
Analysis 33, 293–307 (2013) / DOI 10.1524/anly.2013.1217
c� Oldenbourg Wissenschaftsverlag, München 2013

Tight wavelet frames on local fields
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Summary: In this paper, some algorithms for constructing tight wavelet frames on local fields
using the unitary extension principles are suggested. We present a sufficient condition for finite
number of functions to form a tight wavelet frame and establish general principles for constructing
tight wavelet frames on local fields.

1 Introduction
Tight wavelet frames are different from the orthonormal wavelets because of redundancy.
By sacrificing orthonormality and allowing redundancy, the tight wavelet frames become
much easier to construct than the orthonormal wavelets. Tight wavelet frames provide
representations of signals and images in applications, where redundancy of the represen-
tation is preferred and the perfect reconstruction property of the associated filter bank
algorithm, as in the case of orthonormal wavelets, is kept (see [10]). The main tools for
construction and characterization of wavelet frames are the several extension principles,
the unitary extension principle (UEP) and oblique extension principle (OEP) as well as
their generalized versions, the mixed unitary extension principle (MUEP) and the mixed
oblique extension principle (MOEP). They give sufficient conditions for constructing
tight and dual wavelet frames for any given refinable function which generates a mul-
tiresolution analysis (MRA). These essential methods were firstly introduced by Ron and
Shen in [19, 20] and in the fundamental work of Daubechies et al. [8] for scalar refinable
functions f 2L2.Rd /. The resulting tight wavelet frames are based on a multiresolution
analysis, and the generators are often called mother framelets. The theory of tight wavelet
frames has been extensively studied and well developed over the recent years. To mention
only a few references on tight wavelet frames, the reader is referred to [4, 5, 15, 17] and
many references therein.

In recent years there has been a considerable interest in the problem of construct-
ing wavelet bases on locally compact Abelian groups, for example, Dahlke introduced
multiresolution analysis and wavelets on locally compact Abelian groups [6], Lang [14]
constructed compactly supported orthogonal wavelets on the locally compact Cantor
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dyadic group C by following the procedure of Daubechies [7] (or see also [9]) via scaling
filters and these wavelets turn out to be certain lacunary Walsh series on the real line. Later
on, Farkov [11] extended the results of Lang [14] on the wavelet analysis on the Cantor
dyadic group C to the locally compact Abelian group Gp which is defined for an integer
p � 2 and coincides with C when p D 2. Concerning the construction of wavelets on
half-line RC, Farkov [12] has given the general construction of all compactly supported
orthogonalp-wavelets inL2.RC/ and proved necessary and sufficient conditions for scal-
ing filters with pn many terms .p;n� 2/ to generate ap-MRA analysis inL2.RC/. These
studies were continued by Shah and Debnath in [21, 22] where they have given some new
algorithms for constructing the corresponding wavelet frames and wavelet packets on the
positive half-lineRC. On the other hand, R.L. Benedetto and J.J. Benedetto [3] developed
a wavelet theory for local fields and related groups. Jiang et al. [13] pointed out a method
for constructing orthogonal wavelets on local field K with a constant generating sequence
and derived necessary and sufficient conditions for a solution of the refinement equation
to generate a multiresolution analysis of L2.K/. Subsequently, the tight wavelet frames
on local fields were constructed by Li and Jiang in [16]. They have established necessary
condition and sufficient conditions for tight wavelet frame on local fields in frequency
domain. Recently, Behera and Jahan [1] have constructed wavelet packets and wavelet
frame packets on local field K of positive characteristic and show how to construct an
orthonormal basis from a Riesz basis. Further, they have given the characterization of
scaling functions associated with given multiresolution analysis of positive characteristic
on local field K in [2].

Although there are many results for tight wavelet frames on R
d using extension

principles, the counterparts on local field are not yet reported. So this paper is concerned
with tight wavelet frames on local field K using unitary extension principle. Therefore,
the main aim of this work is to develop a constructive procedure for constructing tight
wavelet frames on local field K of positive characteristic by following the procedure of
Daubechies et al. [8] via extension principles.

