
978-1-4244-2100-8/08/$25.00 c©2008 IEEE

Towards Autonomous Data Ferry Route Design through Reinforcement Learning

Daniel Henkel and Timothy X Brown

University of Colorado at Boulder

Boulder, CO 80309, USA

{henk,timxb}@colorado.edu

Abstract

Communication in delay tolerant networks can be facil-

itated by the use of dedicated mobile “ferries” which phys-

ically transport data packets between network nodes. The

goal is for the ferry to autonomously find routes which min-

imize the average packet delay in the network. We prove

that paths which visit all nodes in a round-trip fashion, i.e.,

solutions to the Traveling Salesman Problem, do not yield

the lowest average packet delay. We propose two novel ferry

path planning algorithms based on stochastic modeling and

machine learning. We model the path planning task as a

Markov Decision Process with the ferry acting as an inde-

pendent agent. We apply Reinforcement Learning to enable

the ferry to make optimal decisions. Simulation experiments

show the resulting routes have lower average packet delay

than solutions known to date.

1 Introduction

Future mobile ad-hoc networks (MANETs) are expected

to reliably connect fixed and mobile nodes to support a

range of applications. In a sensor network, for instance,

sensor task nodes can help collect scientific data or pro-

vide situational awareness for natural and man-made disas-

ter response. In many of these situations networks might

only be sparsely and intermittently connected. Under

these circumstances only delay-tolerant communication is

feasible. Within the Delay Tolerant Networking (DTN)

framework [3] message passing and flooding algorithms

for data delivery have been developed which rely on the

natural, intrinsic and uncontrolled movement of network

nodes [11, 7]. The mobility of the task nodes themselves is

exploited to improve the network performance. Even when

there is never a contemporaneous end-to-end connection be-

tween sender and receiver, these methods deliver packets if

such a path is formed over time. Nodes physically store and

carry packets until forwarding to a suitable next node is pos-

sible. If movement of task nodes can be controlled, routes

for mobile nodes can be created to connect network parti-

tions. However, this requires cooperation of the deployed

nodes and burdens nodes with extra processing.

We consider networks where the mobility of certain

nodes can be controlled. Such nodes can change location

to specifically aid communication. In sparse DTN so-called

ferry nodes can go further and physically carry data pack-

ets between otherwise disconnected task nodes [14, 8]. The

main advantages of the ferrying approach are its ability to

overcome network partitioning and reduce network conges-

tion since data is physically carried rather than retransmitted

multiple times. However, a motion is slow relative to trans-

mission and propagation delays. It is not clear how ferries

should move to minimize overall average packet delay.

Recent work puts an emphasis on designing optimal

paths for the ferry’s movement. The majority of route plan-

ning work relies on solutions to the well-studied Traveling

Salesman Problem (TSP) to maximize throughput or min-

imize delay [14, 13] or provide differentiated services in a

DTN [12]. Other work focuses on buffer constraints in sen-

sor networks and schedules ferries according to the Earliest

Deadline First algorithm [9].

Our work is motivated by the ongoing development of an

Ad-hoc Unmanned aircraft to Ground Network (AUGNet)

testbed comprised of mobile and fixed ground nodes as well

as airborne network nodes with controlled trajectories [2].

The aircraft can span large distances in a relatively short

time thus simplifying data collection from far-flung sensors

and facilitating communication among ground nodes. In

this specific scenario we found prior work to perform sub-

optimally, and specifically TSP-based ferry route designs

seem not well suited for communication between multiple

sensors and one common data sink. The question now is

how autonomous machine learning approaches can be used

to generate optimal ferry routes and what issues arise when

trying to apply these algorithms to real-world networks.

We will introduce the path planning problem in detail in

Section II and talk about the deficiencies of current TSP-

based solutions in Section III. Section IV describes a plan-

ning algorithm based on a stochastic model and Section V

outlines the Markov Decision Process (MDP) formulation

and solution using Reinforcement Learning (RL). We com-

pare the performance of the algorithms to previous solutions

and point out implementation issues in Section VI, and we

conclude the paper in Section VII.

2 The Path Planning Problem

We address the design of movement paths for data ferries

that physically carry delay-tolerant traffic. Our network

consists of sparsely distributed stationary nodes, called task

nodes, which need to forward data to a sensor monitoring

station (SMS). Mobile helper nodes, called ferries, aid in

delivering traffic.

