HANDWRITTEN NOTES

OF

(THEORY OF MACHINE)

BY
ENGGBUZZ.COM

Mechanical Engineering
J,
Engineering of Mechanics

Study of Motion

Kinematic
Dynamics (man)
Study of Motion with
Study M Motion without
the Consideration of Basic
Cause of Notion ie force

$$
\vec{v}=\frac{d \vec{s}}{d t}, \vec{a}=\frac{d \vec{v}}{d t}, \vec{j}=\frac{d \vec{a}}{d t}
$$

Simple Mechanisms

Kinematic Link or Element:-
"Every Part of a machine, Which is having Some Relative motion With respect to some otter bart will be known as, I Cinematic Link or element". e.9.-Manstanding on floss

It is necessary for the link, to be the resistant body so that it is capable of transmitting power and motion, from one element to the otter element.

Types of Link:

1) $\frac{\text { Rigid Link: }}{\text { \&t }}$

Deformations are
Negligible.
fore .egg:
Crank, Done ting Rod Piston. Cylinder
B) Fluid Link:-

When Pourer is Transmitted bc of Slid Pressure.
for e. g:
Hydraulic lift
Hydraullie RAM Hydraulic crane etc
2) Flexible Link

Deformation's are there, bet are in permissible limits.
for e.g.0-
Belt, Rope, chaindriirs

Hydraulic Brakes

Different Types of Relative Motions:
Relative Notion \rightarrow For Relative motion system is having Two links.
(1) Completely Constrained motion Constrained Motion $x \rightarrow y$
2) Sucessfully Constrained Motion (Desiurd Motion)
3) Ir Completely Constrained Motion \longrightarrow len constrained Motion
(1)

(2) (I)

III

$i, i i)$ Completely Constrained $M_{0}{ }^{"}$ iii, (v) Sucersefully Constrained (v) Imciompeletety contained

Kinematic Pairs:
"
Any Connections blu ter links is always a joint or a pair, but this pair will also be a Kinematic pair, if the Relative motion b/w the -links is a constrained motim.

Classification of Kinematic Pairs:-
A) According to the type of Relative motion:-
i) Turning Pair (Revolute Pair) (Pin Joint):

Kinematic bes one independent
When Relative motion is pere tevening.
ii) Sliding Pair (Prismatic Pair):

When Relative motion is pure sliding.
iii) Rolling Pair:

When Relative motion is pure Rolling.
H
Rolling without slipping.

For Pere rolling

$$
V_{c m}=R \omega
$$

iv) Screw Pair:-

When relative motion is over the threads.
for .e.9 Nut 8 Bolt.
v) Spherical Pair (Ball in Socket joint): 3DRotution When Relative motion is (3-D) Rotation. Spherical Motion.

S.g mirror in vectiles
B) According to Type of Contact:
i) Lower Pair: \rightarrow Surface Contact
ii) Higher Pair \longrightarrow Point l line contact
iii) Whapping Pair \rightarrow When one link is whapped over other link Whapping Pair is close to Higher Pair.
$e_{. g} \rightarrow$ Belt Pulley, Shoes shall, Rope Paly.

$$
1 H P \equiv 2 L P
$$

To eliminate I HP $\rightarrow 1$ extra lints \& $2 L \cdot P$
c) According to the type of Closcure:
i) Self closed Pair (closed Pair):-

Permanent Contact

e. $9 \rightarrow$ Ball is Ball Bearing,
ii) Forced closed Pair (open Pair): forceful contact.
C.2. HP is Cam \& follower Door clover er
Automatic clutch operating system

Finfonaltors
as C.F \uparrow clutch operates \& 9 pars changes. operation depend on springs \& Craw

Different Types of joints:

1) Binary joints:

Where two links are Connected.

2) Ternary joints:

When thru links are Connected.

$$
1 T \equiv 2 B
$$

$$
\begin{aligned}
& (1,2) \rightarrow B \\
& (2,3) \rightarrow B \\
& \begin{array}{l}
(1,3) \rightarrow B \\
\text { Dependent. }
\end{array} \\
& \text { D }
\end{aligned}
$$

3) Quaternary joint:

When tour lints ar Connected.

(1)

$$
1 Q \equiv 3 B
$$

\rightarrow Liniematie chair:
"If all the links are Connected in such au way such that first link Connected to lastlink in order to get the close chain and if all the Relative motion in this close chain artel Constrained, then the chain is ICnoun as Kinematic chain.

Kinematic chain
(Constrained Chain)
To use this chain One link must be fixed.

Mechanism \rightarrow Which can give Desired outlet w.r. to given input.

Utilize it

Machine \rightarrow Desired output is obtained

Degrees of Freedom: (Mobility)
"The min. no. of independent Variables lelquives to defines the position \& motion of system is I Rollin as degrees of freedom of the Sefstem".
D.O.F $=$ 6- Restraints \downarrow
No. of those motion नहिं हो यकते Which are not possible.

Pair	Restraints	D.OF
P	$3 T+2 R$ $=5$	$6-5$ $=1$
O	$1 T=1$	

Aim:
To find out degree of freedom of ($2-D$)
Planer Mechamism.

Note

1) Lower Pair $\rightarrow 1$ D.0F
2) Higher Pair $\rightarrow 2 D 00 \cdot F$
(3) Sperical Pare \rightarrow D. OF $=3$
bC et can rotate in 3 der n.

$$
\text { Motion }=2 T+1 R=3
$$

$$
\text { No, of limps }=l
$$

$$
\text { No. of Binary }=j
$$

joints

No. of Higher $=h$
Founts
One link fired

$$
F=3(l-1)-2 j-k * *
$$

$$
\left[\begin{array}{l}
\text { No. of Max motion } \\
\text { in 2-D } \\
\text { Planner Mechanism }
\end{array}\right]
$$

(3) $F=[3(4-1)-2 \times 3-1]-1$

$$
F=1
$$

$$
\begin{aligned}
& l=4 \\
& j=3 \\
& h=1 \\
& f_{r}=1
\end{aligned}
$$

(4)

$$
\begin{gathered}
F=(3(4-1)-2 \times 3-1) \\
F=1
\end{gathered}
$$

$$
\begin{aligned}
& l=3 \\
& 3=2 \\
& k=1
\end{aligned}
$$

$$
F_{r}=0
$$

Physical Significance of Degree of freedom:

1) If $\mathrm{F}=0 \rightarrow$ No Relative Motion (frame / structure)
e.9:

$$
\begin{array}{ll}
l & F=3(l-1)-2 j-h-F_{r} \\
l=3 & \\
& =3(3-1)-2 \times 3-0-0 \\
j=3 & \\
h=0 & F=0
\end{array}
$$

$$
F=0
$$

2) If $F<0 ; \rightarrow-1,-2,-3$, No Relative motion Super Structures
 (Intermediate structure) With great strength

$$
\left.\begin{array}{l}
l=4 \\
j=5 \\
h=0
\end{array}\right]=\begin{aligned}
& F=-1
\end{aligned}
$$

3) If $F=1$

Kinematic chain
egg

$$
\begin{aligned}
& l=4 \\
& j=4 \\
& h=0 \\
& F=1 * k \cdot c
\end{aligned}
$$

Kinematic chain $D O F=1$
$*$
4) If $F>1,2,3,4,5$ - Unconstrained chain

Cig

$$
\begin{aligned}
& l=5 \\
& g=5 \\
& h=0
\end{aligned}
$$

$$
F=2
$$

i)

DOF is the no. of Input Required to get the unconstrained critput in Any chain.

$l=10$
$J=13$
$h=0$
$F=I$

Kinematic choin
i)

$\left.\begin{array}{l}l=7 \\ j=9 \\ h=0\end{array}\right]$
$F=0$ frame / structurs iin)

Spring ar a link Verb

Grubler's Equation:
Grublers equation is valid only for those mechanism in which

$$
\begin{aligned}
& F=1 \\
& h=0
\end{aligned}
$$

Applying Kutzback's equ":

$$
\begin{aligned}
& F=3(l-1)-2 j-h \\
& 1=3 l-3-2 j=0 \\
& 3 l-2 j-4=0
\end{aligned}
$$

(31) always $^{\rightarrow}$ even
(l) always \longrightarrow eam
$(l)_{\text {min }} \rightarrow 4$ first Mechanism in Lower Pair

Simple Mechanism:
i) Four bar Mechanism
four link
ii) Single Slider (rank Mechanism (Lour Pair)
iii) Doreble Slider Crank Mechastirm
i) Four bar Mechanism:- (4 Links, 4 Turning Pair)

Best Position \rightarrow fired because it governs both input and output
imput/outbut ψ

Complete rotation \rightarrow Crank (complete 360)
Voermp (NoTe)
Partial Reaction \rightarrow Rocker/luvor (if lenttan 360°) If NO. O Limber $=R$ oscillation then NO. O inversion $\leqslant l$

Inversions:-
Mechanism which are obtained by firing one by one different links
i) Double Crank Mechanism
ii) Crank \longleftrightarrow Rocker Mechanism
iii) Double Rocker Mechanism

Grashot's Law:
Aim
For the Continous Relative motion b/w the number of Planes, in a mechanism, the summinsion of length of shortest 8 the longestest link should not be greater than the summission of the length of other tue links".
**

For Continns Relative motion

$$
(S+l) \leqslant(p+q)
$$

Where,

S-Shortestest link
$l=$ longest think

Worst Position
Couplorlir
Best link for Rotation $\rightarrow 81$

Case) 1 if $(s+l)<(p+q)$
Law is satisfied
1)

(2) $S \rightarrow$ Adjacent Link fired \rightarrow Crank Rocker
3) $\mathrm{S} \longrightarrow$ Coupler \longrightarrow Double Rocker.

