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Abstract 

Sugars are foundational to biological life and played essential roles in human evolution and 

dietary patterns for most of recorded history. The simple sugar glucose is so central to human 

health that it is one of the World Health Organization’s Essential Medicines. Given these facts, it 

defies both logic and a large body of scientific evidence to claim that sugars and other nutrients 

that played fundamental roles in the substantial improvements in life- and health-spans over the 

past century are now suddenly responsible for increments in the prevalence of obesity and 

chronic non-communicable diseases. Thus, the purpose of this review is to provide a rigorous, 

evidence-based challenge to ‘diet-centrism’ and the disease-mongering of dietary sugar. The 

term ‘diet-centrism’ describes the naïve tendency of both researchers and the public to attribute a 

wide-range of negative health outcomes exclusively to dietary factors while neglecting the 

essential and well-established role of individual differences in nutrient-metabolism. The explicit 

conflation of dietary intake with both nutritional status and health inherent in ‘diet-centrism’ 

contravenes the fact that the human body is a complex biologic system in which the effects of 

dietary factors are dependent on the current state of that system. Thus, macronutrients cannot 

have health or metabolic effects independent of the physiologic context of the consuming 

individual (e.g., physical activity level). Therefore, given the unscientific hyperbole surrounding 

dietary sugars, I take an adversarial position and present highly-replicated evidence from 

multiple domains to show that ‘diet’ is a necessary but trivial factor in metabolic health, and that 

anti-sugar rhetoric is simply diet-centric disease-mongering engendered by physiologic illiteracy. 

My position is that dietary sugars are not responsible for obesity or metabolic diseases and that 

the consumption of simple sugars and sugar-polymers (e.g., starches) up to 75% of total daily 

caloric intake is innocuous in healthy individuals. 

Key Words:  Sugar; diet; metabolism; obesity; nutrition; public policy 

Abbreviations: 

NCDs- Non-communicable diseases 

PA-Physical activity 

SSBs-Sugar-sweetened beverages 
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T2DM-Type II diabetes mellitus 

US –United States 

WHO-World Health Organization 
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Introduction 

“…the subject of nutrition seems to have a special appeal to the credulous, the social zealot 

and, in the commercial field, the unscrupulous. This fact makes the solid advancement of 

nutritional science particularly difficult… [and will] strike despair in the hearts of the sober, 

objective scientists.” Ancel Keys
1
 

History demonstrates that when demonstrably false information is widely disseminated, 

scientific progress is impeded, research resources are misdirected, and public health is placed in 

jeopardy.
2-6

 Thus, the purpose of this review is to provide a rigorous, evidence-based challenge 

to the current disease-mongering of dietary sugar and the simplistic notion that ‘we are what we 

eat’. Herein, I demonstrate that it contravenes a large body of highly-replicated scientific 

research to claim that sugar and other nutrients (e.g., saturated fats) that played essential roles in 

both human evolution
7-10

 and the substantial improvements in public health over the past 

century,
11-14

 are now suddenly responsible for causing obesity and chronic non-communicable 

diseases (NCDs).   

In this review, the term ‘diet-centrism’ describes the naïve tendency of researchers and the public 

to attribute a wide-range of negative outcomes exclusively to dietary factors while neglecting the 

essential role of individual differences in nutrient-metabolism and health. The explicit conflation 

of diet with both nutritional status and health inherent in diet-centrism contravenes the fact that 

the human body is a complex biologic system in which the effects of dietary factors are entirely 

dependent on the current state of that system (e.g., metabolic phenotype, nutrient-energy status). 

Thus, because the effects of sugar consumption are dependent of the physiologic context of the 

consumer, prescriptive, population-level dietary recommendations are both unscientific and 

futile: one size does not and cannot fit all. 

Several arguments are presented to counter the logical and scientific errors induced via diet-

centrism. Table   presents a summary. For clarity, herein the term ‘sugars’ refers to both mono 

and disaccharides (e.g., glucose, fructose, and sucrose). The term ‘sugar-polymers’ (or ‘glucose-

polymers’) refers to polysaccharides, such as starches, glycogen, and other molecules (e.g., 

cellulose) formed from the simple sugar glucose. Within the context of the human diet, starches 

(e.g., rice, potatoes) and glycogen are sources of sugar (glucose) to meet metabolic demands. 
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While all sugars and sugar-polymers are carbohydrates, not all carbohydrates are relevant to the 

present review. As such, the more precise terms sugar and sugar-polymers will be used.  

  

Table  

Evidence Contrary to the ‘Diet-Centric’  

Disease-Mongering of Dietary Sugars 

Without Sugar, we die: biological life depends on sugar in its many forms.  

Dietary sugars and sugar-polymers were the predominant source of nutrient-energy for 

most human populations since the invention of agriculture. 

