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of adolescent and young adult rats: Down-regulation of apoptotic
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A B S T R A C T

While hippocampus is a brain region particularly susceptible to the effects of MDMA, the cellular and

molecular changes induced by MDMA are still to be fully elucidated, being the dosage regimen, the

species and the developmental stage under study great variables. This study compared the effects of one

and four days of MDMA administration following a binge paradigm (3 � 5 mg/kg, i.p., every 2 h) on

inducing hippocampal neurochemical changes in adolescent (PND 37) and young adult (PND 58) rats.

The results showed that chronic MDMA caused hippocampal protein deficits in adolescent and young

adult rats at different levels: (1) impaired serotonergic (5-HT2A and 5-HT2C post-synaptic receptors) and

GABAergic (GAD2 enzyme) signaling, and (2) decreased structural cytoskeletal neurofilament proteins

(NF-H, NF-M and NF-L). Interestingly, these effects were not accompanied by an increase in apoptotic

markers. In fact, chronic MDMA inhibited proteins of the apoptotic pathway (i.e., pro-apoptotic FADD,

Bax and cytochrome c) leading to an inhibition of cell death markers (i.e., p-JNK1/2, cleavage of PARP-1)

and suggesting regulatory mechanisms in response to the neurochemical changes caused by the drug.

The data, together with the observed lack of GFAP activation, support the view that chronic MDMA

effects, regardless of the rat developmental age, extends beyond neurotransmitter systems to impair

other hippocampal structural cell markers. Interestingly, inhibitory changes in proteins from the

apoptotic pathway might be taking place to overcome the protein deficits caused by MDMA.

� 2015 Elsevier Inc. All rights reserved.
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1. Introduction

 Adolescence is a period of great vulnerability to the neuro-
chemical effects of specific drugs of abuse (Spear, 2007), even
though some reports agree that during adolescence animals are
less susceptible than in adulthood to the effects of amphetamines
(reviewed at Teixeira-Gomes et al., 2015). Interestingly, the
amphetamine derivative 3,4-methylene dioxymethamphetamine
(MDMA) is one of the most commonly abused drugs among
adolescents and young adults (SAMHSA, 2002). There is a large
body of evidence showing that MDMA produces degeneration of
5-hydroxytryptamine (5-HT) nerve endings in multiple brain
regions, including hippocampus (HC), in experimental animals
and humans (for review, see Green et al., 2003). Remarkably, the
5-HT system undergoes substantial maturational change during
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adolescence (Chen et al., 1997), such as differential expression of 5-
HT receptors with age (Li et al., 2004), which may contribute to the
sensitivity on how adolescents respond to MDMA. In fact, the
literature supports the notion that the long-lasting behavioral and
neurochemical effects promoted by MDMA are dependent on the
developmental age of drug exposure (see review, Teixeira-Gomes
et al., 2015).

The cellular and molecular mechanisms by which MDMA
induces neurochemical changes are still to be fully elucidated,
being the dosage regimen and the species under study a great
variable (Green et al., 2003). Besides MDMA inducing deficits in 5-
HT markers, which may or may not reflect neuronal loss or axonal
degeneration (Capela et al., 2009; Biezonski and Meyer, 2011), it
also induces a broader neuronal damage (see for example the
modulation of other gene markers in HC, Weber et al., 2014)
suggesting MDMA effects in the brain are complex and deserve
further exploration. Especially, the neural adaptations taking
place in HC, which is a brain region known to be critical for learning
and memory and particularly susceptible to MDMA effects
(Steinkellner et al., 2011).
ter MJ. Chronic MDMA induces neurochemical changes in the
of apoptotic markers. Neurotoxicology (2015), http://dx.doi.org/
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Therefore, this study is a direct comparison of the neurochemi-
l alterations in HC following the same MDMA dosing regimen at
fferent developmental stages (early adolescence vs. young
ulthood). Neurotransmitter systems beyond 5-HT axon term-
als, such as 5-HT post-synaptic receptors (i.e., 5-HT2A, 5-HT2C)
d GABA neuronal markers (i.e., glutamate decarboxylase
zymes, GAD1 and GAD2) were evaluated to corroborate MDMA
ficits on neurotransmitter systems. The main goal of the study

as to evaluate MDMA effect on structural proteins such as
urofilament (NF) proteins (NF-H, NF-M, and NF-L for high,
edium and low molecular weights), known to play a crucial role

 neuronal shape organization and function and modulated by
ugs of abuse (Beitner-Johnson et al., 1992). Moreover, enolase-2,