Case 2) if $(s+l)=(P+q)$
Law Satisfied
Condition: Not having Pair of equal link

$$
\left(\frac{2}{2}, 4,4\right)
$$

Case 3 if $(S+l)=P+V$ but, Having equal links

$$
\begin{aligned}
& 2,2,5 S \\
& S S
\end{aligned}
$$

1) Parallelogram linkage:

S-fired
Double crank
l fined \rightarrow Double Crank.
bus short length Cam Rotate easily.

Short-fisud
2) Deltoid linkage:

$$
\text { if }(S+L)>(P+q)
$$

Law not satistid

Double - Rocker will obtained

Some Practical Applications of Four bar Mechanism

1) Beam Engine Mechanism: By James Watt

2) Coupling Rod of Locomotive:

$\left[\begin{array}{c}\text { Paralluograme linkage } \\ \text { Double crank }\end{array}\right]$ divine

Single Slider -Crank Mechanism: 4 link $=3 T P+1 S P$
b) Inversions
(i) I, inversion (Basic)

CP \rightarrow Turning Pair
$S P \rightarrow$ Sliding Pair (Cylinder fired)
external Combustion engine

$\frac{\text { all fired tat em as me lint }}{\text { fort maybe same }}$

Torternal Combustion engine

Summary
Rotation \longleftrightarrow Reciprocating
(crank) \longleftrightarrow (Piston)
(0) $\longleftarrow i \rightarrow$ Reciprocating enserie
$(i) \longrightarrow 0 \longrightarrow$ Reciprocating compression
ii) II Inversion $\frac{(\text { Crank fixed })}{(\text { In }}$
i). Whitillorth (Quick return Notion Mechanism) QRMM
ii) Rotary IC engine Mechanism (GNOME Engine)
iii) III Inversion
(Connecting Rod Jived)
i) Crank \& slotted leer (QRMM) Best
ii) Oscillating cylinder engine Mechanism.
(iv) IV Inversion (Slider fired)

Hand pump (Pendulum Pump) (Bull Engine)

$\beta \rightarrow$ cutting stroke angle
$\alpha \rightarrow$ Return stroke ange

$$
\begin{aligned}
& \dot{\alpha}+\beta=360^{\circ} \\
& \alpha<\beta
\end{aligned}
$$

$$
Q R M M
$$

$$
\begin{aligned}
& \frac{\text { (time) cutting }}{\text { (time) Return }}=\frac{\beta}{\alpha}=\frac{Q R M M}{\frac{\beta}{\alpha}>1 \text { not }} \begin{array}{l}
\text { अगर } \frac{\beta}{\alpha} \operatorname{lin} \text { than } 1 \text { gin है } \\
\text { तो वो Ratio } \frac{\alpha}{\beta} \text { का है। }
\end{array}
\end{aligned}
$$

Note \rightarrow if in Question it is giom less thanone then it is Ratio of $\frac{\alpha}{\beta}$ is girm.

Stroke

$$
\begin{aligned}
& =R_{1} R_{2} \\
& =C_{1} C_{2} \\
& =2\left(C_{1} M\right) \\
& =2\left(A C_{1}\right) \cdot \operatorname{Cos} \frac{\alpha}{2} \\
& =2\left(A C_{1}\right)\left(\frac{O B_{1}}{O A}\right) \\
& =\frac{2(A C)(O B)}{(O A)} \\
& =\frac{2(\text { Length of slottedlbar) } \times \text { (Length of Cranks) }}{\text { length of Connecting Rod. }}
\end{aligned}
$$

Withworth Puieck Return Motion Mechanism:-
(Crankfixed)
Rovation \rightarrow Rotation
Double Crark.

priving Crants

Stroke

$$
\begin{aligned}
& =R_{1} R_{2} \\
& =c_{1} c_{2} \\
& =2 \theta c
\end{aligned}
$$

Oscillating Cylinder engine Mechanism:
(Comecting Rod fired)

Crank \leftrightarrow Rocker
Rotary Internal Combustion Engine: (GNONE Engine)
When combustion takes place inside the (Crank fired) cylinder,
Input force cones on Piston then this force transmitted to Connecting Rod. then, Connecting Rod and Piston
both Rotates \downarrow

My. Block
Rotates (oulfunt)

Hand Pump (Slider Pump):-

i) Slotted Plate fixed:

Elliptical Trammels:

Δn)

2) If Any of the Slides is tired:-

Scotch-Yope Mechanism
Rotation \rightarrow Reciprocating

3) If Link Connecting slides is tisud:

Old ham's Coupling:
11
used to Connect the shafts having lateral misallignment.

Complex Mechanism lilith Lower Pair:
\rightarrow Exact Straight line Motion Mechanism.
\rightarrow Approximate straight Line Motion Mechanism.

Watt's Indicator Mechanism:-
Appxo.
straight line
largecirch with 4 radurs

To measure Pressure
Inside steam Ch amber by:-Sir James W att

Observation:

\rightarrow Point C and Point Q, both moves in Approximate Straight line motion. [Approximate stoline motion Mechanism]
\rightarrow There is no relative motion b/w link $B C \& C D$ hence $B C D \rightarrow$ one link.
\rightarrow Link BCD \rightarrow leers \rightarrow Double Crank Mechanism Link $A Q$ \longrightarrow

Stewing Gear Mechanism:
Changing direction of notion.
i) Davis Sterling gear Mechanism:
\rightarrow having 2 Turning pair +2 Sliding pair (life is lens)
\rightarrow Exact at all positions.
ii) Accerman steering gear Mechanism:
\rightarrow having only turning pairs
(life is very high)
\rightarrow Exact at all thru position. (mid, esetrome left, extreme right)
iii) Rapson's Sleds:
\rightarrow less in ships
$\frac{\text { Intermittent Motion Mechaniom: }}{H}$
Provide the periodic motions with breaks at output w.r. to given Continous input.
i) Geneva Mechanism: \longrightarrow used in Indexing in milling etc
ii) Ratchet Mechanism:
\rightarrow used in Clocks

Mechanical Aderantage of A Mechanism:

$$
M \cdot A=\frac{\text { Foutbut }_{\text {Fimput }}}{\text { Firp }_{\text {in }}} \rightarrow M \cdot A=\frac{V_{\text {input }}}{V_{\text {oritput }}} \times \mathrm{N} / \text { mecharism }
$$

or

Efficioncy

Qn) find Mectanical Advantage of Iig?

$$
M \cdot A=\frac{\omega}{0}=\infty
$$

$B C_{3}$, Rotation \longrightarrow Resiprocating
Rotation of infinits Radius circle Meams Resliprocation.

Toggle Mechaniom:-

$$
\tan \alpha=\frac{\text { Fimput }}{\text { Foutput }}
$$

$$
\text { Foutput }=\frac{\text { Finput }}{\tan \alpha}
$$

$$
\begin{aligned}
& \text { As } \alpha>0 \\
& \quad \tan \alpha=0 \\
& \quad \text { Foutpet } \rightarrow \infty \quad \text { M.A } \rightarrow \infty
\end{aligned}
$$

$$
\text { Foutpect } \ggg \ggg>\text { Fimpent } * *
$$

TOggle's Position:
gt is the esitrome positions of outpat link, Rocker in foue BarMechanism.