Sugar (glucose) is so vital to human health and well-being that it is one of the World 

Health Organization’s (WHO) Essential medicines.  

Diet-centrism is based on physiologic illiteracy: one size does not and cannot fit all. 

Physical activity (PA) is the major modifiable determinant of energy intake, energy 

expenditure, nutrient-energy partitioning, and concomitant metabolic health. Diet is 

merely a necessary but trivial component.  

The consumption of dietary sugars up to 80% of total energy intake is entirely innocuous 

in active populations.  

There is a strong, positive association between sugar availability/consumption and 

health. 

Diet-Centrism Relies on Pseudoscientific and Inadmissible Data 

Obesity and T2DM: Blood Sugar, not Dietary Sugars Matter 

Diet-centric reductionism led researchers, policy-makers, and the public seriously astray, 

and led to biased and unscientific research and policy recommendations. The 

consequence has been a general ‘fear of food’ and the disease-mongering of dietary 

sugars and fats. 

 

 

Without Sugar, We Die 
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Sugar is a Fundamental Component of Life 

Sugar, in its many forms, is an essential constituent of all biological life from the construction of 

nucleic acids (e.g., DNA
15

) to organismal structure (e.g., cellulose) and cellular respiration (e.g., 

a metabolic fuel). Nearly all bacteria, plants, non-human and human animals can metabolize the 

simple sugar glucose (a hexose monosaccharide), and nearly all biological ecosystems depend on 

photosynthesis, which is the conversion of sunlight to sugar. Thus, sugars and sugar-polymers 

are the most important organic compounds on Earth. 

The Necessity of Sugar for Human Life 

In humans and other mammals, sugars and the sugar-polymer glycogen are essential for basal 

metabolic processes and physical activity (PA). The failure to consume or synthesize sufficient 

sugar to maintain an adequate supply to glucose-dependent tissues (e.g., neurons, red blood cells) 

results in rapid death.
16

 For example, the cells of the central nervous system require a large, 

finely regulated, and continuous supply of sugar (glucose),
16, 17

 and cell death occurs rapidly with 

sugar deprivation (e.g., neuroglycopenia).
17

 Stated more simply, if we do not eat enough sugar or 

sugar-polymers, or our bodies do not produce enough sugar, we die.  

Sugar and Sugar-Polymers: The Major Sources of Nutrient-Energy for Humans 

Given the importance of sugars and sugar-polymers in biological life processes and their 

essential role in energy metabolism,
18, 19

 it is not surprising that these nutrients played critical 

roles in both human evolution
7-9, 20

 and dietary history.
21-26

 For example, sugars and sugar-

polymers are major nutritive constituents of many foods and beverages including breast milk, 

dairy products, fruit, fruit juices, honey, sucrose (i.e., table sugar; a disaccharide of glucose and 

fructose), sugar-sweetened beverages (SSBs), rice, beans, potatoes, wheat, corn, quinoa, and 

other cereal grains. As such, sugars and sugar-polymers were the major source of nutrient-energy 

(calories) for most of the global population throughout human history,
7-9, 21, 23-26

 and now account 

for 45-70% of both total energy intake
18, 26

 and expenditure (as metabolic fuels
18

).  

Given these facts, it is illogical to posit that foods and beverages that were a substantial part of 

human dietary patterns since the dawn of recorded history are now suddenly responsible for the 

increasing global prevalence of obesity and NCDs. As explained in following sections, PA is the 
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major modifiable determinant of metabolic health, and therefore, increments in the prevalence of 

obesity and NCDs are not caused by unhealthy diets, but are metabolic conditions driven by non-

genetic evolutionary processes engendered by physical inactivity over multiple generations.
27-34

  

 

Sugar is an Essential Medicine 

 Sugar Saves Lives 

Malnutrition and diarrheal diseases are responsible for ~50% of deaths of children under five, 
35, 

36
 and dietary sugars play essential roles in nutritional rehabilitation. Sugar in the form of glucose 

is one of the World Health Organization ‘s (WHO’s) Essential Medicines,
37

 and the treatment of 

malnutrition and dehydration was recently characterized as “A liter of water. A fistful of sugar. A 

half-teaspoon of salt.”
38

 Treatment begins with feedings of “sugar water…every 2 hours round-

the-clock.”
39

 During recovery, the WHO prescribes a diet that is more than five times the current 

WHO recommendations for sugar consumption.
36, 40

 It was estimated that 90% of all diarrheal 

mortality could be prevented if sugar-based prescriptions were used in 100% of cases.
38

 In other 

words, sugary sweetened beverages save lives. The contradiction between the WHO’s 

prescription and proscription of dietary sugars is an exemplar of diet-centrism in public policy, 

and why ignoring the physiologic context of the individual is both naïve and unscientific. 