There are n task nodes distributed on a survey area.Each

task node has a large buffer and generates a data flow at

rate fi. A network is considered stable if these flows are

met over time. It is assumed that the separation distance be-

tween nodes is much greater than the communication range

of the radios. Thus there is no connection between nodes

and no possibility for routing traffic among them without

the help of some mobile node. Data ferries are capable of

moving around the survey area to any location requested.

We assume constant ferry velocity v, but ferries can also

loiter above a task node for data exchange. The ferry has a

large buffer of size b.

The goal of the ferry is to choose routes that minimize

the average packet delay throughout the network. An indi-

vidual packet’s delay is comprised of the wait time at the

node until arrival of the ferry, the transmission time of the

node’s buffered traffic to the ferry, the ferry’s flight time to

the SMS, and the transmission time of the ferry’s buffer to

the SMS. We are assuming negligible packet transmission

times compared to ferry travel times, since wireless data

rates are high and buffered traffic is small.

Moving a ferry requires significant time relative to com-

munication rates. The choice of when and where to move

a ferry has long term consequences that require planning.

Previous work assumes this planning is done by an external

entity, while in Sec. 5 we introduce the ferry as an intelli-

gent agent that makes independent decisions. The planning

consists of two tasks: assessing communication needs and

making helper node assignments. Assessing communica-

tion needs can be modeled with varying degrees of realism,

ranging from a god-like knowledge of all task node’s com-

munication needs to an incomplete prediction based on pre-

viously observed flows. We assume that the task nodes send

out periodic low-rate and thus long-range packets that con-

tain communication requests. The next section considers

one method for making helper node assignments.

3 Shortcomings of the TSP Solution

The path planning problem has been investigated in the

research community, and most of the results are based

A S B

p , dA A p , dB B

F
(b, v)

fA fB

Figure 1. The hub, S, communicates with two

stations A and B at distance dA and dB.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

hub separation from A as fraction of total distance A−B [%]

o
p
ti
m

a
l
d
e
la

y
 a

s
 f
ra

c
ti
o
n
 o

f
n
a
iv

e
 d

e
la

y
 [
%

]

fA=1 fB

fA=3 fB

fA=10 fB

fA=30 fB

fA=100 fB

Figure 2. Comparison of naı̈ve TSP vs. opti-
mal ferry assignment algorithms.

on solutions to the common Traveling Salesman Problem

(TSP) [14, 13]. However, any TSP solution which aims at

visiting all nodes in a given cycle is sub-optimal. Consider

the network in Fig. 1. Two task nodes A and B are commu-

nicating data to a central hub S with respective traffic flow

rates fA and fB. The hub can be located anywhere on the

straight line between A and B, and its location relative to

node A can be expressed as a fraction of the total distance

|AB|. One ferry serves both nodes transporting data from

the nodes to the hub. The goal is now to schedule visits to

A and B such that the average packet delay is minimized.

The allocation will be expressed here as the fraction of a

visits, pA respective pB , that the ferry visits nodes A and

B. Based on queueing analysis an equation for delay can

be derived. This can be minimized to find the optimal allo-

cation of visits between the two nodes. This analysis will

be derived in Section 4 for n ≤ 2.

Since there are only two nodes the only solution for TSP

is to alternately visit each node. This corresponds to a naı̈ve

allocation which would visit each node equally often, i.e.,

pA = pB = 0.5. The optimal allocation visits each node

with varying frequency per cycle, i.e., pA 6= pB , and can

have significantly lower delay. Fig. 2 shows the optimal av-

erage delay as a fraction of the delay using the naı̈ve algo-

rithm. The optimal allocation’s delay can be a few percent

of the naı̈ve allocation’s delay, up to a factor of 100 smaller

in the fA = 100fB case. This simple example is still an-

alytically tractable and it shows the shortcomings of using

the TSP approach. In Section 4 we will give a detailed anal-

ysis of this algorithm and generalize to more than 2 nodes.

4 Stochastic Algorithm Design

Now we evaluate an algorithm which assigns ferry time

to nodes in the case of k task nodes transmitting to one data

sink (aka hub). We assume full knowledge of the network

parameters, including traffic flow rate fi for each node i,
distances di from node to hub, buffer size b and constant

speed v of the ferry. The hub communicates with each sta-

tion one at a time. Communication takes place from the

task nodes to the central hub with the help of one ferry.