Transmission Angle en Four bar Mechanism:($H)$
Representation of Transmission angle $\rightarrow H$
\rightarrow The Angle b/w the output link \& Coupler link in froe bar Mechanism is Known as Transmission Angle
 0

$$
A c^{2}=b^{2}+a^{2}-2 b a \cos \theta=c^{2}+d^{2}-2 c d \cos \mu
$$

Differentiating both side

$$
\begin{aligned}
& (-2 b a)(-\sin \theta \cdot d \theta)=(-2(d)(-(\sin \mu \cdot d \mu) \\
& \frac{d \mu}{d \theta}=\frac{b a}{c d}=\frac{\sin \theta}{\sin \mu}
\end{aligned}
$$

for H, to be max o worm

$$
\begin{gathered}
\frac{d H}{d \theta}=0 \\
\Rightarrow \sin \theta=0 \\
\theta=0^{\circ}, 180^{\circ} \\
M_{\text {min }}
\end{gathered}
$$

Roblem:

find, Hmein a?
$H_{\text {max }}$?
first chack letetthet treaigh law is i. c. sumol Coviest Largest must be equadorelen.
for Hmin $\left(\theta=0^{\circ}\right)$

$$
(4)^{2}=(4)^{2}+(3)^{2}-2(4)(3) \cos H \text { sonion }
$$

$$
H_{\min }=
$$

for $H_{\text {max }}=\theta=180^{\circ}$

$$
\begin{gathered}
(6)^{2}=(4)^{2}+(3)^{2}-2(4)(3) \cdot \cos H_{\max } \\
H_{\max }=
\end{gathered}
$$

Motion Analysis

Velocity Analysis:-
Instantaneous Centre Method Application
(by: Sir, ARNHOLD)

Instantaneous Centre of Rotation:-

$$
\frac{V}{R}=\omega_{A B}=\frac{V_{A}}{A I}=\frac{V_{B}}{B I}=\frac{V_{C}}{C I}=\frac{d_{D}}{D I}=\frac{V E}{E I}=\ldots \ldots .
$$

fore .s
$I_{23} \rightarrow$ Instantaneous centre for the Relative motion blu two link ie blu link 283
I_{23} or I_{32} both are same. 2,3 represent link only

Motion	Centrode	Anode
Croneral Motion	Curve	CurvedSurtace
Pure Translation	Straight line	Plane Surface
Pure Rotation	Point	Straight line

In Reality

$$
\left.\begin{array}{l}
A A_{1} \rightarrow 0 \\
B B_{1}^{\prime} \rightarrow 0
\end{array}\right] \text { Differential }
$$

This link $A B$ at this instant is in general motion

In general, when the link moves them its instantaneous centre of Relative matron changes its position.
Locus, of I-Centre for the Relative motion blu the centrode link.

Locus of I-arise of Relation for the Relative motion \Rightarrow Anode b/w the links
w
In General, the motion of link in mechanism is neither Pure translation nor purr rotation. It is a Combination of Translation and rotation, which we normally say, that the link is in general motion but, any link at any instanst, Can be assume to be in pure rotation with respect to point in the space Kun as Instantaneous Centre of Rotation. This Centre is also Known as the Virtual Center."

No. Of Instanstanuws Centre in Mechanism:
If No. of link $=l$
No. of Instantaneous Centre $=\ell c_{2}$

$$
=\frac{\ell(l-1)}{2}
$$

fores

$$
\begin{aligned}
l & =5 \\
I_{\circ} C & =10
\end{aligned}
$$

$$
\left.\begin{array}{llll}
I_{12} & I_{13} & I_{14} & I_{15} \\
& I_{23} & I_{24} & I_{25} \\
& & I_{34} & I_{35} \\
& & I_{45}
\end{array}\right]
$$

Basic Instantaneous Centre in a Mechanism:

1) Tevening Pair:

I. C at Centr/Point of Pin.
(2) Rolling Pair:

(3) Sliding Pair
i) On Plane Surface:

Ic ceil go at ∞, but in the opposite dir, 1 to the Sliding Surface.

$$
z=6
$$

Givin

$$
\begin{aligned}
& N_{O A}=120 \mathrm{VPM} \text { clockurise } \\
& \omega_{O A}=\frac{2 \pi \times 120}{60}=4 \pi \frac{\mathrm{Rad}}{\mathrm{Sec}} \\
& V_{A}=0.2 \times 4 \pi=2.5132 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

link-3, $(A, B)(I 13) \quad b_{c 3}$ ground (Abrolutavel oktain w. $18 \cdot$ to groud)

$$
\omega_{3}=\omega_{A B}=\frac{V_{A}}{I_{13} A}=\frac{V_{B}}{I_{13} B}
$$

link $4(B, C)\left(I_{1},\right)$

$$
w_{4}=\omega_{\cdot B C}=\frac{V_{B}^{V}}{I_{14} B}=\frac{V_{C}}{I_{14 C}}
$$

$\operatorname{link} 5(C, D)(I, 15)$.

$$
\omega_{S}=\omega_{C D}=\frac{V_{C}}{I_{15} C}=\frac{V_{D}}{I_{15 D}}
$$

Kennedy's Theorem:

\rightarrow For the Relative motion blew the No. of limbs in a Mechanism any there links, their three Instantamous, must lie in straight line.

Gium link $=6$

$$
\begin{aligned}
& I C=\frac{G(6-1)}{2}=\frac{6 \times 5}{2}=\frac{30}{2} 15 \\
& I C=15
\end{aligned}
$$

$I_{12} I_{13} I_{14} I_{15} I_{16}$
$I_{23} I_{24} I_{25} I_{26}$
$I_{34} I_{36} I_{36}$
(1) $\omega_{3}=\omega_{A B}=\frac{V_{A}}{I_{B} A}=\frac{V_{B}}{U_{0.8 \mathrm{~m}}} \Rightarrow V_{B}$

$$
\begin{gathered}
J_{B}=\frac{2.5132 \times 1.1}{0} \\
=3.455 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

$$
I_{45} I_{46}
$$

$$
\omega_{A B}=\frac{2.5132}{.8}=3.14 \cdot \mathrm{rod} / \mathrm{s}
$$

I56

$$
\text { (2) } \begin{aligned}
& W_{4}-W_{B C}=\frac{V_{B}}{\mathcal{I}_{14}}=\frac{V_{C}}{J_{14 C}}=V_{C}=\frac{3.455 \times 12}{.4}=1.727 \mathrm{~m} / \mathrm{s} \\
& 0.2 \mathrm{~m}
\end{aligned}
$$

$$
=\omega_{B C}=\frac{3.455}{.4}=8.637 \mathrm{radls}
$$

$$
\begin{gathered}
\omega_{5}=\omega_{C D}=\frac{V_{C}}{J_{1} 5 C}=\frac{V_{D}}{J_{15 D}}=V_{D}=\frac{1.725 \times .45}{17}=1.11 \mathrm{~m} / \mathrm{s} \\
\omega_{A}=\frac{1.76 \mathrm{~m}}{.7} \\
\omega_{B}=2.467 \mathrm{rad} / \mathrm{s} .
\end{gathered}
$$

$$
\left(\begin{array}{l}
V_{B}=3.2 \mathrm{~m} / \mathrm{s} \\
V_{C}=1.6 \mathrm{~m} / \mathrm{s} \\
V_{B}=1.08 \mathrm{~m} / \mathrm{s} \\
\omega_{A B}=2.99 \\
\omega_{B C}=8 \\
\omega_{C D}=2.16
\end{array}\right.
$$

GRAPhical Representation

$A B=1.5 \mathrm{~m}=1500 \mathrm{~mm} \rightarrow 15 \mathrm{~cm}$
$B C=600 \mathrm{~mm} \rightarrow 6$ from
$C D=500 \mathrm{~mm} \rightarrow 5 \mathrm{~cm}$
$B E=400 \mathrm{~mm} \rightarrow 4 \mathrm{~cm}$
$O E=1.35 \mathrm{~m} \rightarrow 1350 \mathrm{~mm} \rightarrow 13.5 \mathrm{~cm}$.

IT

$$
I_{16}^{(\infty)}
$$

Ind

Kennedy' The rem: our far Ansate Rumens

For the Relative motion b/w the no. of limbs in a Mechanism. Any three limbs, their the rel instantanious Centre must lie in a straight Live.

Theorem of Angular velocities:-
This Theorem is applied at

$$
\begin{aligned}
& \text { Ard IC }
\end{aligned}
$$

But total Ic in use:-
Imn-link1
Im-link 2
In - link 3
If $I_{1 m}$, In lie at the Same Side of $I_{m n} \rightarrow$ Dir n Ulielbe Same. If $I_{1 m}$, $I_{1 n}$ dent lie at same side of $I_{m n} \rightarrow \operatorname{Dir}^{n}$ well be different.
$\omega_{2}=$ Given in previous Cluestern
(clockwisedir) at (2) leinh
$I_{25:}$

$$
\omega_{2}(\underbrace{I_{25} I_{12}}_{\text {Distame }})=\omega_{5}\left(I_{25} I_{15}\right)
$$

$I_{24} 0^{-}$

$$
\omega_{2}\left(I_{24} I_{12}\right)=\omega_{4}\left(I_{24} I_{14}\right)
$$

$I_{45}:-$

$$
\omega_{4}\left(I_{45} I_{14}\right)=\omega_{5}\left(I_{45} I_{15}\right)
$$

Roblem 1^{\prime} \square When $\theta=180^{\circ}$

$$
\omega_{2}=5 \mathrm{rad} / \mathrm{s}
$$

$$
\omega_{3}=?
$$

$$
\begin{gathered}
\omega_{2}\left(I_{23} I_{12}\right)=\omega_{3}\left(I_{23} I_{13}\right) \\
5(d)=\omega_{3} 2(\alpha) \\
\omega_{3}=5 \mathrm{rad} / \mathrm{sec} \text { Ary }
\end{gathered}
$$

(On) \qquad

$$
\begin{aligned}
& \omega_{2}=5 \mathrm{rad} / \mathrm{s} \text { (clock) } \\
& \omega_{3}=14 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Find the Angular velocity of link 2 wirto link 3

$$
\begin{aligned}
\vec{\omega}_{23} & ={\overrightarrow{\omega_{2}}}-\vec{\omega}_{3} \\
& =(+5)-(-14) \\
& =5+14 \\
& =19 \text { roadie. clock. }
\end{aligned}
$$

Qm)

$$
\begin{aligned}
\vec{\omega}_{23} & =+5-(+14) \\
& =-9 \\
\vec{w}_{23} & =-9 \operatorname{Rad} s l e c \\
\vec{w}_{23} & =9 \operatorname{rad}) \sec (A c)
\end{aligned}
$$

Where is I 24?

$$
\begin{aligned}
& \text { line }
\end{aligned}
$$

Ans.

