Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4) [Supplementary Part IV], September 2014, pp. 1030-1033 
 

1030 

 

 

Ultra-centrifuge structure and its application in food 

industry 

 
 

Mohammadyar Hosseini

1

, Saman AziziZadeh

2

 

1: Department of food science and technology, Ilam University 

2: Master of Science student of Urmia University 

 

Abstract— 

This article including of theoretical summary of ultra-

centrifuge structure and its application in food industry. Ultra-
centrifuges are equipped with one or two light detector systems for 
considering separation components. A few applications of ultra-
centrifuge include examination of sample purity, molecular weight, 
analysis of associating systems and so on. In this article, use of ultra-
centrifuge at food studies has been investigated that includes 
detection of microbial toxins, study of fat oxidation during storage, 
detection of virus and so on.  

 

Keywords

ultra-centrifuge, detector, separation 

 

I

.I

NTRODUCTION

 

Centrifuge is a technology that separates two or more parts 
with different sizes or different density e.g. macromolecules 
dissolved at one solvent or suspended particles at a dispersion. 
There is not a threshold that determines ultra-centrifuge limit 
but often centrifuges that generates power 5000 times more 
than gravity acceleration of earth is called ultra-centrifuge and 
is classified to preparative and analytical type. 
 

II.

 

D

EFINITION OF ULTRA

-

CENTRIFUGE

 

Ultra-centrifuges are centrifuges that are equipped with one 

or two light detector systems that researcher can observe way 
of separation components by detector during centrifuge 
process. 
 

III.

 

H

ISTORY OF ULTRA

-

CENTRIFUGE

 

This apparatus was invented by a Sweden chemist named 

Sudberg in 1924. This chemist used it to examine nanoparticle 
and measure size gold particles with 2 nanometers in diameter. 
He was rewarded noble chemistry in 1926. After a few years, 
he developed it to biochemistry area and as the first researcher 
using this method, he measured molecular weight of 
biopolymers especially proteins. Dissociative ultra-centrifuge 
is generally a powerful method for analysis of polymer 
properties, biopolymers polyelectrolytes, nanoparticles, 
dispersions, emulsions and other colloid systems. This is a 
good method to examine molecular weight, size of particles, 
particle density and examination of reaction coefficients. 

Since, it is a separation process, determination of molar weight 
distribution, distribution of particle size and its density are 
provided by it. 

 
 
 

IV.

 

G

ENERAL USE OF ULTRA

-

CENTRIFUGE

 

A.  Examination of sample purity 

The basis of examination of available sample purity at 

solution by ultra-centrifuge is related to sedimentation velocity 
during centrifuge. This method is used as a fast and powerful 
way for determination of purity and since samples were 
evaluated at pure and specific solution and solvent, thus it is 
used for examination of structure and also association degree 
and aggregation of macromolecules.  

 

B.  Determination of macromolecules weight 

Dissociative ultra-centrifuge is a method that is used for 

direct measurement of molecular weight of material at natural 
state and solution at solvent. One of advantages of this method 
is that calibration is not required and is not a complex and 
time-consuming method. It measures molecular weight from a 
few hundred (e.g. sucrose) to a few million (e.g. viral parts) 
and there is not any other method that is able to measure 
molecular weight at this expanded area of molecular weight. 
This is used for determination of molecular weight of proteins, 
nucleic acid and carbohydrates. In fact, this technique is able 
to determine molecular weight of materials that have different 
light absorption or light refraction from solvent. One of the 
advantages of this method is that it needs samples with little 
quantity (20-120 microliter) and low viscosity (0.1-1 g/liter). 
However, methods such as light dispersion, smometery and 
use of x-rays are ways to study molecular weight, but none of 
them are able to examine it at wide range. Also, they require 
more quantity of sample for examination. Methods such as 
electrophorese and chromatography have not the scientific 
basis and use of them requiring to accept a series of 
hypothesis. 

 

V.

 

A

NALYSIS OF ASSOCIATING SYSTEMS

 

Use of analysis of sedimentation by ultra-centrifuge is a 

valuable way at study of changes at molecular weight during 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4) [Supplementary Part IV], September 2014, pp. 1030-1033 
 

1031 

 

associating of molecules and generating more complex 
structures. Much of biological activities are depended on 
reaction between its macromolecules. The electrophoreses 
method containing SDS, give us information about their 
components and stoichiometry but this method with ultra-
centrifuge can show molecular weight of complex component 
when are in the solution without depending on their shapes. 
Macromolecules have multi associating state and use of ultra-
centrifuge with sedimentation velocity can distinguish types of 
associating states. Use of analysis of sedimentation can 
evaluate molecular weight of components separately that have 
participated in complex. Also, size of complex, stoichiometry 
and power links between units forming complexes is 
measurable. 

