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2. Methodology. Before I designed an experimental setup, I had started with theo-

retical considerations based on extensive literature work [4]. I identified several poten-

tial influences that may differentiate the physical reality of my real chaotic pendulum 

from the mathematical model of an idealized one and made a distinction between fac-

tors that can be eliminated by modifying the experimental setup and factors that are a 

fundamental part of our physical reality. I decided to investigate friction as the most 

fundamental aspect and chose a system that enables friction to be quantified and varied. 

Evidence-based conclusions can consequently be drawn from the data only for the spe-

cific system under study. Although a general significance for related systems seems 

likely, it cannot be proven methodically. 

2.a Dimensionality Problem. The choice of the chaos pendulum as research object 

was the result of a selection process and is very advantageous, especially because of 

its mathematical simplicity [5]. However, it also carries one decisive disadvantage: For 

the dimension D of the phase space of a system with 𝑛 degrees of freedom the follow-

ing applies [6]: 

𝐷 = 2𝑛 

A chaos pendulum has two degrees of  

freedom; hence its phase space is four-dimensional [7]. However, illustrating four-di-

mensional phase spaces is a significant mathematic challenge that I was unable to over-

come. 

The Ergodic Theorem at the Chaotic Pendulum 
by Jason von Juterczenka (15)1 

1Student Research Center of Northern Hesse, Department of Physics, Kassel 

1. Introduction. Ergodicity is a property associated with chaotic behavior which lies in 

the fact that the trajectory of the system in phase space comes arbitrarily close to any ener-

getically possible point – that´s also the key statement of the Ergodic Theorem. In this paper, 

I will present my research with a chaotic pendulum on following question: Do factors of 

physical reality affect the validity of the Ergodic Theorem and what would be the conse-

quences of limited validity? I do not question the mathematical validity or ask about its va-

lidity range [1-3] but raise the question how the theorem can be applied within its validity 

range or is influenced by friction – the most relevant physical factor.  

All-Russian competition of youth research 

works named after V. I. Vernadsky 



 2 

2.b Modification of the Setup. To solve this problem, I modified the chaos pendulum. 

I installed a stepper motor that drives the top pendulum at a constant speed. In this way, 

the feedback between the pendulums is suppressed, whereby the upper angle and the 

associated angular velocity become irrelevant.  

 

Therefore, the pendulum has only one degree of freedom and consequently a two-di-

mensional phase space anymore. The still working tension forces are sufficient to allow 

feedback and chaotic behavior [8], but have a 

small enough effect on the behavior of the inner 

pendulum so that its angle and angular velocity in 

phase space can be neglected. For evaluation, I at-

tached a colored point to the second pendulum and 

measured its position using a video camera and the 

optical evaluation program Viana. Using simple 

trigonometry [9], I was able to calculate the angle 

from the positions: 

         tan(𝛼) =
𝑦

𝑥
 .   

I just had to subtract the previous angle from the current and then divide the result by 

the time step to get an angular velocity [10] which I plotted against the angle and got a 

phase space [11]. I studied common literature on phase spaces [12] to interpret them 

correctly. 

2.c Variation of friction. Instead of using oils of different viscosity to change the fric-

tion, I opted for the simpler method of varying the air resistance by mounting faces of 

different sizes in the direction of movement of the pendulum [13]. However, it was not 

certain whether there was a proportionality between the size of the face and the result-

ing damping. Therefore, I used a mathematical-experimental method to define a uni-

versal friction factor. First, I deflected the pendulum and, depending on the area, re-

ceived a more or less strongly damped sinusoidal oscillation. The damping factor can 

be derived from the steepness of the line that results when the respective amplitudes 

FIGURE 1: Chaos Pendulum Scheme 
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are connected [14]. All necessary is inserting the high amplitude at the beginning for 

𝐴0, the time for 𝑡 and the lower amplitude after 𝑡 for 𝐴𝑡 in 

𝐴𝑡 = 𝐴0 ∙ 𝑒−𝑘∗𝑡. 

