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Let Rel here denote the category of binary relations. We will denote relation
composition by the symbol � and use the symbol 
 to denote arrows in Rel, in the
sense that the notation ρ : X 
 Z in Rel denotes an binary relation ρ between X
and Z, i.e. from the object X of Rel to the object Z of Rel.

Departing from usual set theoretic notations, we will write x : X to denote the
claim that the item x belongs to the collection X and will write xz : ρ to denote
the claim that a binary relation ρ : X 
 Z links items x : X and z : Z. And we will
note PW the collection of sub-collections of W .

We here wish to classify the involutive and contravariant endofunctors of Rel
fixing objects. The first obvious observation is that the conversion of binary rela-
tions is such an involutive and contravariant endofunctor of Rel fixing objects. For
reasons that will make more sense at the end of this document, we we will say that
the conversion of binary relations is the real conversion and we will call complex
conversions the involutive and contravariant endofunctors of Rel fixing objects.

Let therefore � : Rel→ Rel be such a complex conversion. As the notation may
be somewhat confusing we here observe that, as a covariant functor, the complex
conversion � should be noted � : Rel◦ → Rel (or � : Rel → Rel◦), but, as a con-
travariant functor, we indeed note it � : Rel → Rel as an arrow in the category
whose objects are categories and whose arrows are covariant or contravariant func-
tors.

For the sake of straightforwardness of argumentation, we will not abide by a
strict orthodoxy of universality in our argumentation, and we will therefore select
and distinguish an object ? in Rel that happens to concretely represent a collection
that happens to be a singleton. We will homonymously name ? the unique item of
the singleton ?.

The monoid Rel ? of endomorphisms of ? contains only two distinct items, namely
1? and another item we will name 0?. We know, by involutivity of complex con-
versions, that 0��? = 0?. As the complex conversion � fixes objects, it fixes the
categorical unit 1? of the object ?. This implies that 1�? = 1? 6= 0? = 0��? and
therefore implies that 1? 6= 0�?. This leaves only one option: 0�? = 0?. This proves
that the complex conversion � fixes the whole of the monoid Rel ?.
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We now consider an object W of Rel, which represents a collection. For any
sub-collection A : PW of W , we may define two binary relations

−→
A : ? 
 W and←−

A : W 
 ? characterised as follows:

?α :
−→
A ⇐⇒ α : A α? :

←−
A ⇐⇒ α : A

Let ρ : X 
 Z be an arrow of Rel. We define a relation ρ‡ : PZ 
 PX as follows:

V U : ρ‡ ⇐⇒ 0? =
−→
U � ρ �

←−
V

For a sub-collection U : PW of W , the relation
(−→
U
)�

: W 
 ? induces and thus

defines a sub-collection U
←−� : PW as follows:

ω : U
←−� ⇐⇒ ω ? :

(−→
U
)�

We analogously define V
−→� : PW for a sub-collection V : PW of W as follows:

ω : V
−→� ⇐⇒ ?ω :

(←−
V
)�

We therefore have:

ω ? :
←−−
U
←−� ⇐⇒ ω ? :

(−→
U
)�

? ω :
−−→
V
−→� ⇐⇒ ?ω :

(←−
V
)�

Which proves that:
←−−
U
←−� =

(−→
U
)� −−→

V
−→� =

(←−
V
)�

By contravariance, and given that the complex conversion � fixes 0?, we have:

0? =
−→
U � ρ �

←−
V ⇐⇒ 0? =

(←−
V
)�
� ρ� �

(−→
U
)�
⇐⇒ 0? =

−−→
V
−→� � ρ �

←−−
U
←−�

V U : ρ‡ ⇐⇒ U
←−� V

−→� : ρ�‡

As we do know that the complex conversion � fixes any categorical unit 1W , we
have:

V U : 1‡W ⇐⇒ U
←−� V

−→� : 1‡W

We may now synthetise notations further by defining the binary relations
←−
f and−→

f via the following characterisations:

U ′
←−
f U ⇐⇒ U ′

←−� U : 1‡W V
−→
f V ′ ⇐⇒ V V ′

−→� : 1‡W

We now define two model theoretic structures
←−
PW and

−→
PW on the domain PW

endowed with the structural symbolic relation f as follows:
←−
PW |= U ′fU ⇐⇒ U ′

←−
f U

−→
P W |= V fV ′ ⇐⇒ V

−→
f V ′

We know that � is involutive. Therefore, for any U : PW and any V : PW , we
have:

−→
U =

(−→
U
)��

=

(←−−
U
←−�
)�

=
−−−→
U
←−� −→� ←−

V =
(←−
V
)��

=

(−−→
V
−→�
)�

=
←−−−
V
−→�←−�

This proves that:
U = U

←−� −→� V = V
−→�←−�

And we may now observe that ←−� : PW → PW induces an embedding of model
theoretic structures

←−
PW →

−→
PW . We may first unpack our definitions:
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←−
PW |= U ′fU ⇐⇒ U ′