 

VI.

 

E

XAMINATION OF COEFFICIENT OF SEDIMENTATION AND PENETRATION 

AND DISTINGUISHING OF CONFORMATION CHANGES

 

Nowadays, use of x-ray and NMR technique are only 

methods that are used for determination of structure details at 
atom dimension. Therefore, determination of general size and 
shape of macromolecules or complexes at solution requires 
measuring degree of replacement these particles at solution. 
The test of measurement of sedimentation velocity that was 
performed by ultra-centrifuge was allowed to examine 
coefficients of sedimentation and penetration that indicating 
size and shape of macromolecules and their reactions. 
Specially, sedimentation coefficient is used to determinate 
conformation changes generated at proteins and nucleic acids. 
Also, bending degree of nucleic acids is determinable by 
measuring of sedimentation quantity. Some of enzymes have a 
few oligomer states and all of these oligomers have not 
enzyme activity. Using of ultra-centrifuge by light absorption 
techniques and chromogenic substrates can determine degree 
activity of these different enzyme oligomer states. This state is 
possible by determining of sedimentation behavior of enzymes 
at much diluted phase (not pure phase).  

 

VII.

 

P

ARTS OF ULTRA

-

CENTRIFUGE MACHINE

 

The basis of dissociative ultra-centrifuge includes of fast 

rotation of a rotator with precise and controllable velocity at a 
container that temperature is precisely controlled. Viscosity 
distribution at this machine is registered at the certain 
intervals. The ability of measurement and registration of this 
procedure during rotation of rotor at dissociative ultra-
centrifuge is considered as an indicator for distinguishing of 
this method from preparative ultra-centrifuge.  At this system, 
for access to high sedimentation velocity and decrease of 
distribution degree, using of high angel velocities is very 
necessary. Rotor of dissociative ultra-centrifuge is able to 
rotate with velocities above to 60000 rpm. To prevent of 
increasing temperature resulting from friction and decreasing 
aerodynamic vibrations, rotor is rotated at a container under 
relative vacuum. Figure of ultra-centrifuge made by Beckman 
Company is shown here. 

 

 

Mainly, today two types of dissociative ultra-centrifuge are 

used at scientific experiments. Ultra-centrifuges made by 
Beckman Company are commercially available. Ultra-
centrifuges are originally preparative type and are inverted to 
dispersion type by optimization users. Today, the most 
successful type of ultra-centrifuges is centrifuges that were 
made and designed by Beckman Company and the most 
famous model is optima XL.A. This model has the first grade 
due to number of application and their expansiveness and is 
equipped to UV detector. Dissociative ultra-centrifuge systems 
have main parts as follows: 

 

Rotors 

Rotors are one of main part of centrifuge and due to their 

high sensitivity; design of this part is very time-consuming. 
Previously, these parts were made from metals such as steel 
and aluminum but nowadays only Titanium is used. Note that 
rotor must be product of a uniform piece of titanium, if not 
rotors will be broken up due to high stress and pressure at too 
many rounds of rotors. At high rounds of rotors, the imposed 
pressure for cell measuring is 25000g that under this pressure, 
every 1 g of material has 250 kg equivalent weight. Other 
important issue here is that rotor must not have even little 
vibration because lack of stability and vibration during rotor 
work result in increasing amortization and oscillation of 
measuring cells that consequently increase error in the 
experiment specially when viscosity and its slope is little. In 
according to rotor type, four or eight pits are made on titanium 
rotor. One of pits is full of reference cell. This part is used to 
radius calibration and regulating speed of centrifuge. Other 
pits are full by sample cells. Maximum speed and allowed 
round of every rotor are very important. Rotors that are 
commercially applicable have 50000 or 60000 round at minute 
speed. Life expectancy of used rotors at analytic centrifuge is 
depended on time that they work at its maximum speed. If 
these rotors do not work at speed higher than 95% of its 
maximum allowed speed, it is said that they have unlimited 
life. Following figure presents a rotor with maximum round of 
50000 rounds at minute. 

 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4) [Supplementary Part IV], September 2014, pp. 1030-1033 
 

1032 

 

 

 

Measuring cells

 

Measuring cells are part of ultra-centrifuge that directly is 

connected with samples of measuring subject. Cells have a 
few parts that these parts must have working and resistance 
ability at too high mechanical stresses. This part of ultra-
centrifuge at least has two following properties:

 

1. This cells must not deform at high speed of centrifuge, 

since speed of pressure maximum equivalent 250 bar is 
inflicted these cells. 

2. These cells must allow light passed through windows that 

are in quartz or ruby during rotation of rotor.  