A ‘Sweet’ Thought-Experiment  

Imagine you are a physician in a rural village in which the prevalence of malnutrition and 

wasting in children is high. For nutritional rehabilitation, you have a large supply of 

sustainably grown, organic kale and quinoa, and a large supply of soda (i.e., SSBs). 

Clinical Dilemma 

It is generally assumed that kale and quinoa are much “healthier” than SSBs, and  kale 

was described as a “superfood.”
41

 More importantly, as an educated clinician you read a 

myriad of allegedly scientific papers, books, and newspaper articles by physicians, 

journalists, and researchers describing ‘added sugars’ and SSBs as “poison” and 
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“toxic.”
42-44

 In fact, a prominent science writer quoted an eminent pediatric 

endocrinologist using these exact terms.
43

  

Clinical Questions 

Question #1: Do you supplement the diets of the malnourished, stunted children with the 

locally and sustainably grown, organic kale and quinoa or do you prescribe the 

consumption of SSBs every two hours? 

Question #2: Which treatment is more palatable? 

Extra Credit Question: Are more foodborne illnesses and deaths in the United States 

(US) directly attributed to the consumption of fruits, nuts, and vegetables or SSBs? 

Answers 

Answer #1: If you supplement the malnourished children’s diet with kale and quinoa, 

your patients will die. If you supplement their diet with SSBs or some other form of 

‘added sugars’ (e.g., sugar water), your patients may recover. If ‘healthy’ is defined at a 

minimum as maintaining basic vital functions and survival, in this context SSBs are 

‘healthier’ than organic, sustainably and locally-grown kale and quinoa.  

Answer #2: The nutritional rehabilitation with SSBs is better tolerated and leads to better 

outcomes because it is more palatable, more energy-dense, and the sugars improve 

rehydration.
36

 

Answer to Extra Credit Question: 46% of all foodborne illnesses and a sizeable 

number of foodborne deaths in the US from 1998-2008 were directly attributed to the 

consumption of fruits, nuts and vegetables. Leafy vegetables caused more illnesses (22%) 

than any other commodity and were responsible for 6% of deaths. No foodborne illnesses 

or deaths were directly attributed to SSBs.
45

  

Summary of the “Sweet’ Thought-Experiment  

This thought-experiment illustrates the elementary but often ignored fact that the physiologic 

context of the consuming individual is the most important consideration in the effects of diet on 
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health. Thus, ‘health’ is a property of an individual and not an inherent property of foods or 

beverages. Therefore, the dichotomy of “healthy” versus “unhealthy” when referring to foods 

and beverages that are safe to consume (i.e., relatively pathogen-free) is not valid, scientific, or 

logical. The illiterate nature of this false dichotomy was revealed by a recent New York Times 

article
46

 in which neither the public, dieticians, researchers, nor policy makers could agree on 

which foods were ‘healthy’ and which were ‘unhealthy’. Thus, the diet-centric myth that “we are 

what we eat” is misleading to health professionals, patients and the public because it ignores the 

reality of physiologic context and individual differences. In summary, the use of disease-

mongering terms such as ‘unhealthy’, ‘toxic’ and ‘poisonous’ when referring to dietary sugar is 

simply unscientific. 

 

The Physiologic Illiteracy of Diet-Centrism: One Size Does not and cannot Fit 

All. 

The term ‘diet-centrism’ describes the naïve and physiologically illiterate tendency of 

researchers and the public to attribute a wide-range of negative health outcomes exclusively to 

dietary factors while neglecting the essential and well-established role of individual differences 

in nutrient-metabolism. The explicit conflation of ‘diet’ with nutritional status and health in diet-

centrism contravenes the fact that the human body is a complex biologic system in which the 

effects of dietary factors are dependent on the current state of that system. Thus, it is a fact that 

macro- and micronutrients cannot have health or metabolic effects independent of the 

physiologic context of the consuming individual (e.g., metabolic phenotype). For clarity, an 

individual’s metabolic phenotype is characterized by myriad factors such as body cellularity (i.e., 

the ratio of high to low metabolically active cells), PA and fitness levels, age, sex, reproductive 

status, illness, and the energy status of the systems responsible for metabolic control (e.g., 

skeletal muscle, liver).
47-52

 

 The Necessity of Increments in Serum Energy Substrates 

Diet-centric researchers and policy makers erroneously assume that population-level dietary 

recommendations on sugar and fat consumption are valid because the increments in serum 
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energy substrates (i.e., blood sugars and lipids) induced by sugars and/or other dietary 

constituents (e.g., sugar-polymers, proteins, fats) lead to obesity, metabolic dysfunction, and 

NCDs (e.g., see 
40, 53, 54

). This demonstrably false belief ignores the fact that the rise in serum and 

tissue energy substrates concomitant with eating and drinking are essential for health and 

survival. In other words, if an individual’s habitual caloric intake is not sufficient to increase 

serum sugars and/or lipids to the level necessary to meet chronic metabolic demands, that 

individual will die. For example, the transient positive energy-balance of the post-prandial period 

induced via the consumption of dietary sugars causes increments in the storage of the nutrient-

energy (e.g., glycogen) necessary for basal metabolic processes and PA during the post-

absorptive (i.e., inter-meal) period. 