Term rewriting was first used to divide  

by 𝐴0, whereby I obtained  

𝐴𝑡

𝐴0
= 𝑒−𝑘∙𝑡, 

then I calculated the natural logarithm by what 𝑒 was omitted and I got the 

damping factor1: 

ln (
𝐴𝑡

𝐴0
) = −𝑘 ∙ 𝑡. 

I repeated this procedure for faces of different sizes and applied the various damping 

factors to the surfaces. It was clear: friction is equivalent to damping, there is clearly a 

proportionality. I was now able to vary friction in a reproducible manner.  

 

3. Measuring Results.  

Finally, I started with a one-year series of measurements. 

3.a Investigation of friction. Without artificially increasing the friction, I took ad-

vantage of the friction between the pendulum rods and observed its effect over long 

periods of time, on the order of a few days. 

 

 

 

 

 

 

 

 

From these diagrams it can be concluded that friction slows down the chaotic behavior 

by causing the transition to a periodic state. An artificial increase in friction speeds up 

 
1 The unit of -k is 1/s. 

FIGURE 2: First (l.) and last (r.) 100 measuring points plotted in phase space 
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this process, an increase in frequency slows it down. This result confirmed my conjec-

ture. However, there was also a surprise, because with higher friction, sometimes there 

was suddenly no more chaos at all. Only when I increased the frequency further did 

chaos scenario occur again. Apparently, friction affects chaos in two different ways: 

i) It leads to a faster transition to a periodic state.  

ii) It increases the Chaos Entry Frequency (CEF). 

This realization was unexpected, but it got even stranger: Although the damping is 

nearly proportional to the friction; the CEF is in no way proportional to the damping. 

 

 

 

 

 

 

 

 

 

It turns out that the friction initially acts quite proportionally, but there is an area in 

which the friction has a very sensitive effect on the CEF. Then CEF frequency remains 

on a plateau. 

3.b Interpretation of the results. What does this mean for the validity of the Ergodic 

Theorem? Because friction slows down chaotic behavior, the Ergodic Theorem is usu-

ally not fulfilled, after all, the half-life of chaos is so limited that never every energeti-

cally possible point is passed. However, since the influence of friction does not grow 

forever, but at some point, reaches a maximum value, whereas the excitation frequency 

can be increased further, the Ergodic Theorem is at least approximately fulfilled at high 

frequencies. Certainly, there is no unrestricted validity, the theorem is a mathematical 

model with limited applicability on my pendulum. 

 

FIGURE 3: CEF plotted against damping factor 
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4. Consequences of the Results. Now I turn to the second part of the question 

posed at the beginning. Which consequences have the present results? 

For this purpose, I delt with limit cycles. A limit cycle is an isolated periodic solution 

of a chaotic system [15], it is characterized by the fact that neighboring trajectories 

diverge or converge [16].  I described a limit cycle as an attractor in phase space [17] 

that does not pull a system toward a point-like valley of energy, but rather forces it into 

a particular cycle that it always strives to break, even when work is expended to break 

it – the counterpart, so to speak, of chaotic behavior [18]. However, if it depends on 

the distance of the starting point of the trajectory from the limit cycle whether the sys-

tem diverges or converges, and the distance lies on both the x-axis and the y-axis and 

thus represents a volume of energy in phase space, the further behavior of the system 

would show sensitive dependence on the initial conditions (SDIC) [19]. Thus, I have 

provided a new limit-cycle oriented approach to classical chaos theory. However, there 

must be criteria which determine the further evolution. A “zone of attraction” cannot 

have a spherical shape [20], I saw two options for its character: 

i) A torus (“doughnut”): In this case, total energy difference is decisive, the maxi-

mum allowed difference would equal torus´ radius.  

ii) A fractal: In this case, SDIC could appear because diverging and converging 

points could exist with an infinitesimal distance to each other [21]. 