Different types of centrifuge-cells were made in according 

to type of experiment that performed and are available. The 
main difference of these cells is referred to type of center 
piece and windows. Due to high pressures imposed to cells 

during centrifuging, the glass part of cells is made of resistant 
and transparent material such as quartz and ruby. One of 
advantages of quartz as compared with ruby is its lower price. 
Another advantage of quartz is that it allows light pass to 
developed area when is used of waves with UV amplitude. 
Center piece is heart of a measuring cell that is made of 
Aluminum, Titanium and Teflon. Originally, 4 types of central 
pieces are used for dissociative ultra-centrifuges: 

a) One-section center piece that only the sample solution is 

placed on it. This kind specially was used to Schlieren and 
turbidity detectors.  

b)  Two-section center piece that have two separate 

containers. At the one of them is placed solution of sample 
and another section is placed pure solvent. This kind was used 
with types of systems or detectors.  

c)  Multi-canal type that is used for experiment to three or 

five different samples with distinct structures. Originally, this 
group has the same structures with prior groups. 

d) Synthetic boundary types: This group has two different 

kinds: a) capillary b) valve that both of them are designed to 
allow boundary between sample solution and solvent during 
rotation of rotor. Following figure shows different parts of a 
center piece in detail.  

 

Detectors

 

Data that is obtained from a detector of dissociative ultra-

centrifuge, in fact includes profile of radius velocity, c(r), at 
time (t). Detectors that are commonly used, has been using of 

three properties of solution or distributed particles. These 
properties including: special light absorption, light dispersion 
and light refraction. According to these properties, different 
kinds of detectors are used for dissociative ultra-centrifuge. 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4) [Supplementary Part IV], September 2014, pp. 1030-1033 
 

1033 

 

Three important kinds of these detectors that have more 
application include UV detectors, interference detectors and 
Schielern detectors. The following figure shows a UV 

detector. 

 

 

VIII.

 

A

PPLICATION OF ULTRA

-

CENTRIFUGES AT FOOD INDUSTRY

 

Ultra-centrifuges have been limitedly used in food research 

where it is used to determination of microbial toxins at food, 
study of fat oxidation during storage and processing of fat 
food, review of damaged starch (amylose and amylopectin), 
recognition of virus at food (Hepatitis A) and study of de-
polymerization of pectin with highmethoxyl group (HMP) at 
temperature range of 20 to 60 °C.  

 

IX.

 

C

ONCLUSION

 

Ultra-centrifuge is a powerful method for studying of 
properties of polymers, biopolymers, polyelectrolytes, 
nanoparticles, dispersions, emulsions and other colloidal 
systems. This technique is a good method for determination of 
molecular weight, size of particle, density of particle and 
determination of coefficient reaction.  Almost, there is not 
another way for determination of molecular weight with this 
wide range of molecular weight. Also, using of sedimentation 
analysis by ultra-centrifuge can show molecular weight of 
complex components when are in the solution without 
depending on their shape. The basis of function of absorption 
detectors is related to spectroscopy properties. The light that is 
passed from a solution with molecules that have absorbing 
properties, its intensity decreases due to passing of it. This 
phenomenon is mentioned with Lambert Beer Law as follows: 
A= log I0/I = ɛ. c. a 

Where, A is absorption, I is light intensity after passing 

from sample, I0 is light intensity passing from solvent,ɛ is 
decadic coefficient of special coefficient, c is density of 
sample and a is thickness of measuring cell at light line. At 
this system, a xenon lamp produces a light with 190-800 

nanometer wave length. The produced light is radiated to cell 
having sample solution and reference solvent. From difference 
between intensity of passing light from solution and pure 
solvent that is determined by a detector, we can find out radius 
density of sample solution at any time. 

 

R

EFERENCE

 

[1]- Borchard, W. 1991. Progress in analytical ultracentrifugation.Springer. 

New York. 

[2]-Wandrey, C. and Colfen, H.2006.  Analytical 

ultracentrifugationVIII.Springer. 

[3]- Scott, D., J. Harding, S., E. and Rowse. A. 2005. Analytical 

ultracentrifugation, techniques and methods.RSC publishing. 

[4]- Machtle, W. and Borger, L. 2006. Analytical ultracentrifugation of 

polymers and nanoparticles.Springer. 

[5]- Millard, M., M.et al. 1999. The hydrodynamic characterization of waxy 

maize amylopectin in 90% dimethylsulfoxide- water by analytical 
ultracentrifugation, dynamic and static light scattering. Carbohydrate 
Polymers: 39: 315-320. 

[6]- Tester, R., F. et al. 2006. Damaged starch characterization by 

ultracentrifugation, Carbohydrate Research. 341: 130-137. 

[7]- Majzoobi, M. et al. 2003. Partial fractionation of wheat starch amylose 

and amylopectin using zonal ultracentrifugation. Carbohydrate 
polymers.52: 269-274. 