Relative Velocity Method:-

$$
\begin{aligned}
& \omega_{A B}=\frac{V_{A B}}{A B} \operatorname{Rad} / \mathrm{s} \quad(A C) \\
& \omega_{B C}=\frac{V_{B C}}{\beta C} \operatorname{Rad} / \mathrm{s} \quad(A C) \\
& \omega_{C D}=\frac{V_{C D}}{C D} \operatorname{Rad} / \mathrm{s}(A C)
\end{aligned}
$$

> Enraphical. Scal.

All letturs en Corfiguration divo. Wliel be capital

Absolute \rightarrow motimcelith Respeel to fireed Relative \rightarrow Motion w.r. to to another

Po

$$
\begin{gathered}
\text { If Crank } O, B \\
\longrightarrow 40 \mathrm{rPm} \\
(A C)
\end{gathered}
$$

Giro data

$$
\begin{aligned}
& V_{B}=\left(O_{1} B\right) \omega_{O 1 B} \\
& V_{B}=0.25 \times \frac{2 \pi \times 40}{60} \mathrm{~m} / \mathrm{s} \\
& \quad \downarrow \quad
\end{aligned}
$$

Scale of velocity

Coincident Point of Slider B, But on slotted bar. Slotted bare $\rightarrow \mathrm{O}_{2} C D$

$P \rightarrow \Rightarrow(2 m)$
The velocity diagram for the give configun at this instant velillbe:-

Pb) $\quad V_{B}=$?
(QM) $\quad V_{B}=V A=10 \times 3=30 \mathrm{~m} / \mathrm{s}$
$\overrightarrow{P_{b} 3} \quad \vec{V}_{B A}=$?

$$
V_{B}=V_{A}
$$

Zero
Pb 4) The motion of link $A B$ at this Instant will be,

$$
\omega_{A B}=\frac{\forall \overrightarrow{A B}^{\circ}}{A B}=0
$$

Pere Translation
P. 5
$\omega_{B C}=? *$
$2 M$

$$
\begin{aligned}
V_{B} & =V_{A} \\
5 \times W_{B C} & =10 \times 6 \Rightarrow \omega_{B C}=\frac{30}{5}=6 \mathrm{rad} / \mathrm{sec} .
\end{aligned}
$$

Q. $62 M$
a) $1,2,3$
b) 2,4
C.) 1,3
D) \cdots NOT.
P_{D}

$$
\begin{aligned}
V_{B}=0.2 \times 2 & =0.4 \mathrm{~m} / \mathrm{s} . \\
& \text { unitome }
\end{aligned}
$$

1400 mm

find the Aug. velocity of Slotted Bar, then vel. of RAM is Max.

Cutting stor ns

Return'stotes.

$$
\omega_{B}=\frac{0.4}{0.5} \quad 4 / 5 \text { rodisec }
$$

Accelaration Diagram: \qquad
(only objective)

Accelaration Analysis:-

Becaus of the changein
 dir 어 viloiaty

BC3 of change in magnitude of velority.

May or
May not bezero
(n)

find $\rightarrow a_{B}=9 \quad \alpha_{B A=?}$

$$
a_{B A}=? \quad \alpha_{B C}=?
$$

inv)

B
A

Ltodien a Rodial
(

Note:

$$
\begin{aligned}
& l=5 \\
& j=6 \\
& h=0
\end{aligned}
$$

$$
F=3(5-1)-2 \times 6
$$

$$
F=0
$$

frame structur

$$
\begin{aligned}
& l=5 \\
& s=6 \\
& h=0
\end{aligned} \quad F=3(5-1)-2 \times 6=0
$$

Binary link \rightarrow Connected at two Place
Ternary lirk \rightarrow Cornected at thres place
Quaternary limh \rightarrow Conected at flrer plae,

KLEIn'S CONSTRUCTION
"Itces only applied in single slider Crank Mecochanism (BASTC)"
when

$$
\alpha_{\text {crank }}=0
$$

\rightarrow Given

GRAPhical
scale

$\triangle B A P$

Velocity Dig (Rush)

$$
\frac{V_{A}^{2}}{\partial A}=\frac{V_{B}^{2}}{(O P}=\frac{V_{B A}^{2}}{A B}=\text { warank }
$$

$$
\frac{a_{A}}{O A}=\frac{a_{B A}^{+}}{R S}=\frac{a_{B}}{O S}=\frac{a_{B A}^{r}}{A B}=\omega_{\operatorname{crank}}
$$

Coriolis $A C c e^{n}\left(a^{c}\right):-$
${ }^{C r}$ This ace ${ }^{2}$ will always dee associated With the slider when the slider is blinding am He Raterting body"

The Magnitude is (a^{c})
$\psi a^{c}=2 v \omega$
$V \Longrightarrow$ Sliding Vel. of slices
$\omega \rightarrow$ Ans. Vole of badifion which slider is sliding.

Direction of (a^{c}):
(1) Tare the sense of we.
(ii) Rotate the \vec{v} in that sense by $g 0^{\circ}$.
1)

5)
(2)
(3)

(4)

$6)$

Pares.

Find the Accent of slides $a_{B}=$?

$$
\begin{aligned}
& \omega=2 \mathrm{rad} / \mathrm{s} \\
& v=0.75 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
A_{B}^{C} & =2 \mathrm{vw} \\
& =3 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
a_{B} & =\sqrt{(3)^{2}+(4)^{2}} \\
& =5 \mathrm{~m} / \mathrm{s}^{2} 123
\end{aligned}
$$

$$
=(1)(2)^{2}
$$

$$
=4 \mathrm{~m} / \mathrm{s}^{2}
$$

INSTANTANEOUS FLUCTUATION OF SPEED
COWTROL DEUICES \therefore

Intra-cycle fluctuation

wher-cucle fluctuation
engine

$$
\left\{\begin{array}{l}
\rightarrow S \rightarrow 800 \mathrm{rpm} \\
\rightarrow C \rightarrow 300 \mathrm{rpm} E \text { stodedering dranse } \\
\rightarrow P \rightarrow 200 \mathrm{~J} \rightarrow \text { Cramk } \rightarrow 1000 \mathrm{rPm} \\
\rightarrow E \rightarrow 900 \mathrm{rpm}
\end{array}\right.
$$

Kinematic Anelysis of Single Slider Crank Mechranism.:- (Inertio of cannecting rod is nat cansidered in thes Analysis for being the lightest bady)
in

$$
\cos \beta=\sqrt{1-\frac{\sin ^{2} \theta}{\pi^{2}}}=\frac{\sqrt{n^{2}-\sin ^{2} \theta}}{n}
$$

$m \rightarrow$ Mass of Reciprocating Parts.
$l \rightarrow$ length of Canecting $\mathrm{rad}(C \cdot R$)
$r=$ radius of crank.

$$
n=\frac{2 l}{r} \Rightarrow \frac{\text { celeliquity Patio }}{\text { (large) }}
$$

$\omega \nRightarrow$ Any. Vel. at Crank
$\theta \rightarrow$ Angletromed bey prank from IDC/TDC

$$
\omega=\frac{d \theta}{d t}
$$

PISTON MOTION
Displacement

$$
\begin{aligned}
u & =\beta_{1} \beta \\
& =B_{1} 0-B_{0} \\
& =(r+l)-\left(B m+m_{0}\right) \\
& =(r+l)-(l \cos \beta+\pi \cos \theta) \\
& =r+n \gamma-\eta \gamma \cdot \frac{\sqrt{n^{2}-\sin \theta}}{\eta n}-r \cos \theta \\
& =r(1-\cos \theta)+\gamma\left(n-\sqrt{n^{2}-\sin ^{2} \theta}\right) \\
x & =\gamma\left[(1-\cos \theta)+\left(n-\sqrt{n^{2}-\sin ^{2} \theta}\right)\right]
\end{aligned}
$$