Figure 1 shows the network setup with k = 2 nodes. The

first goal is to see if the set of flows can be carried, that

is, if
∑

i
fi

R(di)
< 1 where R is the transmission rate. As

a lower bound we assume that the ferry travels the com-

plete distance between hub and stations for each transfer,

i.e. R(d) = vb
2d

. Using these assumptions, the capacity con-

straint is:
2

vb

∑

i

fidi < 1

We can observe that as we scale to larger systems that span

larger regions (i.e., the di increase), the load with ferrying

increases linearly. The ferry can always meet any required

throughput load if b or v are made large enough. The time

to visit a station in the ferry case varies from station to sta-

tion depending on the distance. A simple round robin visit

to each station in turn may not be appropriate to minimize

delay. A station that is closer can be visited more often low-

ering this station’s delay with less of an impact on overall

delay. Visiting a node with a larger flow rate more often will

also tend to lower the overall delay. A visit from the ferry

can carry one or more packets up to the limit of the ferry

buffer. If the buffer is sufficiently large the effect of visiting

a station is to clear all backlogged packets. The following

sections discuss these in more detail. We consider a prob-

abilistic model of choosing the next station to visit. In this

model, when the current station is finished being served, the

station i is chosen to be the next station with a probability

pi where pi ≥ 0 and
∑

i pi = 1. The expected time for any

packet to be served is:

T =
∑

i

piτi, (1)

where τi is the time to serve one packet from node i (we

will return to this later). If we assume the visits are chosen

stochastically, then the time between visits to a given node i
is approximately exponentially distributed with mean T/pi

for node i. Thus, regardless of whether other packets are

already waiting or not, when a packet arrives to be serviced

at node i the expected delay before the next packet is served

at node i is T/pi. If we assume that the ferry buffer is large,

then when the node is serviced, all packets waiting will be

served. As a result the average service time for a packet is

T/pi. The goal is to minimize this delay for packets across

nodes weighted by the probability a packet will come from

each node. The weighted delay is:

τ =
∑

i

Tfi

piF
=
∑

i

∑

j

pjτjfi

piF
,

where F =
∑

i fi and fi/F is the fraction of the total traffic

from node i. This equation can be minimized with respect

to the set of pi. The result is:

pi =

√

fi/τi
∑

j

√

fj/τj

(2)

which can be seen by substituting the above solution into

the derivative of τ with respect to pk and showing the result

is zero for any k.

For the ferry communication, we assume the ferry trav-

els all the way between the node and the hub, τi = 2di

v
.

Substituting τi into pi and pi into the delay equation:

pi =

√

fi/di
∑

j

√

fj/dj

, (3)

and

τ =
1

F

(

∑

i

√

fiτi

)2

=
2

vF

(

∑

i

√

fidi

)2

.

Equation (3) shows that a node i will be visited more often

as fi increases and di decreases.

A simple stochastic algorithm would choose the next

node to visit according to the probabilities {pi}. A deter-

ministic algorithm would use a fractional visit counter ci

for each node to track visits. This specifies a fair algorithm

in the sense that if all pi are equal then each node will be

visited once per cycle.

Algorithm 1 Stochastic Ferry Scheduling

1: ∀i : ci ← 0
2: while maxi{ci} < 1 do

3: ∀i : ci ← ci + pi

4: end while

5: k ← argmaxi{ci}
6: Visit node k and ck ← ck − 1

7: When ferry visit is finished, go to 2:

This solution is a zero-state-information solution since

the decision of which node to visit is based only on prior

information and does not depend on the current volume of

data waiting at each node. An alternative formulation in-

cludes a signaling mechanism or a traffic accumulation es-

timator so that when the ferry is at the hub making its next

visit decision it can consider the traffic waiting. Alterna-

tively, if traffic is in the opposite direction from the central

hub to the task nodes, then the ferry would have full in-

formation about how much traffic is waiting for each node.

The next section considers these scenarios when the ferry

has more state information when making its next visit deci-

sion.

5 Markov Decision Process Approach

Previous TSP-based ferry route planning approaches and

the above stochastic model are at opposite ends of the spec-

trum of possible cycles through the network. While the for-

mer aims to visit all nodes in one cycle, the latter visits one

node only, then returns to the hub. Our key idea in the fol-

lowing section is to exploit cycles which visit a subset of

nodes before returning to the hub for data delivery.

We propose to view the planning as a multi-period deci-

sion problem. The decision maker, i.e., the ferry, can learn

the dynamics of the system from interaction with its envi-

ronment. Initially, the ferry learns by observing a model of

the system. Thereafter, it updates its flight path while using

this initial knowledge in the real environment.