 enzyme found in mature neurons which is a marker of neuronal
mage (Hatfield and McKerman, 1992), and glial fibrillary acidic
otein (GFAP), an indicative of brain toxicity shown to be either
creased (Green et al., 2003) or unaltered by MDMA in HC (Wang
 al., 2004) were also evaluated. Finally, to better understand
DMA effect on structural proteins and given that prior studies
ported increased apoptotic cell death markers in cultured
ppocampal neurons in vitro by MDMA (Capela et al., 2013),
e last goal of the study evaluated MDMA effects on cell death
arkers. In particular, c-Jun N-terminal kinase (p-JNK1/2) which
itiates cell death signaling (Dhanasekaran and Reddy, 2008) by
gulating proteins from both the extrinsic (i.e., cell fate adaptor
s-associated death domain, FADD) and intrinsic (i.e., Bax,
tochrome c) apoptotic pathways leading to poly (ADP-ribose)
lymerase 1 (PARP-1) cleavage (i.e., cell death/plasticity) were
aluated. A preliminary report of a portion of this work was
esented at the 27th European College of Neuropsychopharma-
logy Congress (Garcı́a-Cabrerizo and Garcı́a-Fuster, 2014).

 Materials and methods

1. Rats

For this study 35 adolescent male Sprague–Dawley rats were
rchased from Charles River (L’Ambresle, France) at weaning

ND 21, n = 18) or mid-late adolescence (PND 42, n = 17)
ee Teixeira-Gomes et al., 2015 for rat characterization of
. 1. Experimental design. (a) Adolescent and young adult rats were manipulated (i

ntrol rats received saline (0.9% NaCl, 1 ml/kg, every 2 h, i.p., for 4 days) while other ra

.) (PND 33-36 or PND 54-57). Rats were sacrificed 24 h after the last dose (PND 37 or

estern blot (WB) analysis.

Please cite this article in press as: Garcı́a-Cabrerizo R, Garcı́a-Fu
hippocampus of adolescent and young adult rats: Down-regulation
10.1016/j.neuro.2015.06.001
developmental stages). Rats were housed with ad libitum access
to a standard diet and tap water in controlled environmental
conditions (22 8C, 70% humidity, and 12-h light/dark cycle). Prior to
any experimental procedure, rats were habituated to the
experimenter by being handled daily for two days. All animal
care and experimental procedures were conducted according to
standard ethical guidelines (UK Animals, Scientific Procedures, Act,
1986 and European Communities Council Directive 86/609/EEC)
and approved by the Local Bioethical Committee (UIB-CAIB). All
efforts were made to minimize the number of rats used and their
suffering.

2.2. Drug treatment and tissue collection

Rats were weighted prior to any drug treatment (PND 27-29
and PND 48-50, see Fig. 1a) and also daily throughout the whole
experiment (PND 33-36 and PND 54-57). Rats were treated
following a binge paradigm for 4 consecutive days (3 pulses per
day, every 2 h) with either saline (0.9% NaCl, 1 ml/kg, i.p.) or MDMA
(5 mg/kg, i.p.; kindly provided by ‘Agencia Española de Medica-
mentos y Productos Sanitarios, Ministerio de Sanidad, Polı́tica
Social e Igualdad’, Spain). Control rats received saline during all
treatment days (PND 33-36 or PND 54-57). Acute MDMA rats
received 3 days of saline (PND 33-35 or PND 54-56) and 1 day of
MDMA (PND 36 or PND 57; a total of 15 mg/kg of MDMA). Chronic
MDMA rats received 4 days of MDMA (PND 33-36 or PND 54-57; a
total of 60 mg/kg of MDMA). Doses were chosen based on previous
studies in which MDMA was shown to induce changes in brain
neurochemistry (Weber et al., 2014) in comparison to higher doses
(20 mg/kg or more for several days, for a total of 160 mg/kg) which
are required in Sprague–Dawley rats to produce neurotoxic
damage (i.e., long-term 5-HT deficits) in several brain regions
(see reviewed in Green et al., 2003). Core body temperature was
recorded under normal room temperature conditions (22 8C)
immediately before the first MDMA or saline injection on PND
33 or PND 54 (baseline temperature) and also daily 30 min after
the last MDMA or saline pulse (PND 33-36 or PND 54-57; see
Fig. 1a) by a rectal probe connected to a digital thermometer
(Compact LCD display thermometer, SA880-1M, RS, Corby, UK).
Rats were killed by decapitation without anesthesia 24 h after the
.e., weight-, rectal temperature) and treated at the indicated post-natal days (PND).

ts received either 1 day (acute) or 4 days (chronic) of MDMA (3 � 5 mg/kg, every 2 h,

 PND 58). (b) Schematic representation of the molecular markers evaluated in HC by

ster MJ. Chronic MDMA induces neurochemical changes in the
 of apoptotic markers. Neurotoxicology (2015), http://dx.doi.org/
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last treatment dose (PND 37 or PND 58) (Weber et al., 2014), and
their brains removed and processed to allow the investigation of
hippocampal markers by western blot (WB) analysis (see Fig. 1b).