As detailed in subsequent sections, diet-induced increments in serum energy substrates are not 

pathological. Rather, it is the failure of skeletal muscle- and hepatic-cells to dispose of serum 

nutrient-energy substrates and return blood sugar and lipids to post-absorptive levels. Stated 

more simply, it is not ‘what one eats’ (i.e., ‘diet’) that causes obesity and NCDs, but ‘what one’s 

body does with what is eaten’ (i.e., nutrient-energy physiology). This fact was recognized, 

replicated, and refined for thousands of years,
49, 55-57

 and explains why identical diets consumed 

by different individuals result in divergent metabolic and health effects.
47, 49, 57

 Consequently, 

detailed, prescriptive, population-level dietary recommendations are futile because one size does 

not and cannot fit all. 

 

PA, not Diet, is the Major Modifiable Determinant of Metabolic Health 

The metabolic health of an organism is determined by the flow of energy through its constituent 

population of cells (i.e., metabolic-flux).
27, 28

 Significant disturbances to metabolic-flux such as 

starvation (i.e., insufficient energy-intake relative to metabolic demands), exhaustion (i.e., 

excessive metabolic demands relative to energy intake), and physical inactivity (i.e., insufficient 

metabolic demands relative to energy intake) increase morbidity and mortality.
29, 58-62

 While it is 

well-established that the greatest drivers of both energy intake and expenditure across 

populations are basal metabolic processes,
63, 64

 the only major modifiable (i.e., behaviorally-

mediated) determinant is PA.
30, 59, 61, 64-67

 Unlike dietary factors, PA has major effects on nearly 
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every facet of nutrient-energy metabolism from ingestive behaviors to nutrient partitioning and 

the control of blood sugars and lipids. These effects are due to dose-dependent alterations in 

energy intake,
59-61, 67-72

 skeletal muscle- and hepatic-cell metabolic-flux and concomitant 

alterations in peripheral and central insulin sensitivity, and nutrient-energy partitioning.
27, 28

 
47, 48, 

50-52, 73-100
 Stated more simply, PA affects both sides of the energy balance equation, and by 

doing so determines metabolic health. The evidence for this is both rigorous, comprehensive, and 

unequivocal.
28, 29, 47, 48, 50-52, 59-61, 65-67, 70, 73-101

  

Because metabolic health depends on PA and the maintenance of the reciprocal relationship 

between energy expenditure and the consumption of nutrient-energy, it is not surprising that 

disturbances of this relationship via large decrements in PA and consequent declines in both 

fitness and PA energy expenditure over the past century
29, 31-33, 101-105

 led to increases in the 

prevalence of obesity and NCDs.
27, 29, 73, 101, 106, 107

 This large body of evidence and the role of 

skeletal muscle-cell metabolic flux are often underappreciated by diet-centric researchers.
108

 

 The Physiologic Mechanism of PA and Metabolic Health  

A detailed description of the mechanisms by which PA determines metabolic heath is beyond the 

scope of this review. Nevertheless, a summary is necessitated given the widespread lack of 

understanding of the role of PA in metabolic health. Briefly, PA induces contractions of skeletal 

muscle-cells that are metabolically costly and reduce stored energy (e.g., glycogen, lipids) in a 

dose-dependent manner (i.e., frequency, intensity, duration, and mode/type of PA). The 

decrement in stored energy causes increments in the uptake of both blood sugar and lipids via 

insulin-dependent and insulin-independent (e.g., contraction-induced) mechanisms.
82, 86

  

The increased disposal of serum nutrient-energy substrates by skeletal muscle-cells leads to a 

decline in blood sugar that stimulates hepatic-cells to synthesize sugar (glucose) via 

glycogenolysis and gluconeogenesis to maintain blood sugar levels. The energy expended via 

these endogenous sugar-producing processes reduces hepatic nutrient-energy stores (e.g., 

glycogen and lipids) and causes concomitant increments in the uptake of blood sugar and lipids 

by hepatic-cells, and over time increments in energy intake.
72

 The metabolic costs of 

gluconeogenesis explain the effects of PA on nonalcoholic fatty liver disease.
109, 110
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In summary, PA induces glycogen and lipid depletion/repletion cycles (i.e., metabolic-flux) in 

both skeletal muscle- and hepatic-cells. These cycles determine metabolic health by maintaining 

insulin sensitivity and inducing the partitioning of nutrient-energy to metabolically active tissues 

thereby reducing the availability of blood sugar and lipids for other processes (e.g., adipogenesis, 

de novo lipogenesis).  