[8]- Bowen, S. E. et al. 2006. Lipid oxidation and amylopectin molecular 

weight changes occuring during storage of extruded starch samples. J. 
Cereal Sci. 43: 275-283. 

[9]- Rzezutka, A. et al. 2006. AUltracentrifugal based approach to detection of 

hepatitis A virus in soft fruits.Int. J. Food Mic. 108: 306-315. 

[10]- Yoon, J. W. et al. 2003. Molecular fractionation of starch by density – 

gradient ultracentrifugation.Carbohydrate Research. 338: 611-617. 

[11]- Gilbert, R. J. et al. Studies on the structure and mechanism of a bacterial 

protein toxin by analytical ultra centrifugation.J. Mol. Biol.293: 1145-
1160. 

[12]- Morris, G. A. 2002. A hydrodynamic study of the depolymerization of a 

highmethoxy pectin at elevated temperatures. Carbohydrate Polymers: 
48: 361-368. 

 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4) [Supplementary Part IV], September 2014, pp. 1034-1037 

 
 

1034 

 

 

Abstract In order to determine yield stability of Agropyron 
cristatum
 over six environments in Iran, 18 accessions were 
evaluated based on randomized complete block design with 
three replications at rainfed and irrigated conditions in Karaj, 
Mashhad and Boroojerd research stations, Iran. Total annual 
dry matter (DM) yield were collected and averaged over two 
years. Stability parameters were calculated as additive main 
effect and the multiplicative interaction analysis (AMMI). 
Based on AMMI analysis, the main effects of environment, 
accession and interaction effect of environment × accession 
were significant (p<0.01). In AMMI analysis, the first two 
principal component axes were significant (p<0.01) and 
justified 83.1% of total genetic by environment interaction 
variation. The AMMI biplot IPCA1 vs. IPCA2 scores for both 
genotype and environments showed G

7

 and G

11

 accessions 

were close to the center of the biplot and had the least 
interaction based on both two components and were 
considered as more stable accessions over all tested 
environments. Accessions G

2

, G

16

, G

17

 and G

12

 had the highest 

specific adaptation to rainfed condition. In contrast, G

14

 and 

G

8

 accessions had the highest specific adaptation to irrigated 

environment of Mashhad and similarly, G

3

, G

7

, G

18

, G

15

 and 

G

6

 accessions had higher specific adaptation to the irrigated 

environments in Boroojerd. 

 

 

Keywords

Agropyron cristatum, DM yield, genotype × 

environment interaction, stability, AMMI model 
 
 
 
 

 

 

INTRODUCTION 

DM yield is a complex trait which is depended on yield 
components and is highly influenced by many genetic as well 
as environmental factors [1]. Therefore, evaluating genotypic 
potential in different environments is the important step in 
breeding programs of grasses species before selecting 
desirable ones to commercial cultivation. An ideal variety 
should have a high yield mean combined with a low degree of 
fluctuation, when grown over diverse environments. 
Analyzing Genotype and environment (GE) interaction for 
varieties can reduce errors in the breeding process for proper 
selection by multiple locational conditions [2]. 

The additive main effect and the multiplicative interaction 
analysis (AMMI) are widely used for GE interaction 
investigation [3]. This method has been shown to be effective 
because it captures a large portion of the GE interaction sum 
of square. It clearly separates GE interaction effects that 
present for agricultural researchers with different kinds of 
opportunities, and the model often provides agronomically 
meaningful interpretation of the data [4]. The results of 
AMMI analysis are useful in supporting breeding program 
decisions such as specific adaptation and selection of 
environment as observed by Gauch and Zobel [5]. According 
to Gauch et al. AMMI is superior for agricultural since AMMI 
partitions the overall variation into genotype main effects, 
environment main effects, and GE interactions [2]. These 
three sources of variation present agricultural researchers with 
different challenges and opportunities, so it is best to handle 
them separately [2]. 

Successful varieties are those that which are better in terms of 
yield and other agronomic traits, also their superiority should 
be reliable in different environmental conditions [6]. In 

Genotypic Pattern Analysis of Forage Yield in 

Agropyron cristatum by using AMMI model 

Tahereh Jalili Zalpour 

1

, ٭Ali Ashraf Jafari 

2

 and Khodadad Mostafavi

 

1

 

MSc Graduated in Plant Breeding, College of Agriculture & Natural Resources Islamic Azad University, Karaj 

Branch, Karaj- Iran 

2

 Prof. in Plant Breeding, Research Institute of Forests and Rangelands, Tehran, Iran, 

*

Corresponding Author: 

Email: aajafari@rifr-ac.ir 

3

Assist. Prpf. Department of Plant Breeding, College of Agriculture & Natural Resources Islamic Azad 

University, Karaj Branch, Karaj- Iran 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4) [Supplementary Part IV], September 2014, pp. 1034-1037 

 
 

1035 

 

AMMI method additive main effect analyzed by using  
common ANOVA and then GE interaction that is known as 
multiplicative interaction analyzed by PCA [7]. Farshadfar et 
al. and Zohrabi et al. used AMMI analysis method to 
evaluation forage yield stability of Agropyron  genus here In 
Iran. However, for other grass species there are less reports 
for AMMI analysis [8, 9].  

