2.2 ¥ ELECTRIC POTENTIAL DUE TO
A POINT CHARGE

2. Derive an expression for the electric potential at a

P

distance r from a point charge g. What is the nature of

this potential ?

/" “Electric potential due to a point charge. Consider a
= positive point charge g placed at the origin O. We wish
to calculate its electric potential at a point P at distance
rfrom it, as shown in Fig. 2.2. By definition, the electric
potential at point P will be equal to the amount of work
done in bringing a unit positive charge from infinity to
the point P.
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‘Electric potential due to a point charge.
Suppose a test charge 4o 1s placed at point A at

distance x from O. By Coulomb’s law, the electrostatic -

force acting on charge o 18
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The force F acts away from the charge g. The small
work done in moving the test charge g, from A to B

through small displacement dx against the electro-
static force is

s aae e
dW = F . dx = Fdx cos 180° = — Fdx

The total work done in moving the charge g, from
infinity to the point P will be
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Hence the work done in moving a unit test charge
from infinity to the point P, or the electric potential a
point P is

V:EE or V= .

% me,
Clearly, V oc1/r. Thus the electric potential due to g
point charge is spherically symmetric as it depends only
on the distance of the observation point from the
charge and not on the direction of that point with
respect to the point charge. Moreover, we note that the
potential at infinity is zero.

Fig. 2.3 shows the variation of electrostatic
potential (V «1/7) and the electrostatic field (E o« 1/ 1)
with distance 7 from a charge g.
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Fig. 2.3 Variation of potential V and field £
with r for a point charge g.
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2.3 ¥ ELECTRIC POTENTIAL DUE TO A DIPOLE

3. Derive an expression for the potential at a point
along the axial line of a short dipole.

"/ Electric potential at an axial point of a dipole. As
shown in Fig. 2.4, consider an electric dipole consisting
of two point charges —4 and + g and separated by
distance 2a. Let P be a point on the axis of the dipole at
a distance r from its centre O.
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Electric potential at point P due to the dipole is

Vol = =
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For a short dipole, a> < <72, 50 V = :?“' =




4. Show mathematically that the potential at a point
um the equatorial line of an electric dipole is zero.

W " Electric potential at an equatorial point of a
#ipole. As shown in Fig. 2.5, consider an electric dipole
monsisting of charges —q and + g and separated by
distance 24. Let P be a point on the perpendicular
isector of the dipole at distance r from its centre O.
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F’g 2.5 Potentlai at an equatorial point of a dipole.

Electric potential at point P due to the dipole is
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5. Derive an expression for the electric potential at
any general point at distance r from the centre of a

#

Electric potential at any general point due to a
dipole. Consider an electric dipole consisting of two
point charges — g and + g and separated by distance 24,
as shown in Fig. 2.6. We wish to determine the potential
at a point P at a distance r from the centre O, the direc-

tion OP making an angle 8 with dipole moment F



Let AP = " and BP = 1.
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Fig. 2.6
If the point P lies far away from the dipole, then
n,—1 = ABcos 8 =2acos 9 and 71, 0
v i 2a cos 6
4T €, 7
or i 1 . poosdd
- 4m g 72
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or Vo= P ; = P =
dre, r dne, r
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Here p =g x 24, is the dipole momentand r =7 /7,

- o
is a unit vector along the position vector OP=r.



24  ELECTRIC POTENTIAL DUE TO
A SYSTEM OF CHARGES

7. Derive an expression for the electric potential at a
point due to a group of N point charges.
" Electric potential due to a group of point charges.

“"As shown in Fig. 27, suppose N point charges

917 Gps Ggs--enes Gy Lie at distances sty e, By from a
point P.

Fig. 2.7 Potential at a point due to a
system of N point charges.

Electric potential at point P due to charge g, is
oo

Similarly, electric potentials at point P due to other
charges will be
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As electric potential is a scalar quantity, so the total

potential at point P will be equal to the algebraic sum
of all the individual potentials, i.e.,

V=V +V,+V; +..+ V,
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If it 1,1 are the position vectors of the N

point charges, the electric potential at a point whose

43 e
position vector is 7, would be
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ELECTRIC POTENTIAL DUE TO A
UNIFORMLY CHARGED THIN
SPHERICAL SHELL :

9, Write expression for the electric potential due to a
uniformly charged spherical shell at a point (i) outside
the shell, (ii) on the shell and (iii) inside the shell.