2.3. Western blot (WB) analysis

Total homogenate of rat HC was prepared for immunoblotting
standard procedures (Garcı́a-Fuster et al., 2009) and brain proteins
(40 mg protein) were resolved by electrophoresis on 10–15% SDS-
PAGE minigels (Bio-Rad Laboratories, Hercules, CA, USA). Mem-
branes were incubated with appropriate primary antibody whose
vendors and dilution conditions were the following: (1) Santa Cruz
Biotechnology (CA, USA): anti-5-HT2C (D-12) (1:500), anti-FADD
(H-181) (1:5000), anti-Bax (N-20) (1:1000); (2) Cell Signaling (MA,
USA): anti-GAD1 (#5305) (1:1000), anti-GAD2 (#3988) (1:1000),
anti-enolase-2 (D20H2) (1:1000), anti-phospho-Ser191 FADD
(1:750), anti-PARP-1 (#9542) (1:1000), anti-phospho-Thr183/
Tyr185 JNK1/2 (1:2000); (3) BD Biosciences (CA, USA): anti-
cytochrome c (1:5000); (4) Neuromics (MN, USA): anti-5HT2A

(RA24288) (1:666); (5) Covance (CA, USA): anti-NF-H and M (clone
SMI-32) (1:1000); (6) Novocastra-Leica (NCL, UK): anti-GFAP
(1:1000); and (7) Sigma–Aldrich (MO, USA): anti-NF-L (N5139)
(1:1000), anti-b-actin (clone AC-15) (1:10000), anti-a-tubuline
(clone B-5-1-2) (1:2000). The secondary antibody (anti-rabbit or
anti-mouse IgG linked to horseradish peroxidase) was incubated
for 1 h at room temperature (1:5000 dilution; Cell Signaling).
Immunoreactivity of target proteins was detected with ECL
reagents (Amersham, Buckinghamshire, UK) and signal of bound
antibody was visualized by exposure to autoradiographic film
(Amersham ECL Hyperfilm) for 1–60 min, which was quantified by
densitometric scanning (GS-800 Imaging Calibrated Densitometer,
Bio-Rad). For each developmental stage (PND 37 or PND 58), the
amount of target proteins in hippocampal brain samples of rats
under different treatment groups (acute and chronic MDMA) was
compared in the same gel with that of their respective age control
rats. Percent changes in immunoreactivity (MDMA-treated rats)
with respect to control samples (100%) at each age time-point
(PND 37 or PND 58) were calculated for each treated rat in various
gels, and the mean value was used as a final estimate. As the
content of b-actin was slightly decreased by chronic MDMA in HC
of adolescent rats (PND 37: 11 � 2%, p < 0.05), a-tubulin was
quantitated and used as a loading control as it was not altered by any
treatment conditions (data not shown).

2.4. Data and statistical analysis

Data were analyzed with GraphPad Prism, Version 6. Results are
expressed as mean values � standard error of the mean (SEM). Each
developmental age (PND 37 and PND 58) was evaluated in separate
WB experiments and one-way ANOVA followed by Dunnett’s
multiple comparison test (control, acute, chronic) or Student’s t-test
(control vs. chronic) analysis were used to ascertain statistical
differences. This was done to avoid signal saturation in WB
experiments given the basal differences observed in FADD protein
content with age (i.e., increased FADD in early adolescence as
compared to later adolescence or adulthood; unpublished data from
our group; also see FADD immunoblot results, Fig. 6b). The level of
significance was p � 0.05.

3. Results

3.1. Effect of MDMA treatment on body weight and core body

temperature in adolescent and young adult rats

Rat’s weight gain did not change throughout the duration of
the experimental treatment by MDMA administration (acute or
Please cite this article in press as: Garcı́a-Cabrerizo R, Garcı́a-Fus
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chronic) when compared to control treated rats as measured by a
two-way ANOVA in adolescent (effect of PND: F6,105 = 63.12,
p < 0.001; effect of treatment: F2,105 = 0.82, p > 0.05; interaction
PND � treatment: F12,105 = 0.22, p > 0.05) or young adult rats
(effect of PND: F6,102 = 73.73, p < 0.001; effect of treatment:
F2,105 = 11.18, p < 0.001; interaction PND � treatment:
F12,105 = 0.65, p > 0.05) (see Fig. 2a).

