transmission

 

if

 

the

 

rate

 

of

 

clearance

 

is

 

faster.

Single-unit

 

recording

 

techniques

 

allow

 

researchers

 

to

 

measure

the

 

rate

 

of

 

neuronal

 

firing

 

of

 

individual

 

neurons,

 

which

 

should

 

gen-

erally

 

correspond

 

to

 

the

 

rate

 

of

 

synaptic

 

release.

 

But

 

neurons

 

in

midbrain

 

nuclei

 

may

 

release

 

several

 

neurotransmitters,

 

so

 

single-

unit

 

recordings

 

must

 

be

 

used

 

in

 

conjunction

 

with

 

other

 

techniques

(e.g.,

 

voltammetry)

 

to

 

determine

 

the

 

rate

 

and

 

type

 

of

 

neurotrans-

mitters

 

that

 

are

 

released

 

(

Armstrong-James

 

et

 

al.,

 

1980;

 

Cheer

 

et

 

al.,

2005

).

 

In

 

short,

 

it

 

is

 

often

 

impractical

 

to

 

directly

 

measure

 

the

 

rate

serotonin

 

is

 

released

 

into

 

the

 

synapse.

To

 

deal

 

with

 

these

 

difficulties,

 

researchers

 

have

 

attempted

 

to

identify

 

indices

 

of

 

sustained

 

serotonin

 

transmission

 

(

Shannon

 

et

 

al.,

1986

).

 

This

 

research

 

is

 

particularly

 

relevant

 

because

 

depression

 

is

more

 

persistent

 

than

 

many

 

other

 

emotional

 

states.

 

Shannon

 

and

colleagues

 

(1986)

 

assessed

 

different

 

indices

 

of

 

serotonin

 

transmis-

sion

 

to

 

the

 

amygdala,

 

nucleus

 

accumbens,

 

and

 

hypothalamus

 

in

response

 

to

 

electrical

 

stimulation

 

of

 

neurons

 

in

 

the

 

dorsal

 

raphe

nucleus

 

(DRN),

 

which

 

is

 

the

 

primary

 

source

 

of

 

serotonergic

 

neurons

projecting

 

to

 

forebrain

 

regions.

 

The

 

5-HIAA/5-HT

 

ratio

 

was

 

the

 

only

index

 

sensitive

 

to

 

the

 

duration

 

and

 

frequency

 

of

 

electrical

 

stimu-

lation.

 

The

 

effect

 

was

 

driven

 

by

 

an

 

increase

 

in

 

5-HIAA,

 

although

there

 

was

 

a

 

non-significant

 

decrease

 

in

 

serotonin.

 

Consequently,

the

 

5-HIAA/5-HT

 

ratio

 

is

 

the

 

most

 

reliable

 

index

 

of

 

sustained

 

sero-

tonin

 

transmission,

 

although

 

5-HIAA

 

can

 

also

 

be

 

used

 

(

Barton

 

et

 

al.,

2008;

 

Dominguez

 

et

 

al.,

 

2003;

 

Kerdelhué

 

et

 

al.,

 

1989;

 

Winberg

 

et

 

al.,

1992

).

In

 

the

 

absence

 

of

 

information

 

on

 

the

 

5-HIAA/5-HT

 

ratio

 

or

 

5-

HIAA

 

levels,

 

we

 

rely

 

on

 

the

 

extracellular

 

concentration

 

of

 

serotonin

despite

 

its

 

limitations.

2.1.

 

In

 

people

We

 

are

 

unaware

 

of

 

any

 

evidence

 

attempting

 

to

 

assess

 

serotonin

transmission

 

in

 

humans

 

during

 

starvation

 

depression

 

or

 

sickness

behavior.

 

However,

 

several

 

lines

 

of

 

evidence

 

suggest

 

that

 

serotonin

transmission

 

is

 

elevated

 

in

 

patients

 

with

 

major

 

depression.

2.1.1.

 

Polymorphism

 

in

 

the

 

SERT

 

gene

The

 

polymorphism

 

in

 

the

 

promoter

 

region

 

of

 

the

 

SERT

 

gene

 

has

two

 

major

 

variants:

 

the

 

short

 

(s)

 

and

 

the

 

long

 

(l)

 

alleles

 

(

Munafo

et

 

al.,

 

2009

).

 

The

 

polymorphism

 

has

 

transcriptional

 

and

 

functional

consequences,

 

with

 

the

 

s-allele

 

resulting

 

in

 

lower

 

densities

 

of

 

trans-

porter

 

mRNA

 

and

 

protein,

 

and

 

slower

 

clearance

 

of

 

serotonin

 

from

the

 

synaptic

 

cleft

 

(

Murphy

 

et

 

al.,

 

2004

).

 

By

 

reducing

 

serotonin

 

reup-

take,

 

the

 

s-allele

 

keeps

 

extracellular

 

levels

 

of

 

serotonin

 

higher

 

than

the

 

l-allele.

 

Consistent

 

with

 

the

 

high

 

serotonin

 

hypothesis,

 

the

 

s-

allele

 

is

 

associated

 

with

 

a

 

slightly

 

increased

 

risk

 

of

 

depression

 

in

response

 

to

 

stressors

 

(

Karg

 

et

 

al.,

 

2011

).

2.1.2.

 

5-HIAA

 

levels

 

in

 

the

 

jugular

 

vein

The

 

level

 

of

 

5-HIAA

 

in

 

the

 

cerebrospinal

 

fluid

 

is

 

an

 

unreliable

indicator

 

of

 

brain

 

serotonin

 

transmission

 

because

 

it

 

is

 

contami-

nated

 

by

 

peripheral

 

sources

 

(

Barton

 

et

 

al.,

 

2008

).

 

However,

 

the

 

level

of

 

5-HIAA

 

in

 

the

 

jugular

 

vein

 

is

 

less

 

contaminated

 

because

 

this

 

vein

directly

 

drains

 

blood

 

from

 

the

 

brain.

 

In

 

an

 

important

 

study,

 

a

 

group

of

 

Australian

 

researchers

 

found

 

that,

 

relative

 

to

 

non-depressed

 

con-

trols,

 

there

 

was

 

a

 

higher

 

overflow

 

of

 

5-HIAA

 

in

 

the

 

jugular

 

veins

of

 

human

 

subjects

 

who

 

met

 

DSM-IV

 

criteria

 

for

 

major

 

depression

(

Barton

 

et

 

al.,

 

2008

).

 

5-HIAA

 

overflow

 

decreased

 

over

 

12

 

weeks

 

of

treatment

 

with

 

an

 

SSRI.

 

Finally,

 

among

 

the

 

depressed

 

patients,

 

5-

HIAA

 

overflow

 

was

 

2.4

 

times

 

greater

 

for

 

carriers

 

of

 

the

 

s-allele

 

of

the

 

serotonin

 

transporter

 

polymorphism

 

than

 

for

 

those

 

who

 

were

homozygous

 

for

 

the

 

l-allele.

 

The

 

authors

 

concluded

 

that

 

the

 

pat-

tern

 

of

 

results

 

“appear

 

to

 

run

 

counter

 

to

.

 

.

 

.the

 

conventional

 

view

that

 

[major

 

depression]

 

is

 

caused

 

by

 

a

 

relative

 

reduction

 

in

 

brain

monoaminergic

 

neuronal

 

activity”

 

(

Barton

 

et

 

al.,

 

2008

,

 

p.

 

42).

 

This

study

 

provides

 

converging

 

evidence

 

of

 

increased

 

serotonin

 

trans-

mission

 

in

 

the

 

brains

 

of

 

depressed

 

patients.

2.1.3.

 

Tryptophan

 

depletion

 

increases

 

DRN

 

activity

 

in

 

depressed

patients

 

taking

 

ADMs

While

 

tryptophan

 

depletion

 

does

 

not

 

trigger

 

depressive

 

symp-

toms

 

in

 

non-depressed

 

people

 

(

Box

 

1

),

 

it

 

does

 

trigger

 

depressive

symptoms

 

in

 

remitted

 

patients

 

who

 

have

 

currently

 

or

 

previously

used

 

serotonergic

 

ADMs

 

(

Ruhe

 

et

 

al.,

 

2007

).

 

In

 

such

 

patients,

 

it

 

does

not

 

suppress

 

DRN

 

activity,

 

as

 

the

 

low

 

serotonin

 

hypothesis

 

predicts.

Rather,

 

it

 

activates

 

the

 

DRN

 

(

Morris

 

et

 

al.,

 

1999

),

 

which

 

is

 

consistent

with

 

the

 

high

 

serotonin

 

hypothesis.

 

Perhaps

 

tryptophan

 

depletion

causes

 

a

 

local

 

decrease

 

in

 

serotonin

 

around

 

the

 

DRN,

 

deactivating

the

 

5-HT

1A

autoreceptor

 

and

 

disinhibiting

 

serotonin

 

transmission

to

 

forebrain

 

regions.

2.1.4.

 

Increased

 

preference

 

for

 

carbohydrates

 

in

 

depression

The

 

high

 

serotonin

 

hypothesis

 

is

 

also

 

supported

 

less

 

directly

 

by

the

 

increased

 

preference

 

depressed

 

patients

 

have

 

for

 

carbohydrate

over

 

fat

 

and

 

protein

 

(

Christensen,

 

2001;

 

Christensen

 

and

 

Brooks,

2006;

 

Christensen

 

and

 

Pettijohn,

 

2001

).

