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Three billion smartphones were in use worldwide in 2015, a figure 
expected to double by 2020 (ref. 1). Smartphones have replaced stand-
ard mail and landline phones for many people, creating a need to lev-
erage mobile devices for research historically conducted by phone and 
mail. Mobile technology may also offer advantages over traditional 
data collection and management processes in research.

ResearchKit (Apple; Cupertino, CA, USA), an open source frame-
work for mobile research can (i) obtain electronic informed consent, 
(ii) administer and collect questionnaires, (iii) actively and passively 
collect biometric data, (iv) provide reminders and notifications, and 
(v) reliably transmit and secure data in a central repository in com-
pliance with regulatory requirements. Several research institutions 
and Sage Bionetworks (Seattle) collaborated with Apple to build the 
first mobile health applications using ResearchKit to demonstrate 
the feasibility of conducting research via this platform, and to pro-
vide an open source template to build third-party research apps2–5.  
To this end, we developed the Asthma Health Application (AHA) and 
conducted the Asthma Mobile Health Study (AMHS).

As many as half of the 25 million Americans with asthma lack 
optimal asthma control, contributing to $56 billion in annual disease 
costs6. A smartphone platform enabling large-scale, continuous col-
lection of clinical, environmental, and passive biometric data may 
provide valuable insights for asthma research and clinical care. Our 
prospective observational mobile health study focused on assessing 
the following primary objectives: (i) feasibility of smartphone-based 

recruitment; (ii) characteristics of a study cohort recruited through 
the ResearchKit platform; (iii) user engagement and retention pat-
terns; and (iv) user data sharing preferences. We tested the quality 
and utility of self-reported data collected by this method by assess-
ing correlation with trusted external sources and concordance with 
expected patterns. Lastly, we evaluated the reported clinical impact 
of AHA use in a subset of participants.

RESULTS
Study enrollment, user experience, and data sharing
After its Apple App Store release on March 9th 2015, the AHA was 
downloaded 49,963 times over the first 6 months, 40,683 of which 
were from United States. Only US residents were eligible for the 
study. Figure 1 describes the AHA enrollment process, cohort and 
key sub-cohort definitions (see Supplementary Table 1a for a com-
prehensive description of study sub-cohorts), user experience, and 
the geographic distribution of the study participants. A total of 7,593 
users, out of 8,524 completed the enrollment process. Participants 
were asked to complete a series of intake surveys on demographics, 
comorbidities, and asthma history over four consecutive days after 
enrollment. Participants were also asked to complete daily asthma 
surveys to log symptoms, presumed triggers, and medication adher-
ence for the duration of the study. In addition, the AHA administered 
weekly surveys to capture participants’ healthcare utilization (HCU) 
and quality of life over the previous 7 d. EQ-5D health questionnaire  
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and milestone surveys were also administered at less frequent inter-
vals (see Supplementary Table 1b for survey descriptions and 
Supplementary Note for survey questions).

A total of 88% of participants chose to share de-identified data with 
researchers; 67% made their data available to all qualified research-
ers, and 21% shared data with study sponsors and partners. Study 
participants could send a copy of their own data to their e-mail by 
using the one-click ‘Export Data’ feature.

Different cohorts of AHA users and their baseline characteristics
Among the 7,593 enrolled participants, 6,470 responded to at least one 
survey in the study. We referred to these 6,470 users as the ‘Baseline 
user’ cohort. The ‘Robust user’ cohort (n = 2,317) included partici-
pants who: (i) were free from other lung disease and congestive heart 
failure, (ii) didn’t smoke more than ten packs of cigarettes per year, 
and (iii) completed at least five daily or weekly surveys. Some of our 
analyses focused on the Robust users because of their more complete 

Cohort 1: Robust Users
2,317

Cohort 2: Milestone Users
175

6,470
Baseline Users

40,683
USA downloads

App installation

Study app data collection and activities

Collect HealthKit data: Users can
allow data from other installed
HealthKit-enabled apps to be sent to
the study

Dashboard: The app allows users to
track their progress and view air quality
reports. “Doctor dashboard” enables
data-sharing with doctors

Reminders and notifications: The
app reminds users to complete surveys
and take controller medications.

Provide information: The app hosts
information on the study, eligibility and
consent. Asthma, treatment and resource
overviews are also provided.

Profile: The app allows users to change the
time of activity reminders, export data
settings, review consent and leave the
study.

Collect survey data: The app asks
users to complete surveys on a daily,
weekly and monthly basis.

10–19 

20–49

50–99 

100–300

1–10 Users

>300 

Geographic distribution of Baseline users
(based on the 4,621 Baseline users with location data turned on)

E-mail verification

7,593
Enrolled Users

8,524
Consented Users

Eligibility/E-consent

Study participation

131 users
in common

Robust users are Baseline users who completed >=5 daily or weekly surveys (–3,704), smoke
< 10 packs per year (–160), and have no competing risks, including congestive heart failure or lung
diseases other than asthma (–289)

Milestone users are Baseline users who completed a 6 month milestone survey (see text) 

Sub-cohorts of Robust users with requisite data on:

GINA control level at enrollment 
Biological sex
Retention analysis covariates
Peakflow
Activity limitation or symptom frequency
Trigger analysis covariates

Sub-cohorts of Milestone users with requisite data on:

GINA at start of enrollment

N
2,295
719
537

1,621
2,308
545

N
173

Figure 1 Recruitment process, user experience, and geographic distribution. The flow chart on the left indicates the recruitment process. The upper-
right panel illustrates the activities experienced by users of AHA. The map illustrates the geographic distribution of Baseline users (i.e., Enrolled users 
who submitted at least one study survey). The box in the bottom outlines the selection of several of the key sub-cohorts used in our analyses, along with 
their sample sizes (see Supplementary Fig. 1a for more details).



©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature biotechnology  advance online publication �

A rt i c l e s

baseline data, greater adherence to study survey completion, and 
fewer confounding variables.

The Milestone user cohort was a subset of ‘Enrolled users’ who 
completed the 6-month milestone survey. Of note, 131 out of the 
175 Milestone users are included in the Robust user cohort. Table 1 
and Supplementary Table 2 illustrate the demographic and baseline 
clinical characteristics of our Baseline, Robust, and Milestone users 
compared with population-based asthma statistics from the Centers 
for Disease Control and Prevention (CDC; Atlanta)6, (http://www.
cdc.gov/asthma/most_recent_data.htm). AHA users tended to be 
younger, wealthier, more educated, and were more often male than 
asthma patients in the CDC asthma population. Based on the location 
data from 4,621 Baseline users, Supplementary Figure 1a shows the 
high correlation (r = 0.85) of asthma prevalence, by state, between 
AHA users and the CDC cohort.

Baseline users had a higher rate of hospitalization (6%) and emer-
gency department visits (11%) in the 6 months before enrollment 
than CDC rates (2% and 8%, respectively; Table 1)3. Of note, 13% of 
Baseline users reported a history of intubation and 37% reported the 
use of oral steroids (in the 6 months before enrollment) to treat an 
asthma exacerbation (Supplementary Table 2). During the study, high 

frequencies of symptoms were reported by a large number of users:  
(i) 47% of Baseline users reported symptoms in excess of twice weekly, 
(ii) 29% reported symptoms on most days or daily, and (iii) 37% 
reported the use of oral steroids (in the 6 months before enrollment) 
to treat an asthma exacerbation (Supplementary Table 2). Similar 
distributions were observed in Robust users and Milestone users. In 
addition, using Global Initiative for Asthma (GINA) criteria (http://
www.ginasthma.org/) to assess asthma symptom control, uncontrolled 
asthma was reported in 43%, 44%, and 42% of Baseline users, Robust 
users, and Milestone users, respectively (Online Methods).