This paper is structured as follows. In Section 2, we discuss some preliminary facts
about local fields and introduce the concept of MRA based wavelet frames on local field
K of positive characteristic. In Section 3, we present a general construction scheme for
tight wavelet frames in L2.K/ in terms of extension principles.

2 Preliminaries on local fields

Let K be a field and a topological space. Then K is called a local field if both K
C

and K
� are locally compact Abelian groups, where K

C and K
� denote the additive and

multiplicative groups of K, respectively. If K is any field and is endowed with the discrete
topology, then K is a local field. Further, if K is connected, then K is either R or C.
If K is not connected, then it is totally disconnected. Hence by a local field, we mean
a field K which is locally compact, non-discrete and totally disconnected. The p-adic
fields are examples of local fields. More details are referred to [18] and [23]. In the rest
of this paper, we use N;N0 and Z to denote the sets of natural, non-negative integers and
integers, respectively.
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Let K be a fixed local field. Then there is an integer q D pr , where p is a fixed
prime element of K and r is a positive integer, and a norm j:j on K such that for all
x 2 K we have jxj � 0 and for each x 2 K n ¹0º we get jxj D qk for some integer k.
This norm is non-Archimedean, that is jxC yj � max ¹jxj; jyjº for all x;y 2 K and
jxCyj D max¹jxj; jyjº whenever jxj 6D jyj. Let dx be the Haar measure on the locally
compact, topological group .K;C/. This measure is normalized so that

R
D dx D 1, where

D D ¹x 2 K W jxj � 1º is the ring of integers in K. Define B D ¹x 2 K W jxj < 1º. The set
B is called the prime ideal in K. The prime ideal in K is the unique maximal ideal in D
and hence as result B is both principal and prime. Therefore, for such an ideal B in D, we
have B D hpi D pD:

Let D� D D nB D ¹x 2 K W jxj D 1º. Then, it is easy to verify that D� is a group
of units in K

� and if x 6D 0, then we may write x D pkx0; x0 2 D�: Moreover, each
Bk D pkD D ®

x 2 K W jxj< q�k
¯

is a compact subgroup of K
C and usually known

as the fractional ideals of K
C (see [18]). Let U D ¹ai ºq�1

iD0 be any fixed full set of
coset representatives of B in D, then every element x 2 K can be expressed uniquely
as x D P1

`Dk c`p
` with c` 2 U : Let � be a fixed character on K

C that is trivial on
D but is non-trivial on B�1. Therefore, � is constant on cosets of D so if y 2 Bk, then
�y.x/D�.yx/;x 2K:Suppose that�u is any character onKC, then clearly the restriction
�ujD is also a character on D. Therefore, if ¹u.n/ W n 2 N0º is a complete list of distinct
coset representative of D in K

C, then it is proved in [23] that the set
®
�u.n/ W n 2 N0

¯
of

distinct characters on D is a complete orthonormal system on D.

We now impose a natural order on the sequence ¹u.n/ºn2N0
. SinceD=B ŠGF.q/D

� , where GF.q/ is a c-dimensional vector space over the field GF.p/ (see [23]). We
choose a set ¹1D �0;�1;�2; : : : ;�c�1º � D� such that span ¹1D �0;�1;�2; : : : ;�c�1º Š
GF.q/. For n 2 N0 such that

0� n < q; nD a0 Ca1pC�� �Cac�1p
c�1; 0� ak < p and k D 0;1; : : : ;c�1;

we define
u.n/D .a0 Ca1�1 C�� �Cac�1�c�1/p

�1:

Also, for nD b0 Cb1qC�� �Cbsq
s ;n� 0; 0� bk < q; we set

u.n/D u.b0/Cp�1u.b1/C�� �Cp�su.bs/:

Then, it is easy to verify that (see [23])