The objectives of this study were to evaluate forage yield 
performance and stability of 18 accessions of Agropyron 
cristatum 
using AMMI method to identify accessions that are 
widely adapted (stable) and specifically adapted (with narrow 
adaptation) for DM yield. 

M

ATERIALS AND 

M

ETHODS

 

Performance stability of 18 accessions of Agropyron cristatum 
species was evaluated using randomized complete block 
design with three replications under two different 
environments (irrigated and rainfed) at the three research 
station contains; Mashhad, Brojerd and Karaj, Iran. The 
climate Brojerd is moderate semiarid with annual precipitation 
above 400 mm. The climate of Mashhad and Karaj is cold 
semi arid with annual precipitation between 250-350 mm. The 
drought period of three stations is four months of year and wet 
season starts in October and it continued until May [10]. 
The 18 accessions of Agropyron cristatum (originated from 
different parts of Iran) were provided from natural resources 
gene bank (Research Institute of Forests and Rangelands, 
Iran) (Table 1). The seeds were sown as 15 kgh

-1

 in four 

drilled lines as long as 2m with 25cm distance in sward 
condition using randomized complete block design with three 
replications in autumn 2009. In Irrigated experiments the 
irrigation was made according to the plant requirement, but 
for rainfed condition no irrigation were made. Weeds were 
control mechanically and fertilizing schedule was made based 
on scientific advices and recommendations. In establishment 
year, plots were cut once, but no data were measured. In 2010 
and 2011 plots were cut for two times for DM yield. Then, the 
total annual DM yield was averaged over two years and 
consequently were used for combined analysis over six 
environments.  
For AMMI analysis to the model proposed by Clay et al was 
used [11]. 

Y

ger

 = μ + α

n

 + β

e

 + Σ

n

 λ

n

 α

gn

 γ

en

 + ρ

ge

 + ε

ger

 

Where: 
α

n

=main effect of genotype,  

β

e

= main effect of environment, 

n=the number of axes components of the residual interaction 
in the AMMI model, 
λ

n

 =the n-th singular value of the remaining principal 

components in the model 

α

gn

=eigenvector for g-th genotype of n-th principal component 

interaction,  
y

en

=eigenvector for e-th of the n-th principal component 

interactions,  
ρ

ge

=noise and ε

ger

 experimental error [11]. 

Combined analysis of variance over six environments was 
used to estimate mean square of accessions, environments and 
accessions × environments interactions. Accession stability 
was evaluated on the bases of accessions × environments 
interactions. The G x E interaction effects were estimated 
using the additive main effects and multiplicative interaction 
analysis (AMMI). In the AMMI model the additive part of the 
model is estimated by ANOVA and the multiplicative part is 
estimated by the principal component analysis[ 12]. 

The AMMI analysis was processed using IRRISTAT.  The 
IPCA1 versus mean yield and the first two principal 
components were biploted and used to illustrate the 
relationships among accessions and environments. 

Table 1. Gen bank name, code and origin of accessions of 

Agropyron cristatum. 

Code Name  Origin   Code Name  Origin 
G1 1722m Gorgan 

 

G10 P

8

208 Karaj 

G2 1727m Gorgan 

 

G11 208s Karaj 

G3 P

10

172

Gorgan  G12  4056m Isfahan 

G4 P

12

172

Gorgan  G13  P

1

405

Isfahan 

G5 P

7

1727 Gorgan  G14 P

2

405

Isfahan 

G6 208m Karaj  

G15 529m Hovare 

G7 P

10

208 Karaj   G16 619m  Isfahan 

G8 P

13

208 Karaj   G17 P

13

619 Isfahan 

G9 P

2

208 Karaj  

G18 619s  Isfahan 

R

ESULTS AND DISCUSSION 

AMMI analysis were made on 18 accessions in both 
conditions of three sits in total six environments  based on the 
model proposed by [11]. The results presented in Table 2. The 
additive effects of accession and environment were significant 
(P<0.01), therefore, significant different between six 
environments and between accessions were existed for DM 
yield. It should be noted, the multiplicative main effect of 
environment and accessions were assigned 59.17% and 6.24% 
of total variation, respectively (Table 2). So, it can be said that 
variation due to environmental effect had more impact than 
the main effect of accessions on the diversity of forage yield.  
Accessions × environment interaction was also significant 
(P<0.01) and accounted for 15.21% of the total variation. 
Therefore, accessions × environment interaction for yield was 
less than the environment effects and higher than the 
accession effect. The obtained data confirm adequacy to the 
AMMI model. This made it possible to construct the biplot 
and calculate genotypes and environments effects [13]. 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4) [Supplementary Part IV], September 2014, pp. 1034-1037 