5.1 Problem Formulation

A Markov Decision Process (MDP) is a mathemati-

cal framework for analyzing decision problems where out-

comes are partly random and partly influenced by the de-

cision maker [6]. It consists of an agent taking actions in

an environment. Every action changes the environment’s

state and leads to a reward for the agent, which it uses for

learning. The agent’s goal is to maximize the sum of all re-

wards over time, called the return. The sequence of actions

that maximizes the return is called an optimal policy for the

agent to follow.

In this paper we are concerned with a single ferry serv-

ing multiple sensor nodes that wish to send sensor read-

ings to a central monitoring station. The agent is the ferry,

which aims at minimizing the overall average packet delay

(i.e., latency) by visiting task nodes in an optimal sequence,

i.e., the policy. It relies on observing the nodes’ buffer

states, i.e., the environment, and learns through the reward

received when returning to the monitor station to deliver

traffic. The ferry makes a new decision about which nodes

to visit next every time it delivers traffic to the monitoring

station. We are assuming packet generation at each node

to continue indefinitely, which leads to an infinite-horizon

MDP.

For small MDPs with full knowledge of the environment,

the optimal policy can be found analytically, or by using dy-

namic programming techniques. If we consider larger state

spaces it is more computationally feasible to think of the

MDP as a problem of learning from interaction to achieve

a goal. In that case Reinforcement Learning techniques can

Time

#
 o

f
P

a
c
k
e
ts

 i
n
 S

y
s
te

m

t0 t1

N0

F

tactionN(t)

Figure 3. Reward criterion: the shaded area

under the curve represents packet delay.

be used that can learn approximate solutions in reasonable

time [1, 10]. Here, the agent does not have to know the dy-

namics of the process prior to taking actions. It learns about

the process and the optimal policy while interacting directly

with its environment.

5.2 System Analysis and Agent Reward

Our goal is to minimize the average packet delay in the

system. This can be achieved by minimizing the time each

packet spends in the network. Fig. 3 shows the total num-

ber of packets in the network over time with one ferry as the

transport medium. We assume constant traffic flow rates fi

at each node, and the sum of all flow rates is denoted as F .

At time t0 there are N0 packets in the network. Now the

ferry chooses some action in which it starts at the hub, vis-

its a specified sequence of nodes picking up their traffic, and

returns to the hub. At the end of its tour at time t1, the ferry

delivers all the traffic to the monitor station, reducing the to-

tal number of packets in the network. Three ferry tours are

shown. The area under the curve can be interpreted as the

total time packets have spent in the network. If we reward

the agent with the negative integral of N(t) over the action

duration, it will try to minimize the number of packets in the

system to maximize the return. In our infinite-horizon de-

cision problem we discount the reward by a discount factor

determined by β:

r(s, a) = −

∫ t1

t0

(Ft + N0)e
−βtdt

Thus the agent has an incentive to visit nodes which have

accumulated a large buffer of undelivered traffic. However,

it also penalizes flying to a far-away node more than visiting

a near-by node.

The set of possible ferry actions contains the ferry tours

through all subsets of the nodes starting and ending at the

hub, A = {A, B, C, AB, BA, AC, CA, ...}. E.g., we denote

a tour which visits nodes A, C, and D in this order then

returns to the hub as action ACD. The number of actions

increases quickly with the number of nodes in the network:

|A| =
∑n−1

i=0
n!
i! < n!e.

The state space comprises all tuples of traffic accumu-

lated in each of the nodes, e.g., S = {(bA, bB, bC)} for a

3-node network. The state space is well defined, since traf-

fic generation and flight times are considered to be known in

the model-based learning environment. The state transition

function is given by

bi(t + 1) =

{

(ta − ti)fi if i ∈ action
bi(t) + tafi else,

(4)

where bi is the traffic accumulated in node i, ta is the time

to complete an action, and ti denotes the time it takes to

reach node i on the action path.

Optimal MDP policies are deterministic. So, we use de-

terministic policies that choose the next action with proba-

bility one given the current state.

5.3 Solving MDP with Reinforcement
Learning

For solving the decision problem we have implemented

reinforcement learning with the Temporal Difference (TD)

method to approximate a state value function as described

in [10].

The idea here is that each state has a value which reflects

the benefit of being in that state. This value is defined as

the expectation of the sum of the discounted future rewards

obtained when starting in that state and following a fixed

strategy thereafter:

V π(s) = Eπ

{

∞
∑

i=0

γirt+i+1

∣

∣

∣

∣

st = s

}

(5)

where γ < 1 is a discounting factor. An optimal strategy

would therefore maximize the sum of rewards when start-

ing in an arbitrary state and following that policy thereafter.