¹u.k/ W k 2 N0º D ¹�u.k/ W k 2 N0º ;
¹u.k/Cu.`/ W k 2 N0º D ¹u.k/ W k 2 N0º ; for ` 2 N0

and u.n/ D 0 , n D 0: Further, hereafter we will denote �u.n/ by �n;n � 0: We also
denote the test function space on K by �, i.e., each function f in � is a finite linear
combination of functions of the form 1k.x�h/;h2K;k 2Z, where 1k is the characteristic
function of Bk. Then, it is clear that� is dense in Lp.K/;1� p <1, and each function
in � is of compact support and so is its Fourier transform.
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The Fourier transform of a function f 2 L1.K/ is defined by

Of .�/D
Z

K

f .x/�� .x/dx:

Note that
Of .�/D

Z

K

f .x/�� .x/dx D
Z

K

f .x/�.��x/dx:
The properties of the Fourier transform on the local field K are quite similar to those

of the Fourier analysis on the real line (see [18,23]). In particular, if f 2L1.K/\L2.K/,
then Of 2 L2.K/ and

k Of k2 D kf k2:

For any function ' 2L2.K/, let V0 be the closed shift invariant space generated by®
'
�
x�u.k/� W k 2 Z

C¯ and Vj D ®
'.p�j :/ W ' 2 V0

¯
; j 2 Z. Then, it is claimed in [13]

that the closed subspaces
®
Vj

¯
j 2Z forms an MRA inL2.K/. The generator ' of the MRA

is known as a scaling function or a refinable function. Recall that an MRA is a family of
closed subspaces

®
Vj

¯
j 2Z of L2.K/ that satisfies: (i) Vj � Vj C1; j 2 Z; (ii)

S
j 2ZVj is

dense in L2.K/ and (iii)
T

j 2ZVj D ¹0º (see [3]).
For given ‰ WD ¹ 1; : : : ; Lº � L2.K/, define the wavelet system

X.‰/ WD
°
 `;j;k W 1� ` � LIj 2 Z;k 2 N0

±
(2.1)

where  `
j;k

D qj=2 `.pj :�u.k//: The wavelet system X.‰/ is called a wavelet frame,

if there exist positive numbers 0 < A � B <1 such that for all f 2L2.K/

Akf k2 �
LX

`D1

X

j 2Z

X

k2N0

jhf; `;j;kij2 � Bkf k2: (2.2)

The largest constant A and the smallest constant B satisfying .2:2/ are called the
lower and upper wavelet frame bound, respectively. A wavelet frame is a tight wavelet
frame if A and B are chosen so that AD B and then the set ‰ WD ¹ 1; : : : ; Lº is called
a set of generators for the corresponding tight wavelet frame. Furthermore, the wavelet
frame is called a Parseval wavelet frame if AD B D 1, i.e.,

LX

`D1

X

j 2Z

X

k2N0

jhf; `;j;kij2 D kf k2; 8 f 2 L2.K/ (2.3)

and in this case, every function f 2L2.K/ can be written as

f .x/D
LX

`D1

X

j 2Z

X

k2N0

hf; `;j;ki `;j;k.x/:

A finite family ‰ WD ¹ 1; : : : ; Lº � L2.K/ that satisfies (2.3) is called an MRA
tight wavelet frame, with frame bound equal to 1, associated with refinable function '
that generates the subspaces

®
Vj

¯
j 2Z of L2.K/ in the sense of increasing property (i) of

the MRA, if ‰ � V1.
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In order to obtain a fast wavelet frame transform, tight wavelet frames are generally
derived from refinable functions via a multiresolution analysis. We say that ' 2L2.K/ is
a refinable function, if it satisfies an equation of the type

'.x/D p
q
X

k2N0

hk '
�
p�1x�u.k/� (2.4)

for some ¹hk W k 2 N0º 2 l2.N0/:The functional equation .2:4/ is known as the refinement
equation. The Fourier transform of (2.4) yields