PA and Nutrient-Energy Intake 

PA unequivocally affects appetite
65, 69, 98

 and is the major modifiable determinant of energy 

intake.
59-61, 67-72, 111

 Thus, PA affects both sides of the energy balance equation (i.e., ‘energy-in’ 

and ‘energy-out’). The relationship between PA and energy intake was described millennia ago 

when Aristotle wrote that the defining characteristic of animals was the necessity of bodily 

movement (i.e., PA) in order to eat (i.e., energy intake), and contrasted the daily PA of animals 

with that of plants, which have the luxury of energy acquisition and survival despite stasis.
112

 Yet 

the specific effects of PA were not demonstrated until ~60 years ago by Mayer and colleagues.
59, 

60, 66, 68
 These results were replicated more recently with both observational and rigorous 

experimental designs.
61, 67, 69-72

 As depicted in Figure 1, these studies demonstrated a curvilinear 

relationship between chronic PA, body-weight, and energy intake in both humans and non-

human animals.
59, 61

 This inter-species parallelism is expected in evolutionarily conserved 

relationships. 

When individuals decrease their PA below a metabolic tipping point, (denoted as ‘Sedentary’ in 

Figure 1), energy intake is dissociated from energy expenditure causing more calories to be 

consumed than expended. The resulting positive energy balance leads to increments in nutrient-

energy storage and body-mass.
59, 61

 The increased body-mass initiates a positive feedback-loop 

that decreases strength-to-weight-ratios that further depresses PA (i.e., heavier/larger bodies 

move less
30, 113

) and leads to further decrements in insulin sensitivity in both peripheral and 

central tissues. Thus, physical inactivity drives the overconsumption that leads to metabolic 

diseases.  

Given that skeletal muscle-cells are responsible for 75 to 95% of whole body glucose uptake,
74

 

any decrement in the insulin sensitivity of these cells will adversely affect metabolic health. As 

described by De Franco, the loss of skeletal muscle cell insulin sensitivity and concomitant 
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insulin resistance is the primary defect in type II diabetes mellitus ( T2DM).
80

 The mechanisms 

for the progression from the loss of insulin sensitivity to T2DM are quite simple. As low PA and 

high sedentary behaviors drive increased energy-intake in concert with decrements in skeletal 

muscle- and hepatic-cell insulin sensitivity, the ability of pancreatic beta-cells to compensate for 

the reduced disposal of blood sugar results in insulin resistance. Over time, T2DM develops as 

pancreatic-beta cells become exhausted and/or lose their sensitivity to increments in blood 

sugar.
50, 78, 80

 Therefore, as depicted by the ‘Sedentary’ tipping point in Figure I, there is a 

minimum amount of PA (and concomitant glycogen and lipid depletion-repletion cycles) 

necessary to maintain both insulin sensitivity and metabolic health.
47, 114

 This dose varies by 

metabolic phenotype (e.g., body cellularity
27, 28

). Conversely, as active individuals increase PA, 

energy intake increases in parallel, and these individuals remain in neutral energy balance 

because the increments in energy intake are partitioned and stored in metabolically active tissues 

(e.g., skeletal muscle- and hepatic-cells).
47, 48, 61, 75-77

 This explains why increases in exercise 

have little effect on body weight in moderately active individuals. As discussed below, given the 

necessity to increase caloric consumption to meet the metabolic demands of PA, sugar and sugar 

polymers are the dietary choice of highly-active individuals (Figure 1).  
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Figure 1: Relations between PA, Body Mass, and Energy Intake   

Text Description: As PA declines below the metabolic tipping point into the ‘Sedentary’ 

range, energy intake and energy expenditure become dissociated due to insufficient 

depletion/repletion cycles, and body mass begins to increase as energy balance becomes 

positive and insulin sensitivity is lost. 

 

The Necessity of Sugar for PA 

In addition to their essential roles in the maintenance of basal metabolic processes (e.g., brain 

function), sugar and sugar-polymers (i.e., glucose and glycogen) are also requisite energy 

substrates for PA.
115

 While at rest, skeletal muscle-cells are a major determinant of fatty acid 

oxidation,
116-118

 but as the dose of PA increases, the oxidation of blood sugar and glycogen 
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increases exponentially.
117, 118

 The energy demands of PA behaviors are variable
30, 119

 and can 

exceed that of basal metabolism.
30, 120

 The increased demands of high levels of PA require that 

large amounts of dietary sugar and/or sugar polymers be consumed. Thus, as described in the 

following section, numerous organizations recommend diets that are high in sugar and/or sugar 

polymers for recovery, health, and performance. 

