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Abstract

 

Monoamine oxidase (MAO) is an enzyme involved in brain catabolism of monoamine neurotrans-
mitters whose oxidative deamination results in the production of hydrogen peroxide. It has been docu-
mented that hydrogen peroxide derived from MAO activity represents a special source of oxidative
stress in the brain. In this study we investigated the potential effects of the production of hydroxyl rad-
icals (

 

•

 

OH) on MAO-A and MAO-B activities using mitochondrial preparations obtained from rat brain.
Ascorbic acid (100 

 

m

 

M

 

) and Fe

 

2

 

1

 

 (0.2, 0.4, 0.8, and 1.6 

 

m

 

M

 

) were used to induce the production of

 

•

 

OH. Results showed that the generation of 

 

•

 

OH significantly reduced both MAO-A (85–53%) and
MAO-B (77–39%) activities, exhibiting a linear correlation between both MAO-A and MAO-B activi-
ties and the amount of 

 

•

 

OH produced. The reported inhibition was found to be irreversible for both
MAO-A and MAO-B. Assuming the proven contribution of MAO activity to brain oxidative stress,
this inhibition appears to reduce this contribution when an overproduction of 

 

•

 

OH occurs. © 2001
Elsevier Science Inc. All rights reserved.
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Introduction

 

Monoamine oxidase (MAO) is an FAD-dependent enzyme localized in the outer mem-
brane of the mitochondria which plays an essential role in the turnover of monoamine neu-
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rotransmitters such as dopamine, serotonine and noradrenaline. It occurs in at least two
forms, MAO-A and MAO-B, with different specificities for substrates and inhibitors. The
cloning of cDNAs for MAO-A and MAO-B has demonstrated that both isoenzyme forms are
encoded by different genes, associating their different specificities for substrates and inhibitors
to their corresponding primary structures [1]. However, the potential contribution of the
membrane lipid environments on MAO-A and MAO-B specificities remain unsolved [2,3]. It
catalyzes the oxidative deamination of biogenic amines to their corresponding aldehydes, which
is accompained by the reduction of molecular oxygen to hydrogen peroxide (H

 

2

 

O

 

2

 

) [4,5].
As is well-known, H

 

2

 

O

 

2

 

 is a reactive oxygen species (ROS) which, through the Fenton re-
action, can generate a hydroxyl radical (

 

•

 

OH), this being considered the most damaging free
radical for living cells due to its high reactivity [6]. The involvement of 

 

•

 

OH in neuronal loss
has been postulated in cerebral ischemia [7], in aging [8], in Parkinson’s disease [9], and in
Alzheimer’s disease [10].

Although, H

 

2

 

O

 

2

 

 is also formed during mitochondria respiration, the amount of H

 

2

 

O

 

2

 

 gen-
erated by MAO activity greatly exceeds the amount produced during electron flow [5], which
identifies the activity of this enzyme as a process with a considerable toxic potential. This
suggestion is corroborated 

 

in vivo

 

 by the diminution in brain production of H

 

2

 

O

 

2

 

 observed in
rats by the inhibition of MAO activity with pargyline [11]. In spite of the existence of two en-
zymatic scavenging systems to protect cells from the presence of H

 

2

 

O

 

2

 

, catalase and glu-
tathione peroxidase, the brain levels of these two enzymes are very low compared to those
found in other tissues [12].

The aim of the present study was to investigate the potential 

 

in vitro

 

 effects of the produc-
tion of 

 

•

 

OH on both MAO-A and MAO-B activities. MAO activity was determined in crude
mitochondrial fractions obtained from rat brain and 

 

•

 

OH was generated using a mixture of
ascorbic acid (AA) and ferrous iron (Fe

 

2

 

1

 

).

