MINI-REVIEW

Mitochondrial dysfunction and cancer metastasis

Emily I. Chen

Published online: 15 August 2012

# Springer Science+Business Media, LLC 2012

Abstract Mitochondria have an essential role in powering
cells by generating ATP following the metabolism of pyru-
vate derived from glycolysis. They are also the major source
of generating reactive oxygen species (ROS), which have
regulatory roles in cell death and proliferation. Mutations in
mitochondrial DNA (mtDNA) and dysregulation of mito-
chondrial metabolism have been frequently described in
human tumors. Although the role of oxidative stress as the
consequence of mtDNA mutations and/or altered mitochon-
drial functions has been demonstrated in carciongenesis, a
causative role of mitochondria in tumor progression has
only been demonstrated recently. Specifically, the subject
of this mini-review focuses on the role of mitochondria in
promoting cancer metastasis. Cancer relapse and the subse-
quent spreading of cancer cells to distal sites are leading
causes of morbidity and mortality in cancer patients. Despite
its clinical importance, the underlying mechanisms of me-
tastasis remain to be elucidated. Recently, it was demon-
strated that mitochondrial oxidative stress could actively
promote tumor progression and increase the metastatic po-
tential of cancer cells. The purpose of this mini-review is to
summarize current investigations of the roles of mitochon-
dria in cancer metastasis. Future development of diagnostic
and therapeutic strategies for patients with advanced cancer
will benefit from the new knowledge of mitochondrial me-
tabolism in epithelial cancer cells and the tumor stroma.

Keywords Cancer metastasis . Mitochondria .
Mitochondrial DNA mutations . Mitochondrial Oxidative
Stress . Breast Cancer Metastasis

Introduction

More than 90 % of mortality in cancer patients is attributed to
metastases, not the primary tumors that produce disseminated
tumor cells (Gupta and Massague

2006

; Mehlen and Puisieux

2006

; Steeg

2006

). For example, the 5-year survival rate for

patients diagnosed with stage 1 breast cancer is 98

–100 %

whereas the 5-year survival rate for patients diagnosed with
metastatic breast cancer is down to 16

–20 %. Although surgi-

cal resection and adjuvant therapy can cure well-confined
primary tumors, metastatic disease is largely incurable be-
cause disseminated tumor cells spread systemically and they
often acquire resistance to existing therapeutic agents.
Therefore, our ability to treat cancer effectively largely
depends on our ability to predict the formation of macrometa-
stases and to eradicate metastatic tumors at the secondary sites.

The most important feature of metastasis is that different

tumor types can formation metastases in the same or different
organs (Fidler

2003

; Paget

1989

). The propensity for certain

tumors to seed in a particular organ was first conversed by
Stephen Paget a century ago as the of

“seed and soil” theory.

For example, the major site of prostate cancer metastasis is the
bone (Edlund et al.

2004

). Breast and lung cancer can colonize

similar tissues, including bone, lung, liver, and brain (Hess et
al.

2006

; Patanaphan et al.

1988

), but the kinetics of metastatic

progression between these two types of cancers are different.
Breast cancer metastases are often detected following years or
decades of remission (Karrison et al.

1999

; Schmidt-Kittler et

al.

2003

), whereas lung cancers establish distant macrometa-

stases within months of diagnosis (Feld et al.

1984

Hoffman

et al.

2000

). Furthermore, there is often a time gap (metastatic

latency) between organ infiltration and colonization before the
detection of clinically overt metastasis. Many questions per-
taining to the organ-specific metastasis such as the origin of
disseminated tumor cells and the molecular basis of metastatic
latency are largely unknown, but recent discoveries have

E. I. Chen (

*)

Department Of Pharmacological Sciences & Proteomics Center
School Of Medicine, Stony Brook University,
BST 8-125,
Stony Brook, NY 11794-8651, USA
e-mail: emily@pharm.stonybrook.edu

J Bioenerg Biomembr (2012) 44:619

–622

DOI 10.1007/s10863-012-9465-9

established new paradigms that will guide future research on
metastasis.

The role of mitochondria in cancer metastasis

Mitochondria are the primary energy producers of the cell that
regulate intracellular energy metabolism, cell death, and free
radical (ROS) production (Karbowski

2010

; Lambert and

Brand

2009

; Martinou and Youle

2011

Murphy

2009

;

Scatena

2012

). Human mitochondria contain a small amount

of their own DNA (mtDNA) that encodes 37 genes, all of which
are essential for normal mitochondrial function. Thirteen of
these genes encode enzymes involved in oxidative phosphory-
lation, and the remaining genes encode transfer RNAs (tRNAs)
and ribosomal RNAs (Chen et al.

2010

Falkenberg et al.