Download, enrollment, and retention patterns
Presumably, initial media publicity led to a high rate of AHA down-
loads, starting with 43,949 in the first month, yet decreasing to 300–400  
per month by 5–6 months after the app launch. During months 3 to 6 
of the study, the average monthly enrollment rate was 30% of down-
loads, with approximately 21 participants becoming Robust users per 
month in these later 3 months (Supplementary Table 3a).

Patients with worse asthma control enrolled at a relatively higher 
rate over time. For example, in the Robust user cohort, the proportion 
of GINA-uncontrolled participants in the first half of the study was 

Table 1 Characteristics of patients at enrollment
AHA CDC

Characteristic Baseline Robust Milestone % Dist.

Agea 18–34 756 (0.54) 369 (0.52) 56 (0.33) 36
35–64 573 (0.41) 317 (0.44) 94 (0.56) 48
65+ 66 (0.05) 28 (0.04) 19 (0.11) 16

Gendera F 539 (0.39) 285 (0.4) 80 (0.46) 59
M 859 (0.61) 434 (0.6) 95 (0.54) 41

Raceb Black 203 (0.05) 108 (0.05) 8 (0.05) 14
White 2,689 (0.68) 1,540 (0.7) 125 (0.77) 64
Other 316 (0.08) 144 (0.07) 7 (0.04) 5
Multirace 185 (0.05) 98 (0.04) 5 (0.03) 2
Hispanic 587 (0.15) 315 (0.14) 18 (0.11) 13

Educationb HS nongrad 90 (0.02) 29 (0.01) 1 (0.01) 16
HS grad 358 (0.09) 179 (0.08) 9 (0.05) 28
Some college 1,521 (0.37) 844 (0.37) 60 (0.34) 33
College grad 2,138 (0.52) 1,200 (0.53) 104 (0.6) 23

Incomeb <$14,999 232 (0.06) 114 (0.05) 7 (0.04) <$15,000 16
$15,000–21,999 207 (0.05) 105 (0.05) 7 (0.04) $15,000–24,999 17
$22,000–43,999 550 (0.14) 314 (0.15) 21 (0.13) $25,000–49,999 20
$44,000–60,000 516 (0.13) 282 (0.13) 24 (0.15) $50,000–79,999 11
>$60,000 2,121 (0.55) 1,217 (0.57) 97 (0.6) $75,000 21
I don′t know 235 (0.06) 94 (0.04) 6 (0.04) NA

Visited ERc Yes 707 (0.11) 222 (0.07) 13 (0.07) 8
No 5,484 (0.89) 2,087 (0.93) 162 (0.03) 92

Hospitalizedc Yes 398 (0.06) 104 (0.03) 6 (0.05) 2
No 5,789 (0.94) 2,205 (0.97) 169 (0.95) 98

Age of 0–18 4,847 (0.8) 1,769 (0.78) 117 (0.68) NA
diagnosisc <18 1,208 (0.2) 492 (0.22) 56 (0.32) NA

Asthma Yes 3,772 (0.64) 1,613 (0.7) 142 (0.82) NA
Control No 1,896 (0.32) 630 (0.27) 30 (0.17) NA
medicationd Not sure 192 (0.03) 49 (0.02) 1 (0.01) NA

Daily inhaled ICS/LABAf 2,233 (0.65) 948 (0.65) 87 (0.68) NA
medicined ICS 1,202 (0.35) 506 (0.35) 41 (0.32) NA

GINAe Uncontrolled 2,534 (0.43) 1,004 (0.44) 73 (0.42) 50g

Partly controlled 2,246 (0.38) 947 (0.41) 82 (0.47) NA
Well controlled 1,067 (0.18) 344 (0.15) 18 (0.1) NA

Comparison of demographic distributions for Baseline, Robust and 6-month Milestone users with CDC national asthma statistics (https://www.cdc.gov/asthma/most_recent_data.htm).
 aBased on data from 1,430 Baseline, 738 Robust, and 175 Milestone users. bBased on data from 4,274 Baseline, 2,317 Robust, and 175 Milestone users. cBased on data from 6,240 Base-
line, 2,311 Robust, and 175 Milestone users. dBased on data from 5,898 Baseline, 2,300 Robust, and 175 Milestone users. eBased on data from 5,897 Baseline, 2,295 Robust and  
175 Milestone users. All percentages rounded to the nearest 100th. fICS/LABA inhaled corticosteroid and long acting beta agonist combination therapy. gInstead of using the GINA criteria, the 
CDC used a slightly different criteria to define uncontrolled asthma patients as those who reported any of the following: (1) asthma symptoms more than two days a week in the past 30 days,  
(2) nighttime awakenings for more than one time a week in the past 30 days, or (3) short-acting β2-agonists use more than two days a week in the past three months (https://www.cdc.gov/
asthma/asthma_stats/uncontrolled_asthma.htm). NA, not available.

http://www.cdc.gov/asthma/most_recent_data.htm
http://www.cdc.gov/asthma/most_recent_data.htm
http://www.ginasthma.org/
http://www.ginasthma.org/
https://www.cdc.gov/asthma/most_recent_data.htm
https://www.cdc.gov/asthma/asthma_stats/uncontrolled_asthma.htm
https://www.cdc.gov/asthma/asthma_stats/uncontrolled_asthma.htm
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43%, which was significantly lower than that in the second half of the 
study (62%) (chi-squared test: P = 0.01) (Fig. 2a). The distributions  
of different activity limitation levels and symptom frequencies indi-
cated the same trend (Fig. 2b,c). The percentage of female users was 
also significantly higher in the second (53%) versus the first half 
(38%) of the study (chi-squared test: P = 0.03; Fig. 2a). The gender 
distribution of the cohort recruited later more closely approximated 
the CDC asthma population statistics. We also confirmed the sig-
nificant associations between enrollment time and gender, GINA 
scores, activity limitation, as well as symptom frequencies from 
baseline surveys through logistic and regular regression analyses  
(Supplementary Table 3b).

