
// Arduino "bridge" code between host computer and WS2801-based digital

// RGB LED pixels (e.g. Adafruit product ID #322). Intended for use

// with USB-native boards such as Teensy or Adafruit 32u4 Breakout;

// works on normal serial Arduinos, but throughput is severely limited.

// LED data is streamed, not buffered, making this suitable for larger

// installations (e.g. video wall, etc.) than could otherwise be held

// in the Arduino's limited RAM.

// Some effort is put into avoiding buffer underruns (where the output

// side becomes starved of data). The WS2801 latch protocol, being

// delay-based, could be inadvertently triggered if the USB bus or CPU

// is swamped with other tasks. This code buffers incoming serial data

// and introduces intentional pauses if there's a threat of the buffer

// draining prematurely. The cost of this complexity is somewhat

// reduced throughput, the gain is that most visual glitches are

// avoided (though ultimately a function of the load on the USB bus and

// host CPU, and out of our control).

// LED data and clock lines are connected to the Arduino's SPI output.

// On traditional Arduino boards, SPI data out is digital pin 11 and

// clock is digital pin 13. On both Teensy and the 32u4 Breakout,

// data out is pin B2, clock is B1. LEDs should be externally

// powered -- trying to run any more than just a few off the Arduino's

// 5V line is generally a Bad Idea. LED ground should also be

// connected to Arduino ground.

// --

// This file is part of Adalight.

// Adalight is free software: you can redistribute it and/or modify

// it under the terms of the GNU Lesser General Public License as

// published by the Free Software Foundation, either version 3 of

// the License, or (at your option) any later version.

// Adalight is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU Lesser General Public License for more details.

// You should have received a copy of the GNU Lesser General Public

// License along with Adalight. If not, see

// <http://www.gnu.org/licenses/>.

// --

#include <SPI.h>

// LED pin for Adafruit 32u4 Breakout Board:

//#define LED_DDR DDRE

//#define LED_PORT PORTE

//#define LED_PIN _BV(PORTE6)

// LED pin for Teensy:

//#define LED_DDR DDRD

//#define LED_PORT PORTD

//#define LED_PIN _BV(PORTD6)

// LED pin for Arduino:

#define LED_DDR DDRB

#define LED_PORT PORTB

#define LED_PIN _BV(PORTB5)

// A 'magic word' (along with LED count & checksum) precedes each block

// of LED data; this assists the microcontroller in syncing up with the

// host-side software and properly issuing the latch (host I/O is

// likely buffered, making usleep() unreliable for latch). You may see

// an initial glitchy frame or two until the two come into alignment.

// The magic word can be whatever sequence you like, but each character

// should be unique, and frequent pixel values like 0 and 255 are

// avoided -- fewer false positives. The host software will need to

// generate a compatible header: immediately following the magic word

// are three bytes: a 16-bit count of the number of LEDs (high byte

// first) followed by a simple checksum value (high byte XOR low byte

// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B,

// where 0 = off and 255 = max brightness.

static const uint8_t magic[] = {'A','d','a'};

#define MAGICSIZE sizeof(magic)

#define HEADERSIZE (MAGICSIZE + 3)

#define MODE_HEADER 0

#define MODE_HOLD 1

#define MODE_DATA 2

// If no serial data is received for a while, the LEDs are shut off

// automatically. This avoids the annoying "stuck pixel" look when

// quitting LED display programs on the host computer.

static const unsigned long serialTimeout = 15000; // 15 seconds

void setup()

{

 // Dirty trick: the circular buffer for serial data is 256 bytes,

 // and the "in" and "out" indices are unsigned 8-bit types -- this

 // much simplifies the cases where in/out need to "wrap around" the

 // beginning/end of the buffer. Otherwise there'd be a ton of bit-

 // masking and/or conditional code every time one of these indices

 // needs to change, slowing things down tremendously.

 uint8_t

 buffer[256],

 indexIn = 0,

 indexOut = 0,

 mode = MODE_HEADER,

 hi, lo, chk, i, spiFlag;

 int16_t

 bytesBuffered = 0,

 hold = 0,

 c;

 int32_t

 bytesRemaining;

 unsigned long

 startTime,

 lastByteTime,

 lastAckTime,

 t;

 LED_DDR |= LED_PIN; // Enable output for LED

 LED_PORT &= ~LED_PIN; // LED off

 Serial.begin(115200); // Teensy/32u4 disregards baud rate; is OK!