←−
f U ⇐⇒ U ′

←−� U : 1‡W
−→
PW |= U ′

←−� fU
←−� ⇐⇒ U ′

←−� −→f U
←−� ⇐⇒ U ′

←−� U
←−� −→� : 1‡W

And then observe, given that U = U
←−� −→� holds, that the the embedding property

holds too:

←−
PW |= U ′fU ⇐⇒ U ′

←−� U : 1‡W ⇐⇒ U ′
←−� U

←−� −→� : 1‡W ⇐⇒
−→
PW |= U ′

←−� fU
←−�

We may anologously prove that −→� : PW → PW induces an embedding of model
theoretic structures

−→
PW →

←−
PW . We analogously unpack our definitions:

−→
PW |= V fV ′ ⇐⇒ V

−→
f V ′ ⇐⇒ V V ′

−→� : 1‡W
←−
PW |= V

−→� fV ′
−→� ⇐⇒ V

−→� ←−f V ′
−→� ⇐⇒ V

−→�←−� V ′
−→� : 1‡W

And then analogously observe, given that V = V
−→�←−� holds, that the the embed-

ding property holds too:

←−
PW |= U ′fU ⇐⇒ U ′

←−� U : 1‡W ⇐⇒ U ′
←−� U

←−� −→� : 1‡W ⇐⇒
−→
PW |= U ′

←−� fU
←−�

As we do know that the identities U = U
←−� −→� and V = V

−→�←−� universally hold,
we then do know that the underlying mappings of the embeddings −→� :

−→
PW →←−

PW and ←−� :
←−
PW →

−→
PW are mappings that are inverse to one another. Which

proves that these embeddings are isomorphisms of model theoretic structures for
the structural symbolic relation f.

Now, we also know that the common domain PW of both the structures
−→
PW

and
←−
PW is canonically endowed with the ordering of inclusion ⊆ on PW . And we

may now enrich the model theoretic structures
−→
PW and

←−
PW with an additional

structural relation 6 which is interpreted as follows:
−→
PW |= U 6 V ⇐⇒ U ⊆ V ⇐⇒

←−
PW |= U 6 V

We will now show that the inverse mappings −→� : PW → PW and ←−� : PW →
PW again induce isomorphisms of ordered structures−→� :

−→
PW →

←−
PW and←−� :

←−
PW →−→

PW .
For two sub-collections A and B of W , the statement 0? =

−→
B � 1W �

←−
A is

equivalent to the claim that Aand B are disjoint sub-collections of W . Indeed,
as Rel ? contains only two items, namely 0? and 1?, we know that the following
equivalences hold:

0? 6=
−→
B � 1W �

←−
A ⇐⇒ 1? =

−→
B � 1W �

←−
A

⇐⇒ ∃a, b : W,


? b :
−→
B

ba : 1W

a ? :
←−
A

⇐⇒ ∃w : W, w : B ∧ w : A

This indeed proves that the statement 0? =
−→
B � 1W �

←−
A boils down to the claim

that there is no item w : W common to both B and A. In other words, B and A
are disjoint sub-collections of W .
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By definition of 1‡W , the statement AB : 1‡W then is equivalent to the claim that
A and B are disjoint. An observation which allows us to rewrite ⊆ as follows in
terms of 1‡W :

A ⊆ B ⇐⇒ ∀R : PW, RB : 1‡W → RA : 1‡W
Indeed: If A ⊆ B, it is a trivial observation that when R is not disjoint from A,

there is a w : W belonging to both R and A, and, as A is included in B, we then
know that w is in B too, and hence that R may not be disjoint from A; and one get
the proof in the direction =⇒ by contraposing that conclusion. In the direction
⇐= , one may select R to be the complement of B and we then know that that
complement is disjoint from A, which implies that A is included in B.

From this rewriting of ⊆ in terms of 1‡W , we may derive the following:

A
−→� ⊆ B

−→� ⇐⇒ ∀R : PW, RB
−→� : 1‡W → RA

−→� : 1‡W

⇐⇒ ∀R : PW, R
−→
f B → R

−→
f A

But it just so happens that
−→
f is symmetric. Recall that we have V U : 1‡W ⇐⇒

U
←−� V

−→� : 1‡W . From which we may derive, with U := V
−→� and hence V = V

−→�←−� =

U
←−� , the following equivalence:

V
−→
f V ′ ⇐⇒ V V ′

−→� : 1‡W ⇐⇒ U
←−� V ′

−→� : 1‡W ⇐⇒ V ′ U : 1‡W ⇐⇒ V ′ V
−→� : 1‡W ⇐⇒ V ′

−→
f V

This symmetry allows us to rewrite A
−→� ⊆ B

−→� as follows:

A
−→� ⊆ B

−→� ⇐⇒ ∀R : PW, B
−→
f R→ A

−→
f R

⇐⇒ ∀R : PW, BR
−→� : 1‡W → AR

−→� : 1‡W

However, we do know that −→� : PW → PW is an invertible mapping and hence
surjective. As R

−→� reaches all the possible S : PW , we may then rewrite the above
as follows:

A
−→� ⊆ B

−→� ⇐⇒ ∀S : PW, B S : 1‡W → AS : 1‡W

⇐⇒ ∀S : PW, S B : 1‡W → S A : 1‡W
⇐⇒ A ⊆ B

Model theoretically, we may rephrase the above as follows:
−→
PW |= A 6 B ⇐⇒ A ⊆ B ⇐⇒ A

−→� ⊆ B
−→� ⇐⇒

←−
PW |= A

−→� 6 B
−→�

The invertible mapping −→� : PW → PW therefore induces an embedding
−→
PW →←−

PW of model theoretic structures for the structural symbolic relations f and 6.
And, as the underlying mapping of this embedding is invertible, it is an isomor-
phism.