Our study participants completed 79,297 daily and 10,969 weekly 
surveys over the 6-month study period. Of the 6,470 Baseline users, 
6,023 and 2,520 participants responded to at least one daily and weekly 
survey, respectively. Total survey numbers collected in each month 
decreased over time (Supplementary Table 3a), consistent with an 
exponential decay function as observed in the other mobile health 
research studies7. To evaluate the impact of various factors on user 
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Figure 2 Enrollment and retention over time for Robust users. (a–c) The 
distributions of gender and GINA control (a), the frequency of activity 
limitation (b), and the frequency of daily asthma symptoms (c) are all 
significantly different between the first and the second halves of the 
study. Specifically, in the latter half of the study, the Robust users have  
a higher percentage of females (chi-squared = 4.74, d.f. = 1, P = 0.03, 
and n = 719), a higher percentage of users with uncontrolled asthma  
(chi-squared = 8.97, P = 0.01, and n = 2,295), and an increased 
frequency of symptoms (chi-squared = 22.3, d.f. = 5, P = 0.001,  
n = 2,308) and activity limitation (chi-squared = 36.9, d.f. = 5, P = 0.0004,  
n = 2,308). (d,e) Daily survey participation survival curves stratified by 
study entry month and reported age (Robust users, n = 537 participants, 
>90 d of post-enrollment follow-up). (d) Kaplan-Meier survival curve of 
daily survey participation stratified by study entry month and excluding 
participants entering after May (n = 15 participants). Study entry month 
of the participant was statistically significantly associated with daily 
survey participation longevity using a Cox proportional hazards model, 
P = 2.99−23, hazard ratio 1.847 (95% CI, 1.64–2.08) for each passing 
month. (e) Kaplan-Meier survival curve of daily survey participation 
stratified by age (18–40 years and >40 years of age). Age was statistically 
significantly associated with daily survey participation longevity using 
a Cox proportional hazards model, P = 1.59 × 10−7, hazard ratio 0.976 
(95% CI, 0.806–0.96) for each additional year of age. Colored bands 
show 95% confidence intervals for each strata.
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Figure 3 Concordance between GINA control at enrollment and 
prospectively collected daily symptoms reports during the study.  
(a–d) Distributions of frequencies of daytime symptoms (Kruskal–Wallis 
test; H(2) = 471.94, P < 2.2−16, n = 2,295) (a), nighttime symptoms 
(Kruskal–Wallis test; H(2) = 232.23, P < 2.2−16, n = 2,295) (b), inhaler 
puffs usage (Kruskal–Wallis test; H(2) = 677.12, P < 2.2−16, n = 2,295) 
(c), and controller medicine usage (Kruskal–Wallis test; H(2) = 63.73,  
P = 1.4−14, n = 2,285), and (d) among Robust users stratified according 
to their GINA control level at enrollment. (U, uncontrolled; P, partly 
controlled; W, well controlled). (e) Based on data from 183 Robust users, 
the lines illustrate a multiple linear regression model for peak flow trained 
on users’ daily peak flow responses, GINA control assessed at enrollment, 
and HealthKit physique data, which demonstrates that male sex  
(β = 64.847, t(179) = 2.836, P = 0.005), controlled asthma  
(β = 42.224, t(179) = 2.364, P = 0.02), and height (β = 8.435,  
t(179) = 2.695, P = 0.002) are associated with greater peak flows.
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retention patterns, we focused on a subset of 537 users from the Robust 
user cohort, who were enrolled in the study for more than 90 d and who 
provided data for all the co-variates considered in the analysis. Both 
univariate and multivariate survival analyses of these 537 users, found 
earlier entrance into the study, (hazard ratio = 2.01 (95% CI, 1.73–2.33)) 
for each month following AHA launch, and increasing age, (hazard 
ratio = 0.978 (95% CI, 0.969–0.987)) for each additional year, signifi-
cantly associated with greater likelihood of daily survey participation 
(Fig. 2d,e, Supplementary Fig. 2a and Supplementary Table 4a,b).

We also investigated the ‘individual response rate’, defined as the 
number of days with at least one daily survey question completed 
divided by the number of days enrolled through September 9, 2015, for 
each user. For the 537 users considered in the above retention analysis, 
the average individual response rate was 31%, with 104 of these users 
having an individual response rate >50% (Supplementary Fig. 2b).  
Increasing age and earlier study entry month were also associated with 
higher individual response rate (Supplementary Table 4c).

Relationship between baseline asthma control and 
prospectively collected data
Participants completed intake questionnaires assessing asthma  
control upon study enrollment and then prospectively reported daily 
and nightly asthma symptoms, quick-relief inhaler usage, control-
ler medicine usage, and peak flow measures over the course of their 
participation in the study. Patients’ daily survey responses for the  

aforementioned four parameters were all found to be significantly 
associated with the GINA control levels calculated based on intake 
questionnaires from Robust users reporting daily (Kruskal–Wallis test; 
H(2) = 471.94, P < 2.2−16, n = 2,295) and nightly symptoms (Kruskal–
Wallis test; H(2) = 232.23, P < 2.2−16, n = 2,295), quick-relief inhaler 
usage (Kruskal–Wallis test; H(2) = 677.12, P < 2.2−16, n = 2,295), 
and controller medicine usage (Kruskal–Wallis test; H(2) = 63.73,  
P = 1.4−14, n = 2,285) (Fig. 3a–d and Supplementary Fig. 3).

Of those in the Robust user cohort, 1,621 voluntarily submitted 
at least one peak flow measurement during the study period. As 
expected, patients with well-controlled asthma, and who were male 
and tall, had higher average peak flows throughout the study period 
(Fig. 3e). Those with uncontrolled asthma at baseline reported peak 
flows 42 liters/min lower than their well-controlled counterpart after 
adjusting for height and gender (n = 183).

We examined concordance of reported asthma symptoms, rescue 
inhaler use, and peak flow measurements using time series of daily sur-
vey responses from Robust users. Consistent with clinical expectation, 
we detected a positive correlation between daily or nightly symptoms 
and rescue inhaler use (n = 979 and n = 761, respectively), whereas 
these same variables were negatively correlated with peak flow values 
(n = 235 and n = 173, respectively) (Supplementary Fig. 4).
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Figure 4 Geographic and seasonal trends in asthma triggers for Robust 
users. (a) The percentages of users reporting pollen, extreme heat or air 
quality as an asthma trigger (y axis) for southern (red) and northern  
(blue) regions of the contiguous US in the spring (March–May) and 
summer (Jun–Aug) respectively (based on n = 545 Robust users).  
(b) The percentage of users reporting pollen as an asthma trigger (solid) 
and the monthly pollen level (dashed) for southern (red) and northern 
(blue) regions of the US (based on n = 64 Robust users). (c) The 
percentage of users reporting extreme heat as their asthma triggers in 
southern and northern US regions for the spring and summer months 
(based on n = 545 Robust users). (d) The percentage of users reporting  
air quality as an asthma trigger for Washington state wildfires (solid, left  
y axis) and daily PM2.5 concentration (dashed, right-axis) in the same 
area (based on n = 37 Robust users). In (b–d), the shaded regions 
represent the ± 1 s.d. interval bands.
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c Has your participation in the Asthma Mobile Health Study helped to alleviate
some of the troubles you have with your asthma?

Has your participation in the Asthma Mobile Health Study helped you to achieve
your initial goals for asthma control?

How useful do you think the Asthma Health app has been in helping you to
manage your asthma?

Milestone users
at 6-months

Milestone users
at enrollment

Robust users
at enrollment

Baseline users
at enrollment

Agree Neither Disagree Strongly DisagreeStrongly agree

Percentage of users reporting activity limitation

First Week Last Week

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%

6 months

Summer

0% 10% 20% 30% 40% 50%

Uncontrolled Partly Controlled Well Controlled

Figure 5 Positive impact of the app on user group. (a) The percentage of 
users reporting activity-limitation in their first week versus their last week 
in the summer (top, based on n = 331 Robust users) and in the entire  
6-month study period (bottom, based on n = 1,926 Robust users).  
(b) The percent distribution of GINA control for all cohorts at enrollment 
(top three) and after 6-months of study participation (bottom). (c) Feedback 
and Milestone survey results based on data from Milestone users.
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Geographic and temporal trends in asthma triggers
Animals, pollen, and upper respiratory tract infections were the top 
three asthma triggers reported by participants at time of enrollment  
(Supplementary Fig. 5). Figure 4a illustrates the distribution 
of three self-reported asthma triggers from the 545 users of the 
Robust user cohort for whom we had consent to obtain geoloca-
tion data for asthma triggers during the spring and summer months 
(Supplementary Fig. 1b,c). For example, before 1 April 2015, a 
greater percentage of users reported pollen as a trigger in Southern 
regions of the United States (where pollen counts were higher) than 
in Northern regions (Fig. 4b). Additionally, the percentage of users 
who reported extreme heat as a symptom trigger correlated with 
maximum daily temperature trends (i.e., climate data reports of 
the highest temperature recorded over a specified period of time)8.  
As expected, a higher percentage of Southern participants reported 
extreme heat as a trigger (Fig. 4c).