When analyzing the effect of MDMA on rat’s rectal temperature,
a two-way ANOVA detected a significant interaction between age
(PND) and treatment (control, acute and chronic MDMA) for both
the adolescent (F6,60 = 4.981, p < 0.001) and young adult
(F6,57 = 23.84, p < 0.001) treated rats. Post hoc analysis revealed
that acute exposure to MDMA induced hyperthermia in adolescent
and young adult rats (see PND 36 and PND 57 for acute MDMA
groups and PND 54 for first day of chronic MDMA treatment).
However, chronic exposure to MDMA in adolescent and young
adult rats showed tolerance (PND 36 and PND 57 for chronic
groups, black circles; Fig. 2b) to the acute induced hyperthermia
(see Piper et al., 2005 for similar results; see Green et al., 2003 for
revision).

3.2. Chronic MDMA induces hippocampal neurochemical changes in

adolescent and young adult rats

3.2.1. Neurotransmitter systems

MDMA effect on proteins regulating neurotransmitter systems
(i.e., serotonergic and GABAergic, see Fig. 1b) was studied in HC by
WB analysis. 5-HT2A and 5-HT2C receptors were evaluated as
serotonergic markers. Chronic MDMA, but not acute, reduced
hippocampal 5-HT2A receptor in adolescent rats (PND 37:
F2,15 = 6.06, p < 0.05) (acute MDMA: 36 � 12% decrease, p > 0.05;
chronic MDMA: 59 � 13% decrease, p < 0.01) but did not reach
statistical significance in young adult rats (PND 58: F2,12 = 0.80,
p > 0.05) (acute MDMA: 18 � 14% decrease; chronic MDMA:
23 � 11% decrease) (Fig. 3a). Contrarily, chronic MDMA administra-
tion had no effect on hippocampal 5-HT2C receptor in adolescent rats
(PND 37: F2,15 = 0.37, p > 0.05) (chronic MDMA: 11 � 22%) but
decreased its content in young adult rats (PND 58: F2,14 = 4.04,
p < 0.05) (chronic MDMA: 57 � 7%, p < 0.05) (Fig. 3b).

GAD1 and GAD2 enzymes were evaluated as GABAergic
markers in the HC as they regulate the conversion of glutamate
to GABA and are thought to be involved in synaptic transmission.
Acute and chronic treatments with MDMA did not modulate GAD1
in HC of adolescent (PND 37: F2,15 = 0.98, p > 0.05) (acute MDMA:
3 � 3% decrease; chronic MDMA: 8 � 2% decrease) or young adult
(PND 58: F2,14 = 0.37, p > 0.05) (acute MDMA: 8 � 7% decrease;
chronic MDMA: 13 � 10% decrease) rats (Fig. 3c). However, chronic,
but not acute, treatments with MDMA reduced GAD2 in HC of
adolescent (PND 37: F2,15 = 3.61, p = 0.05) (24 � 6%, p < 0.05) and
young adult (PND 58: F2,14 = 3.64, p = 0.05) (16 � 2%, p < 0.05) rats
(Fig. 3d). These results suggest that chronic MDMA induces, both in
adolescent and young adult rats, a neurochemical effect in HC by
decreasing the content of serotonergic (i.e., 5-HT2A and 5-HT2C) and
GABAergic (i.e., GAD2) neurotransmitter markers.

3.2.2. Structural proteins

MDMA effect on structural proteins (see Fig. 1b) was studied in
HC by WB analysis. NF proteins (NF-H, NF-M, and NF-L for high,
medium and low molecular weights) play a crucial role in neuronal
shape organization and function and were therefore evaluated as
neuronal cytoskeleton markers. One-way ANOVA detected signifi-
cant differences between the groups of treatments for NF proteins
in HC of adolescent (PND 37: NF-H, F2,15 = 3.49, p = 0.05; NF-M,
F2,15 = 4.52, p < 0.05; NF-L, F2,15 = 2.19, p > 0.05) and young adult
(PND 58: NF-H, F2,14 = 2.63, p > 0.05; NF-M, F2,14 = 4.69, p < 0.05;
NF-L, F2,14 = 10.20, p < 0.01) rats. In particular, chronic MDMA
ter MJ. Chronic MDMA induces neurochemical changes in the
of apoptotic markers. Neurotoxicology (2015), http://dx.doi.org/
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duced the content of all NF proteins in HC of adolescent (PND 37)
F-H: 31 � 9%, p < 0.05; NF-M: 45 � 5%, p < 0.05; NF-L: 12 � 3%,
< 0.05, Student’s t-test when compared to control group) and young
ult (PND 58) (NF-H: 24 � 3%, p < 0.05, Student’s t-test when
mpared to control group; NF-M: 34 � 6%, p < 0.05; NF-L: 12 � 1%,
< 0.01) rats (Fig. 4a–d). However, acute MDMA only reduced NF-M
0 � 11%, p < 0.05) and NF-L (9 � 3%, p < 0.01) in HC of young adult
ND 58) rats (Fig. 4b–d).