O' .�/Dm0.p�/ O'.p�/; (2.5)

where

m0.�/D 1p
q

X

k2N0

hk �k.�/; (2.6)

is an integral-periodic function in L2.D/ and is often called the refinement symbol of
'. Observe that �k.0/ D O'.0/ D 1. Therefore by letting � D 0 in (2.5) and (2.6), we
obtain

P
k2N0

hk D 1. Further, it is proved in [1, Theorem 5.1] that a function ' 2L2.K/

generates an MRA in L2.K/ if and only if
X

k2N0

ˇ
ˇ O'��Cu.k/

�ˇˇ2 D 1; for a:e: �2 D; (2.7)

and
lim

j !1
ˇ
ˇ O'.pj �/

ˇ
ˇD 1; for a:e: � 2 K: (2.8)

Let the refinable function ' 2L2.K/ generates an MRA
®
Vj W j 2 Z

¯
ofL2.K/ and

‰ WD ¹ 1; : : : ; Lº � V1, then

 ` .x/D p
q
X

k2N0

h`
k '
�
p�1x�u.k/�; `D 1; : : : ;L: (2.9)

The Fourier transform of (2.9) gives

O ` .�/Dm`.p�/ O'.p�/; (2.10)

where

m`.�/D 1p
q

X

k2N0

h`
k �k.�/; `D 1; : : : ;L (2.11)

are the integral-periodic function in L2.D/ and are called the framelet symbols or
wavelet masks. For notational convenience, refinement mask together with wavelet masks
¹m0;m1; : : : ;mLº is also called combined MRA masks (see [8]).

With m`.�/;`D 0;1; : : : ;L as the wavelet masks, we formulate the matrix

M.�/ (2.12)

D

0

B
B
B
@

m0

�
p�Cpu.0/

�
m1

�
�Cpu.0/

� � � � mL

�
p�Cpu.0/

�

m0

�
p�Cpu.1/

�
m1

�
p�Cpu.1/

� � � � mL

�
p�Cpu.1/

�

:::
:::

: : :
:::

m0

�
p�Cpu.q�1/� m1

�
p�Cpu.q�1/� � � � mL

�
p�Cpu.q�1/�

1

C
C
C
A
;
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and it is well-known (see [8]) that for constructing tight frames via multiresolution analysis
the matrix M.�/ plays an important role. Infact, the equality in

M.�/M�.�/D Iq; for a:e: � 2 D (2.13)

is equivalent to that for any function f 2 L2.K/, there exists exact formulae of decom-
position and reconstruction.

3 Tight wavelet frames on local fieldK

The following theorem, the main result of our paper, shows that a unitary matrix leads to
a tight wavelet frame on local field K.

Theorem 3.1 Suppose that the refinable function ' and the framelet symbols m0;m1;

: : : ;mL satisfy (2.5)–(2.10). Furthermore, if the matrix M.�/ satisfy (2.13), then the
wavelet system X.‰/ given by (2.1) is a tight wavelet frame for L2.K/ with frame
bound 1.

We split the proof of Theorem 3.1 into several lemmas.

Lemma 3.2 If the framelet symbolsm`;`D 0;1; : : : ;L satisfy the condition (2.13). Then
for any � 2 K, we have

q�1X

kD0

jm` .p�Cpu.k//j2 � 1; for `D 0;1; : : : ;L: (3.1)

Proof: Without the lose of generality, it suffices to prove inequality (3.1) only for `D 0.
Let

M0.�/ (3.2)

D

0

B
B
B
B
B
B
B
B
B
@

m1

�
p�Cpu.0/

�
m2

�
p�Cpu.0/

�
: : : mL

�
p�Cpu.0/

�

m1

�
p�Cpu.1/

�
m2

�
p�Cpu.1/

�
: : : mL

�
p�Cpu.1/

�

:::
:::

: : :
:::

m1

�
p�Cpu.q�1/� m2

�
p�Cpu.q�1/� : : : mL

�
p�Cpu.q�1/�

1

C
C
C
C
C
C
C
C
C
A

:

Taking ˛ D
�
m0

�
p� Cpu.0/

�
;m0

�
p� Cpu.1/

�
; : : : ;m0

�
p�Cpu.q � 1/�

�T

, we

can rewrite (2.13) as

M.�/D M0.�/M�
0.�/D Iq �˛˛T D .ˇ1;ˇ2; : : : ;ˇq/; (3.3)
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where

ˇ1 D
�
1� ˇˇm0

�
p�Cpu.0/

�ˇˇ2 ; �m0

�
p�Cpu.1/

�
m0

�
p�Cpu.0/

�
;

: : : ;�m0

�
p�Cpu.q�1/�m0

�
p�Cpu.0/

��T

ˇ2 D
�

�m0

�
p�Cpu.0/

�
m0

�
p�Cpu.1/

�
; 1� ˇˇm0

�
p�Cpu.1/

�ˇˇ2 ;

: : : ;�m0

�
p�Cpu.q�1/�m0

�
p�Cpu.1/

��T

:::

ˇq D
�

�m0

�
p�Cpu.0/

�
m0

�
p�Cpu.q�1/�;

�m0

�
p�Cpu.1/

�
m0

�
p�Cpu.q�1/�;

: : : ;1� ˇˇm0

�
p�Cpu.q�1/�ˇˇ2

�T

:

The q-eigenvalues of the Hermitian matrix M.�/ are given by

�1.�/D �2.�/D �� � D �q�1.�/D 1; �q.�/D 1�
q�1X

kD0

ˇ
ˇm0

�
p�Cpu.k/

�ˇˇ2 : (3.4)

Since M.�/ is a positive definite matrix, hence �q.�/ � 0, which is (3.1) for `D 0.
This completes the proof. �

We further assume that:

q�1X

kD0

ˇ
ˇm0

�
p�Cpu.k/

�ˇˇ2 � 1; a:e: (3.5)

and M.�/ is as in (3.3) with q-eigenvalues given by (3.4), then the unit eigen-vectors of
the matrix M.�/ can be represented by

ı1 D 1

�1

�
�m0

�
p�Cpu.1/

�
;�m0

�
p�Cpu.0/

�
; 0; : : : ;0

�T

ık D 1

�k

�
�m0.p�Cpu.0/

�
m0

�
p�Cpu.k/

�
; : : : ;

�m0

�
p�Cpu.k�1/�m0

�
p�Cpu.k/

�
;

k�1X

tD0

jm0

�
p�Cpu.t/

�j2; 0; : : : ;0
�T

; k D 2;3; : : : ;q�1;

:::

ıq D 1

�q

�
m0

�
p�Cpu.0/

�
;m0

�
p�Cpu.1/

�
; : : : ;m0

�
p�Cpu.q�1/�

�T
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300 Shah – Debnath

where

�2
1 D ˇ

ˇm0

�
p�Cpu.0/

�ˇˇ2 C ˇ
ˇm0

�
p�Cpu.1/

�ˇˇ2 ;

�2
k D ˇ

ˇm0

�
p�Cpu.k/

�ˇˇ2
k�1X

tD0

ˇ
ˇm0

�
p�Cpu.t/

�ˇˇ2 C
 

k�1X

tD0

ˇ
ˇm0

�
p�Cpu.t/

�ˇˇ2
!2

;

k D 2; : : : ;q�1;
:::

�2
q D

q�1X

tD0

ˇ
ˇm0

�
p�Cpu.t/

�ˇˇ2 :

Thus, we have
M.�/D P.�/ƒ.�/P�.�/

where
P.�/D �

ı1;ı2; : : : ;ıq

�
; ƒ.�/D diag

�
�1;�2; : : : ;�q

�
: (3.6)

Using (2.8), (3.5) and the fact that O'.�/ is continuous at � D 0, it is easy to verify
that X

k2N0

ˇ
ˇ O'��Cu.k/

�ˇˇ2 � 1; a:e: � 2 D: (3.7)