Our data also indicate that some asthma patients were sensitive to 
air quality changes caused by environmental events, such as wildfires. 
There was a marked increase of participants reporting air quality 
triggers in regions affected by the summer 2015 Washington state 
wildfires during the corresponding time periods (Fig. 4d).

Self-reported clinical impact of AHA use
We assessed reported activity levels in the subset of our study partici-
pants comprising the 1,926 users from the Robust user sub-cohort who 
had been enrolled for more than 90 d and for whom we had relevant 
data from the first and last weeks of participation. These participants 
reported a significant decrease of activity limitation from 25–20% 
(Wilcoxon signed-rank test, P < 0.0001; Fig. 5a and Supplementary 
Table 5a). The same trend persisted during the three summer months, 
from 25–13% (Wilcoxon signed-rank test, P < 0.0001, n = 331, Fig. 5a  
and Supplementary Table 5b), suggesting that milder weather did 
not drive changes in activity levels.

Likewise, 173 Milestone users for whom the 6-month milestone 
survey results and baseline GINA information were available, reported 
that their asthma control substantially improved over the study 
period. Specifically, the percentage of Uncontrolled users changed 
from 42–24% (paired Wilcoxon signed-rank test, P < 0.0001; Fig. 5b  
and Supplementary Table 5c). A modest majority of participants 
also reported that the AHA was useful in helping them manage their 
asthma (Fig. 5c and Supplementary Table 5d,e).

DISCUSSION
The AMHS is one of the few studies to examine the value and valid-
ity of the novel mobile health research platform, ResearchKit3. We 
conducted a prospective, observational study focused on the feasibil-
ity of conducting research remotely via this platform and observed 
certain strengths as well as limitations to this methodology. In terms 
of strengths, the AMHS demonstrated that a broad-scale asthma 
study can be conducted in its entirety via a smartphone application, 
including remote recruitment, consent, enrollment, and secure bi-
directional data flow between investigators and participants. We pro-
spectively collected detailed, multi-dimensional, longitudinal data on 
an asthma cohort more efficiently than traditional epidemiological 
studies by automating, standardizing, and accelerating various costly 
and time-consuming processes. Our study’s rapid recruitment and 
participants’ willingness to share de-identified data broadly highlight 
users’ acceptance of this methodology for low-risk health studies.

As participant recruitment is a significant challenge in research 
today9,10, digital health and social media could play a role in  
addressing that challenge. Within 1 d of the launch, the five 

ResearchKit studies collectively enrolled over 15,000 participants 
across the country, beyond university catchment areas, demonstrating 
the power and potential of this technology11. Characteristics of our 
study cohort compared with CDC Asthma Surveillance Data identified  
similarities and differences. Owners of iPhones have higher education  
levels and income than other smartphone users, who as a group  
have higher income and education levels than the general popula-
tion12 (Supplementary Fig. 6). Of note, only 5% of AHA users with 
asthma were Black, compared with 13% of the US population, an 
under-representation commonly encountered in clinical research in 
general. In the United States, 92% of Hispanics, 91% of Whites, and 
94% of Blacks report using a mobile phone, with 64% of Hispanics, 
66% of Whites and 64% of Blacks using a smartphone12. Use of the 
Android platform is more common in some racial and/or ethnic 
groups, thus the availability of an Android version of AHA (facilitated 
by the open source ResearchKit framework) could capture a more rep-
resentative sampling of the general population. Other nuances, such as  
a propensity to text rather than use apps in low-income Hispanic 
communities should be considered in attaining diverse participation 
in mobile health research13,14.

An understanding of use patterns and the ability to reach and 
impact diverse populations regardless of platform used will become 
increasingly important as mobile health technology expands in health-
care and research. Given the overwhelming trend toward use of digital 
communication, responses to landline telephone and mailed surveys 
may soon represent a more restricted and non-representative popu-
lation12. For example, the vast majority of New York City residents 
(96%) own a cell phone, 79% of which are smartphones, including  
smartphone ownership among 67% of low income New Yorkers12. 
Therefore, the ability to recruit participants via digital technology 
without direct voice contact or print mailing will likely be needed to 
conduct population-based research. The possibility exists that the 
gold-standard population metrics obtained via traditional research 
methodology used for comparisons in our study may already contain 
biases. Offering and leveraging the strength of digital health and tra-
ditional research methods could optimize clinical study enrollment, 
participant retention, and data capture more than either method 
alone, getting us closer to a representative sampling of the general 
population. Moreover, offering a process that automates certain time-
consuming and labor-intensive components, while incorporating a 
‘human touch’ at selective key points may improve study retention 
and decrease costs15–17.

Higher rates of HCU in AHA users than in CDC data may indicate 
a potential for selection bias in mobile health recruitment via uptake 
of this type of study by sicker patients. Conversely, use of a mobile 
platform may increase participant diversity in research by enabling 
the enrollment of traditionally under-represented and difficult-to-
recruit populations (e.g., those with disabling, severe disease or lim-
ited healthcare access). The ability to complete study requirements at 
home on flexible time schedules may remove barriers (i.e., location, 
mobility, psychosocial factors, work hours) to research participation. 
The impact of selection bias and other potential threats to validity of 
mobile health research are currently poorly characterized and deserve 
ongoing investigation.

An important goal of our study was to evaluate the quality and 
validity of study data obtained via this mobile research platform. 
Patient-reported outcomes (PROs) are an important component of 
research in asthma and are often collected via paper diaries, where 
important issues in authenticity of data have been raised, including 
‘back filling’, ‘forward filling’ and falsified data18. Because the accuracy 
of PRO data may be partially dependent on the relationship between 
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the reporter and the recipient19, the validity of PRO data obtained 
via mobile health platforms (without direct participant–investigator 
contact) warrants rigorous evaluation.

More widespread use of electronic versus paper diaries outside of 
industry research studies is currently prohibited by cost but may be 
fostered by an open-source platform such as ResearchKit. In clini-
cal trials, the PROs are correlated with objective measures of lung 
function, but in epidemiologic asthma research, it is commonplace 
to use symptom-based surveys without corresponding lung func-
tion measurements20. In this respect, our surveys and the types of 
epidemiologic data gathered do not differ from common practice, 
apart from the use of technology to scale and accelerate the proc-
ess. Whereas concerns about falsifying information, such as identity 
authentication, have been raised in regard to mobile health studies. 
The consent and registration process of the AMHA is fairly vigor-
ous and may mitigate such risk (e.g., e-mail verification of identity 
and entering a passcode to access the app). Validity of our data is  
supported by concordance between our cohort’s self-reported asthma 
status at baseline and prospectively collected data. For example, 
participants’ daily survey responses for day and night symptoms as 
well as inhaler and controller medication usage were all found to 
be significantly associated with the GINA control levels calculated 
based on intake questionnaires for these parameters. Similarly, the 
peak flow measurements submitted by participants were of expected 
range based on known trends for patients’ sex, height, and asthma 
control status. Furthermore, we detected that patients’ asthma symp-
toms correlated well with the frequency of rescue inhaler usage and 
peak flow values as would be expected based on the clinical behavior 
of asthma. Likewise, the self-reported asthma triggers (e.g., pollen, 
extreme temperature, air quality, pollutant exposures), mapped based 
on geography and time, correlated well with objective measures (e.g., 
external, validated environmental sources).