Velocity (v)

$$
\begin{aligned}
& v=\frac{d x}{d t}=\frac{d x}{d \theta}+\frac{d \theta}{d t} \rightarrow \omega^{\prime} \\
& v=r \omega\left[\sin \theta+\frac{\sin ^{2} \theta}{2 \sqrt{x^{2}-\sin ^{2}} \theta^{\circ}}\right.
\end{aligned}
$$

$$
v=r \omega\left[\sin \theta+\frac{\sin 2 \theta}{2 n}\right] /(n \text { corese })
$$

Accen $(a):$

$$
\begin{aligned}
& c=\frac{d v}{d t}=\frac{d v}{d \theta} \cdot \frac{d \theta}{d t} \rightarrow \omega \\
& a=r \omega^{2}\left[\cos \theta+\frac{\cos 2 \theta}{n}\right] \quad(n \text { larse })
\end{aligned}
$$

Connecting RodMotion:-
Ang-Velality ($\omega_{C R}$)

$$
\begin{aligned}
& \omega_{C R}=\frac{d B}{d t} \\
& \sin \beta=\frac{\sin \theta}{n}
\end{aligned}
$$

Diff, bath side

$$
\begin{aligned}
& \cos \beta \cdot \frac{d \beta}{d t}=\frac{\cos ^{\omega c \pi} \theta}{n} \cdot \frac{d \theta}{d t} \rightarrow \omega \\
& \omega_{C R}=\frac{\omega \cos \theta}{\frac{h \cdot \sqrt{n^{2} \sin ^{2} \theta}}{\eta^{2}}} 0 \\
& \omega_{C R}=\frac{\omega \cos \theta}{n}
\end{aligned}
$$

Ang. Acctu $\left(\alpha_{C R}\right)$

$$
\begin{aligned}
& \alpha_{C R}=\frac{d C v_{c \theta}}{d t}=\frac{d \omega_{C R}}{d \theta}+\frac{d \theta}{d t}{ }^{s} \omega \\
& \alpha_{C R}=-\frac{\omega^{2}}{n} \sin \theta
\end{aligned}
$$

Dynamic cenalysis of Single slider Crank Mechanism :-

1) Effective Driving Farce to Drive the Piston:(listen Effort) (F)
(Calculated from caver end to Crank end)

Support
Gas pressure
Force
$P_{1}, P_{2} \rightarrow P_{r}$. of gas at cover and f Tank and sides of piston
$A_{1}, A_{2} \rightarrow$ Crass -sec areas of piston at Caver end $\&$ crank end side.
$D \rightarrow$ Piston DiG, ${ }^{\prime}$
$d \rightarrow$ Piston Rad cia.
$A_{1}=\frac{\pi}{4} D^{2}$
$A_{2}=\frac{\pi}{4}\left(D^{2}-d^{2}\right)$

$F_{\text {gas }}=\left(P_{1} A_{1}-P_{2} A_{2}\right)$

Oppose:-

1) Inertia force

$$
F_{I}=m-a=m \cdot \gamma \omega^{2}\left\{\cos \theta+\frac{\cos ^{2} Q}{n}\right\}
$$

(ii) Kinetic For Leticens(f)

$$
\begin{aligned}
& \text { If } \left.Q \in\left[0,180^{\circ}\right] \rightarrow-f\right] \\
& \text { If } \left.\theta \in\left[180^{\circ}, 360^{\circ}\right] \rightarrow+f\right]
\end{aligned}
$$

PISTOMEFFORT
(Cover end to Gawk end)

$$
F=\left(F_{\text {gas }}-F_{I \pm} \pm f\right)(\pm M g)
$$

(2) Furce Along $C \cdot R\left(F_{c}\right)$

$$
\begin{aligned}
& F_{c} \cos \beta=F \\
& F_{c}=\frac{F}{\cos \beta}
\end{aligned}
$$

(3) neermal threust to Cy. Walls (Fn):-

$$
\begin{aligned}
& F_{n}=F_{c} \sin \beta \\
& F_{n}=F \cdot \tan \beta
\end{aligned}
$$

(11) crank effect $\left(E_{+}\right)$

$$
\begin{aligned}
& F_{t}=F_{c} \sin (\theta+\beta) \\
& F_{t}=\frac{F}{\cos \beta} \sin (\theta+\beta)
\end{aligned}
$$

(5) Rudial Thrust to Corank Shaft Beairings $\left(F_{0}\right)$:-

$$
\begin{aligned}
& F_{\gamma}=F_{c} \cos (\theta+\beta) \\
& F_{\gamma}=\frac{F}{\operatorname{Cos} \beta} \cdot \operatorname{Cos}(\theta+\beta)
\end{aligned}
$$

(6) Toning Moment on Co rank Shaft (T):-

$$
\begin{gathered}
T=F_{t} \cdot 9 \\
\text { Output } \\
\text { af engine }
\end{gathered}
$$

$$
\begin{aligned}
& T=f(\theta) \\
& f \theta=f(\operatorname{tin} \theta) \\
& G
\end{aligned}
$$

Section

$$
\begin{aligned}
\Rightarrow \quad(I) \alpha & =F_{n} \text { (Time) } \\
\alpha & =f_{n} \text { (time) }
\end{aligned}
$$

Fluctuations with Jerks,

TURNING MOMENT DiG. OF SINGLE CH. DOUBLE ACTIWG STEAM ENGInes:-

(Resisting tarame)
(load thrave)

Area under ($T-\theta$) Dig. in a cycle
II

$$
\begin{aligned}
& W_{\text {cycle }}=T_{\text {mean }} \times 2 \pi \\
& T_{\text {mean }}=\frac{W_{\text {cycle }}}{(2 \pi)}
\end{aligned}
$$

Even after Installing the flywheel.

$$
\begin{gathered}
\min \left(N_{\min 1}, N_{\min 2}, \ldots .\right) \\
\longrightarrow N_{\min } .
\end{gathered}
$$

$\operatorname{Max}\left(N_{\text {mane }}, N_{\text {mar }}^{2}, \ldots ..\right)$
Nam
($N_{\text {mana- }} N_{\text {min }}$)
\Longrightarrow Flections still left

$$
C_{E}=\frac{\left(E_{\text {max }}-E_{\text {min }}\right)}{W_{\text {cycle. }}}
$$

$C_{E} \rightarrow$ Coefficient of fluctuation of energy for the slywhel.
Any (tee) or (-v e)area above or below Tmean line is Fluctuation of Energy. $\triangle E$.

Sum of all the ($+v e$) area above Tmean line $\cdots=$

Sum of all the ($-v e$) area below Tmean line

Main function of Jlywhel:
\rightarrow Storing and deluviring energies at desieed speod.
e.9.

$$
200 J \doteq \frac{1}{2} I \omega_{\uparrow}^{2}
$$

Highspeed Running engénes Ore havineg their flywhel lelith less I.

Turning Moment form(diagram) of Single Cylinder 4-strake
IC engine:

$$
T_{\text {mean }}=\frac{\text { Wcycle }^{4 \pi}}{4}
$$

$\Delta E \rightarrow$ Jluctuation (abover belurs Tmean)

Fundamental Equation of Fly wheel:
$m \rightarrow$ man of Flywheel
$k \rightarrow$ Radius of gyration

$$
\text { Momentopiniertia }=I=m k^{2}
$$

$R_{\text {ing }} \rightarrow k=R \Rightarrow I=m R^{2}$
$\operatorname{Dix} \rightarrow k=\frac{R}{\sqrt{2}} \Rightarrow I=\frac{m R^{2}}{2}$

Maximum Fluctuation of energy:-
variation

$$
\begin{aligned}
(\Delta E)_{\text {max }}= & E_{\text {max }}-E_{\text {min }} \\
= & \frac{ \pm}{2} I \omega_{\text {max }}^{2}-\frac{1}{2} I \omega_{\text {min }}^{2} \\
= & \frac{1}{2} I\left(\frac{\omega_{\text {max }}+\omega_{\text {mix }}}{2}\right)\left(\frac{\omega_{\text {max }}-\omega_{\text {min }}}{\omega}\right) C^{\prime} \times \omega \\
& (\Delta E)_{\text {max }}=I \omega^{2} c_{S} * *
\end{aligned}
$$

for. e.g

(2)

Period:

$$
\begin{aligned}
& \operatorname{Sin} \theta \rightarrow 2 \pi \\
& \sin 3 \theta=\frac{2 \pi}{3} 7 \\
& \cos \theta \rightarrow 2 \pi \\
& \cos 3 \theta=\frac{2 \pi}{3} \\
& \tan \theta \rightarrow \pi] \\
& \tan 7 \theta=\frac{\pi}{7}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Period }=\frac{\text { L.C.M of Numeratr }}{\text { HCF of Denminatro }}=\frac{2 \pi}{1}=2 \pi
\end{aligned}
$$

