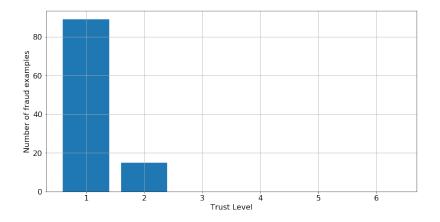
Uni_PNRP_Perm_2 Solution: Ensembling and Precise data analysis

Aleksandr Perevalov¹ Sergei Bobkov¹

¹Perm National Research Polytechnic University, Russia


Data Mining Cup @ Prudsys retail intellegence summit, 2019

Some simple facts:

- The dataset has no NANs;
- Fraud/Not fraud ratio = 6% to 94%;
- The dataset has 9 features and 1 target;
- The dataset has only 1 categorical feature trustLevel.

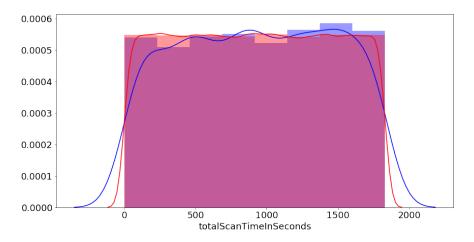
Some thoughts after reviewing these facts:

- The data is artificially generated (?);
- Don't use Accuracy (use Precision and Recall instead as additional metric for validation);
- Probably, trustLevel will have big weight.

Maybe just train on examples with trustLevel (TL) = 1,2 and constantly mark examples with TL more than 2 as not fraud?

Insights from data

Fraudulent self-checkout process takes more time than non-fraudulent one Mean overall total scan time is **15 minutes** – why so long?

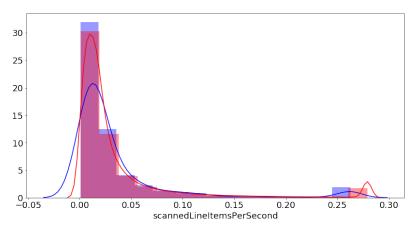

Train and Test feature descriptive statistics

The statistics (min, max, mean, std. etc) of the Train data and Test data are the same except: **scannedLineItemsPerSecond** and **valuePerSecond**;

	scannedLineItemsPerSecond	valuePerSecond	1	scannedLineItemsPerSecond	valuePerSecond
count	1879.000000	1879.000000	count	498121.000000	498121.000000
mean	0.058138	0.201746	mean	0.068054	0.222182
std	0.278512	1.242135	std	0.521092	1.717867
min	0.000548	0.000007	min	0.000546	0.000000
25%	0.008384	0.027787	25%	0.008682	0.027348
50%	0.016317	0.054498	50%	0.016940	0.054550
75%	0.032594	0.107313	75%	0.033929	0.109091
max	6.666667	37.870000	max	30.000000	99.710000


Train and Test feature distributions

"Good" train and test distributions nearly match each other


Train and Test feature distributions

This is not surprise that only **scannedLineItemsPerSecond** and **valuePerSecond** distributions doesn't match each other

Fix distributions by removing outliers

We fixed "bad" distributions by clipping their values by 1-percentile at lower bound and 97-percentile at upper bound

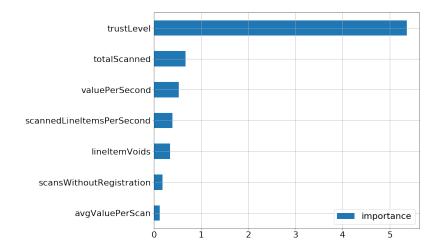
This procedure made our local validation score worse, but we believe that it made it better on the whole data

14 features were generated manually, only 6 of them passed the validation test.

Some of the features:

- avgTimePerScan * valuePerSecond
- scannedLineItemsPerSecond * totalScanTimeInSeconds

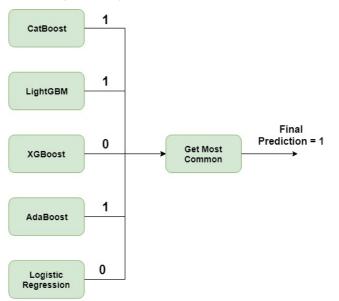
scannedLineItemsPerSecond


PCA, Truncated SVD, LDA. Number of components: 2 We also tried polynomial features such as *lineItemVoids*² and so on, but they showed worse result on final model. **Metrics:** F-Score, Precision, Recall, Organizer's metric **Validation:** K-Fold stratified cross-validation (3, 5, 7, 10 folds)

	Actual values		
	Fraud	Not fraud	
Fraud	5 Euro (TP)	-25 Euro (FP)	
Not fraud	-5 Euro (FN)	0 Euro (TN)	

Maybe use threshold to make our predictions more confident?

Baseline model – Logistic regression


Score = 285 Euros (520 max)

- Searching for 5 best models (Gradient boosting, Extra trees, kNN, SVM, NNs...);
- Optimizing hyperparameters tuning algorithm;
- Neural networks didn't work well;
- Hardware: i5, 3.2 GHz, GTX 1060;
- Training time: 30 minutes.

Final model architecture

Score = 355 Euros (520 max)

13/15

Possible ways of solution improvement:

- Oversampling and undersampling;
- One model for one customer level;
- Stacking techniques and meta-features;
- Threshold for classifier (> 0.5 confidence for fraud);
- Polynomial features;
- Consultations with people from business;
- More models in ensemble;
- Add weights to ensemble models;

o ...

Thanks for attention!

Questions?

perevalovA@pstu.ru