 Recommendations for Elevated Sugar Consumption 

Given the necessity of dietary sugars and/or sugar-polymers for PA and athletic performance, 

medical and health organizations such as the American College of Sports Medicine  and the 

American Dietetic Association recommend a high sugar and/or high sugar-polymer diet for 

recovery and performance enhancement in highly-active individuals.
121

 These evidence-based 

guidelines explicitly recognize the importance of individual differences and recommend sugar 

and sugar-polymer consumption ranging from 6 to 10 grams per kilogram per day depending on 

the total daily energy expenditure, sex and training status of the individual, mode of training, and 

the environmental conditions during exercise.
121

 These recommendations vastly exceed the diet-

centric recommendations (e.g., see 
40, 53, 54

) that ignore individual differences in metabolic 

phenotype. 

 

Sugar Consumption Is Entirely Innocuous in Active Populations 

Given the large energy demands of PA, it is not uncommon for active individuals and 

populations to consume more than 70% of their energy needs in some form of sugars,
9, 122, 123

 

and/or sugar-polymers.
25, 124, 125

 Anthropologic research shows that modern hunter-gatherers 

seasonally consumed 20-80% of their total energy intake as ‘added sugar’ (i.e., honey,
122, 123

 a 

disaccharide of glucose and fructose) while increasing their glycemic and fructose loads via the 

intrinsic sugars in fruits and tubers.
8, 9, 122

 This is 5-8 times greater than current 

recommendations. Despite the massive consumption of sugar and high glycemic loads, these 

populations have some of the lowest NCD risks ever recorded.
119, 126, 127

 For example, modern 

hunter-gathers have a very low prevalence of hypertension, low body mass index, low total 

cholesterol, and unlike inactive Americans, these health metrics do not vary with age.
126
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The extremely low-prevalence of obesity and NCDs in these populations in concert with massive 

sugar consumption
119, 126, 127

 can be explained by their high PA levels and concomitant levels of 

skeletal muscle and hepatic-cell metabolic-flux. Hill et al. described one modern hunter-gatherer 

population as, “a healthy robust population that maintains a high [physical] activity profile”,
123

 

and Raichlen et al. stated, “the Hadza engage in over 14 times as much MVPA [ moderate to 

vigorous PA] as subjects participating in large epidemiological studies in the United States. We 

found no evidence of risk factors for cardiovascular disease in this population (low prevalence of 

hypertension across the lifespan, optimal levels for biomarkers of cardiovascular health).”
119

  

Epidemiologic Evidence: A Positive Association between Sugar Consumption and 

Health 

In addition to anthropologic evidence, epidemiologic evidence demonstrates that highly-active 

individuals and athletes exhibit high levels of metabolic health throughout their lifespan.
128, 129

 

These individuals maintain high insulin sensitivity in concert with low levels of body fat and low 

levels of metabolic disease
130-133

 while consuming diets rich in simple sugars and using SSBs to 

enhance athletic performance.
134-137

 For example, a survey conducted at the US Professional 

Championship Road Race demonstrated that more than 50% of the cyclists drank SSBs during 

the race,
138

 and marathoner Frank Shorter credited his 1972 gold-medal marathon performance to 

his use of SSBs.
136

 Research demonstrates that glucose and fructose are the sugars of choice “to 

restore muscle glycogen deposits after exercise”
134

 and “sucrose should continue to be regarded 

as one of a variety of options available to help athletes achieve their specific carbohydrate-

intake goals.”
135

 Thus, the consumption of dietary sugars at doses many times diet-centric 

recommendations are entirely innocuous in active individuals.  

While some erroneously argue that despite their similar chemical composition that not all ‘added 

sugars’ are alike,  Raatz et al. demonstrated that the effects of the disaccharides honey, sucrose, 

and high-fructose corn syrup on glycemia, lipid metabolism, and inflammation were similar 

within participants.
139

 Thus, it is logical to posit that the only reason sugar consumption appears 

to be deleterious in industrialized nations is that PA levels and skeletal muscle- and hepatic cell 

metabolic-flux are simply too low to support metabolic health.
31-33, 58, 73, 101, 103
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Food Availability Data: A Positive Association between Sugar Consumption and 

Health 

From a historical perspective, the greatest increases in sugar availability in the US 

occurred from the late 19th century until World War II and remained relatively flat until 1980. 

During this period, sugar availability increased from less than 10 lbs per capita to more than 100 

lbs per capita per year; an increase of more than 1 lb. per person per week.
14

 Given that the US 

population experienced large improvements in every health metric examined over the period 

from 1880 to 1980,
11, 12

 it is unequivocal that sugar consumption has a positive association with 

health and well-being. In 1979, the availability of sugar in the American food supply had never 

been higher and the US Surgeon General’s report on Health Promotion and Disease Prevention 

began with the unequivocal statement that, “The health of the American people has never been 

better.”
140

 If sugar were harmful, large increments in the availability of dietary sugars should not 

have occurred in confluence with decade-by-decade improvements in public health. Clearly, a 

century of increased sugar availability did not have the deleterious dose-dependent effects that 

the diet-centric rhetoricians claim.  