Electric potential due to uniformly charged thin
spherical shell. Consider a uniformly charged spherical
shell of radius R and carrying charge . We wish to
calculate its potential at point P at distance r from its
centre O, as shown in Fig. 2.8.
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Fig. 2.9 Variation of poten-
due to a spherical tial due to charged shell with
shell. distance r from its centre.

(i) When the point P lies outside the shell. We know
that for a uniformly charged spherical shell, the electric
field outside the shell is as if the entire charge is
concentrated at the centre. Hence electric potential at
an outside point is equal to that of a point charge
located at the centre, which is given by

ol [For r> R]

(ii) When point P lies on the surface of the shell. Here
r = R.Hence the potential on the surface of the shell is
Yo ctail. [For 7 = R]
4ne, R
(iii) When point P lies inside the shell. The electric field
at any point inside the shell is zero. Hence electric
potential due to a uniformly charged spherical shell is
constant everywhere inside the shell and its value is
equal to that on the surface. Thus,

pa [For r < R]
dre, R

Figure 2.9 shows the variation of the potential V
due to a uniformly charged spherical shell with
distance * measured from the centre of the shell. Note
that V is constant (= g/ 4me,R) from r =0 to r = R along
a hori- zontal line and thereafter V oc1/7 for points
outside the shell.



2.7 < RELATION BETWEEN ELECTRIC FIELD
AND POTENTIAL

10. Show that the electric field at any point is equal
to the negative of the potential gradient at that point.

/ Computing electric field from electric potential.
As shown in Fig. 2.20, consider the electric field due to
charge + g located at the origin O. Let A and Bbe two
adjacent points separated by distance dr. The two

V,=V+dV  V,=V

+q l dr ] E'
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Fig. 2.20 Relation between potential and field.
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points are so close that electric field E between them
remains almost constant. Let V and V + dV be the
potentials at the two points.

The external force required to move the test charge

—3
qo (without acceleration) against the electric field E is

given by
- -
F=-q,E
The work done to move the test charge from A toBis

Also, the work in moving the test charge from A to
B is
W = Charge x potential difference
=gy (V3 —V,)=¢q,4dV
Equating the two works done, we get

—qoE.dr=gq,.4dV
or Ez—ﬂ
dr

The quantity —'?i is the rate of change of potential
;

with distance and is called potential gradient. Thus the
electric field at any point is equal to the negative of the
potential gradient at that point. The negative sign shows
that the direction of the electric field is in the direction
of decreasing potential. Moreover, the field is in the
direction where this decrease is steepest.

- From the above relation between electric field and
potential, we can draw the following important con-
clusions :

(1) Electric field is in that direction in which the
potential decrease is steepest.

(1) The magnitude of electric field is equal to the
change in the magnitude of potential per unit
displacement (called potential gradient) normal
to the equipotential surface at the given point.
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11. How can we determine electric potential if
electric field is known at any point ?

Computing electric potential from electric field.
The relation between electric field and potential is

o

—> —
E = or ' "WV =1 E.dr
—3
dr

: ; o
Integrating the above equation between points h

—
and 1,, we get



>
or V=V =< VE.d

where V, and V, are the potentials at :r_'; and

respectively. If we take ;; at infinity, then V, =0

- —
putrn =r, we get

Vii)=-| Edi
Hence by knowing electric field at any point, w
can evaluate the electric potential at that point.
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18. Deduce expressions for the potential energy of a
system of two point charges and three point charges and hence
generalise the result for a system of N point charges.

Potential energy of a system of two /
point charges. Suppose a point charge g,

1s at rest at a point P, in space, as shown in ¢
Fig. 2.29. It takes no work to bring the first ’
charge g, because there is no field yet to

work against.
q1 42

@
W=l o P,

12

R

Fig. 2.29 P.E. of two point charges.