 
 

1036 

 

In order to better interpret the accession × environment 
interaction principal components of interaction were extracted, 
as shown in Table 2. The first, second and third component of 
interaction, justified 52.55, 30.85 and 9.39% of total GE 
interaction, respectively. The first two principal component 
axes were significant (p<0.01) and justified 83.1% of total GE 
interaction. The AMMI biplot IPCA1 vs. IPCA2 scores for 
both genotype and environments are shown in Fig. 1. 

According to the AMMI biplot, the reaction of accessions was 
different in irrigated conditions than under rainfed conditions 
and consequently environmental vectors in irrigated 
conditions had greater angle relative to each other and the 
studied three areas are roughly in three different directions. In 
contrast, for rainfed conditions, the angles between the 
environmental vectors were low and the response of 
accessions was less than that in rainfed conditions. This can 
be interpreted as the more effect of irrigation and increased in 
GE interaction in irrigated conditions. 

For Karaj environments the vectors of both irrigated and 
rainfed conditions are in the same direction and also rainfed 
experiment of Mashhad had similar trend as Karaj 
environment. For other three environments including irrigated 
Mashhad, irrigated Boroojerd and rainfed Boroojerd had 
different direction.  

The AMMI biplot IPCA1 vs. IPCA2 scores for both genotype 
and environments showed G

7

 and G

11

 accessions were close to 

the center of the biplot and had the least interaction based on 
both two components and were considered as more stable 
accessions over tested environments.  

Accessions G

2

, G

16

, G

17

 and G

12

 had the highest specific 

adaptation to rainfed conditions. Therefore, we can say these 
accessions in rainfed conditions were more suitable than the 
other accessions. In contrast, G

14

 and G

8

 accessions had the 

highest specific adaptation to irrigated environment of 
Mashhad and similarly, G

3

, G

7

, G

18

, G

15

 and G

6

 accessions 

had higher specific adaptation to the irrigated environments in 
Boroojerd. Other accessions did not show a high public or 
specific adaptability. Similar to this finding, Madaini 
evaluated specific and general adaptability of 24 accessions of 
Agropyron trichophorum to irrigated and rainfed conditions in 
Kermanshah using GE biplot and AMMI model and identified  
and introduced the accessions whit public and specific 
compatibility [14]. 

 

 

 

 

Table 2. Combined analysis of variance of DM yield and SS% 

from the AMMI model over 6 environments 

S.O.V DF SS 

MS  SS% 

Interaction 

Variance

Accession 17 5429103 319359** 6.24 

 

Environmen

5 5151821

10303642*

59.1

 

Accession× 

Environmen

85 1841270

216620** 21.1

 

IPC1 21 

6676170 

460770**   52.55 

IPC2 19 

5680020 

298948**   30.85 

IPC3 17 

1728270 

101663    9.39 

Noise 28 

1328240 47437    7.21 

Erorr 21

1170362

54183    

Total 32

8706363

 

 

 

** =Significant at 1% probability level. 

 

 
Fig 1. AMMI Biplot of the first and the second IPC for 18 genotypes over 6 
environments 
(G

1

 to G

18

 = Accessions code as presented in Table1) 

(M

I

=Mashhad Irrigation, M

R

= Mashhad rainfed) 

(B

I

= Borojerd Irrigation, B

R

= Borojerd rainfed) 

(K

I

=Karaj Irrigation, K

R

= Karaj rainfed) 

(G

1

 to G

18

 = Accessions code as presented in Table1) 

  

  

REFERENCES

 

[1] 

Falconer, D. S and T. F. C. Mackay, 1996. Introduction to quantitative 

genetics, Fourth edition. Longman Group Ltd. London, 464 pages.  

[2] 

Gauch, H.G., H.-P. Piepho and P. Annicchiarico. 2008.  Statistical 

Analysis of Yield Trials by AMMI and GGE: Further Considerations 
Crop Science  48(3): 866-889. 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4) [Supplementary Part IV], September 2014, pp. 1034-1037 

 
 

1037 

 

[3] 

Gauch, H. G. and R. W. Zobel. 1989. Accuracy and selection success in 

yield trials. Theor. Appl. Genet. 77: 473-481. 