Similarly, the United Kingdom experienced increments in health and wellbeing in lockstep with 

increases in sugar availability as it rose from less than 10 lbs per capita at the turn of the 19
th

 

century to over 100 lbs before the Second World War. As in the United States, this substantial 

increase is sugar availability was linked to better, not worse health. For example, “Significant 

positive correlations exist between the secular increase in brain weight of adults in London born 

between 1860 and 1940, and the secular trend in sugar consumption in the United Kingdom.”
141

 

Clearly, these data do not support a negative effect of increased sugar consumption on health and 

wellbeing.   

A Natural Experiment: Increased Sugar Consumption = Improved Health 

With the fall of the Soviet Union in the 1980s, Cuba was forced to rely on domestic crops such 

as sugar cane. While overall sugar production declined,
142

 domestic sugar utilization increased 

from 530 metric tons in 1980 to 637 in 1995.
143

 Concomitant with that increase in sugar use was 

a large and significant increase in PA and significant declines in obesity, T2DM, and NCDs.
144
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These results suggest that increments in both PA and dietary sugar lead to improvements in 

metabolic health.  

 

Diet-Centrism Relies on Pseudoscientific and Inadmissible Data  

Diet-disease relations were posited early in recorded history,
56

 and it is now widely established 

that an individual’s health may be severely affected by his or her dietary intake. For example, if 

an individual chronically fails to consume sufficient nutrient-energy to meet metabolic demands, 

that person will die (i.e., starve to death). Similarly, if a person does not consume adequate levels 

of micronutrients, he or she will suffer diseases specific to the dietary deficiency (e.g., pellagra 

from insufficient niacin, or scurvy from insufficient Vitamin C). It is important to note that the 

established causal effects of diet are limited exclusively to disease-specific deficiencies and 

starvation (i.e., protein-energy malnutrition).  

Yet, beginning in the mid-20
th

 century nutrition researchers began speculating that the 

overconsumption of specific macro-nutrients, foods, and beverages were responsible for a wide 

variety of NCDs and obesity. Despite the fact that these speculations were not supported by the 

extant evidence
2
 and failed to meet many of Bradford Hill’s criteria (e.g., strength, consistency, 

biological gradient, and specificity),
145

 they immediately gained wide-spread political support.
2
 

Given the substantial evidence to the contrary,
2
 diet-centric investigators began employing a 

demonstrably pseudoscientific method to collect dietary data. These methods, known as 

Memory-Based Dietary Assessment Methods (M-BMs; e.g., food frequency questionnaires),
4, 146, 

147
 were based on the naïve notion that a person’s usual diet could be measured simply by asking 

what he or she remembered eating and drinking.  

Despite the credulousness necessary to employ M-BMs and the unfalsifiable (i.e., pseudo-

scientific) nature of the data produced, epidemiologists used it to produce thousands of 

influential publications that dominated the empiric landscape and significantly altered the 

perception of diet-disease relations. Nevertheless, when the highly publicized nutrition claims 

derived from M-BMs (e.g., see 
148, 149

) were tested using objective study designs, they were 

found to be false.
150-154

 For example, Young and Karr examined over 50 nutritional claims and 
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demonstrated that “100% of the observational claims failed to replicate” and some were 

statistically significant “in the opposite direction.”
155

 These results suggest that M-BMs are 

invalid and the vast majority of diet-disease relations are spurious.  

Given the lack of support for diet-disease relations, my colleagues and I published a series of 

scientific, policy, and popular media articles,
2, 4-6, 146, 147, 156-167

 with the express purpose of ending 

the use of M-BMs in scientific research and public policy formation. Our work empirically and 

theoretically refuted the validity of M-BMs and demonstrated that self-reported dietary data were 

physiologically implausible (i.e., meaningless numbers),
4, 5, 146, 147, 163

 “incompatible with life”,
150

 

p.347
 and were repeatedly demonstrated to have little relation to actual nutrient and energy 

consumption.
150, 168-171

 Furthermore, we showed that because there was no way to ascertain if the 

reported foods and beverages matched the respondent’s actual intake, the measurement errors 

associated with self-reported data were non-quantifiable and non-falsifiable (i.e., pseudo-

scientific). More importantly, these non-quantifiable errors were systematically propagated when 

the self-reported foods and beverages were pseudo-quantified via the assignment nutrient and 

energy values to create estimates of consumption. Our conclusions were that M-BMs were 

“pseudo-scientific and inadmissible… [and] …constituted an unscientific and major misuse of 

research resources.” 
4p. 911 

These conclusions were supported by 60+ years of highly replicated 

evidence (for reviews please see
4, 146

). Nevertheless, the authors of the 2015 Dietary Guidelines 

for Americans,
172

 a major report from the National Academies of Sciences, Engineering, and 

Medicine,
173

 and other influential research papers
53, 174, 175

 failed to cite, address, or even 

acknowledge our critiques and empirical refutations. Thus, many investigators and public policy 

architects remain uninformed about the lack of validity of M-BMs.  