Of particular note, the summer 2015 Washington state wildfire 
analysis highlights that smartphone-based technology could provide 
innovative, scalable solutions for clinical research aspirations that were 
logistically not feasible or cost-prohibitive in the past. Specifically, we 
correlated and detected a marked increase in our study participants’ 
daily asthma symptoms (air quality triggers) with real-time fine partic-
ulate matter (Environmental Protection Agency (EPA) air quality logs 
PM2.5) levels in regions affected by wildfires during those correspond-
ing time periods. Conventional assessments of the effect of natural phe-
nomena on disease are usually very limited due to the aforementioned 
difficulties. Since our AHA data set already contain location-specific 
environmental data, such exploratory analyses require minimal addi-
tional effort or cost to accomplish. In summary, the consistent trending 
of variables that we expect to be interrelated based on our knowledge 
of the disease, the tracking of symptoms with known environmental 
triggers, and the expected correlation among symptoms, medication 
use, and lung function in a subset of patients for whom lung function 
was measured strongly suggest the validity of this new research-data 
collecting method.

Characterizing survey participation rates and engagement with the 
AHA over time was another major aim of this study. We observed a 
large initial number of downloads likely driven by media publicity, 
which decreased to a steady rate over time. We attribute the moder-
ate enrollment rate (14–38% of downloads) to the relative ease of 
app download with some dropoff related to the rigor of the consent 
process. Additionally, the significant rate of attrition of participants 
observed from the initial cohort to some of the sub-analyses con-
ducted raises issues of generalizability. Also of note, although we did 
not actively recruit participants (thus, no incremental budget was 

required), we continued to enroll new participants daily a year after 
the launch of the study. (Please see Supplementary Note for study 
marketing details.)

The drop-off in user retention over time that we observed appears 
to be shared by multiple ‘digital’ use cases (e.g., mobile apps including 
entertainment ‘gaming’ apps, tutorial videos, open online courses) and 
speaks to the hardwired biopsychosocial tendencies of users. Because 
the ultimate goals of digital health generally rely on prolonged partici-
pation, the creators of these tools must understand users’ psychosocial- 
behavioral needs and predilections to keep them continually engaged. 
Attention and resources must be devoted to incorporating social and 
behavioral principles in digital health design beyond technical ones. 
For the AMHS, our study participants were not offered financial 
incentives—a standard practice for clinical studies when participation 
for prolonged periods of time is required21,22. In fact, we did not offer 
users any other ‘tangible’ rewards beyond features like environmen-
tal data, educational modules, and the ability to track entered data. 
Monetary incentivization, possibly in the form of micro-payments 
and/or ‘advanced gamification’23,24 may improve retention, especially 
if a study requires long term follow-up.

Despite attrition of longitudinal participation over time, 85.2% of 
the 7,593 enrolled users responded to at least one survey in the study. 
Although the comparisons are not analogous, we referred to CDC’s 
Behavioral Risk Factor Surveillance System (BRFSS-CDC) statistics 
for context and as a reference point in interpreting our findings. The 
BRFSS cooperation rates (defined as the number of complete and par-
tial complete interviews divided by the number of contacted and eli-
gible respondents) were 62.5% for landline-based surveys and 71.6% 
for cell-phone-based surveys25. These findings suggest that studies 
relying on mobile apps could achieve similar or better cooperation 
rates than traditional (landline or mobile) phone-based population 
research methods.

We encountered some additional challenges in performing our 
study. We were unable to incorporate certain standard validated 
asthma surveys into our study due to licensing constraints. Besides 
the Euroquol-5D, our AHA surveys were developed by asthma spe-
cialists who incorporated general content used by validated survey 
instruments. Because of an initial technical issue with the integration 
of HealthKit and ResearchKit data, we obtained only gender and/or  
age information for 1,398 participants in the study, limiting several 
analyses. Multiple versions of the AHA were released during the 
study period to address these software-related concerns and to imple-
ment new features (Supplementary Table 6). Similar to the other 
mobile health studies and large-scale research studies in general, we 
encountered substantial missing values in our AHA data, such that  
many parallel analyses were presented based on different sample sizes 
(Fig. 1 and Supplementary Table 1a).

Furthermore, the analyses on the self-reported clinical impact of 
AHA use were based on subsets of our study participants and may 
not be representative of our cohort at large. We did note consistent 
positive feedback from our users (e.g., decreased activity limitation, 
helpful in disease management), and these sentiments were echoed by 
some AHA users on our participant panel (http://apps.icahn.mssm.
edu/asthma/participant-stories/). However, validating the clinical 
impact of AHA usage warrants rigorous future clinical trials.

Although mobile health apps and devices may promote health liter-
acy and medication adherence, and mitigate exacerbations of chronic 
diseases, research on this technology thus far has been mostly small 
scale and yielded conflicting results. Studies to date have not found 
advantages in terms of HCU or cost, and adoption of the technology 
in healthcare settings remains low26–29.

http://apps.icahn.mssm.edu/asthma/participant-stories/
http://apps.icahn.mssm.edu/asthma/participant-stories/
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However, the field of devices and mobile health research has wit-
nessed some promising recent advances. For example, D’Arcy et al.30 
developed a Bluetooth inhaler device that used acoustic recordings of 
inhaler usage to monitor temporal and technique adherence and assess 
the correlation between clinical outcomes and adherence. Furthermore, 
studies using the US Food and Drug Administration (FDA)-approved 
Propellor Health (Madison, WI, USA) digital platform and inhalers 
demonstrated the feasibility of tracking inhaler usage and triggers31–34. 
Moreover, individuals randomized to the Propeller Health arm had 
more significant reductions in inhaler usage than those under routine 
care35. Additionally, an observational mobile health study of Parkinson 
disease that leverages the ResearchKit platform, named mPower, inter-
rogated aspects of the movement disorder and assessed high-resolu-
tion activity data collected through surveys and frequent sensor-based 
recordings from participants with and without Parkinson disease36. 
The large-scale and repeated measurements of thousands of individu-
als may help establish baseline variability of real-world activity meas-
urements collected via smartphones and lead to quantification of the 
ebbs and flows of Parkinson symptoms36. The mPower research team 
developed a framework that accounts for research participant choices 
regarding clinical data sharing and also qualifies researchers request-
ing to access the de-identified data for secondary analyses37. Lastly, 
the investigators from the five ResearchKit launch partners published 
a report on their collective experience and the platform’s potential 
and limitations, including selection bias, identity uncertainty, design 
limitations, retention, and privacy38.

Based on the studies above and the initial results from the AMHS, 
we believe research hypotheses with the following characteristics are 
a good match for the current ResearchKit methodology: 1) a require-
ment for rapid enrollment across diverse geographical locations; 2) 
a design that presents minimal risk to participants, allowing the use 
of electronic consent; 3) a hypothesis that can be answered in a short 
time period (1–3 weeks); 4) a requirement for frequent data collection 
events; 5) data collection that is passive (e.g., GPS, physical activity); 
6) no assumption that results will be generalizable to participants 
recruited via traditional methods; and 7) a sample size and statistical 
analysis plan that account for the known attrition and/or missing data 
historically seen in internet and mobile app studies.

