Determination of Planck's constant and work function. According to Einstein's photoelectron equation, the maximum K.E. of a photoelectron is given by $$K_{\text{max}} = hv - W_0$$ If V_0 is the stopping potential, then $$K_{\text{max}} = eV_0$$ $$eV_0 = hv - W_0$$ $$V_0 = \left(\frac{h}{e}\right)v - \frac{W_0}{e} \qquad ...(1)$$ We compare this equation with the straight line equation, $$y = mx + c$$ It follows from equation (1) that V_0 versus v graph is a straight line, as shown in Fig. 11.9. Fig. 11.9 V_0 versus v graph for a photosensitive material. f 1 3 S h ot le ıg in or Clearly, slope of $$V_0$$ - v graph = $\frac{h}{e}$ To determine the slope, take two points A and B on the straight line graph. Then $$m = \tan \theta = \frac{AC}{BC} = \frac{h}{e}$$ $$\therefore h = e \times \frac{AC}{BC} = e \times \text{slope of } V_0 - v \text{ graph}$$ Thus, the Planck's constant h can be determined. Moreover, the intercept on vertical axis = $$-\frac{W_0}{e}$$:. $$W_0 = e \times \text{Magnitude of the intercept}$$ on vertical axis. In this way, the work function W_0 can be determined. By measuring the slope of V_0 -v graph for sodium and using the known value of e, R. A. Millikan precisely determined the values of h and W_0 (for sodium). These values agreed well with the values known from other experiments. This led to the acceptance of Einstein's particle or photon picture of electromagnetic radiation. R. A. Millikan was awarded the Noble Prize in 1923 for his work on the determination of e and photoelectric effect.