 

This

 

preference

 

for

 

carbo-

hydrate

 

rich

 

food

 

is

 

consistent

 

across

 

depressed

 

patients,

 

regardless

of

 

the

 

individual

 

variability

 

in

 

appetite

 

(i.e.,

 

increased

 

or

 

decreased

appetite).

 

Moreover,

 

the

 

intensity

 

of

 

this

 

preference

 

correlates

 

to

the

 

severity

 

of

 

depression

 

(

Christensen

 

and

 

Somers,

 

1996

).

The

 

relative

 

increase

 

in

 

carbohydrates

 

intake

 

causes

 

brain

 

sero-

tonin

 

levels

 

to

 

increase

 

(

Christensen

 

and

 

Somers,

 

1996;

 

Fernstrom

and

 

Wurtman,

 

1997

).

 

Upon

 

carbohydrate

 

intake,

 

insulin

 

levels

increase,

 

stimulating

 

the

 

uptake

 

of

 

large

 

neutral

 

amino

 

acids

(LNAAs)—including

 

valine,

 

leucine,

 

and

 

isoleucine—into

 

skeletal

muscle

 

and

 

out

 

of

 

the

 

bloodstream.

 

The

 

exception

 

is

 

tryptophan,

which

 

is

 

not

 

taken

 

up

 

into

 

the

 

skeletal

 

muscle

 

along

 

with

 

other

LNAAs

 

because

 

it

 

is

 

the

 

only

 

amino

 

acid

 

that

 

binds

 

to

 

serum

albumin.

 

Thus,

 

while

 

most

 

of

 

the

 

other

 

LNAAs

 

are

 

in

 

the

 

form

of

 

free

 

plasma

 

amino

 

acids—and

 

so

 

readily

 

taken

 

up

 

into

 

the

muscle

 

tissue—approximately

 

80–90%

 

of

 

circulating

 

tryptophan

is

 

normally

 

bound

 

to

 

serum

 

albumin

 

(

Fuller

 

and

 

Roush,

 

1973;

Tricklebank

 

et

 

al.,

 

1979

)

 

until

 

tryptophan

 

is

 

released

 

during

 

the

perfusion

 

of

 

brain

 

capillaries.

 

All

 

LNAAs

 

are

 

in

 

competition

 

for

transport

 

across

 

the

 

blood

 

brain

 

barrier,

 

and

 

by

 

increasing

 

the

tryptophan:LNAA

 

ratio

 

in

 

the

 

blood,

 

carbohydrates

 

enhance

 

the

transport

 

of

 

tryptophan

 

into

 

brain

 

tissue

 

(

Heine

 

et

 

al.,

 

1995

).

 

Since

tryptophan

 

is

 

a

 

crucial

 

precursor

 

of

 

serotonin,

 

this

 

can

 

increase

serotonin

 

levels

 

in

 

the

 

brain.

The

 

low

 

serotonin

 

hypothesis

 

proposes

 

that

 

individuals

 

are

craving

 

carbohydrates

 

to

 

improve

 

mood

 

and

 

seek

 

relief

 

in

 

depres-

sive

 

symptoms

 

by

 

increasing

 

serotonin

 

(

Leibenluft

 

et

 

al.,

 

1993

).

However,

 

if

 

this

 

were

 

true,

 

then

 

a

 

prolonged

 

increase

 

in

 

carbo-

hydrate

 

intake

 

should

 

be

 

an

 

effective

 

treatment

 

for

 

depression

 

by

increasing

 

the

 

available

 

amount

 

of

 

serotonin.

 

Thus,

 

the

 

symptoms

of

 

depressed

 

patients

 

on

 

high

 

carbohydrate

 

diets

 

should

 

ameliorate

over

 

time

 

relative

 

to

 

depressed

 

patients

 

on

 

low

 

carbohydrate

 

diets.

However,

 

high

 

carbohydrate

 

diets

 

appear

 

to

 

increase

 

depressive

symptoms

 

rather

 

than

 

reduce

 

them

 

(

Cheatham

 

et

 

al.,

 

2009

).

 

More-

over,

 

in

 

a

 

3-week

 

dietary

 

intervention,

 

depressed

 

patients

 

with

 

a

restricted

 

intake

 

of

 

sucrose

 

and

 

caffeine,

 

which

 

also

 

increases

 

extra-

cellular

 

serotonin

 

(

Nehlig

 

et

 

al.,

 

1992

),

 

experienced

 

a

 

persistent

amelioration

 

in

 

depressive

 

symptoms

 

(

Christensen

 

and

 

Burrows,

1990

).

 

Thus,

 

it

 

seems

 

more

 

plausible

 

that

 

“the

 

consumption

 

of

sweet

 

carbohydrates

 

may

 

contribute

 

to

 

the

 

development

 

and/or

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

Please

 

cite

 

this

 

article

 

in

 

press

 

as:

 

Andrews,

 

P.W.,

 

et

 

al.,

 

Is

 

serotonin

 

an

 

upper

 

or

 

a

 

downer?

 

The

 

evolution

 

of

 

the

 

serotonergic

 

system

 

and

 

its

role

 

in

 

depression

 

and

 

the

 

antidepressant

 

response.

 

Neurosci.

 

Biobehav.

 

Rev.

 

(2015),

 

http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

ARTICLE IN PRESS

G Model

NBR

 

2124

 

1–25

P.W.

 

Andrews

 

et

 

al.

 

/

 

Neuroscience

 

and

 

Biobehavioral

 

Reviews

 

xxx

 

(2015)

 

xxx–xxx

 

7

maintenance

 

of

 

emotional

 

distress”

 

(

Christensen

 

and

 

Pettijohn,

2001

,

 

p.

 

164).

2.1.5.

 

Tianeptine

The

 

fact

 

that

 

the

 

antidepressant

 

tianeptine

 

has

 

reuptake-

enhancing

 

properties

 

is

 

consistent

 

with

 

the

 

high

 

serotonin

hypothesis.

 

Its

 

efficacy

 

in

 

reducing

 

depressive

 

symptoms,

 

both

short

 

term

 

and

 

long

 

term,

 

is

 

comparable

 

to

 

other

 

ADMs

 

(

McEwen

et

 

al.,

 

2010

).

 

However,

 

as

 

with

 

other

 

ADMs,

 

there

 

is

 

a

 

therapeu-

tic

 

delay

 

(

Waintraub

 

et

 

al.,

 

2002

).

 

Moreover,

 

the

 

mechanism

 

by

which

 

tianeptine

 

reduces

 

symptoms

 

is

 

unclear

 

(

McEwen

 

et

 

al.,

2010

).

 

Despite

 

its

 

reuptake-enhancing

 

properties,

 

neither

 

acute

nor

 

chronic

 

treatment

 

with

 

tianeptine

 

causes

 

actual

 

extracellular

serotonin

 

levels

 

to

 

fall

 

in

 

rodents

 

(

Malagie

 

et

 

al.,

 

2000

).

2.1.6.

 

Anxiety

Depression

 

and

 

anxiety

 

tend

 

to

 

co-occur

 

(

Belzer

 

and

 

Schneier,

2004

).

 

Among

 

people

 

satisfying

 

the

 

current

 

criteria

 

for

 

social

 

anxi-

ety

 

disorder,

 

for

 

instance,

 

the

 

rates

 

of

 

major

 

depression

 

range

 

from

36

 

to

 

58%.

 

Conversely,

 

among

 

those

 

with

 

major

 

depression,

 

the

rates

 

of

 

social

 

anxiety

 

range

 

from

 

20

 

to

 

45%.

 

If

 

subclinical

 

symptoms

were

 

to

 

be

 

included,

 

the

 

rates

 

of

 

co-occurrence

 

would

 

be

 

higher.

While

 

depression

 

is

 

co-morbid

 

with

 

many

 

conditions,

 

the

 

associ-

ation

 

with

 

anxiety

 

is

 

unique

 

because

 

multiple

 

studies

 

of

 

human

twins

 

have

 

found

 

that

 

depression

 

and

 

anxiety

 

have

 

virtually

 

iden-

tical

 

genetic

 

architectures

 

(

Kendler

 

and

 

Prescott,

 

2006

).

 

We

 

should

therefore

 

expect

 

that

 

genetic

 

variants

 

in

 

the

 

serotonergic

 

system

should

 

affect

 

the

 

risk

 

of

 

depression

 

and

 

anxiety

 

in

 

the

 

same

 

direc-

tion.

 

Indeed,

 

the

 

s-allele

 

in

 

the

 

serotonin

 

transporter

 

polymorphism

is

 

associated

 

with

 

an

 

increased

 

risk

 

of

 

anxiety

 

as

 

well

 

as

 

depression

in

 

humans

 

(

Furmark

 

et

 

al.,

 

2004

).

Further

 

evidence

 

that

 

depression

 

and

 

anxiety

 

bear

 

the

 

same

direction

 

of

 

association

 

with

 

serotonin

 

comes

 

from

 

another

 

inter-

nal

 

jugular

 

venous

 

sampling

 

study

 

from

 

the

 

Australian

 

group

 

(

Esler

et

 

al.,

 

2007

).

 

They

 

found

 

a

 

4-fold

 

increase

 

in

 

5-HIAA

 

in

 

patients

diagnosed

 

with

 

panic

 

disorder

 

compared

 

to

 

healthy

 

subjects.