Thus, the value of a state is dependent upon that policy. The

above value function maps states to state values, and once

the optimal value function is found, the optimal policy can

be easily extracted using

π(s) = argmax
a

(

r(s, a) + e−βtaV (st+1)
)

. (6)

An approximation to (5) can be learned iteratively by

observing the reward for taking actions in the environ-

ment [10]:

Vt+1(s) = Vt(s) + α(r(s, a) + e−βtaVt(s
′)) (7)

where α denotes the learning rate and ta is the action du-

ration. In the limit of t → ∞ the state value function con-

verges to the optimal values V ∗(s).
The agent only learns when permitted to explore differ-

ent actions over time instead of always taking the greedy ac-

tion using (6). Therefore, we use ǫ-action selection during

learning runs, i.e., we take a random action with probability

ǫ. For efficient learning, we let α, ǫ→ 0 over time, starting

at a value of 0.3 for both.

We consider a continuous state space as per (4). For

learning purposes we use state aggregation to discretize the

state space [10].

6 Experimental Algorithm Evaluation

6.1 Simulation Environment

We have implemented ferrying in the OPNET discrete

event simulator to evaluate average packet delays in typi-

cal AUGNet data collection scenarios. We assume 3 to 5

stationary sensor nodes distributed on an area of 1.5km x

1.5km with the monitoring station (hub) located in the mid-

dle of the lower part of the area (see Fig. 4, top). Each

node generates fi packets per second, ranging from 1 to 8

pkt/sec, and each packet is destined to the monitoring sta-

tion where it is consumed. All node and ferry buffers are as-

sumed large, so packets are never dropped. The ferry travels

with a constant speed of v=20m/s and it visits the sequence

of nodes determined by the path planning algorithm under

evaluation. Radio communication range is assumed 100m

in a disc around the transmitter with a data rate of 10Mbps.

A simple ARQ protocol governs the data exchange between

nodes and ferry. The ferry flies all the way to the node’s

location, giving it Tc = 10sec of contact time. Thus a to-

tal of B = 12.5Mb of data can be transmitted. We chose

a small packet size of L=100 bytes to represent a typical

sensor measurement packet. Each evaluation is run for 2hrs

of simulation time, and the end-to-end delays of all packets

are measured, then averaged to yield a final test result.

6.2 Scenarios and Results

The scenarios in Fig. 4 represent networks of high and

low traffic rate sensors. We assume a high rate sensor gen-

erates 8 times the traffic load as a low rate sensor. We apply

four distinct algorithms to schedule ferry visits in these sce-

narios:

• RR: naı̈ve round robin scheduling. The ferry visits

each node in turn returning to the hub between visits.

• TSP: the shortest path through the network visiting all

nodes then returning to the monitoring station.

• STO: the route determined by our stochastic model ac-

cording to Algorithm 1.

• RL: the route learned by the ferry applying TD-V Re-

inforcement Learning according to (5) and (7).

The optimal routes for TSP and RL are displayed in

Fig. 4. TSP routes have a simple pattern, e.g., a tour through

nodes A, C, B from the collection station in scenario I, while

RL can result in intricate cycles through the network which

can considerably lower average packet delay. To better

compare the performance of the algorithms, we define the

relative gain as the percent reduction in average delay com-

pared to the worst performing algorithm. Fig. 4 shows that

average delay can be reduced by 24% to 46% by deploying

learning agents. TSP still works well in fairly homogenous

networks (IV), but RL clearly dominates in scenarios with

high variation in flow rates or distances (I–III).

I II III IV

re
la

ti
v
e

 g
a

in
 [

%
]

A

C

B A
C

B

A
C

B

A

C

B

D

E

D

0

40

50

20

D

TSP

RL

RR

STO 37

46

23

TSP

RL

RR

STO 23

33

7

8 packets/sec1 packet/sec

RL

STO 17

34

TSPRR 1

RL

RR

STO 13

24
22TSP

RL

TSP

10

30

ACB. ADCB. ADCB. ACEDB.

A.B.B.CB. EDB.EDB.EDB._BC.A.BC.A.CB.A._ A.CB.A.DCB.

CB.DA.

:

:

EDB.ECA.

Figure 4. Relative gains of four ferry tour

scheduling algorithms for four scenarios.

6.3 Issues with Models and Algorithm

We are using the standard temporal difference learning

approach for finding a solution for the ferrying MDP. In our

current problem formulation the computational complexity

rises exponentially with the number of nodes in the network.