Lemma 3.3 Let ' 2 L2.K/ be a refinable function with refinement mask m0.�/ such
that condition (3.5) is satisfied. Then, Pj D P

k2N0

ˇ
ˇhf;'j;kiˇˇ2 < 1, for any function

f 2 L2.K/ and

(i) lim
j !1Pj D kf k2I (ii) lim

j !�1Pj D 0

where 'j;k.x/D qj=2'
�
p�jx�u.k/�;j 2 Z;k 2 N0:

Proof: Implementation of Plancherel and Parseval formulae yields
X

k2N0

ˇ
ˇhf;'j;kiˇˇ2

D qj
X

k2N0

ˇ
ˇ
ˇ
ˇ

Z

K

Of .�/ O'.pj �/�k.p
j �/d�

ˇ
ˇ
ˇ
ˇ

2

D qj
X

k2N0

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

Z

B�j

2

4
X

n2N0

Of ��Cp�ju.n/
� O'�pj .�Cp�ju.n//

�
3

5�k.p
j �/d�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

D
Z

B�j

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

n2N0

Of ��Cp�ju.n/
� O'�pj .�Cp�ju.n//

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

d�

D kFj k2; (3.8)
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Tight wavelet frames on local fields 301

where

Fj .�/D
X

n2N0

Of ��Cp�ju.n/
� O'�pj .�Cp�ju.n//

�
:

Now let us introduce the following sequences of functions

Ogj .�/ D
´ Of .�/; if � 2 B�j ;

0; if � … B�j ;
hj D f �gj ; j 2 N0

Gj .�/ D
X

n2N0

Ogj

�
�Cp�ju.n/

� O'�pj .�Cp�ju.n//
�
;

Hj .�/ D
X

n2N0

Ohj

�
�Cp�ju.n/

� O'�pj .�Cp�ju.n//
�
:

It is obvious that as j ! 1; kGj k2 D k Of k2: Further, by (3.7), we have

kHj k2 D
Z

B�j

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

n2N0

Ohj

�
�Cp�ju.n/

� O'�pj .�Cp�ju.n//
�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

d�

�
Z

B�j

ˇ
ˇ
ˇ
X

n2N0

Ohj

�
�Cp�ju.n/

�ˇˇ
ˇ
2 X

n2N0

ˇ
ˇ O'�pj �Cu.n/

�ˇˇ2 d�

�
Z

B�j

ˇ
ˇ
ˇ
X

n2N0

Ohj

�
�Cp�ju.n/

�ˇˇ
ˇ
2

d�

� k Ohj k2 ! 0; as j ! 1; (3.9)

since

kGj k2 � kHj k2 � kFj k2 D kGj CHj k2 � kGj k2 CkHj k2;

It follows from (3.8) and (3.9) that

X

k2N0

ˇ
ˇhf;'j;kiˇˇ2 D kFj k2

2 ! k Of k2
2 D kf k2

2; as j ! 1:

Thus, relation (i) is proved.

In order to prove (ii), we consider

f1.x/D
´
f .x/; if x 2 B�1;

0; if x … B�1:

Brought to you by | Brown University Rockefeller Library
Authenticated

Download Date | 12/16/14 10:50 AM



302 Shah – Debnath

Clearly, f1 2 � and recall that the space � of all finite linear combinations of
functions of the form 1k.:� h/ is dense in L2.K/. Therefore, for an arbitrary " > 0
." < 1

q
/, we have kf �f1k2 < ". Since

X

k2N0

ˇ
ˇhf;'j;kiˇˇ2 D

X

k2N0

ˇ
ˇhf �f1;'j;ki Chf1;'j;kiˇˇ2

� q
X

k2N0

ˇ
ˇhf1;'j;kiˇˇ2 Cq

X

k2N0

ˇ
ˇhf �f1;'j;kiˇˇ2

� q
X

k2N0

ˇ
ˇhf1;'j;kiˇˇ2 Ckf �f1k2

� q
X

k2N0

ˇ
ˇhf1;'j;kiˇˇ2 C ":