 

Methods

 

Chemicals

 

Kynuramine dihydrobromide, AA, and bovine serum albumin were purchased from Sigma
Chemical Co. (St. Louis, MO, USA). Clorgyline hydrochloride and R(-)-deprenyl hydrochlo-
ride was obtained from Research Biochemicals International (Natick, MA, USA). Ferrous
chloride tetrahydrate was purchased from Fluka Chemie AG (Buchs, Switzerland). Tereph-
thalic acid (THA), disodium salt was from Aldrich Chemical Co. (Milwaukee, WI, USA).
The water used for the preparations of solutions was of Milli-RiOs/Q-A10 grade (Millipore
Corp., Bedford, MA, USA). All remaining chemicals used were of analytical grade and were
purchased from Fluka Chemie AG (Buchs, Switzerland). Fresh stock solutions of AA and
Fe

 

2

 

1

 

 were prepared immediately before each experiment in water and a buffer solution
(Na

 

2

 

PO

 

4

 

/KH

 

2

 

PO

 

4

 

 isotonized with KCl, pH 7.4), respectively.

 

Preparation of brain mitochondria

 

Male Sprague-Dawley rats weighing 200–250 g were used. The rats were received from
the breeder at least four days before sacrifice, and were kept on a 12:12 light-dark schedule
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with 

 

ad libitum

 

 access to food and water. Animals were stunned with carbon dioxide and
killed by decapitation. Brains were immediately removed and washed in ice-cold isolation
medium (pH 7.4, Na

 

2

 

PO

 

4

 

/KH

 

2

 

PO

 

4

 

 isotonized with sucrose). Brain mitochondrias were then
obtained by diferential centrifugation with minor modifications to a previously published
method [13]. Briefly, after removing blood vessels and pial membranes, the brains were man-
ually homogenized with four volumes (w/v) of the isolation medium. Then, the homogenate
was centrifuged at 900 

 

g

 

 for 5 min at 4 

 

8

 

C. The supernatant was centrifuged at 12,500 

 

g

 

 for
15 min. The mitochondria pellet was then washed once with isolation medium and recentri-
fuged under the same conditions. Finally, the mitochondrial pellet was reconstituted in a
buffer solution (Na

 

2

 

PO

 

4

 

/KH

 

2

 

PO

 

4

 

 isotonized with KCl, pH 7.4) and stored in aliquots under
liquid nitrogen.

The protein concentration of mitochondrial suspensions was determined according to the
method of Markwell et al. [14], using bovine serum albumin as the standard.

 

Determination of MAO activity

 

MAO activity was measured by a spectrophotometric assay based on the original proce-
dure of Weissbach et al. [15], as previously reported [13]. A Ultrospec III spectrophotometer
(Pharmacia Biotech, Uppsala, Sweden) with a cuvette holder thermostatized at 37 

 

8

 

C was
used. (-)-Deprenyl (250 nM) and clorgyline (250 nM) were used as irreversible and selective
inhibitor to assay MAO-A and MAO-B activity, respectively. Mitochondrial incubations
were performed in a buffer solution (Na

 

2

 

PO

 

4

 

/KH

 

2

 

PO

 

4

 

 isotonized with KCl, pH 7.4) at a final
protein concentration of 1 mg/ml. A 5 minute preincubation of the irreversible inhibitor and
the mitochondria preparation was made, followed by the concurrent addition of AA (100

 

m

 

M

 

) and Fe

 

2

 

1

 

 (0.2, 0.4, 0.8 or 1.6 

 

m

 

M

 

). After 5 min of incubation, kynuramine was added as
a non selective substrate at concentrations equal to the corresponding K

 

M

 

 value (90 

 

m

 

M

 

 for
MAO-A and 60 

 

m

 

M

 

 for MAO-B). All concentrations are final concentrations. The formation
of 4-hydroxyquinoline (4-OHQ) was then followed at 314 nm for 5 min.

The reversibility of the inhibition was determined by dialysis using a Biodialyser® (Sigma
Chemical Co.) with an ultrafiltration membrane of a nominal molecular weight limit of
10,000 [16]. Mitochondrial preparations were preincubated at 37 

 

8

 

C for 15 min in the ab-
sence (control) or presence of both AA (100 

 

m

 

M

 

) and Fe

 

2

 

1

 

 (0.8 

 

m

 

M

 

). The resulting mixtures
were then dialysed at 4 

 

8

 

C using 250 ml of outer buffer (Na

 

2

 

PO

 

4

 

/KH

 

2

 

PO

 

4

 

 isotonized with
KCl, pH 7.4). The outer buffer was replaced with fresh buffer every 2 hours for a time period
of 10 h. Finally, the dialysed mixtures were then assayed for MAO-A and MAO-B activity.