Electric potential due to charge g, at a point P, at
distance r,, from P, will be

i s oy
4?{:8{] o

If charge g, is moved in from infinity to point P, the
work required is

W, = Potential x charge

1 99
4n80 o

As the work done is stored as the potential energy
U of the system (g, + ¢,), SO

Um.W1+W2= 1 .'qlqz.
41180 Mo



\/ Potential energy of
a system of three point
charges. As shown in
Fig. 2.30, now we bring
in the charge g, from
infinity to the point F;.
Work has to be done
against the forces
exerted by ¢, and g,.

b R e e R

Fig. 2.30 P.E. of three

point charges.

d2



Therefore
W, = Potential at point P; due to g; and 4,

x charge g,
or W. = 1 ql + "3’2 g — 1 qlq’;’; + ‘?2‘?3
> dn Eotihia = g : ane, | i3 h3

Hence the electrostatic potential energy of the
System g, + g, + 4, 1S
U = Total work done to assemble the three charges
= W + W, + W

LI—- L ‘31‘?2 - ‘?1‘3'3 ‘iz‘i's
4“313 Tiz ’ia B
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Potential energy of a system of N point charges.
The expression for the potential energy of N point
charges can be written as

1 949. 1 N N g4
u-l 3 AL )

4“50 all pairs j;; 2 4“ E{] i

[# ]

As double summation counts every pair twice, to
avoid this the factor 1/2 has been introduced.
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2.11% POTENTIAL ENERGY IN AN
EXTERNAL FIELD
19. Write an expression for the potential energy of a

single charge in an external field. Hence define electric
potential.

ﬂ/ Potential energy of a single charge. We wish to
\ ; : .
etermine the potential energy of a charge g In an

external electric field E ata point P where the corres-
ponding external potential is V. By definition, V at a
point P is the amount of work done in bringing a unit
positive charge from infinity to the point P. Thus, the
work done in bringing a charge ¢ from infinity to the
point P will be qV, i.e., W =qV

This work done is stored as the potential energy of
the charge q. If 7 is the position vector of point P
relative to some origin, then

> -
U(r)=4qV(r)
P.E. of a charge in an external field
= Charge x external electric potential

As V=—

So we can define electric potential at a given point in
an external field as the potential energy of a unit positive
charge at that point.



20. Write an expression for the potential energy of
two point charges q, and q,, separated by distance in

_}
an electric field E .

\/ Potential energy of a system of two point charges

in an external field. Let V(7 ) and V(z) be the electric

%
potentials of the field E at the points having position

vectors_r: and_r; as shown in Fig. 2.31.

Work done in bringing g, from oo i:a:::m_i?:1 against the

external field



g4, from oo

—y
uff g,V (1)

bl R e

Fig. 2.31 P.E. of two charges in an external field.

Work done in bringing q, from oo ’EO_?:'; against the
external field

=
=3,V (1)
Work done on g, against the force exerted by 4,

-1 4%
4‘.’1280 iy

where 7, is the distance between q, and g,,.

Total potential energy of the system = The work
done in assembling the two charges

— — 1 q
or U=q,V(n)+ qzv(r2)+4na .q; 2
g 12
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2.12" POTENTIAL ENERGY OF A DIPOLE IN
A UNIFORM ELECTRIC FIELD

22. Derive an expression for the potential energy of
a dipole in a uniform electric field. Discuss the conditions
of stable and unstable equilibrium.

Potential energy of a dipole placed in a uniform
electric field. As shown in Fig. 2.32, consider an

electric dipole placed in a uniform electric field E with
its dipole moment f; making an angle 0 with the field.

Two equal and opposite forces + qf and - qE) act on

its two ends. The two forces form a couple. The torque
exerted by the couple will be

T=¢gEx2asin 0 = pE sin 0
where gx 2a = p, is the dipole moment.

—
__qE __________

flotacieb o e S T

Fig. 2.32 Torque on a dipole in a
uniform electric field.

If the dipole is rotated through a small angle 46
against the torque acting on it, then the small work
done is

dW =1 d0 = pE sin 0 40
The total work done in rotating the dipole from its

orientation making an angle 0,, with the direction of
the field to 6, will be

W=[dw=[ pEsin6de
by
= pE [~ cos 9]212 = pPE (cos 6, — cos 6,)

This work done is stored as the potential energy U

of the dipole. _

U = pE (cos 8, — cos 9})
If initially the dipole is oriented perpendicular to
the direction of the field (6, =90°) and then brought to

some orientation making an angle 0 with the field
(8, =6) then potential energy of the dipole will be

U = pE (cos 90° — cos 0) = pE (0 — cos 0)
or U=——.pEc039=—;_9').g




220 © PARALLEL PLATE CAPACITOR

33. What is a parallel plate capacitor ? Drive an
expression for its capacitance. On what factors does the
capacitance of a parallel plate capacitor depend ?