However, if there are areas near the limit cycle where the cycle is broken and the Er-

godic Theorem is fulfilled at high frequencies (see 3b), the trajectory will hit an unsta-

ble point at t→∞ and decay. If it runs exactly back into itself and does not hit an unsta-

ble point, it is generally unstable because any perturbation grows exponentially [12]. 

Limit cycles could inevitable be unstable. On the other hand, fractals could indeed 

generate "real", i. e. indeterministic, quantum mechanical randomness, since uncer-

tainty would occur according to Heisenberg´s uncertainty principle on extremely small 

scales – in this case, SDIC would not occur. Maybe even phase space itself is fractal 𝐷 

will then not necessarily have to be a natural, but also a 

a decimal number, which is calculated as similarity dimension: 
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𝐷 = −
log(𝑁)

log(𝜀)
, 

if 𝑁 is the number of versions of the set itself, reduced by factor ε, of which it consists 

[22]. This would allow to interpret uncertainty effects since angle and angular velocity 

cannot be completely mapped in a less than four-dimensional phase space. However, 

this is currently a hypothesis and difficult to verify experimentally because uncertainty 

manifests itself merely by measurement scatter. Furthermore, occurring disturbances 

rules verification by means of my experimental setup out. I therefore started to design 

a scheme for a program based on C++. 

 

5. Creation of a Simulation.  

It works according to the following principle: For the variables location (𝑥;  𝑦) and 

velocity (𝑣𝑥;  𝑣𝑦) initial values are entered as input. From these and the underlying 

physical laws, a value for the resulting force 𝐹 and acceleration 𝑎 is obtained, which is 

then divided into the components of the velocity change in x- and y-direction (∆𝑣𝑥; 

∆𝑣𝑦). These can then be used to calculate the new velocities (𝑣𝑥𝑛+1; 𝑣𝑦𝑛+1) by simple 

addition, which is used to determine the new positions (𝑥𝑛+1;  𝑦𝑛+1) at the end. These 

then serve as initial values for the next iteration. After each iteration in the time span 

∆𝑡, which was also specified at the beginning, the positions should also be plotted, so 

that I can track the position of the point in real time. This is of elementary importance 

for the methodology of data collection (see Fig.4). 

 

 

 

 

 

 

 

 

 FIGURE 4: Scheme of my Program 
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5.a Two-Body-Problem. The scheme of my simulation (see Fig.4) can be used to 

model numerous physical systems. I was faced with the problem that I had to verify 

my simulation, but this is not possible with my simulated system, because I needed the 

already verified simulation to be able to solve it at all. Therefore, I started to apply it 

to an already known problem, the orbit of the moon around earth. For this I needed 

only a handful of functions, I calculated 

𝑣𝑥𝑡 = 𝑣𝑥0 − 𝐺 ∙ 𝑚⨁ ∙
𝑥

𝑟3∗∆𝑡
. 

On the same principle I calculated also 𝑣𝑦𝑡, then 𝑥𝑡 could be calculated by 

𝑥𝑡 = 𝑥0 + 𝑣𝑥 ∙ ∆𝑡 

Analogously also 𝑦𝑡. The orbital radius 

𝑟 of the moon is valid according to the 

Pythagorean theorem 

 𝑟 = √𝑥2 + 𝑦2. 

The entered start values correspond to 

the position of the moon in its perigee.2 An optimal value for ∆𝑡 can be obtained by 

variation, I chose ∆𝑡 = 100 𝑠. Then I applied the simulation to another two-body prob-

lem, the orbit of the Earth around the Sun. For this I had just to insert new values: 

𝑣𝑥𝑡 = 𝑣𝑥0 − 𝐺 ∙ 𝑚⊙ ∙
𝑥

𝑟3∆𝑡
, 

analogously for 𝑣𝑦𝑡. Then I converted parameters to AU3 for receiving more manage-

able numbers and Fig.5 resulted. 