 

Most importantly, when the pseudo-scientific M-BM data, results, and conclusions are removed 

for the scientific discourse, there is little evidence to support diet-centric speculations or 

population-level dietary recommendations on dietary sugar consumption. Meta-analyses and 

reviews of randomized control trials demonstrated that the assumed negative effects of dietary 

sugars are due to positive energy balance and not the consumption of sugars per se.
176-182

 Thus, 

the anti-sugar narrative has little support, and as presented herein, there is a large body of 

evidence to the contrary.     
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Obesity and T2DM: Blood Sugar, not Dietary Sugars Matter 

Recent research strongly suggests that obesity and T2DM are not diet-related diseases but are 

metabolic conditions caused by the positive energy balance (i.e., over-nutrition) driven by the 

confluence of physical inactivity and nongenetic evolutionary processes known as ‘accumulative 

maternal effects’.
27, 28, 34, 183, 184

 Stated simply, over the past few generations, PA and fitness 

levels declined precipitously in both children and adults.
29, 31-33, 58, 102, 104, 105

 Given that PA is the 

major determinant of metabolic health, these trends led to decrements in metabolic control across 

the population,
185

 with concomitant increments in the prevalence of pathological metabolic 

phenotypes such as acquired (i.e., adult-onset) obesity and T2DM. (For reviews of these trends 

please see 
27, 28

).  

 Maternal Effects: Why A Mother’s Blood Sugar Matters 

The term ‘maternal effects’ describes the nongenetic evolutionary process by which a mother’s 

phenotype (i.e., her characteristics; e.g., body mass and behavior) alters both pre- and post-natal 

development, independent of genotype. Maternal effects significantly influence the survival and 

health trajectories of her offspring,
27, 28

 and in humans and other mammals, it is well established 

that a mother’s prenatal metabolic control is the major determinant of the birth weight and 

metabolic phenotype of her offspring (e.g., ratio of skeletal muscle to fat cells).
27, 28, 186-190

 Thus, 

as mothers became increasingly physically inactive and sedentary in the latter half of the 20
th

 

centruy,
31-33

 the loss of metabolic control increased the availability of sugar (glucose) and lipids 

to the intrauterine milieu. Because the availability of sugar (glucose) is a major determinant of 

adipocyte (fat-cell) number and pancreatic beta-cell development,
27, 28

 the children of inactive 

mothers were born increasingly predisposed to inherited (i.e., pediatric) obesity and T2DM. With 

each passing generation, these ‘maternal effects’ accumulated and led to the twin-epidemics of 

both obesity and T2DM.
27, 28, 34, 191, 192

  

 

The Physiologic Illiteracy of Diet-Centric Public Health Recommendations 

By design, detailed, prescriptive population-wide dietary recommendations on the consumption 

of dietary sugars (e.g., see 
40, 53, 54

) ignore individual differences and the physiologic context of 
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the consumer. These diet-centric sanctions erroneously assume that the effects of sugar 

consumption are uniformly deleterious across the population. This error is based on the failure to 

understand that it is not the consumption of nutrient-energy, nor the rise in serum and tissue 

energy substrates that lead to metabolic disease, but rather the inability of skeletal muscle- and 

hepatic cells to control energy intake and re-establish metabolic homeostasis in the post-prandial 

and post-absorptive periods by disposing of serum sugars and lipids. Thus, it is not ‘what you 

eat’ that causes obesity and NCDs, but what your body does with what is eaten.  

As detailed herein, the chronic overconsumption of nutrient-energy and concomitant elevated 

serum and tissue energy substrates that lead to metabolic diseases can only be achieved via 

physical inactivity in current and/or past generations. Therefore, our present state of poor 

metabolic health is not because our diets are unhealthy or that we consume sugars, it is because 

we are physically inactive.
27, 29-34, 58, 73, 101-103, 193-195

  

 

Conclusion 

In this review, I presented evidence to challenge diet-centrism and demonstrate that diet-centric 

reductionism has led researchers, policy-makers, and the public seriously astray. The 

consumption of dietary sugars is entirely innocuous in healthy populations and essential for 

many highly-active individuals. Thus, the only reason sugar consumption now appears 

deleterious in industrialized nations is that PA levels and metabolic-flux are too low to support 

metabolic health. Until the pathologies of physical inactivity and high sedentary behaviors are 

corrected, our population’s metabolic health will continue to decline. As such, current diet-

centric hyperbole surrounding sugar consumption impedes progress in medical science by 

diverting attention and research resources from the true causes of obesity and metabolic diseases: 

low levels of PA and reduced metabolic-flux. 
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