Mobile health research represents a promising new avenue for clini-
cal research. It has the potential to open up new possibilities for data 
collection, provide novel insights into disease, and reach participants 
that traditional studies may fail to adequately represent. Mobile health 
research must be amenable to the demands of a fast-paced, variable 
research environment, as well as be methodologically rigorous. The 
challenges associated with this technology, including selection bias, 
potential reporting bias, data security, and low user-retention rate will 
need to be addressed in order to better understand the technology’s true 
value and role in research and patient care. In the future, mobile plat-
forms may serve as a primary driver for conducting large-scale studies, 
perhaps complemented by traditional means to leverage the strengths of 
both methods. Looking forward, the potential of ubiquitous smartphone 
technology to address the needs of clinical research to better understand 
health and disease appears to be more promising than ever.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Setting for Apple ResearchKit and AHA. The Icahn School of Medicine at 
Mount Sinai collaborated with Sage Bionetworks, LifeMap Solutions (New 
York), and Apple to develop and launch the Asthma Health App and Asthma 
Mobile Health Study on March 9, 2015. This study was approved by the 
Institutional Review Board of the Icahn School of Medicine at Mount Sinai.

Code availability. ‘The asthma health mobile app version 1.011 was built 
using Apple’s ResearchKit framework (http://researchkit.org/), which is open 
source and available on GitHub (https://github.com/researchkit/researchkit). 
AppCore (https://github.com/ResearchKit/AppCore) is a layer built on top 
of ResearchKit that was shared among the five initial ResearchKit apps. The 
Bridge iOS SDK (https://github.com/Sage- Bionetworks/Bridge-iOS-SDK) 
provides integration with Sage Bionetworks’ Bridge Server, a back-end data 
service designed for collection of participant donated study data (https:// 
sagebionetworks.jira.com/wiki/display/BRIDGE/Bridge+REST+API)36. Code 
used in this study is also available as Supplementary Software. 

Participant recruitment and enrollment. The AHA is available in the iTunes 
App Store searchable using a combination of keywords including ‘asthma’, 
‘health’, and/or ‘Mount Sinai’. Links to the AHA store page were embedded 
within relevant web sites of Mount Sinai, LifeMap Solutions, and Apple Inc. 
Prospective participants can download the app using their own App Store 
credentials. After downloading and opening the AHA, prospective partici-
pants are first presented with an inclusion/exclusion criteria questionnaire. 
Participants who meet the eligibility criteria proceed to electronic informed 
consent screens. To ensure participants understand the risks, benefits, and 
options of study participation, they must then pass a comprehensive quiz 
before creating an account. Following the creation of an account, prospective  
participants are asked to verify their e-mail address by clicking on a link 
in their e-mail to confirm their enrollment. The AHA user experience and 
recruitment process is detailed in Figure 1. Please see Supplementary Note 
for information on marketing for the study.

Eligibility criteria for participants. Participants were eligible to enroll in the 
study if they were aged 18 or over, lived in the United States, had a diagnosis 
of asthma with physician-prescribed asthma medications, and had an iPhone 
with a data plan. Pregnant women, non-English speakers, and those who could 
not document understanding of the consent based on a series of key questions 
were ineligible for the study.

Study design, data flow, and security. Supplementary Figure 7a provides 
a simplified layout of the initialization process in the Asthma Mobile Health 
Application study. Data entered by participants were collected and deidentified 
using advanced data security technologies developed by our partners at Sage 
Bionetworks. Data from the study were not shared with Apple or with non-
study personnel. Please see Supplementary Figure 7b for detailed description 
of the backend design on health data encryption and securely stored.

Data sources for active data collection (surveys). Study surveys appeared 
on the participant’s ‘Activities’ screen. Baseline surveys collected data on: 1) 
asthma history, including the frequency and time of symptoms and activity 
limitation; 2) asthma experience, including triggers and personal manage-
ment plans; 3) medical history; and 4) demographics. Additionally, baseline 
healthcare utilization, asthma medications, self-reported controller adherence, 
quick relief/rescue medication use, peak flow, and other clinically relevant 
data were collected. Participants were also asked to set a goal for asthma con-
trol and complete the EQ-5D-5L (EuroQol version 5D-5L). After the intake 
process, daily and weekly surveys were administered, with EuroQol, 6-month  
milestone, and app feedback surveys occurring at less frequent intervals.

Data sources for passive data collection. Participants were asked for permis-
sion for the app to read various fields of HealthKit data. HealthKit data that 
already exists in the user’s iPhone from other apps can be collected by app and 
relayed to the study data. Also, with the participant’s consent, the nearest EPA 
air-quality reading along with that station’s city and state were passively col-
lected by the app when the participants viewed the dashboard tab. As of version 

1.0.6 released May 5, 2016, the app began to send reports hourly whenever the 
user’s location changed.

Quantitative variables for CDC and AHA baseline and clinical demographics.  
Demographic data was obtained from the 2013 Behavioral Risk Factor 
Surveillance System (BRFSS) (http://www.cdc.gov/asthma/most_recent_
data.htm). Rates of hospitalization and emergency department visits come 
from the CDC/NCHS National Ambulatory Medical Care Survey, National 
Hospital Ambulatory Medicare Care Survey, National Hospital Discharge 
Survey, National Vital Statistics System, and National Health Interview Survey  
2001–2009. CDC defined ‘Uncontrolled asthma patients’ as those who reported 
any of the following: (1) asthma symptoms more than 2 d a week in the past 
30 d, (2) nighttime awakenings more than once a week in the past 30 d, or 
(3) short-acting β2-agonists use more than 2 d a week in the past 3 months 
(http://www.cdc.gov/asthma/asthma_stats/uncontrolled_asthma.htm).  
We compared Baseline users who supplied location data with national asthma 
prevalence statistics percent distribution by state (http://www.cdc.gov/
asthma/brfss/2013/tableC1.htm). Percent prevalence was log10 transformed 
and states or territories with fewer than five AHA users were omitted from 
analysis. The correlation coefficient was calculated based on n = 49 states  
representing 4,612 Baseline users.

Quantitative variables for GINA (Global Initiative for Asthma) symptom 
control. 1) daytime symptoms occur less than twice per week (<8 times per 
month); 2) no occurrence of nocturnal awakenings (0 per month); 3) quick 
relief of symptoms occurs fewer than twice per week (<8 puffs per month); 
and 4) no activity limitation due to asthma symptoms (0 per month). Asthma 
is considered ‘Uncontrolled’ if four of the above statements are true, ‘Partly 
controlled’ if 2–3, and ‘Well controlled’ if 0–1 (http://ginasthma.org/).

Statistical methods for survival analysis of daily survey participation.  
We calculated the number of days between enrollment and the completion of 
the last daily survey question for each Robust cohort participant using data col-
lected between the launch of the study, March 9, 2015, and September 8, 2015. 
To avoid bias from using the September 9, 2015, cutoff, we only considered 
participants with at least 90 d of study enrollment (participants’ enrollment 
before June 9, 2015). This leads to 537 Robust cohort participants. Participants 
were treated as censored if a daily or weekly survey question was answered 
within 2 weeks of September 9, 2015.