Pb27 (P929) flywhel Converitional
Soln)

$$
\begin{aligned}
T & =[10000+2000 \sin 2 \theta-1800 \cos 2 \theta] \\
C_{S} & = \pm 0.25 \%=0.5 \% \\
& =0.05 \\
\omega & =\frac{2 \pi N}{60}=\frac{2 \pi \times 250}{60} \mathrm{rat} / \mathrm{s}
\end{aligned}
$$

Trean $=$ Const .

$$
\begin{aligned}
W_{\text {cycle }} & =\int_{0}^{\pi} T \cdot d \theta \\
& =\int_{0}^{\pi}(10000+2000 \sin 20-1800 \cos 2 \theta) d \theta \\
W \text { cycle } & =10000 \pi \text { Joules } \\
T_{\text {mean }} & =\frac{10000 \cdot \pi=10000 \mathrm{~N} \text {-m } \quad T_{\text {mean }}=\frac{W a y e l}{\pi}}{\pi} \\
& T_{\text {mean }}=1000 \mathrm{~N}-m
\end{aligned}
$$

i) Pourr $\rightarrow \quad P=\operatorname{Tmean~} \times 6$.

$$
P=10000 \times \frac{2 \pi \times 250}{60} \text { Watt }
$$

www.enggbuzz.com

Those Posit, where T curve cut $T_{\text {mean }}$ line,
At Those points:
$T=T_{\text {mean }}$

$$
\begin{aligned}
& 10000+2000 \sin 20-1800 \cos 20=10800 \\
& \tan 2 \theta=0.9 \\
& \text { as } \\
& \sin \theta=2 \pi \\
& \cos \theta=2 \pi \\
& \tan \theta=\pi \\
& 2 \theta=41.8872^{\circ}, 221.9872^{\circ}, 401.9872^{\circ} \ldots \\
& \left.\theta=20.9936^{\circ}, 110.9936^{\circ},\right\}^{200 .} 9936^{\circ} \\
& \Delta E_{\text {max }}=\int\left(T_{\text {mean }}{ }^{\left(T-T_{\text {mean }}\right)} d \theta\right. \\
& =\int_{20.9936}^{10 \cdot 9936^{\circ}}(200 \sin 2 \theta-1800 \cos 2 \theta) d \theta=I \omega^{2} C_{S} \\
& \text { this I well pecten } \\
& \text { ie) }\left(T_{\text {mean }}\right)_{\theta_{2} 45^{\circ}}=I \alpha \\
& 2000=I \alpha \\
& \alpha=\frac{2000}{I \alpha} \\
& \alpha=\frac{2000}{I} \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

Q.28) $T=5000+1500 \sin 30] \frac{2 \pi}{3}$

$$
\begin{aligned}
I & =100 \mathrm{~kg}-\mathrm{m}^{2} \\
N & =300 \mathrm{rPm} \\
\omega & =\frac{2 \pi \times 300}{60} \mathrm{radls} \\
C_{3} & =? \\
T_{\text {mean }} & =5000+600 \sin \theta] \frac{2 \pi}{1}
\end{aligned}
$$

Those point wher T aurve cuto Tmean Curve; If those point

$$
T=T_{\text {mean }}
$$

$5000+\frac{1500}{5} \sin 3 \theta=5000+6 / 0 \sin \theta$

$$
\begin{aligned}
& 5\left(3 \sin \theta-4 \sin ^{3} \theta\right)=2 \sin \theta \\
& 13 \sin \theta-20 \sin ^{3} \theta=0
\end{aligned}
$$

$\sin \theta\left(13-20 \sin ^{2} \theta\right)=0$
$\sin \theta=0 \Rightarrow 0, \pi, 2 \pi$
$\sin ^{2} \theta=\frac{13}{20}$
$\begin{aligned} & \sin \theta=<+\sqrt{\frac{13}{20}} \\ &-\sqrt{\frac{13}{20}}\end{aligned}$

$\rightarrow 53.7288^{\circ}$
$\rightarrow 126.2711^{\circ}$
$\rightarrow 233.7288^{\circ}$
$\longrightarrow 306.2711^{\circ}$

Requirement of Flywheel in multi cylinder Engines:-
\rightarrow Multicylinder engine Concept, Came into picture, to 1 the Pour r As ul as to increase the uniformity of the Power. So, that, the fluctuation in the engine performanal can be Decreased s the requirement of Hlywhed, can be suppressed lip to Certain limits.
\rightarrow This is achieve by imposing a very nice Concept ICnownas firing order.
\rightarrow This Concept is also playing very, very important role in the area of Balancing.

Letter no. of Cylinder are more then 7-8

let es assume

$$
\begin{array}{l|l}
E_{a}=E_{1} r & E_{n}=E+2 \\
E_{b}=E+1 \\
E_{c}=E-1 \\
E_{0}=E+0.5 & E_{i}=E+0.5 \\
E_{j}=E & E_{j}=E+1.5 \\
E_{I^{\prime}}=E+2 & E_{e}=E+1.5 \\
E_{G}=E+0.5 & E_{m}=E \\
& E_{n}=E+1.5 \\
& E_{0}=E-0.5 \\
& \\
& E_{a}=E
\end{array}
$$

$$
\begin{aligned}
& E_{\text {max }}=(\epsilon+2) \\
& \text { (} a+f 8 h \text {) } \\
& \lim _{\min ^{2}=0.2 \mathrm{Jall},} \\
& \text { min }=(E-1) \text { Atc } \\
& (\Delta E)_{\text {max }}=(E+2)-(E-1) \\
& =3 \mathrm{~mm}^{2} \\
& =3 \times 0.02 \text { Jul. } \\
& \text { then equate to } I \omega^{2} c_{s}
\end{aligned}
$$

Requirement of Hlywhel in Power Presses:
Power Pres:
\#
used in metal Forming forces.
步
Punching
Blanking
Shearing
Power Pres Rums by motor

One Cycle of Power Press:

In One Cycle

\rightarrow CRANK
$\cdots 2 \pi$
$\rightarrow C A N$ Rotation - $\leqslant 2 \pi$ (due to Dwell Stroke)
Due to Dueler Stroke, in which Cam Rotates beet dolour not.
Q.30)

$$
\begin{array}{rlrl}
& 720 \text { holes/ hr } & K=0.3 \mathrm{~m} \\
\Rightarrow & 720 \text { holes } 3600 \mathrm{sec} & K=0
\end{array}
$$

$\Rightarrow 1$ hole ls sec
Cycle tine $=5 \mathrm{sec} *$
1 hole / $1 / 4 \mathrm{sec}$
exact punching time $=\frac{1}{4} \mathrm{sec}$.
During Punching

$$
\begin{aligned}
& 100 \mathrm{rPm} \text { (} \mathrm{N}_{\text {max }} \text {) } \\
& N=\frac{100+80}{2}=90 \mathrm{YPm} \\
& 80 \mathrm{r} \cdot \mathrm{Pm} \text { (min) } \\
& \omega=\frac{2 \pi N}{60}=\frac{2 \pi 90}{60} \mathrm{rad} / \mathrm{sec} \\
& C_{S}=\frac{100-80}{90} *
\end{aligned}
$$

1 hole

$$
\begin{aligned}
A_{\text {sheared }} & =\pi d T \\
& =\pi \times 2 \times 3=6 \pi \mathrm{~mm}^{2} \\
E_{\text {pule }}= & 6 \pi \times 20=120 \pi \text { Jules }
\end{aligned}
$$

Moter

$$
\begin{aligned}
P_{\text {rnoter }} & =\text { energy requived } / \mathrm{sec} \\
& =\text { Enote } \times \text { No, ot holes/sec }(\text { cesce time }) \\
& =120 \pi \times \frac{720}{3600} \\
& =24 \pi \text { ulatt }(\mathrm{J} / \mathrm{s})
\end{aligned}
$$

Motor Installed:

$$
\begin{aligned}
\text { Punding } & =\left(\frac{1}{4} \mathrm{sec}\right) \\
\text { Eavailable } & =24 \pi \times \frac{1}{4} \\
& =6 \pi \text { Joules }
\end{aligned}
$$

$$
\begin{aligned}
& E_{\text {hore }}=120 \pi \text { Joules } \\
& \begin{aligned}
120 \pi-6 \pi=114 \pi & =I \omega^{2} C_{s} \\
& \int_{1} \\
& =m k^{2}
\end{aligned}
\end{aligned}
$$

Variation in above Poblem:.
(1) Cygele time: 5 sc

Eract Puncting tiome $=$?
Stroke lengith $=100 \mathrm{~mm}$
200 mm - Cyele \cdot beret
$200 \mathrm{~mm}-5 \mathrm{sec}$

$$
\underset{\downarrow}{3 \mathrm{~mm}}-\frac{5}{200} \times 3 \mathrm{sec}
$$

thichmens of shect
(2) Cycle time $=5 \mathrm{sec}$

Cract punching teme $=$?

$$
\omega=92
$$

Eract purching is done in 20° of crank Rotation.