2007

;

Taanman

1999

Tarassov et al.

2007

). Because mtDNA is not

associated with histones and is in close proximity of ROS
production, mtDNA is directly exposed to the damaging effect
during oxidative phosphorylation. Numerous studies have
reported the association of mtDNA mutations in human tumors,
including somatic mutations (Brandon et al.

2006

Modica-

Napolitano et al.

2007

), tumor-specific changes in the mtDNA

copy number (Desouki et al.

2005

Lee et al.

2005

Mambo et

al.

2005

Mizumachi et al.

2008

; Selvanayagam and Rajaraman

1996

; Tseng et al.

2006

Yin et al.

2004

; Yu et al.

2007

), and

alteration of mitochondrial gene expression (Eng et al.

2003

;

Espineda et al.

2004

; Isidoro et al.

2004

; Weber et al.

2002

).

However, the causality of mtDNA mutations in tumor progres-
sion is not well understood. By replacing the endogenous

mtDNA of a poorly metastatic mouse tumor cell line with
mtDNA of a highly metastatic mouse tumor cell line (trans-
mitochondrial cybrids), Ishikawa et al. showed that mtDNA
mutations can enhance the metastatic potential of tumor cells
by inducing complex I defects and resulting in increased ROS
production as well as up-regulation of nuclear genes essential
for cell survival and angiogenesis (Ishikawa et al.

2008

).

Additional evidence implicating the role of mitochondrial
oxidative stress in cancer metastasis comes from Goh and
colleagues (Goh et al.

2011

). They demonstrated that targeted

increase of catalase (an anti-oxidant enzyme) in mitochondria
of a breast cancer mouse model alleviated mitochondrial
oxidative stress and dramatically reduced metastatic burden
in tumor-bearing mice (Goh et al.

2011

).

As opposed to increased ROS production, mtDNA muta-

tions can also enhance cancer metastasis by promoting
apoptotic resistance in cancer cells. By creating cybrids in
breast cancer cell lines, Kulawiec et al. reported that cybrids
carrying mtDNA mutations showed a higher frequency of
lung metastasis compared to cybrids carrying wild type
mtDNA without mutations (Kulawiec et al.

2009

). These

mtDNA mutations constitutively activate the PI3/Akt path-
way and protect cancer cells from stress-induced cell death.
More recently, a new cancer paradigm, the

“reverse Warburg

effect,

” was proposed to elucidate the involvement of mito-

chondrial metabolism and cancer metastasis. In this model,
metastatic cancer cells secrete hydrogen peroxide (H

2

O

2

) to

induce oxidative stress and aerobic glycolysis in the stroma
cells, which then generate L-lactate and ketone bodies to fuel

Metastatic Cancer Cells  

Mutations in mtDNA 

Respiratory complex I defects 

(ND6 mutations) 

 ROS Production 

Nuclear genes 

MCL-1 

HIF1

α

VEGF 

Tumor-Stroma Co-Evolution 

CAF 

HIF1

α & NFκB 

Cancer 

Cell 

Tumor 

Stroma 

DNA Damage 

Mutations 

 Autophagy/Mitophagy 

Aerobic Glycolysis 

Cancer 

Cell 

Tumor 

Stroma 

Reverse Warburg Effect 

MCT1

OXPHOS 

MCT4

Glycolytic 

Energy Transfer 

No Change In ROS Production 

Akt-hyperphosphorylation 
Activation of PI3K 

Cell death (apoptosis) 

Fig. 1 Mechanisms of
promoting cancer metastasis
through mitochondrial DNA
mutation or dysregulation of
mitochondrial metabolism

620

J Bioenerg Biomembr (2012) 44:619

–622

the oxidative mitochondrial metabolism in epithelial cancer
cells. Sotgia et al. demonstrated this two-compartment model
by analyzing the bioenergetic status of breast cancer lymph
node metastasis (Sotgia et al.

2012

). Using a selected panel of

metabolism markers, they showed that mitochondrial mass
and activity are increased in metastatic breast cancer cells,
whereas lymph-node associated stroma showed no sign of
altered mitochondrial mass and activity. Interestingly, we
had a similar observation in metastatic breast cancer cells in
the brain. We showed that metastatic breast cancer cells capa-
ble of generating macrometastases in the brain have a dramatic
increase in oxidative metabolism enzymes compared to the
bone metastasis and primary breast tumor (Chen et al.

2007

).

To assess the prognostic value of the reverse Warburg effect in
patients, Witkiewicz et al. stained human breast cancer tissue
microarrays containing tissues from triple-negative breast can-
cer patients (prone to metastasis and poor clinical outcome)
with a glycolytic marker MCT4 and found a specific correla-
tion between high stromal MCT4 expression and decreased
patient survival whereas tumor MCT4 staining had no prog-
nostic value of clinical outcome (Witkiewicz et al.