 

They

also

 

found

 

a

 

strong

 

positive

 

correlation

 

between

 

5-HIAA

 

and

 

the

severity

 

of

 

symptoms,

 

as

 

well

 

as

 

reduced

 

5-HIAA

 

with

 

chronic

SSRI

 

administration.

 

The

 

authors

 

suggested

 

that

 

the

 

increase

 

in

whole

 

brain

 

serotonin

 

turnover

 

in

 

patients

 

with

 

panic

 

disorder

“most

 

likely

 

derived

 

not

 

from

 

impaired

 

serotonin

 

reuptake,

 

but

from

 

increased

 

firing

 

in

 

serotonergic

 

midbrain

 

raphe

 

neurons

 

pro-

jecting

 

to

 

both

 

subcortical

 

brain

 

regions

 

and

 

the

 

cerebral

 

cortex”

 

(p.

295).

 

Indeed,

 

many

 

researchers

 

consider

 

anxiety

 

to

 

be

 

a

 

state

 

of

 

ele-

vated

 

serotonin

 

transmission

 

(

Deakin

 

and

 

Graeff,

 

1991;

 

Guimaraes

et

 

al.,

 

2010;

 

Hale

 

et

 

al.,

 

2012;

 

Wise

 

et

 

al.,

 

1972

).

2.2.

 

In

 

non-human

 

animal

 

models

Further

 

support

 

for

 

the

 

high

 

serotonin

 

hypothesis

 

is

 

garnered

from

 

non-human

 

animal

 

models

 

of

 

depression,

 

including

 

stressor,

genetic,

 

and

 

lesion

 

models.

2.2.1.

 

Stressor

 

models

2.2.1.1.

 

Starvation.

 

Starvation

 

triggers

 

depressive

 

symptoms

 

in

humans

 

(

Keys

 

et

 

al.,

 

1950

).

 

During

 

periods

 

of

 

fasting

 

and

 

starvation,

extracellular

 

5-HIAA

 

and

 

serotonin

 

increase

 

in

 

the

 

hypothalamus

(

Broocks

 

et

 

al.,

 

1991;

 

Fetissov

 

et

 

al.,

 

2000

).

 

During

 

prolonged

 

star-

vation,

 

the

 

ability

 

to

 

synthesize

 

serotonin

 

could

 

be

 

reduced

 

by

 

a

lack

 

of

 

dietary

 

tryptophan.

 

However,

 

the

 

metabolism

 

of

 

muscle

tissue

 

could

 

liberate

 

tryptophan

 

to

 

replace

 

declining

 

serotonin

 

lev-

els.

 

In

 

arctic

 

charr,

 

serotonin

 

declined

 

in

 

the

 

telencephalon

 

under

four

 

weeks

 

of

 

starvation,

 

but

 

the

 

5-HIAA/5-HT

 

ratio

 

was

 

unal-

tered

 

(

Winberg

 

et

 

al.,

 

1992

).

 

Since

 

body

 

weight

 

declined

 

by

 

nearly

20%,

 

we

 

suggest

 

that

 

muscle

 

metabolism

 

during

 

starvation

 

helps

maintain

 

serotonin

 

transmission.

 

To

 

help

 

maintain

 

extracellular

serotonin

 

levels,

 

the

 

starving

 

brain

 

also

 

appears

 

to

 

downregulate

the

 

density

 

of

 

the

 

serotonin

 

transporter

 

(

Huether

 

et

 

al.,

 

1997

).

2.2.1.2.

 

Infection

 

and

 

immune

 

challenge.

 

Infection

 

also

 

triggers

depressive

 

symptoms

 

(

Dantzer,

 

2001;

 

Hart,

 

1988

).

 

During

 

immune

challenge,

 

the

 

5-HIAA/5-HT

 

ratio

 

is

 

elevated

 

in

 

the

 

hypothalamus

(

Dunn

 

et

 

al.,

 

1989;

 

Linthorst

 

et

 

al.,

 

1995a;

 

Mefford

 

and

 

Heyes,

 

1990

)

and

 

remains

 

elevated

 

while

 

the

 

organism

 

is

 

sick

 

(

Dunn,

 

2006

).

 

The

5-HIAA/5-HT

 

ratio

 

is

 

elevated

 

in

 

the

 

hippocampus

 

as

 

well

 

(

Linthorst

et

 

al.,

 

1995b

).

 

By

 

themselves,

 

pyrogenic

 

cytokines

 

also

 

increase

serotonin

 

transmission.

 

IL-1

 

has

 

been

 

found

 

to

 

increase

 

5-HIAA

 

in

the

 

PFC,

 

nucleus

 

accumbens

 

and

 

hippocampus

 

(

Merali

 

et

 

al.,

 

1997

),

while

 

IL-6

 

has

 

been

 

found

 

to

 

increase

 

the

 

5-HIAA/5-HT

 

ratio

 

in

 

the

brain

 

stem,

 

hypothalamus

 

and

 

striatum

 

(

Wang

 

and

 

Dunn,

 

1998;

Zhang

 

et

 

al.,

 

2001

).

2.2.1.3.

 

Inescapable

 

shock.

 

Inescapable

 

shock

 

is

 

a

 

common

 

rodent

model

 

of

 

depression,

 

and

 

it

 

increases

 

extracellular

 

serotonin

 

in

the

 

medial

 

PFC

 

(

Amat

 

et

 

al.,

 

2005

),

 

ventral

 

hippocampus

 

and

 

dor-

sal

 

periaqueductal

 

gray

 

(

Amat

 

et

 

al.,

 

1998b

),

 

basolateral

 

amygdala

(

Amat

 

et

 

al.,

 

1998a

),

 

and

 

nucleus

 

accumbens

 

(

Bland

 

et

 

al.,

 

2003b

).

Inescapable

 

shock

 

also

 

increases

 

the

 

activity

 

of

 

serotonergic

 

neu-

rons,

 

as

 

indexed

 

by

 

c-Fos

 

expression

 

(

Grahn

 

et

 

al.,

 

1999

),

 

suggesting

that

 

the

 

increase

 

in

 

extracellular

 

serotonin

 

is

 

caused

 

by

 

an

 

increase

in

 

transmission.

 

Since

 

the

 

5-HIAA/5-HT

 

ratio

 

is

 

our

 

main

 

index

 

of

serotonin

 

transmission,

 

it

 

is

 

perhaps

 

more

 

telling

 

that

 

inescapable

shock

 

increases

 

this

 

ratio

 

across

 

many

 

regions,

 

including

 

the

 

locus

coeruleus,

 

brain

 

stem,

 

thalamus,

 

hypothalamus,

 

striatum,

 

frontal

cortex,

 

and

 

hippocampus

 

(

Adell

 

et

 

al.,

 

1988

).

2.2.1.4.

 

Chronic

 

social

 

defeat.

 

In

 

rats,

 

chronic

 

social

 

defeat

 

has

 

been

found

 

to

 

increase

 

extracellular

 

serotonin

 

in

 

the

 

DRN

 

(

Amat

 

et

 

al.,

2010

),

 

5-HIAA

 

levels

 

in

 

the

 

amygdala

 

and

 

hippocampus,

 

and

 

the

5-HIAA/5-HT

 

ratio

 

in

 

the

 

midbrain

 

and

 

hypothalamus

 

(

Blanchard

et

 

al.,

 

1993

).

 

In

 

mice,

 

chronic

 

social

 

defeat

 

has

 

been

 

found

 

to

increase

 

the

 

5-HIAA/5-HT

 

ratio

 

in

 

the

 

hypothalamus

 

and

 

hip-

pocampus

 

(

Beitia

 

et

 

al.,

 

2005;

 

Keeney

 

et

 

al.,

 

2006

).

2.2.1.5.

 

Chronic

 

mild

 

stress.

 

In

 

chronic

 

mild

 

stress,

 

serotonin

 

trans-

mission

 

(as

 

indexed

 

by

 

5-HIAA

 

or

 

the

 

5-HIAA/5-HT

 

ratio)

 

is

 

elevated

in

 

many

 

regions,

 

including

 

the

 

PFC,

 

hypothalamus,

 

hippocampus,

and

 

amygdala

 

(

Bekris

 

et

 

al.,

 

2005;

 

Gamaro

 

et

 

al.,

 

2003;

 

Li

 

et

 

al.,

2012;

 

Tannenbaum

 

and

 

Anisman,

 

2003;

 

Tannenbaum

 

et

 

al.,

 

2002

).

2.2.1.6.

 

Chronic

 

restraint

 

stress.

 

Chronic

 

restraint

 

stress

 

also

 

shows

evidence

 

of

 

elevated

 

serotonin

 

transmission

 

in

 

some

 

regions,

although

 

there

 

are

 

also

 

many

 

null

 

effects

 

(

O’Mahony

 

et

 

al.,

 

2011;

Torres

 

et

 

al.,

 

2002

).

 

The

 

mixed

 

evidence

 

is

 

probably

 

due

 

to

 

the

fact

 

that

 

rodents

 

are

 

more

 

likely

 

to

 

habituate

 

to

 

chronic

 

restraint

than

 

other

 

models,

 

thereby

 

lessening

 

its

 

depressogenic

 

impact

(

Bergström

 

et

 

al.,

 

2008;

 

Marin

 

et

 

al.,

 

2007

).

2.2.1.7.

 

Maternal

 

separation

 

and

 

social

 

isolation.

 

Some

 

depression

models

 

involve

 

examining

 

how

 

rodents

 

respond

 

to

 

a

 

stressor

 

after

having

 

been

 

raised

 

apart

 

from

 

their

 

mothers

 

or

 

in

 

social

 

isolation.