Two other structural proteins were also evaluated, enolase-2 as
neuronal marker, and GFAP as a glial and neurotoxic marker.
markably, acute and chronic MDMA did not modulate enolase-2
ig. 5a) or GFAP (Fig. 5b) in HC of adolescent (PND 37: enolase-2,

,15 = 0.94, p > 0.05; GFAP, F2,15 = 0.62, p > 0.05) and young adult
ND 58: enolase-2, F2,14 = 1.50, p > 0.05; GFAP, F2,14 = 1.07,
> 0.05) rats. These results suggest that chronic MDMA induces,
th in adolescent and young adult rats, a neurochemical effect

 HC by decreasing the content of structural NF proteins
dependently of GFAP toxicity.

3. Chronic MDMA dampens hippocampal pro-apoptotic proteins in

olescent and young adult rats

MDMA effect on cell death markers (see Fig. 1b) was studied in
 by WB analysis. As mentioned earlier, p-JNK1/2 plays a critical

le in cell death as it can engage the activation of both the
Please cite this article in press as: Garcı́a-Cabrerizo R, Garcı́a-Fu
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extrinsic and intrinsic apoptotic pathways (Dhanasekaran and
Reddy, 2008). Interestingly, acute and chronic treatments with
MDMA did not modulate p-JNK1/2 in HC of adolescent (PND 37:
F2,14 = 0.83, p > 0.05) or young adult (PND 58: F2,14 = 2.45,
p > 0.05) rats (Fig. 6a). The overall effects observed for p-JNK1/2
are a sum of the effects observed for p-JNK1 and p-JNK2 separately
(data not shown). From the extrinsic apoptotic pathway, FADD
adaptor forms (i.e., pro-apoptotic FADD; anti-apoptotic p-FADD,
and the index of neuroplasticity p-FADD/FADD) were evaluated.
Chronic MDMA, but not acute, reduced pro-apoptotic FADD in HC
of adolescent (PND 37: F2,15 = 3.80, p < 0.05) (31 � 10%, p < 0.05)
and young adult (PND 58: F2,14 = 2.80, p > 0.05) (31 � 5%, p < 0.05,
Student’s t-test when compared to control group) rats (Fig. 6b),
without altering anti-apoptotic p-FADD content (PND 37: F2,15 = 0.66,
p > 0.05; PND 58: F2,14 = 0.17, p > 0.05) (Fig. 6c). The index of
neuroplasticity p-FADD/FADD (see Ramos-Miguel et al., 2012)
resulted in non-statistically significant increases at both ages (PND
37: F2,15 = 2.05, p > 0.05) (2.19-fold) (PND 58: F2,14 = 1.08, p > 0.05)
(1.18-fold). Moreover, two pro-apoptotic markers from the intrinsic
apoptotic pathway (Bax, cytochrome c) were also decreased by
chronic MDMA administration: Bax (PND 37: F2,15 = 5.24, p < 0.05)
(26 � 4%, p < 0.05) (PND 58: F2,14 = 3.04, p > 0.05) (16 � 2%, p < 0.05,
Student’s t-test when compared to control group; Fig. 6d) and
cytochrome c (PND 37: F2,13 = 17.57, p < 0.001) (42 � 2%, p < 0.001)
(PND 58: F2,14 = 3.77, p < 0.05) (20 � 3%, p < 0.05; Fig. 6e). The
ster MJ. Chronic MDMA induces neurochemical changes in the
 of apoptotic markers. Neurotoxicology (2015), http://dx.doi.org/
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Groups of treatment: control (C, n = 6), acute MDMA (A, n = 6), chronic MDMA (Chr, n = 6-5). Columns are means � SEM of n experiments per group and expressed as a

percentage of control (C)-treated rats for each age of study (PND 37 or PND 58). One-way ANOVA detected significant differences between the groups of treatments for 5-HT2A (PND

37: F2,15 = 6.06, p < 0.05), 5-HT2C (PND 58: F2,14 = 4.04, p < 0.05) and GAD2 (PND 37: F2,15 = 3.61, p = 0.05; PND 58: F2,14 = 3.64, p = 0.05). *p < 0.05 and **p < 0.01 when compared

with the corresponding age-control group (ANOVA followed by Dunnett’s test). Bottom panels: representative immunoblots depicting labeling of 5-HT2A, 5-HT2C, GAD1 and GAD2

are shown for each set of experiments.
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fragment/PARP-1 ratio (i.e., a hallmark of apoptosis and/or altered
plasticity), which is calculated dividing the immunodensity of the
cleaved fragment band (85 kDa) by its native form (116 kDa) for each
rat, was altered by MDMA (PND 37: F2,11 = 2.66, p > 0.05; PND 58:
F2,14 = 21.01, p < 0.001). Remarkably, the fragment/PARP-1 ratio was
decreased by chronic MDMA at PND 37 (0.44-fold, p < 0.05, Student’s
t-test when compared to control group) and by acute and chronic
MDMA at PND 58 (acute: 0.53-fold, p < 0.001; chronic: 0.51-fold,
p < 0.001; Fig. 6f). These results suggest that chronic MDMA induces,
both in adolescent and young adult rats, a neurochemical effect in HC
by inhibiting apoptotic markers (i.e., pro-apoptotic FADD, Bax and
cytochrome c, as well as decreased cleavage of PARP-1).