The Cox proportional hazards model implemented in the Lifelines python 
package (version 0.8.0.0) was used to identify features associated with longer 
daily survey participation. We created the following predictor categories to 
increase sample size: education (no college, some college, college graduate) 
and health insurance (no health insurance, or private/public health insur-
ance). All reported statistically significant associations exhibited a monotonic  
relationship with the enrollment day of the last daily survey question com-
pleted in the absence of grouping. We excluded ‘decline to answer’ responses 
and participants with missing predictor or outcome data. Features were not 
standard scaled to preserve interpretability of the hazard ratios; however, 
standard scaling did not change the direction or statistical significance of the 
reported associations. We used the KaplanMeierFitter function in the Lifelines 
python package to plot the survival curves for three strata of self-reported 
education levels and two strata of self-reported age of asthma diagnosis.  
The Seaborn python package (version 0.6.0) was used to generate heat maps for 
the predictor correlation matrix, which was calculated using the cor function 
of the Pandas package (version 0.17.1).

We first performed univariate survival analyses for nine covariates based on 
537 Robust users. We then carried out a multivariate survival analysis of daily 
survey participation to adjust for collinearity (Supplementary Fig. 2a). The 
direction, magnitude, and statistical significance of the relationship between 
age and study entry date with study participation were Robust to different 
variable collapsing strategies and stratification by study entry month.

Statistical methods for individual response rate regression. We focused on 
the same set of 537 participants considered in the survival analysis of the reten-
tion time. We calculated the ‘individual response rate’, defined as the number of 
days with at least one daily survey question completed divided by the number 

http://researchkit.org/
https://github.com/researchkit/researchkit
https://github.com/ResearchKit/AppCore
https://github.com/Sage- Bionetworks/Bridge-iOS-SDK
https://sagebionetworks.jira.com/wiki/display/BRIDGE/Bridge+REST+API
https://sagebionetworks.jira.com/wiki/display/BRIDGE/Bridge+REST+API
http://www.cdc.gov/asthma/most_recent_data.htm
http://www.cdc.gov/asthma/most_recent_data.htm
http://www.cdc.gov/asthma/asthma_stats/uncontrolled_asthma.htm
http://www.cdc.gov/asthma/brfss/2013/tableC1.htm
http://www.cdc.gov/asthma/brfss/2013/tableC1.htm
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of days enrolled through September 9, 2015. We then used ordinary least-
squares regression (StatsModels version 0.6.1) to identify associations between 
the logit-transformed individual response rate.

Statistical methods for daily survey data. Daily survey responses collected on 
the same calendar day were combined in the following way. Any ‘True’ answer 
to questions about use of: control medication, night symptoms, day symptoms, 
or quick relief inhaler was used. The maximum reported value for questions 
about peak flow and quick relief puffs was used. The union of the reported 
asthma triggers reported on the same calendar day was used. A heatmap was 
generated using the matplotlib python library to show the self-reported data 
for day symptoms, night symptoms, and quick relief inhaler usage in daily 
surveys (Supplementary Fig. 3).

Statistical methods for concordance between GINA control based on base-
line surveys and prospectively collected daily symptom reports during the 
study. The association between baseline GINA control group and prospectively 
collected daily symptom reports (% day symptoms, n = 2,295; % night symp-
toms, n = 2,295; quick relief usage frequencies, n = 2,295; and controller usage 
frequencies, n = 2,285) were evaluated with Kruskal–Wallis groupwise rank 
sum test. In addition, for each user, peak flow measures more than 900 and 
less than 60 were removed and were averaged across the study period. Then, a 
multiple linear regression model was used to evaluate the association between 
mean peak flow of each user during the study period and their baseline  
categorical GINA control groups, sex, height, and age (n = 183).

Statistical methods for concordance of survey responses within time-series. 
For each Robust user, we evaluated pair-wise Pearson correlations of user daily 
survey responses for peak flow, day and night symptoms (yes/no), and quick-
relief usage (yes/no). We first filtered out users with fewer than ten pairs of 
observations. For each user, peak flow measures more than 900 and less than 
60 were removed. Users whose survey responses had a s.d. of zero across the 
time-series for either pair of observations, or where the observations for each 
pair were exactly matching were also removed. The resulting distribution of 
Pearson correlations evaluated for each user for each pairwise comparison is 
shown in Supplementary Figure 4.

Statistical methods for delineation of United States into northern and 
southern regions based on temperature. Several app features were intro-
duced after launch, including collection of encrypted user location data, which 
started on April 21, 2015. To compare data on asthma triggers and compare it 
to objective environmental measures, we first categorized ‘user-date locations’ 
as northern or southern based on the clustering of local temperature profiles, 
where user-date location refers to the latitude and longitude information of one 
user on one particular day. We obtained temperature data from the National 
Oceanic and Atmospheric Administration 4 (NOAA4), which collects daily 
maximum temperature from more than 53,000 US weather stations in the 
Global Historical Climatology Network (GHCDN).

To facilitate comparison with other environmental data sets, clustering was 
performed at the zip code level. First, each user-date location was linked to 
the nearest zip code and GHCDN weather station by minimum great circle 
distance using the ‘fields’ package in R. Latitude and longitude coordinates 
for US zip codes and weather stations were obtained from the NOAA4 and 
the US Census Bureau (https://www.census.gov/geo/maps-data/), respec-
tively. User-date locations with nearest weather station or zip code more than  
50 miles away were not included in subsequent analyses. In total, the 8,083 
user locations collected during our study period map to 3,646 unique zip codes 
and 576 US weather stations.

Delineation of the US into northern and southern regions was based on 
hierarchical clustering of temperature profiles derived from the maximum 
daily temperature data corresponding to our 6-month study period. For each 
of 3,646 zip codes within 50 miles of any of the user locations collected during 
our study period, 37 features were constructed from the daily maximum tem-
perature data collected at the corresponding US weather stations. Specifically, 
since not all of the user-date locations that link to the same zip code are linked 
to the same station, we first calculated the daily maximum temperature at 
each zip code by taking the mean daily maximum temperature over the set 

of stations linked to each zip code via user-date location as described above. 
We then derived our 37 features by taking the median of the daily maximum 
temperature at each zip code across 5-d intervals of our 185-d study period.

Hierarchical clustering was performed using the ‘hclust’ package in R. 
Specifically, we first calculated the pairwise Euclidean distances between each 
feature–zip code and then performed hierarchical clustering on the result-
ing distance matrix using the complete linkage method. For further analysis, 
user zip codes were assigned to the north or south based on the first bifurca-
tion of the resulting dendrogram (Supplementary Fig. 1b). Supplementary  
Figure 1c shows the geographical regions associated with each cluster.

Statistical methods for analysis of asthma triggers. Users were asked to pro-
vide triggers of their asthma symptoms at the start of enrollment, and then 
on a daily basis throughout the study period. To compare time-series trigger 
data in different regions, we assigned each user-date location to the north 
or south based on the clustering procedure described above. For users who 
remained within the same region throughout the period observed, we extrapo-
lated their regional assignment (north/south) to their full enrollment period. 
This resulted in 24,720 user-date locations corresponding to 545 unique users 
from the Robust user cohort, for further analysis. Trigger distributions were 
calculated based on the total number of triggers reported for a given time 
period (season, 5 d or 1 d). Periods for which the total number of user-date 
data points were fewer than 10 were treated as missing. A comprehensive 
depiction of time-series data for the northern and southern regions at baseline 
and throughout the study period is shown in Supplementary Figure 5, where 
the ordering of triggers from top to bottom is based on the percentage rank 
at baseline. Each curve was generated using the R function smooth.spline.  
Note that data for the last 16 d are omitted in Supplementary Figure 5 because 
a very limited number of users in the southern region responded to the daily 
survey in those days.