 

 

 

 

 

 

 
2 The data was converted to meters by multiplying by 103, since 𝐺 is written in meters. 

 
3 1 AU (Astronomical Unit) ≙ 

 149.597.870.700 m 

FIGURE 5: Two-Body-

Problems Earth-Moon 

and Sun-Earth plotted in 

local space 
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5.b Three-Body-Problem. Far more difficult is the application to a three-body prob-

lem, but here nonlinearity occurs which my program needs to be applicable to my pen-

dulum [24]. I simulated the movement of Sun, Earth and Mars under mutual attraction. 

The masses and orbital radii of every other body must be taken into account when 

calculating 𝑣𝑥𝑡 and 𝑣𝑦𝑡 from the superposition of forces [25], e. g. for 𝑣𝑥⨁: 

𝑣𝑥𝑡 = 𝑣𝑥 − 𝐺 ∙ 𝑚⊙ ∙
𝑥

𝑟⊙
3 ∆𝑡

− 𝐺 ∙ 𝑚♂ ∙
𝑥

𝑟♂
3 ∆𝑡

 

By factoring out, I obtain: 

𝑣𝑥𝑡 = 𝑣𝑥 − [𝐺
𝑥

∆𝑡
 (

𝑚♂

𝑟♂
3

+
𝑚⊙

𝑟⊙
3

)] 

Same procedure is to be followed with the y-component4. Fig.6 resulted which shows 

nonlinearities for the first time.  

 

 

 

 

 

 

 

 

Afterwards, I put the origin on the position of earth by coordinate transformation 

whereby opposition loops received which Mars relative to Earth carries out (see. Fig.7) 

[26]. 

 

 

 

 

 

 
4 In this case, 𝑟 is the distance to earth, not to the origin. Its calculated with |𝑑⨁ − 𝑑♂|, if 𝑑 is the distance to the 

origin. 

FIGURE 6: Non-linear three-body problem Sun-Earth-Mars plotted in local space 

FIGURE 7: Non-linear three-body problem Sun-Earth-

Mars with coordinate´s origin on the position of Earth 
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5.c Circular Motion. A circular motion is simpler than an astronomical three-body 

problem, a “one-body problem” so to speak, but it is also much more similar to my 

chaos pendulum and therefore relevant. One difference to the previous simulations is 

that I now worked with vectors and matrices instead of positions and velocities.  From 

the angle of rotation of the pendulum I generated a rotation matrix, which I multiplied 

with the location vector [27], whereby it changes and generates the new position: 

(
𝑥𝑡

𝑦𝑡
) = (

cos (𝛼) −sin (𝛼)

sin (𝛼) −cos (𝛼)
) ∙ (

𝑥0

𝑦0
) 

I checked the result of my simulation by calculating the velocities from the position 

vectors and plotting their x- and y-components separately. Thereby I got the typical 

harmonic oscillations, for 𝑣𝑥 a sine curve, for 𝑣𝑦 a cosine curve [28]. Thus, I could 

verify the correctness of my software also here several times. 

 

 

 

5.d Coupled Circular Motion. Subsequently, I simulated also the coupled second 

pendulum by setting the origin of the second pendulum to 𝑥𝑡 and 𝑦𝑡 of the first pendu-

lum. This allowed me to generate coupled circular motions – but since there are no 

forces acting yet, the feedbacks and thus the chaos remain absent (see Fig. 8, 9, 10) 

[29]. However, regularities could be established, e. g. the number of loops within the 

path of the first pendulum equals the quotient of the excitation frequencies of the two 

pendulums minus 1. 

FIGURE 8: Damped circular 

motions at 
𝑓2

𝑓1
= 1  

FIGURE 9: Damped circu-

lar motions at 
𝑓2

𝑓1
= 4 

FIGURE 10: Damped cir-

cular motions at 
𝑓2

𝑓1
= 10 
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5.e Damped Circular Motion. One more important step to simulate my system was 

introduce friction to be able to determine the influence of friction on chaos later. I  

inserted factor 𝜇 for linear friction when calculating the angular velocity of the second 

pendulum [30]: 

5.e Damped Circular Motion. One  

more important step to simulate my system was introduce friction to be able to deter-

mine the influence of friction on chaos later. I inserted factor 𝜇 for linear friction when 

calculating the angular velocity of the second pendulum [30]: 

𝜔2𝑡
=  𝜔20

− 𝜇 ∙ 𝜔20
 

I first began to investigate the influence of friction on force-less coupled circular mo-

tions. Thereby it could be observed that the friction slows down the movement in a 

similar way as the chaos, and the two pendulums behave increasingly like one at higher 

friction.  