4. Discussion

Taken together the results suggest that chronic MDMA induces
neurochemical changes in HC of both adolescent and young adult
rats at different biochemical levels (i.e., neurotransmitter systems
and NF structural proteins) while inhibiting the apoptotic cell
death machinery possibly as an adaptive mechanism to the drug
induced-deficits.

The current results suggest a role for 5-HT2A receptors in the
neurochemical effects mediated by chronic MDMA in HC of
adolescent rats while associates 5-HT2C receptors with its effects
in young adult rats. Little is known about MDMA effects on
Please cite this article in press as: Garcı́a-Cabrerizo R, Garcı́a-Fus
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post-synaptic 5-HT receptors (i.e., 5-HT2A, 5-HT2C) in rat brain. For
example, chronic MDMA induced a transient down-regulation of
5-HT2A receptors in several brain regions including HC (Scheffel
et al., 1992) and cortex (Reneman et al., 2002), while another study
found hippocampal 5-HT2A unaltered by MDMA (Yau et al., 1997).
More recently, chronic MDMA reduced 5-HT2A receptor mRNA in
cortex while increased 5-HT2C receptor in cortex and hypothala-
mus (Kindlundh-Högberg et al., 2006). Similarly, acute MDMA
decreased 5-HT2C mRNA levels in specific hippocampal subfields
(Yau et al., 1997) while chronic MDMA increased 5-HT2C

expression in CA3 pyramidal neurons (Yau et al., 1994). As
mentioned earlier, the 5-HT system is known to undergo
substantial development during adolescence (Chen et al., 1997)
such as 5-HT2A and 5-HT2C receptor expression patterns in brain
change in a regionally specific manner with age (Li et al., 2004). The
functional difference between these receptor subtypes, together
with the fact that 5-HT2C receptors are present at higher densities
than 5-HT2A in adult HC (reviewed in Berumen et al., 2012) could
contribute to the differential results observed for adolescent and
young adult rats in this study. There is little evidence that MDMA
produces deficits in other neurotransmitter systems in rat beyond
the serotonergic system. For instance, chronic MDMA in HC
reduced not only 5-HT but also GABA levels 7 days after last drug
injection (Perrine et al., 2010), damaged GABAergic terminals
(Armstrong and Noguchi, 2004), and decreased the number of
ter MJ. Chronic MDMA induces neurochemical changes in the
of apoptotic markers. Neurotoxicology (2015), http://dx.doi.org/
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rvalbumin-positive GABA cells in the DG (Anneken et al., 2013).
terestingly, in the present study, the GABAergic neuronal marker
D2 is shown to be reduced by chronic MDMA in HC of both

olescent and young adult rats, suggesting and confirming
gether with the observed decreases in 5-HT post-synaptic
ceptors (5-HT2A and 5-HT2C), that this binge paradigm of
peated treatment with MDMA decreases neurotransmitter
uronal markers.
Besides MDMA producing deficits in neurotransmitter markers,

e cellular and molecular changes induced by MDMA need to be
. 5. Acute and chronic effects of MDMA on (a) enolase-2 and (b) GFAP protein content

ntrol (C, n = 6), acute MDMA (A, n = 6), chronic MDMA (Chr, n = 6–5). Columns are m

ated rats for each age of study (PND 37 or PND 58). One-way ANOVA did not detect si

munoblots depicting labeling of enolase-2 and GFAP are shown for each set of experi
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elucidated (Green et al., 2003), especially in a brain region
particularly vulnerable to MDMA effects and critical for learning
and memory such as HC (Steinkellner et al., 2011). In this regard,
NF proteins are intermediate filaments that compose the
cytoskeleton in mature neurons and provide integrity and
associated functions (e.g., axonal transport, axonal plasticity and
neuronal morphology) (e.g., Hoffman and Lasek, 1975; Lee
and Cleveland, 1996). A number of studies had examined drug-
induced effects on NF proteins in brain areas relevant to drug
reward. For example, chronic administration of either morphine
 in rat HC of adolescent (PND 37) and young adult (PND 58) rats. Groups of treatment:

eans � SEM of n experiments per group and expressed as a percentage of control (C)-