 

Monitoring of 

 

•

 

OH formation

 

The generation of 

 

•

 

OH was fluorimetrically monitored using a modification to a previously
published method [17] in which THA is used as a chemical dosimeter of 

 

•

 

OH. A luminis-
cence spectrometer Model LS50B (Perkin-Elmer, Norwalk, CT, USA) was used. The cuvette
holder was thermostatically maintained at 37 

 

8

 

C and a magnetic stirrer was used for a conti-
nous mixing of the sample. For each assay, 2000 

 

m

 

l of a buffer solution (Na

 

2

 

PO

 

4

 

/KH

 

2

 

PO4

isotonized with KCl, pH 7.4) containing 10 mM THA (final concentration) were incubated in
a quartz cuvette for 5 min to reach the temperature. An aliquot of phosphate buffer (pH 7.4)
was added to complete the final volumen of the incubation to 2.5 ml. Then, 100 ml of AA
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(100 mM) and 20 ml of varying concentrations of Fe21 (0.2, 0.4, 0.8 or 1.6 mM) were added.
All the concentrations are final concentrations. The monitoring of •OH formation was imme-
diately initiated and maintained for the subsequent 5 min, using 312 nm and 426 nm as exci-
tation and emission wavelengths, respectively.

Statistical analysis

All results are expressed as means6SEM. Data were tested for significant differences be-
tween means by a two-way Student’s t-test. Significance was indicated when p was equal to
or less than 0.05. Data analysis was aided by use of the computer program Origin® v. 6.0
(Microcal Software Inc., Northampton, MA, USA).

Results

In this study we investigated the in vitro effects of the generation of •OH on MAO-A and
MAO-B activities using crude mitochondrial fractions obtained from rat brain. In order to op-
timize the analytical assay for MAO-A and MAO-B determination, we previously studied the
effects of the concentration of both clorgyline and (-)-deprenyl on MAO-A and MAO-B ac-
tivities, respectively. Fig. 1 shows the results obtained in this study. From the reported data,
we selected the concentration of 250 nM because it represents the lowest concentration of in-

Fig. 1. Effects of clorgyline on MAO-A activity and (-)-deprenyl on MAO-B activity after preincubation of mito-
chondrial preparations with 1mM of (-)-deprenyl or clorgyline, respectively. Each point represents the mean6S.E.M.
from three determinations.
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hibitor which guarantees a 100% inhibition of the corresponding MAO isoform. After prein-
cubation of mitochondrial preparations with clorgyline (250 nM) or (-)-deprenyl (250 nM)
for 5 min, KM values for MAO-A and MAO-B were estimated by linear regression analysis
of the corresponding Lineweaver-Burk plots using the following concentrations of
kynuramine: 20, 40, 80, and 140 mM for MAO-A and 20, 40, 60, 80, and 100 mM for MAO-B.
Under the here reported experimental conditions, MAO-A and MAO-B activities (con-
trols) were of 1.52160.083 nmol 4-OHQ/mg protein?min and 4.56260.037 nmol 4-OHQ/
mg protein?min, respectively.

As shown in Fig. 2, the production of •OH was achieved by the use of the combined action
of AA (100 mM) and Fe21 (0.2, 0.4, 0.8, and 1.6 mM), with •OH formation being dependent on
the Fe21 concentration used. To assess the production of •OH, the area under the curve (AUC)
was used as an “impregnation factor”, and was calculated using the graph package Origin®.

The effect of the concurrent preincubation of AA and Fe21 with the mitochondrial prepara-
tions for 5 min was a significant reduction in both MAO-A and MAO-B activities, which was
dependent on Fe21 concentration used and consequently on the •OH production achieved. Fig.
3 illustrates the MAO activity found under the different experimental conditions assayed, and
shows that MAO activities ranged from 85% to 53% (of control) for MAO-A and from 77%
to 39% (of control) for MAO-B. As can be seen, the reduction observed in both MAO-A and

Fig. 2. Representative fluorimetric recording of the production of •OH from the oxygen disolved in the incubation
medium (pH 7.4, Na2PO4/KH2PO4 isotonized with KCl) in the presence of AA (100 mM) and different concentra-
tions of Fe21. THA (10 mM) was used to detect the production of •OH and the wavelenghts of excitation and
emission were of 312 nm and 426 nm, respectively.