/' Parallel plate capacitor. The simplest and the most

“widely used capacitor is the parallel plate capacitor. It
consists of two large plane parallel conducting plates,
separated by a small distance.

Let A = area of each plate,
d = distance between the two plates

+ & = uniform surface charge densities on the

two plates
+ Q =+ ¢ A=total charge on each plate.
Area=A E=0
e
T + + + =+ + +— Charge
E-S density +©
d S
L e = = = = —+— Charge
il | density —
E=0

P e s G

Fig. 2.47 Parallel plate capacitor.

In the outer regions above the upper plate and
below the lower plate, the electric fields due to the two
charged plates cancel out. The net field is zero.

ro g 58 T
280 280

In the inner region between the two capacitor
r plates, the electric fields due to the two charged plates
. add up. The net field is

(8] O O
E — -+ =
280 280 &g




The direction <{ the electric field is from the
positive to the negative plate and the field is uniform
throughout. For plates with finite area, the field lines
bend at the edges. This effect is called fringing of the
field. But for large plates separated by small distance
(A>>d?), the field is almost uniform in the regions far
from the edges. For a uniform electric field,

P.D. between the plates

= Electric field x distance between the plates

or VzEdz-cE

€
0 :
Capacitance of the parallel plate capacitor is
V. od/ € .

b Mg PR 7 & =



223 * COMBINATION OF CAPACITORS IN
SERIES AND IN PARALLEL

36. A number of capacitors are connected in series.
Derive an expression for the equivalent capacitance of
the series combination.

Capacitors in series. When the negative plate of one
capacitor is connected to the positive plate of the second, and
the negative of the second to the posttive of third and so on,
the capacitors are said to be connected in series.

) k Fig. 2.51 shows three capacitors of capacitances_ C.,
C, and G, connected in series. A otegi?'al difference V
is applied across the combinatimﬁffﬁs’ sets up charges
+ Q on the two plates of each capacitor:"ﬁ %E actually
happens is, a charge + Q is given to the left plate of
capacitor C, during the charging process| \The charge
+ Qinduces a charge — Q on the right plate of C,and a
charge — Q on the left plate of C,, etc. "
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b Flg 2.51 Capacutors in series. (% Y1114

5 . The potential differences across the various
capacitors are

] 1

\ For the series circuit, the sum of these potential diffe-
rences must be equal to the applied potential difference.

SN

L
1 =
or Z=—1~+—1—+—1— ) L)

kClearly, the combination can be regarded as an
effective capacitor with charge Q and potential dif-
ference V. If C is the equivalent capacitance of the
series combmatlon, then

_H
vV
1 el
= C - . «(2)
| L From equations (1) and (2), we get
— = —+— 4 —
€ ¢ G G

For a series combination of n capacitors, wé can
write

For series combination of capacitors

1 The reaprocal of equalent capacitance is equal
~ to the sum of the reuprocals of the mdmdual
- capacitances. = :

2 " The eqmvalent cépaeltance is smaller than the
~ smallest individual capacitance.

3. The charge on each capacitors i is s.ame

4. The potential difference across a:ny capaator 1s
mversely propemonai to its capacitance.



i

37. A number of capacitors are connected in parallel. -
Derive an expression for the equivalent capacitance of
the parallel combination. :

Capacitors in parallel. When the positive plates of all
capacitors are connected to one common point and the
negative plates to another common point, the capacitors are
said to be connected in parallel.

:_Fig. 2.52 shows three capacitors of capacitances G

‘G, and C, connected in parallel. A potential difference

V'is applied across the combination! All the capacitors
have a'common potential difference V but different
charges given by

Q=GV. Q=GV, Q= GV

+Q; :Ql %um a\)&

\/ Same

|
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Fig. 2.52 Capacitors in parallel.

| f"-:?l‘otal charge stored in the combination is

o ; Q=Q1+Q2+Q3:(C1 +G+C)V (1)
XHIf C, is the equivalent capacitance of the parallel
combination, then

Q=C, 7 ) 2

' From equations (1) and (2), we get
CV=(G+C+C)V
or C'!,_,=C1-i-(.‘2+C3
For a parallel combination of 7 capacitors, we can write
CP=C]+C2+ ..... i S

For parallel combination of _capaéitors

L. The equivalent capacitance is equal to the sum

~ of the individual capacitances.