gnificant differences between the groups of treatments. Bottom panels: representative

ments.
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or cocaine decreased the levels of NF-L, NF-M and NF-H in rat
ventral tegmental area (Beitner-Johnson et al., 1992). Seven days
after methamphetamine administration NF-L was reduced in mice
striatum (Sanchez et al., 2003). Moreover, chronic nicotine
treatment decreased NF-M and NF-H immunoreactivity in rat
brain (Bunnemann et al., 2000). Interestingly, marked reductions
Please cite this article in press as: Garcı́a-Cabrerizo R, Garcı́a-Fus
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in total NF proteins were observed in the prefrontal cortex of
chronic opioid addicts (Garcı́a-Sevilla et al., 1997; Ferrer-Alcón
et al., 2000). However, to the best of our knowledge, this is the first
study to examine MDMA effects on NF proteins in rat brain, and in
particular in HC. Similarly to the effects already described for other
drugs of abuse, the present results showed decreased NF protein
ter MJ. Chronic MDMA induces neurochemical changes in the
of apoptotic markers. Neurotoxicology (2015), http://dx.doi.org/
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vels (NF-H, NF-M and NF-L) in HC in response to chronic MDMA,
ving further evidence for a common substrate following an
dictive drug exposure in different brain regions (see also
itner-Johnson et al., 1992). Interestingly, acute MDMA also
creased NF proteins (NF-M and NF-L) but only in HC of young
ult (PND 58) rats, in line with previous reports showing that
olescent animals are less susceptible than adults to the
urochemical changes induced by MDMA (see review, Teix-

ra-Gomes et al., 2015), as observed in the current experiment
here a chronic treatment was needed to promote the observed
urochemical changes in adolescent rats. The difference
served in the magnitude of change caused by MDMA for NF-
(up to 31%) and NF-M (up to 45%) as compared to NF-L (up to
%) may relate to differences in assembly states and ratios of NF
bunits that could be regulated by the local concentration and
osphorylation of individual subunits. While the triplet proteins

e co-assembled in vivo, NF-L appears to be an indispensable
lypeptide for the formation of these intermediate filaments

ee et al., 1987). Distinctive ratios of the three proteins are found
 different tissues and their expressions, which are not fixed,
ry during growth and differentiation (Nixon and Shea, 1992).
oreover, all NF polypeptides are phosphorylated in vivo in a
oportion relative to their mass, which determines important
ochemical properties of each subunit (Julien and Mushynski,
98). For example, the phosphorylation of NF-H appears to be

relevant mechanism in the induction of cross-bridges between
, which could be essential for the maintenance of the neuronal
toskeletal structure (Shaw et al., 1986). Therefore, MDMA
ight be differentially affecting this complex hetero-polymeric
ructure as well as the dynamically changing phosphate
pography of NF proteins in HC of adolescent and young adult
ts. Interestingly, the regulation of NF proteins by MDMA could
ay a role in modifying neuronal morphology such as the ability
 reorganize patterns of synaptic connectivity (i.e., morphology

 dendrites and dendritic spines) in brain regions altered
llowing repeated exposure to psychostimulants (Robinson
d Kolb, 1999). In fact, a binge administration of MDMA
duced spine density in CA1 region of HC in adolescent rats
bad et al., 2014). Moreover, changes in cytoskeletal proteins
ay be part of the mechanism participating in drug-induced
urotransmitter changes. In fact, eliminating NF proteins from
e CNS profoundly disrupted synaptic plasticity without altering
e structural integrity of synapsis, suggesting additional roles
r NF proteins beyond static structural support of axon caliber,
d therefore proposing NF proteins as integral components

 synapses and as modulators of in vivo neurotransmission
uan et al., 2015).
Remarkably, no other structural proteins analyzed (i.e.,

olase-2 and GFAP) were altered by MDMA treatments. The
ntent of enolase-2, an enzyme found in mature neurons which is

arker of neuronal damage (Hatfield and McKerman, 1992), was
t altered by MDMA exposure in HC of adolescent and young
ult rats. There is no previous data on MDMA effects on this
arker, yet, similar negative results were observed in cortical
mples of cocaine addicts (Álvaro-Bartolomé and Garcı́a-Sevilla,
13). Astrocyte hypertrophy can occur as a result of neuronal
jury leading to increases in GFAP expression. Several studies
ve shown increased GFAP content following MDMA adminis-

ation in mice and rats (Green et al., 2003). However, and similar
 the current results, MDMA-pretreated rats which showed the
pected impaired in serotonergic function did not report changes

 hippocampal GFAP (Wang et al., 2004). An absence of glial
tivation suggests that the use of indirect methods (i.e., relied on
antifying protein expression) for detecting selective neurotox-

ity may have limitations and therefore proposes that the current
radigm of chronic MDMA administration (low dose of MDMA,
Please cite this article in press as: Garcı́a-Cabrerizo R, Garcı́a-Fu
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one point of analysis at 24 h) induces neurochemical changes in
protein content (e.g., neurotransmitter systems, NF proteins)
rather than neurotoxicity (discussed in Green et al., 2003;
Steinkellner et al., 2011; Biezonski and Meyer, 2011) in HC. In
any case, the administration of higher doses of MDMA in Sprague-
Dawley rats and the evaluation of molecular changes at later time
points following injections (e.g., 7 days) where 5-HT deficits are
still present (Green et al., 2003) might allow to observe neural
damage.