2012

).

Together, these results provide new insights on how mito-
chondrial metabolism contributes to metastatic growth at the
secondary sites and demonstrate the clinical utility of meta-
bolic enzymes as biomarkers for identifying high-risk cancer
patients and as new targets for anti-cancer therapy.

In summary, the articles that comprise this minireview

volume of the Journal of Bioenergetics and Biomembranes
should provide the interested reader with an up to date view of
ongoing research in the role of mitochondria in cancer metas-
tasis (Fig.

1

), which is attributed to greater than 90 % of

mortality in cancer patients. Clearly, dysregulation of mito-
chondrial functions in epithelial cancer cells and cancer-
associated stroma can promote the formation of clinically
overt metastasis and therefore merit continued consideration
as a therapeutic target in future research on cancer metastasis.
Also, it might be beneficial to consider developing new
antioxidant-based anti-cancer therapy to alleviate mitochon-
drial stress and prevent or reverse metastatic growth.

References

Brandon, M., Baldi, P. and Wallace, D.C. (2006). Mitochondrial muta-

tions in cancer. Oncogene 25, 4647-62

Chen, E.I. et al. (2007). Adaptation of energy metabolism in breast

cancer brain metastases. Cancer Res 67, 1472-86

Chen, X., Li, J., Hou, J., Xie, Z. and Yang, F. (2010). Mammalian

mitochondrial proteomics: insights into mitochondrial functions
and mitochondria-related diseases. Expert Rev Proteomics 7, 333-45

Desouki, M.M., Kulawiec, M., Bansal, S., Das, G.M. and Singh, K.K.

(2005). Cross talk between mitochondria and superoxide gener-
ating NADPH oxidase in breast and ovarian tumors. Cancer Biol
Ther 4, 1367-73

Edlund, M., Sung, S.Y. and Chung, L.W. (2004). Modulation of

prostate cancer growth in bone microenvironments. J Cell Bio-
chem 91, 686-705.

Eng, C., Kiuru, M., Fernandez, M.J. and Aaltonen, L.A. (2003). A role

for mitochondrial enzymes in inherited neoplasia and beyond. Nat
Rev Cancer 3, 193-202

Espineda, C.E., Chang, J.H., Twiss, J., Rajasekaran, S.A. and Rajasekaran,

A.K. (2004). Repression of Na,K-ATPase beta1-subunit by the tran-
scription factor snail in carcinoma. Mol Biol Cell 15, 1364-73

Falkenberg, M., Larsson, N.G. and Gustafsson, C.M. (2007). DNA

replication and transcription in mammalian mitochondria. Annu
Rev Biochem 76, 679-99

Feld, R., Rubinstein, L.V. and Weisenberger, T.H. (1984). Sites of

recurrence in resected stage I non-small-cell lung cancer: a guide
for future studies. J Clin Oncol 2, 1352-8

Fidler, I.J. (2003). The pathogenesis of cancer metastasis: the 'seed and

soil' hypothesis revisited. Nat Rev Cancer 3, 453-8

Goh, J., Enns, L., Fatemie, S., Hopkins, H., Morton, J., Pettan-Brewer, C.

and Ladiges, W. (2011). Mitochondrial targeted catalase suppresses
invasive breast cancer in mice. BMC Cancer 11, 191

Gupta, G.P. and Massague, J. (2006). Cancer metastasis: building a

framework. Cell 127, 679-95

Hess, K.R., Varadhachary, G.R., Taylor, S.H., Wei, W., Raber, M.N.,

Lenzi, R. and Abbruzzese, J.L. (2006). Metastatic patterns in
adenocarcinoma. Cancer 106, 1624-33

Hoffman, P.C., Mauer, A.M. and Vokes, E.E. (2000). Lung cancer.

Lancet 355, 479-85

Ishikawa, K. et al. (2008). ROS-generating mitochondrial DNA muta-

tions can regulate tumor cell metastasis. Science 320, 661-4

Isidoro, A., Martinez, M., Fernandez, P.L., Ortega, A.D., Santamaria, G.,

Chamorro, M., Reed, J.C. and Cuezva, J.M. (2004). Alteration of the
bioenergetic phenotype of mitochondria is a hallmark of breast,
gastric, lung and oesophageal cancer. Biochem J 378, 17-20

Karbowski, M. (2010). Mitochondria on guard: role of mitochondrial

fusion and fission in the regulation of apoptosis. Adv Exp Med
Biol 687, 131-42

Karrison, T.G., Ferguson, D.J. and Meier, P. (1999). Dormancy of mam-

mary carcinoma after mastectomy. J Natl Cancer Inst 91, 80-5

Kulawiec, M., Owens, K.M. and Singh, K.K. (2009). Cancer cell

mitochondria confer apoptosis resistance and promote metastasis.
Cancer Biol Ther 8, 1378-85