 

In

a

 

study

 

using

 

this

 

paradigm,

 

there

 

were

 

no

 

differences

 

in

 

serotonin

transmission

 

between

 

maternally

 

separated

 

rats

 

and

 

control

 

rats

 

at

baseline

 

(

Daniels

 

et

 

al.,

 

2004

).

 

However,

 

after

 

exposure

 

to

 

a

 

restraint

stressor,

 

the

 

maternally

 

separated

 

rats

 

had

 

a

 

higher

 

5-HIAA/5-HT

ratio

 

in

 

the

 

frontal

 

cortex

 

and

 

hypothalamus,

 

and

 

5-HIAA

 

levels

were

 

elevated

 

in

 

the

 

frontal

 

cortex

 

and

 

hippocampus.

Brush-tailed

 

rats

 

(Octodon

 

degus)

 

raised

 

in

 

social

 

isolation

 

show

increased

 

innervation

 

of

 

serotonergic

 

fibers

 

to

 

the

 

infralimbic

region

 

of

 

the

 

mPFC

 

(

Braun

 

et

 

al.,

 

1999

).

 

Hooded

 

Lister

 

rats

 

raised

in

 

social

 

isolation

 

also

 

showed

 

an

 

increase

 

in

 

serotonin

 

release

 

(as

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

Please

 

cite

 

this

 

article

 

in

 

press

 

as:

 

Andrews,

 

P.W.,

 

et

 

al.,

 

Is

 

serotonin

 

an

 

upper

 

or

 

a

 

downer?

 

The

 

evolution

 

of

 

the

 

serotonergic

 

system

 

and

 

its

role

 

in

 

depression

 

and

 

the

 

antidepressant

 

response.

 

Neurosci.

 

Biobehav.

 

Rev.

 

(2015),

 

http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

ARTICLE IN PRESS

G Model

NBR

 

2124

 

1–25

8

 

P.W.

 

Andrews

 

et

 

al.

 

/

 

Neuroscience

 

and

 

Biobehavioral

 

Reviews

 

xxx

 

(2015)

 

xxx–xxx

measured

 

by

 

voltammetry

 

and

 

microdialysis)

 

in

 

the

 

frontal

 

cor-

tex

 

in

 

response

 

to

 

KCl

 

and

 

fenfluramine

 

(

Crespi

 

et

 

al.,

 

1992

),

 

and

an

 

increase

 

in

 

extracellular

 

serotonin

 

in

 

the

 

nucleus

 

accumbens

 

in

response

 

to

 

a

 

conditioned

 

stress

 

paradigm

 

(

Fulford

 

and

 

Marsden,

1997

).

2.2.1.8.

 

Neonatal

 

SSRI

 

exposure.

 

Interestingly,

 

neonatal

 

exposure

to

 

SSRIs

 

is

 

a

 

model

 

of

 

depression

 

that

 

is

 

also

 

consistent

 

with

 

the

high

 

serotonin

 

hypothesis.

 

Adult

 

rats

 

exposed

 

to

 

SSRIs

 

as

 

neonates

show

 

increased

 

serotonin

 

transmission

 

(indexed

 

by

 

the

 

5-HIAA/5-

HT

 

ratio)

 

in

 

the

 

hypothalamus

 

(

Feenstra

 

et

 

al.,

 

1996;

 

Hilakivi

 

et

 

al.,

1987

),

 

and

 

exhibit

 

a

 

depressive

 

behavioral

 

profile

 

(

Ansorge

 

et

 

al.,

2004;

 

Hansen

 

et

 

al.,

 

1997

).

2.2.2.

 

Genetic

 

models

2.2.2.1.

 

The

 

Flinders

 

Sensitive

 

Line.

 

In

 

the

 

Flinders

 

Sensitive

 

Line

 

rat,

a

 

breed

 

that

 

exhibits

 

many

 

depressive

 

symptoms

 

(

Table

 

4

),

 

sero-

tonin

 

and

 

5-HIAA

 

levels

 

are

 

elevated

 

in

 

the

 

PFC,

 

hippocampus

 

and

other

 

regions

 

relative

 

to

 

control

 

rats

 

(

Zangen

 

et

 

al.,

 

1997

).

2.2.2.2.

 

The

 

congenital

 

learned

 

helplessness

 

breed.

 

We

 

have

 

been

unable

 

to

 

find

 

any

 

evidence

 

on

 

serotonin

 

transmission

 

in

 

rats

bred

 

for

 

congenital

 

learned

 

helplessness.

 

We

 

predict

 

that

 

the

 

5-

HIAA/5-HT

 

ratio

 

will

 

be

 

elevated

 

in

 

multiple

 

regions,

 

particularly

the

 

hypothalamus,

 

PFC

 

and

 

hippocampus.

2.2.2.3.

 

SERT

 

and

 

5-HT

1A

knockouts.

 

Rodents

 

that

 

have

 

had

 

the

genes

 

for

 

SERT

 

or

 

the

 

5-HT

1A

receptor

 

knocked

 

out

 

express

 

higher

levels

 

of

 

depressive

 

symptoms

 

(

Heisler

 

et

 

al.,

 

1998;

 

Holmes

 

et

 

al.,

2003;

 

Ramboz

 

et

 

al.,

 

1998

).

 

Consistent

 

with

 

the

 

high

 

serotonin

hypothesis,

 

5-HT

1A

knockouts

 

were

 

found

 

to

 

have

 

higher

 

5-HIAA

levels

 

in

 

multiple

 

brain

 

regions,

 

including

 

the

 

olfactory

 

bulb,

 

subs-

tantia

 

nigra,

 

thalamus,

 

locus

 

coeruleus,

 

and

 

the

 

dorsal

 

and

 

medial

raphe

 

nuclei

 

(

Ase

 

et

 

al.,

 

2000

).

 

While

 

there

 

are

 

differences

 

in

 

the

levels

 

of

 

serotonin

 

and

 

5-HIAA

 

in

 

SERT

 

knockout

 

mice

 

and

 

SERT

knockout

 

rats

 

(

Olivier

 

et

 

al.,

 

2008

),

 

the

 

ratio

 

of

 

5-HIAA/5-HT

 

is

 

ele-

vated

 

in

 

multiple

 

brain

 

regions

 

in

 

both

 

species

 

(

Fabre

 

et

 

al.,

 

2000;

Homberg

 

et

 

al.,

 

2007

).

2.2.3.

 

Lesion

 

models

2.2.3.1.

 

Olfactory

 

bulbectomy.

 

Olfactory

 

bulbectomy

 

is

 

the

 

only

model

 

of

 

depression

 

to

 

show

 

reduced

 

a

 

5-HIAA/5-HT

 

ratio

 

in

 

multi-

ple

 

brain

 

regions

 

(

Song

 

and

 

Leonard,

 

2005

).

 

This

 

is

 

because

 

olfactory

bulbectomy

 

causes

 

DRN

 

neurons

 

to

 

degenerate

 

so

 

there

 

is

 

less

capacity

 

to

 

transmit

 

serotonin

 

(

Song

 

and

 

Leonard,

 

2005

).

 

However,

it

 

is

 

possible

 

that

 

the

 

remaining

 

DRN

 

neurons

 

transmit

 

serotonin

 

at

a

 

heightened

 

rate,

 

which

 

would

 

be

 

consistent

 

with

 

the

 

high

 

sero-

tonin

 

hypothesis.

 

Indeed,

 

there

 

is

 

an

 

increase

 

in

 

the

 

innervation

 

of

serotonin

 

fibers

 

and

 

the

 

synthesis

 

of

 

serotonin

 

in

 

cortical

 

and

 

limbic

regions

 

following

 

olfactory

 

bulbectomy

 

(

Watanabe

 

et

 

al.,

 

2003

).

2.2.3.2.

 

Lesion

 

of

 

the

 

DRN.

 

Lesion

 

of

 

the

 

DRN

 

is

 

not

 

a

 

model

 

of

depression,

 

which

 

is

 

problematic

 

for

 

the

 

low

 

serotonin

 

hypothesis.

For

 

instance,

 

rats

 

with

 

electrolytic

 

lesion

 

of

 

the

 

DRN

 

were

 

less

 

anhe-

donic

 

(assessed

 

by

 

intake

 

of

 

a

 

sucrose

 

solution)

 

than

 

sham-operated

controls

 

(

Wirtshafter

 

and

 

Asin,

 

1991

).

 

Given

 

the

 

state-dependent

effects

 

of

 

serotonin,

 

we

 

do

 

not

 

expect

 

DRN

 

lesion

 

to

 

have

 

simple

effects

 

on

 

depressive

 

symptoms.

 

But

 

DRN

 

lesion

 

should

 

inhibit

 

the

production

 

of

 

depressive

 

symptoms

 

in

 

response

 

to

 

depressogenic

stressors.

 

Indeed,

 

DRN

 

lesion

 

inhibits

 

the

 

development

 

of

 

depres-

sive

 

symptoms

 

in

 

the

 

inescapable

 

shock,

 

chronic

 

social

 

defeat,

 

and

chronic

 

mild

 

stress

 

models

 

(

Chung

 

et

 

al.,

 

1999;

 

Maier

 

et

 

al.,

 

1993;

Yalcin

 

et

 

al.,

 

2008

).

2.3.