As disruption of cytoskeletal elements can induce apoptotic cell
death (e.g., Kothakota et al., 1997), the observed decrease in
hippocampal NF proteins by chronic MDMA may reflect some form
of neural injury (i.e., increased apoptosis). In fact, prior studies
reported that MDMA increased apoptotic cell death markers in
cultured hippocampal neurons in vitro by the stimulation of post-
synaptic 5-HT2A receptors (Capela et al., 2013). Moreover, in rat HC,
a single dose of MDMA increased cell death by TUNEL staining
(Riezzo et al., 2010), while chronic MDMA increased pro-apoptotic
Bax and decreased anti-apoptotic Bcl-2 mRNA levels as measured
7 days after the last MDMA administration (Soleimani Asl et al.,
2012). On the contrary, and unexpectedly, the present results
showed that chronic MDMA did not modulate p-JNK1/2, which
initiates cell death signaling by up-regulating pro-apoptotic
markers from the extrinsic and intrinsic apoptotic pathways
(Dhanasekaran and Reddy, 2008). In fact, chronic MDMA reduced
the extrinsic pro-apoptotic marker FADD as well as the intrinsic
pro-apoptotic markers Bax and cytochrome c in HC of adolescent
and young adult rats as measured 24 h after the last MDMA
administration. The discrepancy in apoptotic markers regulation
(e.g., increased Bax in Soleimani Asl et al., 2012 vs. decreased Bax
in the present results) could be related to the dosage regimen of
MDMA administered (number of days: 7 days vs. 4 days for the
present study; daily MDMA dose: up to 40 mg/kg vs. 15 mg/kg for
the present study) and to the time point of analysis following
MDMA administration (7 days vs. 24 h for the present study).
These methodological differences allowed the evaluation of
neurotoxicity markers (increased apoptotic markers; Soleimani
Asl et al., 2012) vs. neurochemical changes (decreased apoptotic
protein markers; current study) induced by MDMA administra-
tion. Interestingly, the same time point of analysis following
MDMA administration (24 h) was shown to modulate several
genes (e.g., decreased expression of genes related to axon sheaths
and tissue remodeling) in HC (Weber et al., 2014), which together
with the protein deficits observed in the current study, suggest
early neurochemical adaptations (mRNA and protein level) in this
brain region following MDMA administration. Moreover, the
current results showed that chronic MDMA decreased PARP-1
cleavage suggesting the inhibition of apoptotic mechanisms in
response to the neurochemical deficits caused by MDMA. In this
context, multiple apoptosis-regulatory proteins also mediate a
wide range of non-apoptotic functions (Galluzzi et al., 2012). In
particular, the neuroplasticity role of the cell fate adaptor FADD
on other drugs of abuse (i.e., opiates, cocaine, cannabinoids) has
been greatly studied in rat, mouse and postmortem human brain
(see review, Ramos-Miguel et al., 2012). Moreover, PARP-1 has
been recently shown to not only lead cells to death (DNA damage;
Cagnol et al., 2006) but to also enhance behavioral responses to
cocaine (Scobie et al., 2014). Moreover, the present results showed
decreases in 5-HT2A receptors following chronic MDMA and
therefore one would expect decreases in the apoptotic signals
mediated by this receptor (Capela et al., 2013). Interestingly, the
reduction of NF proteins did not seem to depend on loss of
neurons, since there was no activation of enolase-2 or GFAP and
apoptosis was down-regulated and therefore suggesting either
the induction of neural plasticity or repair mechanisms to a prior
drug insult.
ster MJ. Chronic MDMA induces neurochemical changes in the
 of apoptotic markers. Neurotoxicology (2015), http://dx.doi.org/
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5. Conclusions

The results from this study, together with the lack of GFAP
activation, support the view that chronic MDMA effects, regardless
of the rat developmental stage, extend beyond 5-HT axon
terminals to impair other hippocampal cell markers (i.e., GABAer-
gic system, and NF proteins). Interestingly, inhibitory changes in
proteins from the apoptotic pathway might be taking place to
overcome the protein deficits caused by MDMA.
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