884 R. Soto-Otero et al. / Life Sciences 69 (2001) 879–889

MAO-B activities were in all cases statistically significative. In addition, we verified that the
reported inhibition is dependent on the preincubation time (data not shown), which is clearly
related to the amount of •OH generated.

In this study we attempted to correlate the MAO inhibition found with the amount of •OH
generated by the system AA1Fe21. For this reason we submited the data of MAO activities
versus •OH accumulation expressed as AUC to a lineal regression analysis. As shown in Fig. 4,
the correlation coefficients obtained were r 5 0.894 for MAO-A and r 5 0.953 for MAO-B,
which confirms the existence of a direct correlation between MAO inhibition and the produc-
tion of •OH.

For reversibility studies, mitochondrial preparations were preincubated in the absence
(control) or presence of the both AA (100 mM) and Fe21 (0.8 mM). As shown in Table 1, after
dialysis of the mitochondrial preparations, neither MAO-A nor MAO-B activity were recov-
ered, compared to the corresponding controls obtained in the absence of AA1Fe21. Further-
more, as shown in Table 1, the inhibition found was very similar to that found with non-dialysed
samples preincubated with AA1Fe21.

Although, we performed some mitochondria incubations in the presence of Fe21 (0.8 mM)
alone, we did not found statistically significative differences in both MAO-A and MAO-B ac-
tivities when compared with their corresponding controls (in the absence of Fe21).

Fig. 3. Effects of the production of •OH on MAO-A and MAO-B activities. MAO activity was assayed after 15
min of incubation of the mitochondrial preparation with AA (100 mM) and the corresponding concentration of
Fe21. Controls for MAO-A and MAO-B activities were obtained in the absence of AA and Fe21. Data are mean 6
SEM derived from 4 separate experiments. Statistical significance: *p, 0.05; **p, 0.01; *** p, 0.001 as com-
pared to the corresponding control (Student’s t-test).
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Discussion

MAO activity in the brain is involved in the catabolism of several neurotransmitters such
as dopamine, noradrenaline, and serotonine. Obviously, the catabolism of these neurotrans-
mitters by MAO involves the formation of H2O2 which in the presence of iron generates •OH
through the Fenton reaction. It has been reported that the main mechanism of the cytotoxicity
produced by H2O2 is precisely via the generation of •OH [18]. Despite the existence of two
enzymatic scavenging systems, catalase and glutathione peroxidase, to protect cells from the
presence of H2O2, it is well-known that the brain levels of these two enzymes are low com-
pared to other tissue [12]. In addition, the H2O2 generated by mitochondrial monoamine oxi-
dase does not easily reach the catalase compartment [4]. Evidently, these facts make cate-
cholaminergic and serotonergic neurons particularly vulnerable to the oxidative stress caused
by MAO activity. In addition, it has been suggested that there are two other factors that may
contribute to enhance the damaging potential of this metabolic pathway: a) the reported in-
crease of MAO activity with age in human brain [19,20], which facilitates increased produc-
tion of H2O2 and b) the capacity shown by neuromelanine to bind iron [21], which promotes
the generation of specific-sites for the formation of •OH. The involvement of MAO activity in
the pathogenesis and progresion of Parkinson’s disease has been previously postulated [22].