 

Summary

In

 

humans,

 

the

 

strongest

 

evidence

 

that

 

serotonin

 

transmis-

sion

 

is

 

elevated

 

in

 

depression

 

and

 

anxiety

 

comes

 

from

 

the

 

jugular

sampling

 

studies

 

of

 

5-HIAA,

 

which

 

is

 

a

 

commonly

 

used

 

index

 

of

sustained

 

serotonin

 

transmission.

 

This

 

is

 

strongly

 

supported

 

by

the

 

numerous

 

studies

 

in

 

non-human

 

animal

 

models

 

demonstrating

elevations

 

in

 

5-HIAA/5-HT,

 

5-HIAA,

 

and

 

even

 

extracellular

 

sero-

tonin

 

in

 

many

 

brain

 

regions.

The

 

principle

 

challenge

 

to

 

the

 

high

 

serotonin

 

hypothesis

 

is

 

the

fact

 

that

 

the

 

direct

 

pharmacological

 

properties

 

of

 

most

 

antidepres-

sants

 

increase

 

extracellular

 

serotonin,

 

most

 

commonly

 

by

 

SERT

blockade.

 

We

 

argue

 

that

 

this

 

puzzle

 

cannot

 

be

 

resolved

 

without

understanding

 

the

 

evolved

 

function

 

of

 

the

 

serotonergic

 

system,

 

to

which

 

we

 

now

 

turn.

3.

 

The

 

energy

 

regulation

 

function

 

of

 

the

 

serotonergic

system

In

 

this

 

section

 

of

 

the

 

paper,

 

we

 

propose

 

a

 

novel

 

hypothesis

 

for

the

 

evolved

 

function

 

of

 

the

 

serotonergic

 

system,

 

which

 

includes

serotonin,

 

its

 

receptors,

 

SERT,

 

and

 

other

 

components

 

that

 

help

 

reg-

ulate

 

serotonin

 

or

 

its

 

effects.

 

Our

 

hypothesis

 

owes

 

much

 

to

 

the

research

 

of

 

Efrain

 

Azmitia

 

on

 

the

 

evolution

 

of

 

serotonin

 

(

Azmitia,

2001,

 

2007,

 

2010

).

 

One

 

of

 

our

 

novel

 

contributions

 

is

 

to

 

explicitly

identify

 

the

 

evolution

 

of

 

the

 

mitochondrion

 

as

 

the

 

likely

 

point

 

on

the

 

tree

 

of

 

life

 

where

 

serotonin

 

evolved.

 

This

 

key

 

fact

 

helped

 

shape

our

 

energy

 

regulation

 

hypothesis

 

for

 

the

 

serotonergic

 

system.

3.1.

 

Overview

 

of

 

the

 

serotonergic

 

system

In

 

the

 

brain,

 

the

 

dorsal

 

raphe

 

nucleus

 

(DRN)

 

is

 

the

 

main

 

source

of

 

serotonergic

 

neurons

 

that

 

project

 

to

 

forebrain

 

regions

 

(

Hornung,

2010

).

 

Tryptophan

 

is

 

the

 

crucial

 

precursor

 

used

 

to

 

synthesize

serotonin.

 

Animals

 

cannot

 

synthesize

 

tryptophan,

 

so

 

they

 

must

acquire

 

it

 

from

 

their

 

diet

 

(

Azmitia,

 

2010

),

 

and

 

it

 

goes

 

through

 

three

main

 

metabolic

 

pathways:

 

(1)

 

protein

 

synthesis;

 

(2)

 

the

 

kynure-

nine

 

pathway;

 

and

 

(3)

 

the

 

serotonin

 

pathway.

 

Of

 

the

 

tryptophan

not

 

used

 

in

 

protein

 

synthesis,

 

99%

 

goes

 

down

 

the

 

kynurenine

pathway

 

(

Stone

 

and

 

Darlington,

 

2002

).

 

The

 

remaining

 

1%

 

is

 

con-

verted

 

to

 

serotonin

 

in

 

two

 

steps.

 

First,

 

tryptophan

 

is

 

converted

to

 

5-hydroxytryptophan

 

by

 

tryptophan

 

hydroxylase.

 

Second,

 

5-

hydroxytryptophan

 

is

 

converted

 

to

 

serotonin

 

by

 

aromatic

 

l-amino

acid

 

decarboxylase

 

(AADC).

There

 

are

 

no

 

enzymes

 

for

 

breaking

 

down

 

serotonin

 

in

 

the

extracellular

 

space

 

so

 

it

 

must

 

be

 

transported

 

inside

 

the

 

cell.

 

Most

extracellular

 

serotonin

 

is

 

transported

 

into

 

the

 

pre-synaptic

 

neuron

by

 

SERT

 

(

D’Souza

 

and

 

Craig,

 

2010

).

 

Serotonin

 

is

 

primarily

 

broken

down

 

to

 

5-HIAA

 

by

 

the

 

monoamine

 

oxidase

 

A

 

(MAO-A)

 

enzyme,

which

 

is

 

located

 

in

 

mitochondria.

SERT

 

is

 

widely

 

expressed

 

throughout

 

the

 

body

 

(

Lin

 

et

 

al.,

 

2006

).

In

 

the

 

periphery,

 

SERT

 

is

 

commonly

 

expressed

 

in

 

many

 

organs

 

that

take

 

up

 

serotonin

 

from

 

the

 

bloodstream

 

(

Gershon

 

and

 

Tack,

 

2007;

Mercado

 

and

 

Kilic,

 

2010;

 

Wilson

 

et

 

al.,

 

2002

).

Several

 

aspects

 

of

 

the

 

serotonergic

 

system

 

contribute

 

to

 

the

 

abil-

ity

 

to

 

produce

 

diverse

 

state-dependent

 

effects.

 

First,

 

the

 

DRN

 

has

several

 

anatomically

 

distinct

 

subdivisions

 

(

Hale

 

and

 

Lowry,

 

2011

),

which

 

can

 

cause

 

differential

 

transmission

 

to

 

forebrain

 

regions.

 

For

instance,

 

activation

 

of

 

the

 

caudal

 

and

 

dorsal

 

DRN

 

has

 

anxiogenic

effects,

 

while

 

activation

 

of

 

the

 

ventrolateral

 

DRN/ventrolateral

periaqueductal

 

gray

 

has

 

anxiolytic

 

effects

 

(

Hale

 

et

 

al.,

 

2012

).

Second,

 

the

 

large

 

number

 

of

 

serotonin

 

receptors

 

arguably

 

gives

the

 

serotonergic

 

system

 

greater

 

regulatory

 

flexibility

 

than

 

any

other

 

neurotransmitter

 

system

 

in

 

the

 

brain.

 

There

 

are

 

14

 

sero-

tonin

 

receptors

 

that

 

fall

 

into

 

seven

 

classes

 

(

Barnes

 

and

 

Sharp,

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

Please

 

cite

 

this

 

article

 

in

 

press

 

as:

 

Andrews,

 

P.W.,

 

et

 

al.,

 

Is

 

serotonin

 

an

 

upper

 

or

 

a

 

downer?

 

The

 

evolution

 

of

 

the

 

serotonergic

 

system

 

and

 

its

role

 

in

 

depression

 

and

 

the

 

antidepressant

 

response.

 

Neurosci.

 

Biobehav.

 

Rev.

 

(2015),

 

http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

ARTICLE IN PRESS

G Model

NBR

 

2124

 

1–25

P.W.

 

Andrews

 

et

 

al.

 

/

 

Neuroscience

 

and

 

Biobehavioral

 

Reviews

 

xxx

 

(2015)

 

xxx–xxx

 

9

1999

).

 

The

 

5-HT

1

and

 

5-HT

5

classes

 

are

 

inhibitory,

 

while

 

the

 

5-

HT

2

,

 

5-HT

3

,

 

5-HT

4

,

 

5-HT

6

and

 

5-HT

7

classes

 

are

 

excitatory.

 

Multiple

serotonin

 

receptor

 

types

 

are

 

commonly

 

co-expressed

 

on

 

a

 

variety

of

 

cells

 

throughout

 

the

 

brain

 

and

 

the

 

periphery

 

(

Basura

 

et

 

al.,

 

2001;

Bickmeyer

 

et

 

al.,

 

2002;

 

Bonsi

 

et

 

al.,

 

2007;

 

Hannon

 

and

 

Hoyer,

 

2008;

Irving

 

et

 

al.,

 

2007;

 

Kellermann

 

et

 

al.,

 

1996;

 

Noh

 

and

 

Han,

 

1998;

Wright

 

et

 

al.,

 

1995

).

 

Serotonin

 

receptors

 

can

 

also

 

form

 

homodimers

and

 

heterodimers,

 

the

 

functional

 

consequences

 

of

 

which

 

are

 

not

fully

 

understood

 

(

Albizu

 

et

 

al.,

 

2011;

 

Herrick-Davis,

 

2013;

 

Renner

et

 

al.,

 

2012

).

 

The

 

complex

 

control

 

that

 

can

 

be

 

achieved

 

with

 

the

diversity

 

of

 

receptor

 

function

 

supports

 

the

 

role

 

of

 

the

 

serotonin

system

 

in

 

energy

 

regulation.

Third,

 

the

 

temporal

 

firing

 

patterns

 

of

 

serotonergic

 

neurons

 

may

have

 

different

 

postsynaptic

 

effects.