[4] 

Ebdon, J. S. and H. G. Gauch. 2002. Additive main effects and 

multiplicative interaction analysis of national turfgrass performance trials. 
II Genotype recommendation. Crop Sci. 42:497-506. 

[5] 

Gauch, H. G. and R. W. Zobel, 1997. Identifying mega-environments 

and targeting genotypes. Crop Sci. 37: 311-326. 

[6] 

Amundson, R., 1996. Historical development of the concept of 

adaptation. P. 11-53. In Rose. M. R. and lauder, G. V. (eds), Adaptation 
Academic press, Santiago. 

[7] 

Crossa, J., H. G. Gauch and R. W., Zobel. 1990. Additive main effects 

and multiplicative interaction analysis of two international maize cultivar 
trials. Crop Science 30:493-500. 

[8] 

Farshadfar, M., F. Moradi, A. Mohebbi & H. Safari. 2010. 

Investigation of yield stability of 18 Agropyron elongatum genotypes, in 
stress and non-stress environments, using AMMI model. Iranian Jour. 
Rangelands  and Forests Breeding and Genetic Research, 18:41-54. (In 
Persian) 

[9] 

Zahrabi, A., A. Etminan,, H. Safari, and A. A., Jafari, 2011. Forage 

Yield Stability in accessions of Elymus hispidus species and other 
methods of stability analysis and AMMI Model in both stress and non-
stress environments. Rangelands 5 (2): 209-218(In Persian). 

[10]  Badripour, H., N., Eskandari, and S. A. Rezaei 2006. "Rangelands of 

Iran, an Overview". Ministry of Jihad-e-Agriculture, Forest Range and 
Watershed Management Organization, Technical Office of Rangeland, 
Tehran, Iran, 
(http://www.fao.org/ag/AGP/AGPC/doc/Counprof/Iran/Iran.htm). 

[11]  Clay, H., Sneller, C. H. and Dombek, D., 1995. Comparing Soybean 

cultivar ranking and selection for yield with AMMI and Full-Data 
performance estimates. Crop Science 35: 1536-1541. 

[12]  Zobel, R.W., M.J. Wright, and H.J. Gauch, 1988. Statistical analysis of 

yield trial. Agronomy Journal 80:388-393. 

[13]  Gauch, H. G. and R. W. Zobel. 1996. AMMI analysis of yield trials. In 

Kang, M. S. and Gauch, H. G. (eds). Genotype by Environment 
Interaction. CRC Press, Boca Raton, pp. 85-122. 

[14]  Madaini, H. 2012. Comparison of different methods of stability 

analysis for yield accessions wheatgrass (Agropyron trichophorum) in 
irrigated and dryland of west of Iran. Thesis submitted for MSc degree, 
Islamic Azad University, Boroojerd branch, Boroojerd Iran. 

 

  

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4) [Supplementary Part IV], September 2014, pp. 1038-1045 

 

 
 

1038 

 

 

Abstract-

The social organizations are some of the foremost 

phenomena at present time. Many requirements are met by 
organizations in modern world. By the aid of their resources 
including technology, information, financial sources, and human 
capital the organizations meet the social requirements. The human 
capital of the organizations is deemed as the paramount and most 
effective organizational sources since other sources are perishable 
but the human capital can be developed. To realize this objective, 
the reviewing scientific method has been employed. The results of 
this investigation indicate that the growth and excellence of 
human capital in the organizations might be only possible through 
organizational education and training. This issue suggests that 
organizational investment in growth and development of human 
capital is more efficient than investment in physical and 
equipment- related dimensions and it contributes the organizations 
in realization of their goals and growth and development of 
organizations will help to national growth and sustainable 
development from various dimensions. Thus, organizations should 
change their attitude from equipment- centered view to education 
and learning- centered approach. Of course, fulfillment of this 
important point requires serious investment in the field of training 
and education. 

 

Keyword-

Organizational Education and Learning, Human 

Capital, Economy of Education and Training, Sustainable 
Development   

I. 

Introduction

 

Rather than making effort for growth and flourishing the 
potentials in personnel and directors, organizational 
education and learning tend to create and improve the 
needed capabilities in personnel for efficient doing of their 
occupational tasks based on occupational and 

                                                            

1

 - Assistant professor in Comprehensive University of Imam 

Hossein, Iran. 

2

 - A researcher in Comprehensive University of Imam Hossein, 

Iran.  

 

organizational requirement. It is obvious that along with 
complexity of conditions in the organizations, the 
organizations are placed under new conditions and as a 
result the personnel will need to new abilities.  

The modern system of organizational education and 
learning requires investment in all dimensions. It is a matter 
of fact that in order to design and execute this system 
efficiently, the economic, human, social, and cultural 
dimensions of this field should be accurately analyzed 
unless otherwise it is possible for the analysts to become 
confused with only an economic outlook at this system and 
they may be moved to this point that organizational 
education and learning is not cost-effective.  