Trigger distributions were compared with environmental data from sev-
eral sources. Pollen count data were obtained from https://www.pollen.com, 
which provides monthly average pollen counts for zip codes throughout the 
United States. We obtained pollen count data for 49 zip codes corresponding to  
53 users from the Robust user cohort with 5,601 user-date locations in the 
north and 16 zip codes corresponding to 11 users from the Robust user cohort 
with 123 user-date locations in the south. Zip codes were selected to ensure 
an adequate number of user-date locations (n ≥ 10) for calculating the trigger 
distribution in the final half of our study period, where data for southern users 
are sparse. For the southern and northern regions, we calculated the average 
and the standard error of the pollen level across the corresponding zip codes 
for each region. The data are shown in Figure 4b as the dashed lines. In addi-
tion, in Figure 4b, the daily percentage of users reporting pollen as a trigger 
was plotted along time, where the running mean based (n = 10) and Bollinger 
bands (s.d. = 1) are shown.

In Figure 4c, the percentage of Robust users reporting extreme heat as their 
asthma trigger is compared with maximum daily temperature data obtained 
from the NOAA4. The percentage of users reporting extreme heat as an 
asthma trigger was calculated for 37 5-d intervals based on weather data from  
492 weather stations corresponding to 432 users from the Robust user cohort 
with 19,031 user-date locations in the north and 108 weather stations cor-
responding to 113 users from the Robust user cohort with 8,347 in the south. 
Figure 4c shows running mean curves and Bollinger bands for maximum 
temperature and extreme heat trigger distributions based on a smoothing 
window of 11 and a s.d. of 1.

To investigate the effects of wildfire incidents occurring during our study 
period on AHA users, we collected data on wildfire locations and their start 
dates from the InciWeb incident information service (https://inciweb.nwcg.
gov). We then searched for AHA users within a 200-mile radius of each fire. 
Using this procedure, we were able to find a total of 37 Robust users in prox-
imity to Washington state wildfire locations, including the following: 35 users 
(499 userdate locations) near the Sleepy Hollow wildfire (6/28), 27 users  
(385 user-date locations) near the Wolverine Fires (7/29), 25 users (380 user-
date locations) near the North Star wildfire (8/13), 29 users (398 user-date 
locations) near the Chelan Complex wildfire (8/14), 26 users (381) near the 
Turn Block wildfire (8/14), and 26 (381) near the Okanogan wildfire (8/15). In 
Figure 4d, we illustrate the percentage of triggers due to air quality complaints  

https://www.census.gov/geo/maps-data/
https://www.pollen.com
https://inciweb.nwcg.gov
https://inciweb.nwcg.gov
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for our study period along with EPA logs of air quality data (AQI) (http://
www3.epa.gov/airdata/ad_data.html), where the maximum air quality index 
curve is based on a running average (n = 3). Bollinger bands based on a s.d. 
of 1 are shown.

Statistical methods for activity limitation. In the weekly survey, users are 
asked to report whether they have experienced activity limitation in the past 
week. We compared the proportion of users reporting activity limitation in the 
first week and the last week of their enrollment for 1,926 users from the Robust 
user cohort who were enrolled for longer than 90 d using the Wilcoxon signed 
rank test. We performed the same analysis restricting to the subset of users 
who were enrolled exclusively in the summer months (n = 331).

Sample size. Because the goals of the various analyses in the study differed 
significantly, different subsets of users (with specific characteristics) were 
carefully selected for each analysis. In Figure 1, we introduced a few dif-
ferent sample cohorts and sub-cohorts. In Supplementary Table 1a, we 
summarized sample sizes for the analyses corresponding to each of our 
main figures. We provide further details on the sub-cohort sample sizes 
used in all analyses below. Note that there were no pre-specified sample 
sizes in these analyses. All sample size numbers are based on observed data 
from the study.

1.  In Table 1 and Supplementary Table 2, demographic and clinical char-
acteristics were summarized for Baseline, Robust, and Milestone users 
based on available data for each variable. See accompanying legends for 
sample sizes particular to each calculation.

2.  Geographic distribution assessment was performed for 4,621 users from the 
Baseline user cohort who supplied their location information (Fig. 1).

3.  The geographic distribution of n = 4,612 Baseline users was compared 
with national asthma prevalence statistics from the CDC for 49 US states 
(Supplementary Fig. 1a).

4.  Association analysis to identify factors impacting the time of  
enrollment was performed based on Robust users with adequate 
data to determine biological sex (n = 719), baseline GINA category  
(n = 2,295), frequency of activity limitation (n = 2,308), and symptoms 
(n = 2,308) (Fig. 2a–c).

5.  Detection of factors affecting user retention patterns and response 
rates was carried out based on 537 users from the Robust user cohort, 
who were enrolled in the study for >90 d and provided data for all the  
covariates considered in the analysis (Supplementary Fig. 2d,e and 
Supplementary Table 4a,c).

6.  Association between patients’ daily survey responses and their baseline 
GINA categories were evaluated based on subsets of the Robust user 
cohort reporting daily (n = 2,295) and nightly symptoms (n = 2,295), 
quick-relief inhaler usage (n = 2,295), and controller medicine usage  
(n = 2,285) (Fig. 3a,d).

7.  Regression analysis of peak flow information was based on data from 
183 users from the Robust user cohort who voluntarily submitted at least 
one peak flow measurements during the study period, and all covariates 
(e.g., age of onset, gender, height) in the analysis (Fig. 3e).

8.  Concordance analysis of reported asthma symptoms, rescue inhaler use, and 
peak flow measurements within time-series was based on subsets of Robust 
user cohort, who provided their corresponding information. Specifically, 
correlations between daily/nightly symptoms and rescue inhaler use were 
based on n = 979 and n = 761 users, respectively. Correlations between daily 
and nightly symptoms and between peak flow and puff usage were based 
on n = 817 and n = 217 users, respectively. And correlations between daily/
nightly symptoms and peak flow values were based on n = 235 and n =  
173 users, respectively. (Supplementary Fig. 4).

9.  Geographic distribution of asthma triggers were evaluated based on 545 
users of the Robust user cohort, who, throughout their respective enroll-
ment periods, could be consistently mapped to one of two geographi-
cal regions (north/south) based on time series location data (Fig. 4a  
and Supplementary Fig. 1b,c).

10.  Assessment of changes of activity limitation during the study period was 
based on 1,926 users who are from the Robust user cohort and had been 
enrolled for >90 d (Fig. 5a). In addition, 331 of the 1,926 users, who sup-
plied enough data during the summer, were used to assess the impact of 
app usage on users’ activity limitation during summer months (Fig. 5a  
and Supplementary Table 5a,b).

11.  173 of the 175 users in the Milestone user cohort supplied complete 
data to derive their GINA categories at the enrollment and after 6-
month’s App usage. Data of these 173 were used to evaluate the impact 
of 6-month’s App usage on users’ GINA categories (Fig. 5b and 
Supplementary Table 5d).

12.  Feedback and milestone survey results were evaluated for Milestone users 
who replied to questions about whether the app helped them to alleviate 
their troubles with asthma (n = 175), achieve their initial goals for asthma 
control (n = 172), and manage their asthma (n = 168), (Fig. 5c).

13.  The relationship between GINA category and milestone survey feed-
back indicating whether the app helped to prevent visits to the emer-
gency department or doctor was evaluated for 125 and 127 Milestone 
users, respectively (Supplementary Table 5d,e).

http://www3.epa.gov/airdata/ad_data.html
http://www3.epa.gov/airdata/ad_data.html
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