 

For

 

instance,

 

prolonged

 

expo-

sure

 

to

 

serotonin

 

(but

 

not

 

other

 

neurotransmitters)

 

can

 

cause

phasically

 

firing

 

neurons

 

to

 

transition

 

to

 

a

 

repetitive,

 

prolonged

(tonic)

 

firing

 

pattern

 

(

Garraway

 

and

 

Hochman,

 

2001a

).

 

A

 

sustained

increase

 

in

 

serotonin

 

transmission

 

has

 

a

 

similar

 

excitatory

 

effect

on

 

cortical

 

networks

 

in

 

the

 

PFC

 

(

Puig

 

and

 

Gulledge,

 

2011

).

 

5-HT

2A

receptors

 

mediate

 

the

 

tonic

 

increase

 

in

 

glutamatergic

 

activity

 

(

Puig

and

 

Gulledge,

 

2011

),

 

while

 

5-HT

2A/2C

receptors

 

mediate

 

the

 

tonic

increase

 

in

 

motorneuron

 

activity

 

(

Harvey

 

et

 

al.,

 

2006a,b;

 

Liu

 

et

 

al.,

2011

).

3.2.

 

The

 

evolution

 

of

 

serotonin

 

in

 

mitochondria

It

 

is

 

very

 

likely

 

that

 

serotonin

 

evolved

 

in

 

mitochondria

 

or

 

their

immediate

 

ancestors.

 

First,

 

serotonin

 

is

 

found

 

in

 

plants,

 

animals,

and

 

fungi,

 

so

 

the

 

latest

 

it

 

could

 

have

 

evolved

 

was

 

in

 

the

 

unicellular

eukaryotic

 

precursor

 

to

 

multicellular

 

organisms,

 

which

 

is

 

about

 

one

billion

 

years

 

ago

 

(

Azmitia,

 

2010

).

 

Second,

 

the

 

synthesis

 

of

 

serotonin

requires

 

oxygen

 

(

Azmitia,

 

2010

),

 

which

 

is

 

also

 

important

 

in

 

mito-

chondrial

 

function.

 

Third,

 

MAO-A

 

is

 

localized

 

to

 

the

 

inner

 

surface

 

of

the

 

outer

 

mitochondrial

 

membrane

 

(

Russell

 

et

 

al.,

 

1979;

 

Wang

 

and

Edmondson,

 

2011

),

 

which

 

suggests

 

a

 

mitochondrial

 

origin

 

because

serotonin

 

must

 

be

 

inside

 

the

 

mitochondrion

 

to

 

be

 

metabolized.

Indeed,

 

the

 

mitochondrion

 

may

 

be

 

the

 

most

 

common

 

intracellular

location

 

of

 

serotonin

 

(

Das

 

and

 

Steinberg,

 

1985

),

 

and

 

at

 

least

 

some

mitochondria

 

contain

 

the

 

enzymes

 

for

 

synthesizing

 

serotonin

 

(

Basu

et

 

al.,

 

2008;

 

Ichiyama

 

et

 

al.,

 

1970

).

Surprisingly,

 

the

 

genes

 

for

 

the

 

synthesizing

 

enzymes

 

are

 

not

located

 

in

 

the

 

mitochondrial

 

genome

 

(

Boore,

 

1999

)

 

but

 

in

 

the

nuclear

 

genome

 

(

Craig

 

et

 

al.,

 

1991;

 

Sumi-Ichinose

 

et

 

al.,

 

1992

).

 

How

could

 

serotonin

 

evolve

 

in

 

mitochondria

 

if

 

the

 

genes

 

for

 

the

 

synthe-

sizing

 

enzymes

 

are

 

not

 

located

 

in

 

the

 

mitochondrial

 

genome?

 

Of

particular

 

importance

 

is

 

AADC,

 

which

 

catalyzes

 

the

 

final

 

step.

AADC

 

belongs

 

to

 

a

 

class

 

of

 

enzymes

 

called

 

pyridoxal

 

phos-

phate

 

(PLP)-dependent

 

carboxylase

 

enzymes

 

(

Jackson,

 

1990

).

Mitochondria

 

and

 

PLP-dependent

 

carboxylases

 

have

 

a

 

common

phylogenetic

 

origin.

 

Mitochondria

 

evolved

 

approximately

 

2

 

billion

years

 

ago

 

from

 

an

 

␣-proteobacterium

 

that

 

formed

 

an

 

endosymbi-

otic

 

relationship

 

with

 

an

 

ill-defined

 

larger

 

bacterium

 

(

Emelyanov,

2001

).

 

Similarly,

 

PLP-dependent

 

carboxylases

 

evolved

 

from

 

␣-

proteobacteria

 

(

Iyer

 

et

 

al.,

 

2004;

 

Jackson,

 

1990

).

 

Thus,

 

AADC

evolved

 

from

 

the

 

PLP-dependent

 

carboxylase

 

precursor,

 

proba-

bly

 

in

 

the

 

mitochondrion.

 

As

 

mitochondria

 

evolved

 

and

 

became

more

 

integrated

 

with

 

the

 

endosymbiotic

 

host,

 

some

 

mitochondrial

genes

 

were

 

lost,

 

and

 

some

 

were

 

transferred

 

to

 

the

 

nuclear

 

genome

(

Andersson

 

et

 

al.,

 

2003;

 

Emelyanov,

 

2001

).

 

During

 

this

 

process,

 

the

AADC

 

gene

 

was

 

transferred

 

to

 

the

 

nuclear

 

genome

 

and

 

deleted

 

from

the

 

mitochondrial

 

genome

 

(

Iyer

 

et

 

al.,

 

2004

).

3.3.

 

The

 

mitochondrial

 

functions

 

of

 

serotonin

What

 

does

 

serotonin

 

do

 

in

 

mitochondria?

 

Serotonin

 

increases

the

 

potential

 

across

 

the

 

inner

 

mitochondrial

 

membrane,

 

although

the

 

precise

 

mechanisms

 

by

 

which

 

this

 

is

 

achieved

 

are

 

unknown

(

Basu

 

et

 

al.,

 

2008

).

 

Serotonin

 

may

 

affect

 

mitochondrial

 

function

as

 

the

 

precursor

 

to

 

melatonin.

 

Mitochondria

 

have

 

the

 

enzymes

that

 

convert

 

serotonin

 

to

 

melatonin,

 

and

 

melatonin

 

increases

 

the

efficiency

 

of

 

energy

 

production

 

by

 

accelerating

 

electron

 

transport

(

Tan

 

et

 

al.,

 

2013

).

 

Electron

 

transport

 

generates

 

reactive

 

oxygen

 

and

nitrogen

 

species

 

that

 

can

 

damage

 

the

 

mitochondrion

 

and

 

other

 

cel-

lular

 

structures

 

(

Tan

 

et

 

al.,

 

2013

),

 

and

 

serotonin

 

and

 

melatonin

 

both

have

 

powerful

 

antioxidant

 

properties

 

(

Park

 

et

 

al.,

 

2002

).

3.4.

 

What

 

is

 

the

 

function

 

of

 

the

 

serotonergic

 

system?

The

 

serotonergic

 

system

 

affects

 

so

 

many

 

processes

 

that

 

some

researchers

 

despair

 

of

 

ever

 

identifying

 

a

 

unifying

 

function.

 

Based

on

 

the

 

foregoing,

 

serotonin

 

probably

 

evolved

 

first

 

to

 

regulate

 

mito-

chondrial

 

activity.

 

This

 

function

 

could,

 

in

 

principle,

 

affect

 

every

major

 

system,

 

organ,

 

and

 

metabolic

 

process

 

in

 

the

 

body.

 

Moreover,

it

 

is

 

so

 

important

 

that

 

it

 

is

 

highly

 

likely

 

that

 

any

 

subsequent

 

func-

tions

 

of

 

the

 

serotonergic

 

system

 

were

 

at

 

least

 

consistent

 

with

 

this

original

 

function,

 

and

 

probably

 

facilitate

 

it

 

(for

 

a

 

similar

 

point,

 

see

Azmitia,

 

2010

).

Mitochondria

 

face

 

adaptive

 

challenges

 

within

 

multicellular

organisms,

 

and

 

the

 

serotonergic

 

system

 

could

 

have

 

evolved

 

to

 

solve

these

 

problems.

 

Multicellular

 

organisms

 

are

 

composed

 

of

 

special-

ized

 

cells

 

with

 

different

 

functions

 

that

 

respond

 

to

 

environmental

contingencies,

 

and

 

these

 

responses

 

depend

 

on

 

ATP

 

produced

 

by

mitochondria

 

(or

 

glycolysis

 

in

 

the

 

cytosol).

 

Multicellular

 

organisms

must

 

therefore

 

coordinate

 

the

 

distribution

 

of

 

important

 

energetic

resources

 

(glucose,

 

fatty

 

acids,

 

amino

 

acids)

 

throughout

 

the

 

organ-

ism

 

with

 

regional

 

mitochondrial

 

activity

 

patterns.

 

We

 

propose

that

 

the

 

serotonergic

 

system

 

evolved

 

to

 

promote

 

energy

 

regulation,

which

 

we

 

define

 

as

 

the

 

coordination

 

of

 

metabolic

 

processes

 

with

the

 

distribution

 

and

 

utilization

 

of

 

limited

 

energetic

 

resources

 

to

meet

 

adaptive

 

demands.

Other

 

prominent

 

hypotheses

 

for

 

serotonin

 

propose

 

that

 

it

evolved

 

to

 

promote

 

homeostasis

 

(

Azmitia,

 

2007

)

 

or

 

phenotypic

plasticity

 

(

Branchi,

 

2011;

 

Homberg,

 

2012

).