Education and learning are assumed as the most essential 
and foremost mechanisms for training of organizational 
human resources. The organizations have no alternative 
except for development and improvement of education and 
learning process to train the professional manpower. On the 
other hand, education and training is a cost-consuming 
activity and a major part of organizational capital and 
incomes are devoted to it. Lack of a comprehensive 
analysis in economic, cultural, social, organizational, and 
design dimensions and especially execution of education 
and training system may expose the organizations to some 
challenges. The present research is intended to study and 
explore the education and training system from the 
perspective of human capital and economic view and role 
of both of them in sustainable development. To meet this 
end, the researcher should search for and find the answers 
to the following questions:  

1- What are the paramount attitudes in analysis of 
investment in the field of training and human resources?  

2- How can educational and learning investments be 
justified from economic viewpoints?  

The analysis of organizational education and 

training system from economic view and human 

capital and its role in sustainable development

 

Reza Hosseinpoor

1

, Morteza Karami

2

 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4) [Supplementary Part IV], September 2014, pp. 1038-1045 

 

 
 

1039 

 

3- What is the effect of organizational education and 
training systems on growth and development of human 
capital and finally on sustainable development?  

Overall, doing a series of special and certain tasks and 
practices is necessary with respect to raison d’être of human 
resource organizations and various social institutions in 
human communities. These are the practices regardless of 
which the community could not survive. In this course, 
several personnel and human resources and manpower are 
employed and used in these social organizations to do some 
of the special tasks assigned to the given organization 
through planning, management, activity, supervision, and 
executive measure. In other words, each of organizational 
members composed of manager, CEO, chief, and 
subordinate does specific task. Simultaneously with 
developing science and technology and being more 
specialization of administrative and organizational jobs, the 
social organizations hold special various theoretical and 
practical trainings for the personnel after attracting them 
and before employing them during several phases and 
depending on sensitivity and the needed expertise of the 
given task. It is clear that profitability and effectiveness of 
such specialized and organizational trainings may be 
realized when they are aligned with the fundamental goals 
and missions of the organization and they are organized 
proportional to nature and essence of the given 
organization. Thus, extraction of general educational 
principles and fundamentals is necessary and required 
beforehand; the principles which each of organizational 
personnel or members should learn them only because of 
presence in an organization with any administrative and 
specialized position and they should be considered and 
utilized as the basic principles of training at phase of 
planning for educational courses and in codification of 
textbooks. As a result, one can discuss about the 
compliance of educational bases in an organization with 
missions and tasks of that organization on the one hand and 
essence and nature of the organization on the other hand.  

II. 

Theory and history of research 

II-1- Human resources educational and training system and its objectives 

From the very beginning, education and training have 
played essential role in the rites and customs, beliefs and 
values, attitudes and behaviors, and knowledge and skills in 
the community have been transferable and continued 
through educational and training systems. The main 
mission of educational systems should be introduced as 
proper training of human resources. It is the proper training 
that is the main objective in any educational system and it 

may enable the personnel to achieve human and divine 
values since the potential talents of human will be gradually 
actualized in light of proper education and training and they 
grow and are developed (Vahidi, 2001).  

The educational system is responsible for important tasks 
and practices including culture transfer (cultural 
transferability), social training (sociability), professional 
and expert training, innovation and comprehensive growth 
of personality for the personnel. The efficient educational 
system is one that considers uniformly human from various 
moral, rational, emotional, and physical aspects so that the 
human can be prepared for execution of basic mission as 
the organizational capital with the maximum level of 
competency and efficiency.  

With respect to various missions and tasks in organizations, 
the education and training possess different essence and 
goals out of which one can mention the foremost common 
goals which are noticed in organizations as follows:  

1. Increase in knowledge, information, and professional 
capability and preparation of personnel for doing new tasks 
and responsibilities  

2. Creating appropriate behavior and proportional to stable 
values in community of personnel  

3. Rising job satisfaction and improvement of spirit and 
correlation among personnel with organizational objectives  

4. Creating spirit of collaboration and cooperation among 
personnel toward organizational goals  

5. Preparation of grounds for growing creativity and 
flourishing and innovation in personnel  

6. Reducing job accidents and losses and various 
organizational costs  

7. Contribution to organizational changes under necessary 
conditions (ibid, pp 126-127

)  

II-2- Economy of education  

As the most integrated branch of social- human sciences 
during its development period and with respect to the facts 
in industrial communities and given the developments 
caused by constant change and developing technology and 
industrial structure, the economics has been exposed to 
several problems and it has presented the applied strategies 
and new theories in order to give solution and or for 
interpretation of modern economic realities caused by