Moreover, the ordered structures on
−→
PW and

←−
PW are those of boolean algebras

since (PW,⊆) is the boolean algebra structure they share. The mapping−→� : PW →
PW therefore induces an isomorphism −→� :

−→
PW →

←−
PW of boolean algebras. By

Stone’s theorem, this isomorphism of boolean algebras is induced by an invertible
mapping on their atoms. Invertible mapping which we will homonymously noted
−→� :W →W .

We analogously obtain the mapping ←−� : W → W inducing ←−� : PW → PW .
And, as −→� : PW → PW and ←−� : PW → PW are inverse isomorphisms of boolean
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algebras, the mappings −→� : W → W and ←−� : W → W are also inverse to one
another by Stone’s theorem.

Let now v be an item of W , u : W its image by −→� : W → W , and u : PW the
complement of u in W . We here identify atoms with the singleton they induce. We
have uu : 1‡W and hence u v

−→� : 1‡W . Hence u
−→
f v which we may model theoretically

rewrite as
−→
PW |= uf v. But we have seen that the structural relation f of

−→
PW

is symmetric, and we therefore know that
−→
PW |= vfu and hence that v u

−→� : 1‡W .
This proves that u

−→� is included in the complement v of v. As we have seen that
←−� : PW → PW is iso-tone for the ordering ⊆ of inclusion on PW , we then know
that u = u

−→�←−� ⊆ v
←−� . And, consequently, we know that the complement v

←−� of
v
←−� is included in u. But we also do know that v v : 1‡W and, as v = v

−→�←−� = u
←−� ,

that
←−
PW |= uf v. Which implies, as ←−� :

←−
PW →

−→
PW is an isomorphism for

the structural relation f, that
−→
PW |= u

←−� f v
←−� . As the structural relation f of

−→
PW is known to be symmetric, we have

−→
PW |= v

←−� fu
←−� and thus v

←−� u
←−� −→� : 1‡W .

Which implies that u = u
←−� −→� is included in the complement v

←−� of v
←−� . We have

thus proven that both u ⊆ v
←−� and that v

←−� ⊆ u. We therefore know that v
←−� = u

and hence that u = v
←−�

We now wish to prove that
←−
PW |= vfu cannot hold. If it doesn’t hold, the

statement v
←−� u : 1‡W would then also not hold, and, v

←−� and u being both atoms of
the boolean algebra PW , we would have v

←−� = u. And as we also have u = v
−→� ,

we would know that v
←−� and v

−→� coincide. The mappings ←−� : W → W and
−→� :W →W would then not only be inverses to one another but the same mapping
� :W →W admitting itself as its inverse. The mapping would be involutive in the
sense that we would have 1W = � � �. Which is what we want to prove.

Let us therefore suppose, for the purpose of ad absurdo reasoning, that
←−
PW |=

vfu does hold. We would then know that v
←−� u : 1‡W . Which would imply that

v
←−� ⊆ u = v

←−� . As we have seen that −→� : PW → PW is iso-tone for the ordering
⊆ of inclusion on PW , we would then know that v = v

←−� −→� ⊆ v
←−� −→� = v. But v ⊆ v

is an impossibility. This proves ad abusrdo that
←−
PW |= vfu may not hold and

that the mappings ←−� : W → W and −→� : W → W then coincide into an involutive
mapping � :W →W .

We now sum up.
Any complex conversion � : Rel→ Rel induces on any object W of the category

Rel an involutive mapping �W :W →W as above.
It will be shown in future versions of this document that:

(1) The real conversion of binary relations (i.e. the contravariant endofunctor
◦ : Rel → Rel that maps any binary relation ρ to the binary relation ρ◦

characterised by xz : ρ◦ ⇐⇒ zx : ρ) is characterised by the fact that all
the involutive mappings �W : W → W are the identities 1W : W → W of
W .

(2) The data of such involutive mappings for all objects of Rel uniquely char-
acterises a complex conversion.

(3) One may embed the category Rel into a category CRel of so-called complex
relations endowed with a canonical involutive and contravariant endofunc-
tor called the conversion such that its trace on Rel is the real conversion



COMPLEX RELATIONAL CONVERSIONS. 6

and such that any complex conversion on Rel may be induced as the trace
of the conversion of CRel of a fully faithful embedding of Rel→ CRel.

Further developments would include a characterisation of the real conversion in
terms of pseudo-inverse à la Moore-Penrose and à la Wagner-Preston. This will yield
a first order axiomatisation of the conversion of binary relations in the language of
categories.
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