 

While

 

it

 

is

 

undeniable

that

 

serotonin

 

can

 

affect

 

homeostasis

 

and

 

phenotypic

 

plasticity,

this

 

is

 

true

 

of

 

all

 

biochemicals:

 

it

 

makes

 

little

 

sense

 

to

 

single

 

out

the

 

serotonergic

 

system

 

for

 

these

 

functions.

 

However,

 

the

 

seroto-

nergic

 

system

 

is

 

unique

 

in

 

that

 

it

 

can

 

simultaneously

 

coordinate

the

 

production,

 

storage,

 

mobilization,

 

distribution,

 

and

 

utilization

of

 

energy.

 

Arguably,

 

no

 

other

 

biochemical

 

system

 

in

 

the

 

body

 

can

do

 

this.

3.4.1.

 

Serotonin

 

and

 

energy

 

regulation

3.4.1.1.

 

Glucose

 

metabolism.

 

Serotonin

 

regulates

 

the

 

two

 

major

metabolic

 

pathways

 

for

 

generating

 

ATP

 

from

 

glucose.

 

In

 

addition

 

to

affecting

 

electron

 

transport

 

in

 

mitochondria

 

(oxidative

 

phosphory-

lation),

 

serotonin

 

can

 

upregulate

 

or

 

downregulate

 

the

 

production

 

of

ATP

 

from

 

glucose

 

in

 

the

 

cytosol

 

from

 

glycolysis

 

(

Ashkenazy-Shahar

and

 

Beitner,

 

1997;

 

Assouline-Cohen

 

et

 

al.,

 

1998;

 

Beitner

 

et

 

al.,

 

1983;

Coelho

 

et

 

al.,

 

2007,

 

2012;

 

Lilling

 

and

 

Beitner,

 

1990;

 

Mansour,

 

1962

).

This

 

process

 

is

 

often

 

called

 

aerobic

 

glycolysis

 

because

 

it

 

can

 

take

place

 

in

 

the

 

presence

 

of

 

oxygen,

 

even

 

though

 

it

 

does

 

not

 

use

 

oxy-

gen.

 

Oxidative

 

phosphorylation

 

is

 

more

 

efficient

 

because

 

it

 

extracts

more

 

molecules

 

of

 

ATP

 

from

 

every

 

molecule

 

of

 

glucose,

 

but

 

aerobic

glycolysis

 

is

 

rapid

 

and

 

generates

 

ATP

 

at

 

a

 

faster

 

rate

 

than

 

oxida-

tive

 

phosphorylation

 

(

Pfeiffer

 

et

 

al.,

 

2001

).

 

In

 

addition

 

to

 

being

faster,

 

glycolysis

 

may

 

produce

 

less

 

reactive

 

oxygen

 

species

 

that

 

can

harm

 

the

 

cell

 

or

 

the

 

mitochondrion

 

(

Brand

 

and

 

Hermfisse,

 

1997

).

In

 

the

 

brain,

 

aerobic

 

glycolysis

 

involves

 

the

 

breakdown

 

of

 

glycogen

stored

 

in

 

astrocytes,

 

which

 

then

 

transport

 

the

 

endproduct

 

(lactate)

to

 

neurons

 

that

 

preferentially

 

use

 

it

 

as

 

a

 

fuel

 

source

 

(

Magistretti

 

and

Ransom,

 

2002

).

 

In

 

astrocytes,

 

serotonin

 

regulates

 

aerobic

 

glycolysis

through

 

the

 

5-HT

1A

heteroreceptor

 

(

Uehara

 

et

 

al.,

 

2006

).

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

Please

 

cite

 

this

 

article

 

in

 

press

 

as:

 

Andrews,

 

P.W.,

 

et

 

al.,

 

Is

 

serotonin

 

an

 

upper

 

or

 

a

 

downer?

 

The

 

evolution

 

of

 

the

 

serotonergic

 

system

 

and

 

its

role

 

in

 

depression

 

and

 

the

 

antidepressant

 

response.

 

Neurosci.

 

Biobehav.

 

Rev.

 

(2015),

 

http://dx.doi.org/10.1016/j.neubiorev.2015.01.018

ARTICLE IN PRESS

G Model

NBR

 

2124

 

1–25

10

 

P.W.

 

Andrews

 

et

 

al.

 

/

 

Neuroscience

 

and

 

Biobehavioral

 

Reviews

 

xxx

 

(2015)

 

xxx–xxx

3.4.1.2.

 

Blood

 

glucose

 

homeostasis.

 

Serotonin

 

has

 

bidirectional

 

con-

trol

 

over

 

glucose

 

homeostasis

 

in

 

the

 

bloodstream

 

by

 

regulating

glucagon

 

and

 

insulin

 

secretion

 

from

 

pancreatic

 

cells

 

(

Adeghate

et

 

al.,

 

1999;

 

Coulie

 

et

 

al.,

 

1998;

 

Sugimoto

 

et

 

al.,

 

1996;

 

Yamada

 

and

Sugimoto,

 

2000;

 

Yamada

 

et

 

al.,

 

1995

).

3.4.1.3.

 

Lipid

 

storage

 

and

 

metabolism.

 

Serotonin

 

also

 

has

 

bidirec-

tional

 

control

 

over

 

the

 

homeostatic

 

regulation

 

of

 

stores

 

of

 

body

 

fat

through

 

the

 

leptin

 

signaling

 

pathways

 

involved

 

in

 

lipid

 

metabolism

(

Donovan

 

and

 

Tecott,

 

2013

).

3.4.1.4.

 

The

 

vascular

 

system.

 

Serotonin

 

also

 

exerts

 

control

 

over

 

the

vascular

 

system.

 

While

 

mainly

 

known

 

for

 

its

 

vasoconstrictive

 

prop-

erties,

 

serotonin

 

is

 

also

 

a

 

vasodilator

 

(

Cohen

 

et

 

al.,

 

1996

),

 

which

gives

 

it

 

bidirectional

 

control

 

over

 

the

 

distribution

 

of

 

energetic

resources.

 

Serotonin

 

also

 

regulates

 

vascular

 

networks

 

in

 

plants

(

Kang

 

et

 

al.,

 

2007,

 

2009

),

 

and

 

future

 

research

 

should

 

test

 

whether

serotonin

 

has

 

a

 

similar

 

function

 

in

 

fungal

 

hyphae.

3.4.1.5.

 

Neuronal

 

activity.

 

Neurons

 

are

 

major

 

consumers

 

of

 

energy

in

 

the

 

brain,

 

and

 

serotonin

 

exerts

 

complex

 

bidirectional

 

effects

on

 

neuronal

 

growth,

 

differentiation,

 

and

 

death

 

(

Azmitia,

 

2001

).

Moreover,

 

inhibitory

 

and

 

excitatory

 

serotonin

 

receptors

 

are

 

often

co-expressed

 

on

 

cholinergic,

 

glutamatergic,

 

GABAergic,

 

dopami-

nergic,

 

and

 

motor

 

neurons,

 

so

 

serotonin

 

also

 

has

 

bidirectional

control

 

over

 

neuronal

 

activity

 

(

Fink

 

and

 

Gothert,

 

2007;

 

Puig

 

and

Gulledge,

 

2011

).

3.4.1.6.

 

Organ

 

function.

 

Many

 

organs

 

have

 

large

 

energetic

demands,

 

and

 

serotonin

 

is

 

either

 

produced

 

or

 

taken

 

up

 

from

the

 

bloodstream

 

by

 

every

 

major

 

organ

 

in

 

the

 

body

 

(

Table

 

4

).

Indeed,

 

the

 

uptake

 

of

 

serotonin

 

in

 

lung

 

tissue,

 

platelet

 

cells,

 

and

chromaffin

 

granules

 

of

 

the

 

adrenal

 

medulla

 

is

 

positively

 

correlated

with

 

the

 

level

 

of

 

ATP

 

production

 

in

 

those

 

tissues

 

(

Bankston

 

and

Guidotti,

 

1996;

 

Born

 

and

 

Gillson,

 

1959;

 

Fisher

 

et

 

al.,

 

1974

).

3.4.1.7.

 

Metabolically

 

expensive

 

processes.

 

Serotonin

 

also

 

controls

the

 

expenditure

 

of

 

energy

 

by

 

regulating

 

metabolically

 

expensive

processes—growth,

 

development,

 

reproduction,

 

immune

 

function,

and

 

the

 

stress

 

response

 

(

Azmitia,

 

2007

),

 

probably

 

by

 

affecting

hypothalamic

 

function.

 

The

 

hypothalamus

 

regulates

 

the

 

timing

 

and

coordination

 

of

 

these

 

processes

 

(

Chrousos,

 

2009;

 

Cyr

 

and

 

Eales,

1996;

 

Sower

 

et

 

al.,

 

2009;

 

Tsang

 

et

 

al.,

 

2014;

 

Yang,

 

2010

),

 

and

 

it

 

con-

tains

 

some

 

of

 

the

 

highest

 

concentrations

 

of

 

serotonin

 

in

 

the

 

brain

(

Bogdanski

 

et

 

al.,

 

1957;

 

Brown

 

et

 

al.,

 

1979;

 

Paasonen

 

et

 

al.,

 

1957

).

Important

 

metabolic

 

processes

 

are

 

disturbed

 

when

 

serotonin

transmission

 

is

 

disrupted.