In one cyele \rightarrow Crank Rotation $=2 \pi$ in 5 seac

$$
\omega=\frac{2 \pi}{5} \mathrm{rad} / \mathrm{sec}
$$

$$
\begin{gathered}
360^{\circ}-5 \mathrm{Sec} \\
20-\frac{5}{360} \times 20^{\circ}
\end{gathered}
$$

ercaet Puncting time
Q. 29

$$
\begin{gathered}
\text { Cycle time }=28 \mathrm{c} \\
P_{\text {motors }}=1500 \omega_{R}=\text { Eholex } \frac{1}{2} \\
\text { Thole }=3000 \text { Joules } \\
\omega=\frac{2 \pi}{2}=\pi \mathrm{rad}
\end{gathered}
$$

exact Punching time $=\frac{1}{6}$ see

$$
C_{S} 2 \cdot 20 \%=0.2
$$

Punching ($1 / 68=$)

$$
3000-\left(1500 \times \frac{1}{6}\right)=\underbrace{}_{\nabla^{2}}=\omega^{2} C_{s}
$$

\rightarrow Designing of Flywheel Rim:-
$A \rightarrow$ Rim cross section area

$$
\text { Ring } \rightarrow I=m R^{2}
$$

Max.

$$
2 T \sin \frac{d \theta}{2}=(d m) R \omega^{2}
$$

$\sigma \leqslant \sigma_{b}$ Where σ_{b} is bearing limit for Hoots's stein

$$
V_{\max }=(R \omega)_{\max }=\sqrt{\frac{\sigma b}{e}} * *
$$

At Medium speed:- Hey whee leith Spokes.

At high Speed:- Dix c Shaped fly wheal
Beat flywheel duvets

Hawing highest energy storing Capacity $\rightarrow \frac{1}{2} I \omega^{2}$

Gyroscope

3-D Space Co-ordinate System:-

Concept of Angular velocity $(\vec{w}):-$
Rate of Change of Angular displacement.

(Rate of Change of Ang. Displacement)
$\xrightarrow[\text { Direction }]{\rightarrow}$ (Dir of $\vec{\omega}$ is Alsoknom $\|$ as Axis of Spin)
By Right hand them Rule.
Right hand thumb reele:-
i) Place the Right hand in such a lay, such that thumb is $\mathcal{L}^{\text {r }}$ to the fingers
ii) Relate the fingers in the Sense of Rotation, then the deriction of thumb weill be the direr of Angular velocity.

Examples:
15)
$\xrightarrow{\text { View }}$

Arise of Spin $\rightarrow O X$
Plane of spin $\rightarrow y z$

2)

Ariel spin - OX
Plane of spin $y z$

3)

Ariz of skin - $0 x$
Plan of spin - $y z$

$\frac{\text { Angular }}{\|} \frac{\text { Accelaration : }(\vec{K})}{(\Downarrow)}$
Rate of Change of Angular velocity.

$$
\vec{\alpha}=\frac{\overrightarrow{d \omega}}{d t} \quad \vec{\omega} \rightarrow \text { vector Quantity } \longrightarrow \text { May }^{n}
$$

α may exist:- $b_{c 3}$ of
\rightarrow Br z of the Change in Magnitude of Angular velocity.
$\rightarrow B C 3$ of the change in direction of Angular velocity. \rightarrow (Precession)
\rightarrow Let ens Considers a Case, in Which Magnitude r $\vec{\omega}$ \& the din of $\vec{\omega}$ both are Changing.

Angular Velocity Diagram: e. Table fam

Angular accelaration due to change in Marritude of Angular velocity:-

$$
\begin{aligned}
& =\frac{(\omega+d \omega) \cos ^{1} d \theta-\omega}{d t} \\
& =\frac{(\psi+d \omega)-\psi}{d t}
\end{aligned}
$$

Ang. Accelaration due to change $=\frac{d w}{d t}$ oxdirection in Magnitude of Ans. Velocity (\vec{u})

$$
\begin{aligned}
& \begin{array}{l}
\text { Angular Acceleration due to }=\frac{(\omega+d \omega) \sin ^{2 d \theta}}{d t}-0 \\
\text { change in dir of Angular }=(\omega+d \omega) \cdot d \theta
\end{array} \\
& \text { velocity } \\
& =\frac{(\omega+d \omega) \cdot d \theta}{d t} \\
& =\frac{\omega \cdot d \theta+d \omega \cdot d \theta}{d t} \\
& =\omega \frac{d v}{d t} \text {. (by) dir }{ }^{n} \\
& \text { Angular veloily } \quad \equiv \omega \cdot \omega_{p} \\
& \text { or Precision (} \omega_{p} \text {) } \\
& \text { by dir }
\end{aligned}
$$

Ital Average Accelar ation:

$$
\vec{\alpha}=\left(\frac{d \omega}{d t}\right) \hat{i}+\omega\left(\frac{d \theta}{d t}\right) \hat{i}
$$

$$
\Rightarrow \quad \vec{\alpha}=\left(\frac{d \omega}{d t}\right) \hat{i}+\underbrace{\left(\omega \cdot \omega_{p}\right)}_{t} j
$$

(gyroscopic accelaration)
\# If the magnitude of Angular velocity is not Changing,
Only the dir is changing, then;

$$
\begin{aligned}
& \frac{d \omega}{d t}=0 \\
\alpha= & \omega \cdot \frac{d \theta}{d t} \\
\alpha= & \omega \cdot \omega p \quad \text { in of direction }
\end{aligned}
$$

\# To have the precision, ie to change the dir of $\vec{\omega}$ in order to Provide Angular accelaration $(\alpha)=\omega \cdot \omega \cdot$ in or dir
\rightarrow A torque is required; and that requirement of the torque is known as Active Gyroscopic Couple (c)

Active gyroscopic Couple (C) $=I \alpha$

$$
C=I \omega \cdot \omega p
$$

Torque required to will be given to the System by enteral Agency,
$\frac{e . g}{\text { to turn Bike }}$
We made to turn Mande

Therefore, the Similar Couple Will be experienced by the external agency in Reverse direction, ie I noun as Reactive Gyroscopic Couple.

$$
C=I \omega_{p}
$$

Thus, this Reactive gysoscupic Couple is experienced by the system because that external agency is the part of the system.
motor-table fan

After Effect of Gyroscopic Actions on the System:-

$$
\Downarrow
$$

Reactive gyroscopic Couple.

Ox - Arix of Spein $y z$-Plane of Sbin
$O Z$ - Arise of Precussion
$x y$ - Plane of Precession
Oy - Arise of Gy noscopic Couple
x_{z} - Plane of Cry roscopic Coupl.

\rightarrow Reaction On bearings under Gyroscopic Effect oZ (axis of Precession)

Forces of shaft:

$$
\begin{aligned}
& F_{A}=\left(\frac{C}{l}+\frac{m g}{2}\right) \quad(\text { downward }) \\
& F_{B}=\left(\frac{c}{l}-\frac{m g}{2}\right) \quad \text { (Upward) }
\end{aligned}
$$

Reaction on bearing

$$
\begin{aligned}
& R_{A}=\left(\frac{C}{l}+\frac{m g}{2}\right)(\text { upward }) \\
& R_{B}=\left(\frac{c}{l}-\frac{m g}{2}\right)(\text { downward })
\end{aligned}
$$

In) A disc lilith Radius of gyration 60 mm 8 man 4 kg is mounted Centrally on Horizontal aral of 80 mm length b/w the bearings. It spins about the axle at 800 rPm (clockwise) When Vieured from the Right hand side bearing. The axle precessises about a vertical asir at 50 rPm in anticlorkulise depiction latten viewed from above. Determine the Resultant Rn. in each bearing due to the mans $\&$ gyroscopic effect.

Forces on shaft

$$
\begin{aligned}
& F_{B}=\left(\frac{C}{l}+\frac{m g}{2}\right) \quad \text { (downward) } \\
& F_{A}=\left(\frac{C}{l}-\frac{m y}{2}\right) \quad \text { upward }
\end{aligned}
$$

Reactions on Bearings:

$$
\begin{aligned}
& R_{B}=\left(\frac{C}{l}+\frac{m g}{2}\right) \text { upward } \\
& R_{A}=\left(\frac{C}{l}-\frac{m g}{2}\right) \text { downward. }
\end{aligned}
$$

Given that;

$$
\begin{aligned}
& m=4 \mathrm{~kg} \\
& K=0.060 \mathrm{~m} \\
& I=m K^{2}=4 \times\left(0.060^{2}=0.0144\right.
\end{aligned}
$$

$$
\begin{aligned}
& N=800 \mathrm{rPm} \\
& \omega=\frac{2 \pi 800}{60}=\mathrm{radls} \\
& N_{p}=50 \mathrm{rpm} \\
& \omega_{p}=\frac{2 \pi 50}{60}
\end{aligned}
$$

$$
\begin{aligned}
& C=I \omega \cdot \omega P=9 \\
& l=0.080 \mathrm{~m} \\
& \frac{C}{l}=98
\end{aligned}
$$

G
\rightarrow Front end of Aircraft is L Coon as Nose.
\rightarrow Rear end of Aircraft is Known as Tail.