 

 

The higher the friction is, the faster the coupled circular motions become a simple cir-

cle. 

I wondered whether the time until the single circular motion occurs is proportional to 

the friction and tried to answer this question with my simulation. I simulated trajecto-

ries with varied 𝜇 and noted after how many iterations a circular motion applied. The 

result was a curve with two asymptotes approaching the axes: Thus, for a friction of 0, 

it would take an infinite number of iterations; for a friction of 1, it is a single pendulum 

(see Fig. 14) [31].  

FIGURE 11: Damped circular 

motions at 𝜇 = 0.1 
FIGURE 12: Damped cir-

cular motions at 𝜇 = 0.05 
FIGURE 13: Damped circular 

motions at 𝜇 = 0.01 
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This also is senseful from the scientific perspective. I made my measurements more 

precise by performing a regression to a first-degree hyperbola and linearizing the curve 

[32]. 

 

 

As expected, I received an approximate straight line. The determination coefficient 𝑅2 

of 0.997 is surprisingly high for a manual measurement. The antiproportionality factor 

is 11.4. 

5.f Detection of SDIC with Lyapunov 

exponent. I developed a method based on the Lyapunov exponent to find out if my 

program was already subject to SDIC. Lyapunov exponent indicates the speed with 

which two initial states move away from each other within a certain period of time in 

phase space [33]. One Lyapunov exponent is allotted to each phase space dimension. 

The exponent 𝜆 is defined by 

𝐷(𝑡) ≈ 𝐷02𝜆𝑡. 

Resolved by Lyapunov exponent 𝜆 I got 

FIGURE 14: Damped circular mo-

tions at 𝜇 = 0.01 

FIGURE 15: Regression of simulated 

data to a first-degree hyperbola 
FIGURE 16: Regression of linearized 

simulated data to a straight 
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𝜆 ≈
𝐷(𝑡) − log(𝐷0)

𝑡 ∙ log(2)
. 

𝐷(𝑡) in this case is the magnitude of the difference between the two final states after 

time period 𝑡 [34]. Its defined by 

𝐷(𝑡) = |𝑎𝑡 − 𝑏𝑡|, 

Consequently, 𝐷0 is defined as 

𝐷0 = |𝑎0 − 𝑏0|. 

Thus, all I need to do is compare initial and final states in this way, and consider the 

time interval, to unambiguously check my simulation for SDIC. 

6. Conclusion. At this point, I highlight my research results and distinguish between 

proven and conjectural results. The following results can be verified: 

i) At my pendulum, chaos is frequency-dependent. (see 2.c) 

ii) At my pendulum, chaos is frequency-dependent. (see 2.c) 

iii) Friction shifts the CEF backward. (see 3.b) 

iv) Friction leads to a transition to periodicity and breaks ergodicity. (see 3.b) 

v) At high frequencies, friction loses its influence and allows  

partial ergodicity. (see 3.a) 

The following, however, is still an open question for which there are at least two dif-

ferent possible explanations, which I 

am currently pursuing (see 4.b): 

i) Limit cycles could be unstable or the phase space has a fractal dimension. 

(see 4.a to 5) 

The research question posed at the beginning can be answered comprehensively with 

these results: In the case of my chaos pendulum, the ergodic theorem is not unrestrict-

edly valid. At high frequencies it can potentially have approximate validity. However, 

the question raised in 4.a cannot yet be answered from the available data. It is not pos-

sible to infer the nature of the selection between diverging and converging trajectories, 

but the program in development has demonstrated its agreement with physical reality 

at various stages of development. 
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