 

For

 

instance,

 

monoamine

 

transmis-

sion

 

to

 

the

 

hypothalamus

 

is

 

completely

 

inhibited

 

in

 

REM

 

sleep

(

Parmeggiani,

 

2011

).

 

During

 

this

 

time,

 

important

 

physiological

parameters

 

also

 

become

 

less

 

regulated—blood

 

pressure,

 

heart

 

rate,

breathing

 

and

 

body

 

temperature

 

(

Parmeggiani,

 

2011

).

 

Despite

 

this,

the

 

brain’s

 

total

 

energy

 

consumption

 

during

 

REM

 

sleep

 

is

 

nearly

the

 

same

 

level

 

as

 

during

 

the

 

awake

 

state

 

(

Buchsbaum

 

et

 

al.,

1989;

 

Madsen

 

et

 

al.,

 

1991

).

 

Similarly,

 

Kanarik

 

and

 

colleagues

 

have

found

 

that

 

serotonergic

 

lesions

 

induced

 

by

 

the

 

neurotoxin

 

para-

chloroamphetamine

 

trigger

 

a

 

compensatory

 

response

 

28

 

days

 

later

in

 

which

 

cytochrome

 

oxidase

 

c

 

expression

 

was

 

increased

 

in

 

mul-

tiple

 

regions

 

of

 

the

 

rat

 

brain

 

(

Kanarik,

 

2011;

 

Kanarik

 

et

 

al.,

 

2008

).

Together,

 

both

 

lines

 

of

 

evidence

 

suggest

 

serotonin

 

increases

 

the

energetic

 

efficiency

 

of

 

metabolic

 

processes.

3.4.2.

 

The

 

homeostatic

 

equilibrium

 

level

 

of

 

serotonin

transmission

 

is

 

increased

 

in

 

situations

 

requiring

 

a

 

rebalancing

 

of

metabolically

 

expensive

 

processes

Based

 

on

 

the

 

foregoing,

 

we

 

propose

 

that

 

the

 

homeostatic

 

equi-

librium

 

level

 

of

 

serotonin

 

transmission

 

increases

 

in

 

situations

 

that

require

 

a

 

shift

 

in

 

the

 

balance

 

of

 

metabolically

 

expensive

 

processes

to

 

adaptively

 

respond

 

to

 

environmental

 

contingencies.

 

The

 

hypo-

thalamus

 

should

 

be

 

a

 

common

 

site

 

of

 

increased

 

transmission

 

due

to

 

its

 

role

 

in

 

coordinating

 

these

 

processes.

In

 

a

 

recent

 

study,

 

muscle

 

glycogen

 

levels

 

were

 

depleted

 

by

82–90%

 

in

 

adult

 

male

 

rats

 

during

 

exhaustive

 

exercise,

 

while

 

brain

glycogen

 

levels

 

decreased

 

by

 

50–64%.

 

During

 

recovery,

 

glycogen

reserves

 

were

 

replenished

 

through

 

a

 

supercompensatory

 

response

(

Matsui

 

et

 

al.,

 

2012

).

 

Interestingly,

 

during

 

exercise

 

there

 

is

 

an

increase

 

in

 

serotonin

 

transmission

 

to

 

the

 

hypothalamus

 

and

 

other

brain

 

regions

 

(

Blomstrand,

 

2011

).

 

Another

 

study

 

found

 

that

 

sero-

tonin

 

levels

 

in

 

the

 

lateral

 

hypothalamus

 

increase

 

during

 

exercise

and

 

return

 

to

 

baseline

 

during

 

recovery

 

(

Smriga

 

et

 

al.,

 

2002

),

which

 

mirrors

 

what

 

happens

 

to

 

glycogen

 

levels.

 

Indeed,

 

ele-

vated

 

serotonin

 

levels

 

during

 

exercise

 

are

 

associated

 

with

 

fatigue

(

Blomstrand,

 

2011

),

 

an

 

indicator

 

of

 

energetic

 

stress.

 

We

 

suggest

that

 

serotonin

 

is

 

elevated

 

during

 

exercise

 

because

 

the

 

fall

 

in

 

glyco-

gen

 

forces

 

a

 

reprioritization

 

in

 

energy

 

allocation.

 

During

 

recovery,

serotonin

 

levels

 

fall

 

as

 

glycogen

 

is

 

replenished

 

and

 

allocation

 

pat-

terns

 

normalize.

The

 

association

 

with

 

energetic

 

stress

 

is

 

not

 

limited

 

to

 

negative

situations.

 

Male

 

rats

 

become

 

unresponsive

 

to

 

new

 

mating

 

opportu-

nities

 

for

 

nearly

 

two

 

days

 

after

 

about

 

3.5

 

h

 

of

 

ad

 

libitum

 

copulation

with

 

successive

 

estrous

 

females

 

(

Mas

 

et

 

al.,

 

1995

).

 

The

 

most

 

likely

reason

 

for

 

the

 

unresponsiveness

 

is

 

the

 

depletion

 

of

 

viable

 

sperm.

Since

 

spermatogenesis

 

is

 

energetically

 

expensive

 

(

Dowling

 

and

Simmons,

 

2012;

 

Olsson

 

et

 

al.,

 

1997

),

 

sperm

 

depleted

 

males

 

must

devote

 

less

 

energy

 

to

 

mating

 

effort

 

and

 

devote

 

more

 

to

 

sper-

matogenesis.

 

During

 

the

 

period

 

of

 

sexual

 

exhaustion,

 

serotonin

is

 

elevated

 

in

 

the

 

hypothalamus

 

and

 

returns

 

to

 

baseline

 

as

 

sex-

ual

 

responsiveness

 

resumes

 

(

Hull

 

et

 

al.,

 

2004;

 

Lorrain

 

et

 

al.,

 

1997;

Mas

 

et

 

al.,

 

1995

).

 

Consistent

 

with

 

the

 

role

 

of

 

serotonin

 

in

 

rebalanc-

ing

 

metabolically

 

expensive

 

processes,

 

elevated

 

serotonin

 

levels

 

in

the

 

hypothalamus

 

promote

 

spermatogenesis

 

(

Aragon

 

et

 

al.,

 

2005;

Shishkina

 

and

 

Dygalo,

 

2000

)

 

and

 

inhibit

 

mating

 

behavior

 

(

Hull

 

et

 

al.,

2004

).

In

 

short,

 

the

 

effects

 

of

 

enhanced

 

serotonin

 

transmission

 

are

state-dependent.

 

Physical

 

exhaustion,

 

sexual

 

exhaustion,

 

and

many

 

other

 

states

 

show

 

evidence

 

of

 

enhanced

 

serotonin

 

trans-

mission

 

(

Table

 

3

),

 

yet

 

their

 

symptom

 

profiles

 

differ

 

in

 

important

ways.

 

Under

 

the

 

energy

 

regulation

 

hypothesis,

 

state-dependence

is

 

expected

 

because

 

situational

 

demands

 

determine

 

how

 

energy

should

 

be

 

adaptively

 

reallocated.

State-dependence

 

can

 

explain

 

some

 

inconsistent

 

findings.

Homberg

 

and

 

colleagues

 

have

 

shown

 

that

 

the

 

serotonergic

 

system

affects

 

rodents’

 

cognitive

 

flexibility,

 

including

 

reversal

 

learning,

attentional

 

set

 

shifting,

 

the

 

ability

 

to

 

form

 

and

 

update

 

represen-

tations

 

of

 

stimulus-reward

 

or

 

response-reward

 

contingencies,

the

 

inhibition

 

of

 

inappropriate

 

responses,

 

and

 

the

 

ability

 

to

 

post-

pone

 

immediate

 

reward

 

for

 

a

 

larger

 

delayed

 

reward

 

(

Homberg,

2012;

 

Homberg

 

and

 

Lesch,

 

2011;

 

Nonkes

 

et

 

al.,

 

2012;

 

Nonkes

and

 

Homberg,

 

2013

).

 

They

 

argue

 

that

 

the

 

serotonergic

 

system

integrates

 

past

 

learning

 

with

 

incoming

 

information

 

from

 

the

environment

 

to

 

regulate

 

attention,

 

focusing

 

on

 

the

 

processing

 

of

stimuli

 

most

 

relevant

 

to

 

the

 

organism’s

 

survival

 

and

 

reproduc-

tion

 

(‘vigilance

 

behavior’).

 

Their

 

hypothesis

 

is

 

consistent

 

with

 

a

larger

 

body

 

of

 

evidence

 

implicating

 

the

 

serotonergic

 

system

 

in

learning

 

and

 

memory

 

systems

 

(

Altman

 

and

 

Normile,

 

1988;

 

Cassel,

2010

).

 

However,

 

the

 

direction

 

of

 

association

 

is

 

unclear,

 

with

some

 

studies

 

reporting

 

a

 

positive

 

association

 

between

 

cognitive

flexibility

 

and

 

serotonin

 

transmission,

 

and

 

other

 

studies

 

reporting

a

 

negative

 

association

 

(

Altman

 

and

 

Normile,

 

1988;

 

Cassel,

 

2010;

Homberg,

 

2012

).

 

The

 

bidirectional

 

findings

 

are

 

explicable

 

by

the

 

hypothesis

 

that

 

the

 

serotonergic

 

system

 

is

 

part

 

of

 

the

 

adap-

tive

 

energy-regulation

 

machinery

 

that

 

balances

 

cognition

 

with

other

 

metabolically

 

expensive

 

processes—growth,

 

maintenance,

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845