Fig. 4. Variations of MAO-A and MAO-B activities with the generation of •OH. The production of •OH is repre-
sented by the area under the curve (AUC) from the corresponding fluorimetric recording obtained in the condi-
tions used for the determination of MAO activity. Values are means 6 SEM of four experiments. The linear regre-
sion lines for each set of data are shown.
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The results of the present study show that both MAO-A and MAO-B are inhibited by the
generation of •OH. As previously described, the generation of •OH was achieved with the
combined action of AA1Fe21. However, no changes in either MAO-A or MAO-B activities
were found when MAO activity was determined in the presence of Fe21 alone. Evidently,
under these conditions, the H2O2 produced by MAO activity gives •OH (Fenton reaction). For
this reason, the reported data shows that very probably the amount of •OH produced during
MAO activity is insufficient to cause MAO inhibition. Nevertheless, additional studies will
be required to further evaluate the potential contribution of long term MAO activity in the
presence of Fe21 to MAO inhibition. It is important to point out that the concentrations used
of both AA and Fe21 are close to those considered physiological [23,24] and lower than those
used by other authors to induce lipid peroxidation [25]. In addition, the concentrations of AA
and Fe21 used in this study were found necessary to guarantee different rates of •OH produc-
tion, which enable us to prove the existence of a direct correlation between •OH production
and MAO activity. It has been reported that copper, zinc superoxide dismutase (Cu,Zn-SOD)
is able to catalyze the formation of •OH from H2O2 by a mechanism which involves the par-
ticipation of free copper released from the oxidatively damaged enzyme [26,27]. However, as
only Mn-SOD is present in the mitochondria, and given that this form does not catalyze this
reaction [26], then its potential involvement on this present study may be discarded.

The reversibility studies showed that the reported inhibition was irreversible for both
MAO-A and MAO-B. However, it was not possible to know if this inhibition is due to the ox-
idation of the enzyme by •OH or to a modification of the lipid environment of MAO in the
mitochondria membrane caused by a potential peroxidation process [25]. Evidently, further
studies of the molecular mechanism of this inhibition will be of great interest.

Taking into consideration the important role attributed to MAO activity in the generation
of ROS [5,11], the here reported inhibition might be regarded as a mechanism which reduces
the contribution of MAO activity to oxidative stress when an overproduction of •OH was
reached. Thus, the results of this study seem to show that MAO activity does not contribute
greatly to sustained •OH production , which thus limits its suggested involvement in neuro-
degenerative processes to the initiation of lipid peroxidation on biological membranes. Evi-
dently, the start of lipid peroxidation is sufficient to trigger a cascade of reactions leading to
cell damage.

Table 1
Reversibility of MAO-A and MAO-B inhibition by •OH production

Activity b 
(% Inhibition)

Preparationa MAO-A MAO-B

Control 1.52160.0083 (0%) 4.56260.037 (0%)
Non-dialysed 1.01660.010 (33%) 2.35460.072 (48%)
Dialysed 1.00960.013 (33%) 2.31160.095 (49%)

a Biological preparations were incubated in the absence (control) or in the presence of AA (100 mM) 1 Fe21

(0.8 mM) at 37 8C for 15 min and then dialysed or not at 4 8C for 10 hours.
b Values represent means 6 SEM (n5 4) and are expresed as nmol 4-OHQ/mg protein·min.
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1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a well-known dopaminergic
proneurotoxin widely used to investigate the pathogenesis and progression of Parkinson’s
disease [28]. This drug is bioactivated in the astrocytes by the action of MAO-B to give the
1-methyl-4-phenylpyridinium ion (MPP1) [29,30], which is actively taken up by the presyn-
aptic dopamine uptake system and accumulated within these nerve terminals [31]. Then,
MPP1 acts causing inhibition on the mitochondrial oxidation of NAD1-linked substrates in
dopaminergic neurons, and thus leads to a depletion of ATP and consequently causes cell
death [32]. However, the molecular mechanism of MPTP neurotoxicity has been also associ-
ated with the capacity shown by this drug to produce oxidative stress through the generation
of •OH [33,34]. Although, MPTP affects the nigrostriatal dopaminergic system in a wide var-
ity of animal species [35], there are notorious differences in reaction among the different an-
imal species to this compound. Thus, primates [36] and mice [37] are sensitive to MPTP to
different degrees while rats are practically insensitive [38]. Assuming that MPTP is activated
by MAO and MPTP induced the generation of •OH, the inhibition of MAO activity by •OH
production might be involved in the different sensitivity of the different species to this pro-
neurotoxin. Evidently, to corroborate this hypothesis it might be particularly useful to investi-
gate the inhibitory properties of •OH production against MAO activity from different animal
species.
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