 SPI.begin();

 SPI.setBitOrder(MSBFIRST);

 SPI.setDataMode(SPI_MODE0);

 SPI.setClockDivider(SPI_CLOCK_DIV128); // 1 MHz max, else flicker

 // Issue test pattern to LEDs on startup. This helps verify that

 // wiring between the Arduino and LEDs is correct. Not knowing the

 // actual number of LEDs connected, this sets all of them (well, up

 // to the first 25,000, so as not to be TOO time consuming) to red,

 // green, blue, then off. Once you're confident everything is working

 // end-to-end, it's OK to comment this out and reprogram the Arduino.

 uint8_t testcolor[] = { 0, 0, 0, 255, 0, 0 };

 for(char n=3; n>=0; n--) {

 for(c=0; c<25000; c++) {

 for(i=0; i<3; i++) {

 for(SPDR = testcolor[n + i]; !(SPSR & _BV(SPIF)););

 }

 }

 delay(1); // One millisecond pause = latch

 }

 Serial.print("Ada\n"); // Send ACK string to host

 startTime = micros();

 lastByteTime = lastAckTime = millis();

 // loop() is avoided as even that small bit of function overhead

 // has a measurable impact on this code's overall throughput.

 for(;;) {

 // Implementation is a simple finite-state machine.

 // Regardless of mode, check for serial input each time:

 t = millis();

 if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {

 buffer[indexIn++] = c;

 bytesBuffered++;

 lastByteTime = lastAckTime = t; // Reset timeout counters

 } else {

 // No data received. If this persists, send an ACK packet

 // to host once every second to alert it to our presence.

 if((t - lastAckTime) > 1000) {

 Serial.print("Ada\n"); // Send ACK string to host

 lastAckTime = t; // Reset counter

 }

 // If no data received for an extended time, turn off all LEDs.

 if((t - lastByteTime) > serialTimeout) {

 for(c=0; c<32767; c++) {

 for(SPDR=0; !(SPSR & _BV(SPIF)););

 }

 delay(1); // One millisecond pause = latch

 lastByteTime = t; // Reset counter

 }

 }

 switch(mode) {

 case MODE_HEADER:

 // In header-seeking mode. Is there enough data to check?

 if(bytesBuffered >= HEADERSIZE) {

 // Indeed. Check for a 'magic word' match.

 for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]););

 if(i == MAGICSIZE) {

 // Magic word matches. Now how about the checksum?

 hi = buffer[indexOut++];

 lo = buffer[indexOut++];

 chk = buffer[indexOut++];

 if(chk == (hi ^ lo ^ 0x55)) {

 // Checksum looks valid. Get 16-bit LED count, add 1

 // (# LEDs is always > 0) and multiply by 3 for R,G,B.

 bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);

 bytesBuffered -= 3;

 spiFlag = 0; // No data out yet

 mode = MODE_HOLD; // Proceed to latch wait mode

 } else {

 // Checksum didn't match; search resumes after magic word.

 indexOut -= 3; // Rewind

 }

 } // else no header match. Resume at first mismatched byte.

 bytesBuffered -= i;

 }

 break;

 case MODE_HOLD:

 // Ostensibly "waiting for the latch from the prior frame

 // to complete" mode, but may also revert to this mode when

 // underrun prevention necessitates a delay.

 if((micros() - startTime) < hold) break; // Still holding; keep buffering

 // Latch/delay complete. Advance to data-issuing mode...

 LED_PORT &= ~LED_PIN; // LED off

 mode = MODE_DATA; // ...and fall through (no break):

 case MODE_DATA:

 while(spiFlag && !(SPSR & _BV(SPIF))); // Wait for prior byte

 if(bytesRemaining > 0) {

 if(bytesBuffered > 0) {

 SPDR = buffer[indexOut++]; // Issue next byte

 bytesBuffered--;

 bytesRemaining--;

 spiFlag = 1;

 }

 // If serial buffer is threatening to underrun, start

 // introducing progressively longer pauses to allow more

 // data to arrive (up to a point).

 if((bytesBuffered < 32) && (bytesRemaining > bytesBuffered)) {

 startTime = micros();

 hold = 100 + (32 - bytesBuffered) * 10;

 mode = MODE_HOLD;

 }

 } else {

 // End of data -- issue latch:

 startTime = micros();

 hold = 1000; // Latch duration = 1000 uS

 LED_PORT |= LED_PIN; // LED on

 mode = MODE_HEADER; // Begin next header search

 }

 } // end switch

 } // end for(;;)

}

void loop()

{

 // Not used. See note in setup() function.

}