3. The potential difference across each capacitor is
B s e e B

4 ‘I'hechargeon each capacitor is proportional to

 its capacitance.




/

- §

by

/2.24 ¥ ENERGY STORED IN A CAPACITOR

s

38. How does a capacitor store energy ? Derive an
expression for the energy stored in a capacitor.

Energy stored in a capacitor. A capacitor is a
device to store energy. The process of charging up a
capacitor involves the transferring of electric charges
from its one plate to another. The work done in charging
the capacitor is stored as its electrical potential energy. This
energy is supplied by the battery at the expense of its
stored chemical energy and can be recovered by
allowing the capacitor to discharge.

| Expression for the energy stored in a capacitor.
\) \Consider a capacitor of @facitance C. Initially, its two

plates are unchargedXSu pose the positive charge is
transferred from plate 2 to plate 1 bit by bit) Iri this
process, external work has to be done because at any
stage plate 1 is at higher potential than the plate 2

the potential difference between the two plates will be

V' = g
c

T (6 B -Q

+ - - bee

; - e up

’__

+ de = + > -

= = A ! =

+ .‘..@... e .f__ E S

+ - + e

+ — - —

+ - + =

+ ~ +- o
| @ - 2 1 (b) 2

Fig. 2.105 (a) Work done in transferring charge dQ’
from plate 2 to plate 1. (b) Total work
done in charging the capacitor may be
considered as the energy stored in the
electric field between the plates.

- Suppose at any instant the plates 1 and 2 have chargeé,;)
" and - ( respectively, as shown in Fig. 2.105(a)\\Then



o/ Suppose now a small additional charge dQ’ be trans-
ferred from plate 2 to plate 1. The work done will be

AW =V' . dQ’~~%‘ a0

A (J The total work done in transferring a charge
plate 2 to plate 1 [Fig. 2. 105(b)] will be

=de=j Q*d [Qj 193
¢ 2C o

(Z, ., This work done is stored as electrical potentis
energy U of the capamtor |

R R R T e oo e o e S e SR
- E
ﬁn T; .ﬂﬂ.l‘.ﬂlqﬂln’ .—.-.—--.-l..--l—-'-—.._-.. e T r T p.
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39. If several capacitors are connected in series g
parallel, show that the energy stored would be additiu
in either case.

Energy stored in a series combination of capacitors,
For a series combination, Q = constant
Total energy,

......

- PR e s e e e
i o R e R A
SR R
S s - i 5 __ - R
H X e g e

or
u o AT ..!-

- .h ..": ":_ .-\.- i -':

S

Energy stnred in a parallel ‘combination 2
capacitors. For a parallel combination, V = constant

) Total energy,

LI=%CZ’VQ=%[CI_-;-(32+C3+...]V‘"i
1 1

_u—fzv"%r—(:*vhl
st )

CVi+
=5

or

U= Efi + ﬂ LI -
Hence fﬂfﬂl ener gy is uddztwe bﬂth in series and paraill
combinations of capacitors.



2,25 ¥ ENERGY DENSITY OF AN
ELECTRIC FIELD

capacitor is charged, an electric field is set up in i
region between its two plates. We can say that #ig
work done in the charging process has been used |
creating the electric field. Thus the presence of g
electric field implies stored energy or the energy is st
in the electric field. '



Consider a parallel plate capacitor, having plate
4 A and plate separation d. Capacitance of the
sllel plate capacitor is given by |

| ggA

d

¥ o is the surface charge density on the capacitor
s, then electric field between the capacitor plates

E=— or o=¢gk
%0
Charge on either plate of capacitor 1s
Q=0 A=¢,EA

- Energy stored in the capacitor is

2 & EA 1
U=EE= {}SA =EEGE Ad
g9 L0
d

. But Ad = volume of the capacitor between its two
l=tes. Therefore, the energy stored per unit volume or the

e
e
g b . ‘ e ¥

Although wehave derwed fhe above equation for a
\parallel plate capacitor, it is true for electric field due to
_any charge configuration. In general, we can say that
i electric field E can be regarded as a seat of energy with
emergqy density equal to % o E2. Similarly, energy is also

associated with a magnetic field.

