```
syms Vs Vr delta R X real
syms Is
```

Current is specified as:

```
Is=simplifyFraction((Vs*(cos(delta)+li*sin(delta)) - Vr)/(R+li*X))
Is =\frac{Vscos(\delta)-Vr+Vssin}{(\delta)\textrm{i}}
```

Complex power is: Vs*conj(Is)

```
S=simplify(Vs*(cos(delta)+li*sin(delta))*conj(Is))
S = - Vs (cos(\delta)+\operatorname{sin}(\delta)\textrm{i})(\textrm{Vr}-\textrm{Vs}\operatorname{cos}(\delta)+\textrm{Vs}\operatorname{sin}(\delta)\textrm{i})
```

Real power is: Re (complex power)
P=simplify(real(S))
$\mathrm{P}=\frac{\mathrm{Vs}(R \mathrm{Vs}-R \mathrm{Vr} \cos (\delta)+\mathrm{Vr} X \sin (\delta))}{R^{2}+X^{2}}$
Reactive power is: imag(complex power)

```
Q=simplify(imag(S))
```

$Q=-\frac{V s(V r X \cos (\delta)-\mathrm{Vs} X+R \mathrm{Vr} \sin (\delta))}{R^{2}+X^{2}}$
Real power equation with resistance neglected: $P=$ simplify (real(subs $(S, R, 0))$) $P=\frac{V r V s \sin (\delta)}{X}$

Reactive power with resistance neglected: $Q=$ simplify(imag(subs ($\mathrm{S}, \mathrm{R}, 0$))) $\mathrm{Q}=\frac{\mathrm{Vs}(\mathrm{Vs}-\mathrm{Vrcos}(\delta))}{X}$

Calculating values of real and reactive power with the line resistance included:
$\mathrm{R}=5.1842$ Ohms $\mathrm{X}=129.605$ Ohms $\mathrm{Vs}=\mathrm{Vr}=161 \mathrm{kV}$ delta $=0.01877218$ Q=double(imag(subs(S,[Vs,Vr,R,X,delta],[161e3,161e3,5.1842,1.29605e2,0.01877218])))

```
Q =
    -1.147465859708760e+05
P=double(real(subs(S,[Vs,Vr,R,X,delta],[161e3,161e3,5.1842,1.29605e2,0.01877218])))
P =
    3.749625633195513e+06
```

Calculating values of real and reactive power with the line resistance neglected
$\mathrm{R}=0$ Ohms $\mathrm{X}=129.605$ Ohms $\mathrm{Vs}=\mathrm{Vr}=161 \mathrm{kV}$ delta $=0.01877218$

```
Q=double(imag(subs(S,[Vs,Vr,R,X,delta],[161e3,161e3,0,1.29605e2,0.01877218])))
    Q =
            3.523843935694449e+04
```

 P=double(real(subs(S,[Vs,Vr,R,X,delta],[161e3,161e3,0,1.29605e2,0.01877218])))
 \(P=\)
 \(3.754215496634348 \mathrm{e}+06\)
 As can be seen the values of P for both cases are very close (approx 3.75 MW). Bu the values for Q are very different.