Lambert, A.J. and Brand, M.D. (2009). Reactive oxygen species pro-

duction by mitochondria. Methods Mol Biol 554, 165-81

Lee, H.C. et al. (2005). Mitochondrial genome instability and mtDNA

depletion in human cancers. Ann N Y Acad Sci 1042, 109-22

Mambo, E., Chatterjee, A., Xing, M., Tallini, G., Haugen, B.R., Yeung,

S.C., Sukumar, S. and Sidransky, D. (2005). Tumor-specific changes
in mtDNA content in human cancer. Int J Cancer 116, 920-4

Martinou, J.C. and Youle, R.J. (2011). Mitochondria in apoptosis: Bcl-2

family members and mitochondrial dynamics. Dev Cell 21, 92-101

Mehlen, P. and Puisieux, A. (2006). Metastasis: a question of life or

death. Nat Rev Cancer 6, 449-58

Mizumachi, T. et al. (2008). Increased distributional variance of mito-

chondrial DNA content associated with prostate cancer cells as
compared with normal prostate cells. Prostate 68, 408-17

Modica-Napolitano, J.S., Kulawiec, M. and Singh, K.K. (2007). Mi-

tochondria and human cancer. Curr Mol Med 7, 121-31

Murphy, M.P. (2009). How mitochondria produce reactive oxygen

species. Biochem J 417, 1-13

Paget, S. (1989). The distribution of secondary growths in cancer of the

breast. 1889 [classical article]. Cancer & Metastasis Reviews 8, 98-101

Patanaphan, V., Salazar, O.M. and Risco, R. (1988). Breast cancer:

metastatic patterns and their prognosis. South Med J 81, 1109-12

Scatena, R. (2012). Mitochondria and cancer: a growing role in apo-

ptosis, cancer cell metabolism and dedifferentiation. Adv Exp
Med Biol 942, 287-308

J Bioenerg Biomembr (2012) 44:619

–622

621

Schmidt-Kittler, O. et al. (2003). From latent disseminated cells to

overt metastasis: genetic analysis of systemic breast cancer pro-
gression. Proc Natl Acad Sci U S A 100, 7737-42

Selvanayagam, P. and Rajaraman, S. (1996). Detection of mito-

chondrial genome depletion by a novel cDNA in renal cell
carcinoma. Lab Invest 74, 592-9

Sotgia, F. et al. (2012). Mitochondrial metabolism in cancer metastasis:

visualizing tumor cell mitochondria and the

“reverse Warburg

effect

” in positive lymph node tissue. Cell Cycle 11, 1445-54

Steeg, P.S. (2006). Tumor metastasis: mechanistic insights and clinical

challenges. Nat Med 12, 895-904

Taanman, J.W. (1999). The mitochondrial genome: structure, transcrip-

tion, translation and replication. Biochim Biophys Acta 1410,
103-23

Tarassov, I., Kamenski, P., Kolesnikova, O., Karicheva, O., Martin,

R.P., Krasheninnikov, I.A. and Entelis, N. (2007). Import of
nuclear DNA-encoded RNAs into mitochondria and mitochondri-
al translation. Cell Cycle 6, 2473-7

Tseng, L.M., Yin, P.H., Chi, C.W., Hsu, C.Y., Wu, C.W., Lee, L.M.,

Wei, Y.H. and Lee, H.C. (2006). Mitochondrial DNA mutations
and mitochondrial DNA depletion in breast cancer. Genes Chro-
mosomes Cancer 45, 629-38

Weber, K., Ridderskamp, D., Alfert, M., Hoyer, S. and Wiesner, R.J.

(2002). Cultivation in glucose-deprived medium stimulates mito-
chondrial biogenesis and oxidative metabolism in HepG2 hepa-
toma cells. Biol Chem 383, 283-90

Witkiewicz, A.K. et al. (2012). Using the "reverse Warburg effect" to

identify high-risk breast cancer patients: stromal MCT4 predicts
poor clinical outcome in triplenegative breast cancers. Cell Cycle
11, 1108-17

Yin, P.H. et al. (2004). Alteration of the copy number and deletion of

mitochondrial DNA in human hepatocellular carcinoma. Br J
Cancer 90, 2390-6

Yu, M. et al. (2007). Reduced mitochondrial DNA copy number is

correlated with tumor progression and prognosis in Chinese breast
cancer patients. IUBMB Life 59, 450-7

622

J Bioenerg Biomembr (2012) 44:619

–622