o B il o R e
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Reduced field inside a dielectric and dielectric

constant. In case of a homogeneous and isotropic
dielectric, the induced surface charges set up an

electric field I;i (field due to polarization) inside the
dielectric in a direction opposite to that of external

field E; , thus tending to reduce the original field in the

dielectric. The resultant field E in the dielectric will be
equal to E; = L;; and directed in the direction of E;.
The ratio of the original field I;::} and the reduced

field E_; - f; in the dielectric is called dielectric constant

(x) or relative permittivity (e.). Thus

e
e ity =
E ,El}f‘Ep



_—
Electric susceptibility. If the field E is not large,
—>
then the polarisation P is proportional to the resultant
field E existing in the dielectrig, i.e.,

= —

| P« £ or ‘P=gyy b
where y (chi) is a proportionality constant called

electric susceptibility. The multiplicative factor &, 1s used
to keep y dimensionless. Clearly,

s
€ E
Thus the ratio of the polarisation to g, times the electric
field is called the electric susceptibility of the dielectric. Like
P, it also describes the electrical behaviour of a dielec-
tric. The dielectrics with constant y are called linear

dielectrics.



Relation between k and y. The net electric field in a
polarised dielectric is

B e e
T e
e
=
E .
S Ne =y - —>
or E=E, - Dﬁg [P=g, % E]

Dividing both sides by f, we get
E
1==9—y

E

or I=x—y or ix=—F+y



2.29 =~ CAPACITANCE OF A PARALLEL PLATE
CAPACITOR WITH A DIELECTRIC SLAB

49. Deduce the expression for the capacitance of a
parallel plate capacitor when a dielectric slab is inserted
between its plates. Assume the slab thickness less than
the plate separation.

Capacitance of a parallel plate capacitor with a
dielectric slab. The capacitance of a parallel plate
capacitor of plate area A and plate separation d with
vacuum between its plates is given by

_ ggA
=

Suppose initially the charges on the capacitor plates
are + Q. Then the uniform electric field set up between
the capacitor plates is

When a dielectric slab of thickness t <d is placed
between the plates, the field E, polarises the dielectric.
This induces charge —Q, on the upper surface and
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Fig. 2.118 A dielectric slab placed in a
parallel plate capacitor.

+ Q_ on the lower surface of the dielectric. These
induced charges set up a field E, inside the dielectricin

the opposite direction of E The mduced field is given by

E = o o, = L. P, polarisation density]
P £5. 5o i
The net field inside the dielectric is
E E
E:EU—EP:_E . 0 =
K E(} — g .

where k is the dielectric constant of the slab. So
between the capacitor plates, the field E exists over a
distance t and field ‘E, exists over the remaining
distance (d —1). Hence the potential difference
between the capacitor plates is

| E .
V=Ey(d-t)+ Et=E(d-f)+-2t|w 2=x

0
E
:Eﬂ(d~t+i]= Q (d~t+£-)
K EDA K

The capacitance of the capacitor on introduction of
dielectric slab becomes




>34 “ COLLECTING ACTION OF A HOLLOW
CONDUCTOR

55. A small sphere of radius r and charge q 1is
enclosed by a spherical shell of radius R and charge Q.
Show that if q is positive, charge g will necessarity flow
from the sphere to the shell (when the two are connected
by c}fwfre) no matter what the charge Q on the shell is.

: [NCERT]
\)éllecting action of a hollow sphere. Consider a
small sphere of radius r placed inside a large spherical
shell of radius R. Let the spheres carry charges gand O,
respectively.



Total potential on the outer sphere,

V, = Potential due to its own charge O

+ potential due to the charge g on
the inner sphere

1 Q4 }
= _ + — ]'__{15 .
ine, [ B ulating

suspension

Potential on the inner
sphere due to its own charge is

+Q

el
4?‘580 ¥

As the potential at every
point inside a charged sphere
is the same as that on its
surface, so potentia] on the ssessmsm.
inner sphere due to charge Q Fig. 2.127 Small

on outer sphere is charged sphere
suspended inside a

e e

V, = L 2 charged spherical shell.
dne, R
-. Total potential on inner sphere
BN
4ne,lr R

Hence the potential difference is

T i | F_}_}
ARl drng, Lr R

So if g is positive, the potential of the inner sphere
will always be higher than that of the outer sphere. -
Now if the two spheres are connected by a conducting
wire, the charge g will flow entirely to the outer sphere,
irrespective of the charge Q already present on the
outer sphere. In fact this is true for conductors of any
shape. '
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