Finding a route takes about 1 hour for 3 nodes, 6 hours for

4 nodes and already around 20 hours for 5 nodes. Apply-

ing RL methods that exploit structure in the state and ac-

tion spaces will allow for a reduction of these computation

times.

Throughout the paper we made strong assumptions about

the system to make the problem tractable. In reality there

might not be steady flow rates at the sensors and the wireless

transmission rates and ferry buffers are finite. In these cases

the model and solutions change but fit within the frame-

work.

In practice there needs to be a signaling mechanism be-

tween nodes and ferry to notify buffer status and flow rates.

A low-rate, long-distance channel could serve this purpose

or the ferry could empirically learn flow rates while visit-

ing nodes in case of slowly changing rates. Changing flow

rates and node locations demand a change in the optimal

ferry route over time. A ferry could evaluate the situation

every time it returns to the hub and change its route. An ex-

treme version with decision points at each nodes can make

many-to-many communication possible.

An extension of the stochastic model to include multi-

node actions will improve its performance, but a closed

form solution would have to be derived. The improvement

is bounded by the RL solution.

7 Conclusion and Future Work

Current solutions to the data ferry route planning prob-

lem are provably sub-optimal, as shown for solutions based

on the TSP approach. By framing the problem as a Markov

Decision Process, considering the ferry as a learning agent,

and applying Reinforcement Learning as a solution strategy,

we obtain solutions which result in lower average packet de-

lay, do not rely on prior knowledge of the system dynamics,

and which adapt to changing communication needs. Thus

autonomic optimization of a ferry’s path through the net-

work is a viable alternative to conventional algorithmic ap-

proaches.

Our current framework only considers unidirectional

flows from multiple task nodes to one sink and utilizes sim-

ple Reinforcement Learning techniques. Future work will

extend the planning problem to general flows in the net-

work, which can be solved by more sophisticated RL ap-

proaches like sparse sampling, E3 [4], or PEGASUS for

partially observable MDP (POMDP) [5].

References

[1] D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Program-

ming. Athena Scientific, Belmont, MA, 1996.
[2] T. X. Brown, S. Doshi, S. Jadhav, D. Henkel, and R.-G.

Thekkekunnel. A full scale wireless ad hoc network test

bed. In Proc. of ISART’05, NTIA Special Publications SP-

05-418, pages 51–60, Mar 2005.
[3] K. Fall. A delay tolerant network architecture for challenged

networks. In Proceedings of ACM SIGCOMM, pages 27–31.

ACM, 2003.
[4] M. Kearns and S. Singh. Near-optimal reinforcement learn-

ing in polynomial time. Machine Learning Journal, 49(2),

2002.
[5] A. Y. Ng and M. Jordan. PEGASUS:A policy search method

for large MDPs and POMDPs. In Proc. 16th Conference on

Uncertainty in Artificial Intelligence, pages 406–415, 2000.
[6] S. M. Ross. Introduction to stochastic dynamic program-

ming. New York : Academic Press, 1983.
[7] K. Sanzgiri and E. M. Belding-Royer. Leveraging mobility

to improve quality of service in mobile networks. In Proc.

of MOBIQUITOUS’04, pages 128–137, August 22-26 2004.
[8] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data

MULEs: Modelling and analysis of a three-tier architecture

for sparse sensor networks. Elsevier Ad Hoc Networks Jour-

nal, (1):215–233, Sept. 2003.
[9] A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava.

Mobile element scheduling with dynamic deadlines. IEEE

Transactions on Mobile Computing, 6(4):395–410, 2007.
[10] R. S. Sutton and A. G. Barto. Reinforcement Learning: An

Introduction. MIT Press, March 1, 1998.
[11] A. Vahdat and D. Becker. Epidemic routing for partially-

connected ad hoc networks. Technical report, Duke Univer-

sity, 2000.
[12] R. Viswanathan, J. T. Li, and M. C. Chuah. Message ferry-

ing for constrained scenarios. In Proc. of IEEE WoWMoM,

pages 487–489, Taormina, Italy, 13–16 June 2005.
[13] Z. Zhang and Z. Fei. Route design for multiple ferries in

delay tolerant networks. In Proc. of IEEE Wireless Commu-

nications and Networking Conference, WCNC’2007., pages

3460–3465, 11-15 March, 2007.
[14] W. Zhao, M. Ammar, and E. Zegura. A message ferrying

approach for data delivery in sparse mobile ad hoc networks.

In Proc. of MobiHoc’04, May 24-26 2004.