Therefore, we need only to prove that

lim
j !�1

X

k2N0

ˇ
ˇhf1;'j;kiˇˇ2 D 0:

We have

X

k2N0

ˇ
ˇhf1;'j;kiˇˇ2 D

X

k2N0

ˇ
ˇ
ˇ
ˇ

Z

jxj�q

f .x/'j;k.x/dx

ˇ
ˇ
ˇ
ˇ

2

D
X

k2N0

ˇ
ˇ
ˇ
ˇ

Z

jxj�q

f .x/qj=2'
�
p�jx�u.k/�dx

ˇ
ˇ
ˇ
ˇ

2

� qj
X

k2N0

�Z

jxj�q

ˇ
ˇf .x/

ˇ
ˇ
ˇ
ˇ'
�
p�jx�u.k/�ˇˇdx

�2

� qj kf k2
X

k2N0

�Z

jxj�q

ˇ
ˇ'
�
p�jx�u.k/�ˇˇdx

�2

� qj kf k2
X

k2N0

q

Z

jxj�q

ˇ
ˇ'
�
p�jx�u.k/�ˇˇ2dx

D kf k2q
X

k2N0

Z

jyCu.k/j�qj C1

j'.y/j2dy

D kf k2q
X

k2N0

Z

�j;k

j'.y/j2dy

where �j;k D ®
y W jyCu.k/j � qj C1

¯
. Let �j D S

k2N0
�j;k . Therefore, it is easy to

verify that for sufficiently small j , the collection
®
�j;k W k 2 N0

¯
is a disjoint collection,
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Tight wavelet frames on local fields 303

since ¹u.k/ W k 2 N0º is a complete list of distinct coset representative of D in K and
¹u.k/ W k 2 N0º D ¹�u.k/ W k 2 N0º. Therefore, for j small enough, we have

X

k2N0

ˇ
ˇhf1;'j;kiˇˇ2 � kf k2q

X

k2N0

Z

�j

j'.y/j2dy

D kf k2q

Z

K

1�j
.y/j'.y/j2dy: (3.10)

Note that, if y 6D u.k/;k 2 N0, then 1�j
.y/! 0 as j ! �1: In fact, there exists

J 2Z such that 1�j
.y/D 0 if j < J: Then, by the application of Dominated Convergence

Theorem, the right hand side of (3.10) tends to 0 as j ! �1 and hence as a result, we
get the desired result, i.e., limj !�1Pj D 0: �

Lemma 3.4 If (2.13) holds, then for any f 2L2.K/ and J 2 Z, we have

LX

`D1

X

j 2Z

X

k2N0

ˇ
ˇhf; `;j;kiˇˇ2 D

X

k2N0

ˇ
ˇhf;'J;kiˇˇ2 C

LX

`D1

X

j �J

X

k2N0

ˇ
ˇhf; `;j;kiˇˇ2 <1: (3.11)

Proof: It follows from (2.13) that

LX

`D0

ˇ
ˇm`

�
p�Cpu.k/

�ˇˇ2 D 1; k D 0;1;2; : : : ;q�1

and for k1 6D k2; 0� k1;k2 � q�1;k1;k2 2 N0,

LX

`D0

m`

�
p�Cpu.k1/

�
m`

�
p�Cpu.k2/

�D 0: (3.12)

Let

�t D
X

k2N0

Of ��Cp�r�1u.k/C .t �1/p�r
� O'�prC1�Cu.k/C .t �1/p�; 1� t � q:

By analogy with (3.8), for any r 2 Z, we obtain

X

k2N0

ˇ
ˇhf;'r;kiˇˇ2 C

LX

`D1

X

k2N0

ˇ
ˇhf; `;r;kiˇˇ2

D
Z

B�r

ˇ
ˇ
X

k2N0

Of ��Cp�ru.k/
� O'�pr .�Cp�ru.k//

�ˇˇ2d�

C
LX

`D1

Z

B�r

ˇ
ˇ
X

k2N0

Of ��Cp�ru.k/
� O `

�
pr.�Cp�ru.k//

�ˇˇ2d�
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304 Shah – Debnath

D
LX

`D0

Z

B�r

ˇ
ˇ
ˇ
X

k2N0

Of ��Cp�ru.k/
�
m`

�
prC1.�Cp�ru.k//

�

� O'`

�
prC1.�Cp�ru.k//

�ˇˇ
ˇ
2

d�

D
qX

tD1

"
LX

`D0

Z

B�r

ˇ
ˇ�t m`

�
prC1�Cp.t �1/u.k/�ˇˇ2d�

#

C
qX

tD1

qX

sD1;t 6Ds

� LX

`D0

Z

B�r

�tm`

�
prC1�Cp.t �1/u.k/� �s

�m`

�
prC1�Cp.s�1/u.k/�d�

	

D
qX

tD1

�Z

B�r

j�t j2d�
	

D
X

k2N0

ˇ
ˇhf;'rC1;kiˇˇ2 <1:

Using Lemma 3.3, we obtain Lemma 3.4. �

Theorem 3.1 is an easy consequence of Lemmas 3.2–3.4.

It is immediate from Theorem 3.1 that the construction of wavelet frames from
a given refinable function on local field K is to seek solutions m`.�/; ` D 1;2; : : : ;L,
satisfying equation (2.13). In the following, we will give the solution structure.

Theorem 3.5 Let m0.�/ be the refinement mask of a refinable function ' of an MRA
and satisfies inequality (3.5), then there exist integral-periodic functionsm1;m2; : : : ;mL

satisfying (2.13) for LD q. Moreover, any solution of (2.13) can be represented in the
form of the first row of the matrix

M0.�/D P.�/
p
ƒ.�/Q.�/

where Q.�/ is an arbitrary unitary matrix of order q� q whose elements are integral-
periodic measurable components.

Proof: The conclusion of this result is clear. In fact,M.�/DM0.�/M�
0.�/ is a Hermitian

matrix. Hence

M.�/D M0.�/M�
0.�/D P.�/

p
ƒ.�/Q.�/�P.�/

p
ƒ.�/Q.�/��

where Q.�/ is an arbitrary unitary matrix of order q�q. Thus, in view of (3.3) and (3.6),
we obtain

M0.�/D P.�/
p
ƒ.�/Q.�/:

This completes the proof. �
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Tight wavelet frames on local fields 305

Remark 3.6 When L > q to describe all possible solution to (2.13), we have to take an
arbitrary unitary matrix Q.�/ with integral-periodic elements andƒ0.�/ can be extension
of
p
ƒ.�/ by means of filling all new column with zero.

Example 3.7 Let

m0.�/D 1

q

q�1X

kD0

�k.�/D
´
1; j�j � q�1;

0; q�1 < j�j � 1;

be the refinement mask of the characteristic function ' of D whose refinement equation
is given by

'.x/D
q�1X

kD0

'
�
p�1x�u.k/�:

Define the integral-periodic functionsm`.�/;`D 1;2; : : : ;L as follows:

m`.�/D 1p
2q

h
�`.�/��`�1.�/

i
; `D 1;2; : : : ;L:

Then, clearly the matrix M.�/ D 

m`

�
p�Cpu.k/

��
formed by m`.�/,

1� `� L satisfy the UEP condition (2.13) and hence by Theorem 3.1, the system

X.‰/D
°
 `;j;k W 1� `� LIj 2 Z;k 2 N0

±

generated by the functions

 `.x/D
r
q

2



'
�
p�1x�u.`/��'�p�1x�u.`�1/�� ; `D 1;2; : : : ;L

forms a tight wavelet frames for L2.K/.
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