Tail

\rightarrow View from Tail (Rear end):
engine Rotate Clockwise
1)

Left turn:

Effect:- Nose will go up \& tail Will go down,
2) Right turn:

Effect:- Nasewlil go down \& Tail Will go up.

View from Nose (Froe tend):
engine Rotates clockwise
2) Left turn:
effect $=$ Nose will go down \& Tail will go up.

2) Right tevon:

Effect:- Nose will go ep 2 Tail will godoum.

Gyroscopic effect on turning of step:
Nomenclature:-
Front end of stirps know as bow.
Rear end or ship is Known as Stern.

Looking from stern Side:- The Right hand side of Ship Portion is Starboaver.

1 Left hand Side of ship Portion is Port.
\|

1) View from Bow (Front): engine Rotates Anti clockwise
2) Left turn:

effect \rightarrow Bow will move up \& stern Wheel go/mive dom.
3) Right term:
(val)
Effect:- Bows will move down \& Stern betel moves up.

Gyroscopic Effect on ship. During Pitching: engine Rotates Clockurise.
(View from Stern)

1) Bott moves down (Stern moves up) during Pitching:

effect: - Shepuliel try to turn towards Port side
2) Bow moves up (Stern moves down) during Pitching:-
effect:
Ship will try to steven
towards Star board side.

Gyp roscopic effect on Rolling of the ship:-
During Rolling, of the ship, the direction of angular veloily (w) of rotor of Ship ie not changing.

There is no Precessional at all.
Hence gyroscopic Couple (Iv. wp) is zero, bes wp is zero.
\therefore Ship ulill not experience any gyroscopic effect during Rolling
\rightarrow My roscopic effect on 4 wheeler during turning:-
$I_{E} \rightarrow$ M.I of Engine Part (Rotating)
$W_{E} \rightarrow$ Speed of Engine
$I_{\omega} \rightarrow$ M.I IO wheel
$\omega_{\omega} \rightarrow$ speed of what
$\omega_{p} \rightarrow$ Speed of Precession
Gyroscopic effect on engine:

$$
C_{E}=I_{E} \omega_{E} \omega_{P}
$$

Gyroscopic effect on whee:

$$
C_{\omega}=4 I_{\omega} \omega_{\omega} \omega_{p}
$$

Total Gyroscopic effect on 4- wheeler:-

$$
\begin{gathered}
C=C_{E}+C_{W} \\
C=I_{E} \omega_{E} \omega_{p}+\left(I_{\omega} \omega_{\omega} \omega_{p}\right) 4 \\
C=\left[I_{E}+\omega_{E}+4 I_{\omega} \omega_{\omega}\right] \omega_{p}
\end{gathered}
$$

During Turning: Gryworcopic effect

$$
\text { Force on outer wheel }=\frac{c}{2 l} \quad \text { downward } \quad l \rightarrow \text { axle length blu } \quad l \begin{aligned}
& \text { inner } \& \text { niter wheel } \\
& \text { in }
\end{aligned}
$$

$$
(e a c h)
$$

inner \& veter Wheel

Force on inner wheal $=\frac{c}{2 l}$ upward.
$(e$ och $)$

Problem
Qn) A high speed ship is driven by turbine motor having mo 1 , $20 \mathrm{kgm}^{2}$ \& is running at 3000 rpm in clockwise dire, when Vieurd from the Bour. the ship is speeding at $72 \mathrm{~km} / \mathrm{hr}$ \& taken g a right ten resend a Curve of G00 mt. Radius.
Determine the G.C applied to ship 8 its effects.

$$
\begin{aligned}
I & =20 \mathrm{~kg}-\mathrm{m}^{2} \\
N & =3000 \quad \omega
\end{aligned}
$$

$$
C \quad A F I=I \cdot \omega \cdot \omega_{P}
$$

$$
C=209.23
$$

Point of Contact

Pure rolling :

$$
\rightarrow \frac{\omega_{1}}{\omega_{2}}=\frac{R_{1}}{R_{2}}
$$

\rightarrow Static friction is there.

$$
0 \leqslant f_{s} \leqslant \mu \mathrm{~N}
$$

All those Drives in which slips isporsible $\#$
negative drives
for example:
\rightarrow Belt Drives
\rightarrow Chain Drives
\rightarrow Rope Drive

In Case of Slip
$\longrightarrow \frac{\omega_{1}}{\omega_{2}} \neq$ Constant
\rightarrow Kinetic friction.
(Some power boss)

In Some Cases;
Positive drives
\longrightarrow Gear Drive
In Power Transmission, a very high leet of Accuracy is demanded for the velocity Ratio to be constant.

$$
\frac{\omega_{1}}{\omega_{2}}=\text { Constant }
$$

1 Classification of Gears:-
A) According to the Ares of Shaft Connected:-
i) Both Arussare Parallel:

Pure Rolling motion can be Transmitted b/w two Cylindrical Sicuface in Contact.

Spur Gear:
Teeth are straight and I le l to axis of Rotation.
Use:- 99% Filed \& only 1% is used. In very low Power Tramsmissies at very Low speed
Reason- Instartaniens enguagement \& Disenguagument due to lithich Impact stresses on the profile.
But having Mo Areal thrust

Helical Gear: 98% used "Axial thrust is there" Modification of spur Gear. "Teeth are straight but indined to axis of Rotation.
There art ter Type of Helical Gear:-

Right Handed
\rightarrow Always Opposite hand helical gear must Come in Contact.
NOTE:-
\rightarrow Gradual enguagement
\rightarrow No impact strums
\rightarrow Axial thrust of very high speed then it failed clue to high torus Ariel thrust is there as axial thrust is there, OVercome by bearing but at high Torque ardial thrust is high and bearing were failed

Double Helical Gear: forvery high Torres
lesed to minimize the Axial thrust.
Give by Herringboel \& Named Herringbor Gear.
Real

Axial Thrust is minimize but not absolute zero.
ii) Axes are Non Parallel but Intersecting:-

\rightarrow Pure Rolling motion, can be transmitted b/w two Conical Secrfaces in Contact.

Bevel Gear:-

\rightarrow Impact strenave there 1% used.

PLAN (TOP View)

Axis \qquad

Mitre Gear \rightarrow use to Couple the governor with the engine
iii) Axes are Neither Pávallel nor. Intersecting:
\rightarrow Pere Rolling is not Possible.
\rightarrow Rolling is possible:

$$
\longrightarrow \text { (Rotation + Partial sliding) }
$$

Hyperboloid

$\frac{\text { Spiral Gear:- }}{\text { IV }}$
Small Potion of My penpoloid

Skew Bevel Gear
When the space b/w the Shofts is very less then some Potion of Hyperboloid is used to form Spiral gear. which are Called HyPoid Gear.

Worm \& Worm levels:

\rightarrow Very less diameter
\rightarrow Very high Spiral Angle.
Worm is driver
used in high Speed Reduction Ratio's

\rightarrow very high deämetor
\rightarrow Very les spiral angle.

w	$W W$
10	1
30	1
300	1
1000	1
1250	1

Note
WORM - Rototes Worm whee boz
\rightarrow (8) Worm overcom starting torque of Worm leched so that It Rotates 8 slides
[but in Wormukel
(2) Cant rotate WORM So it happen called
used of self locking
(3) \rightarrow Screw Jack
B) According to the type of Gearing:-

External Gearing:
Top view

Driver \rightarrow Smaller one (Pinion)
Bigger - Gear
Smaller - Pinion

Internal Graving

Bigger \rightarrow Annular (Ring)
Smaller \rightarrow Pinion

If More than one gears are mounted on Same Shaft.

- ComPound Gears
- Speed same
$1 \rightarrow$ Generally in pours Transmissions Smaller bodies are made as Driver.

$$
\begin{aligned}
& T \times \omega \\
& \begin{array}{l}
T \times m \text { Torque } \\
\text { is Requires. }
\end{array} \\
& \begin{array}{l}
\text { High for Smaller } \\
\text { Bodies due to len }
\end{array} \\
& \text { Raduis. }
\end{aligned}
$$

General Gear Terminology:-

Pitch Circle:- Most imp. circle \rightarrow where- Pure Rolling Sewn.

II
It is the imaginary Circle in the gears, Where the pure rolling motion is observed, When the mating gears are transraiting Power. Being an imaginary circle, it Can't be the physical characterstic of gear, but being the mat important circle, it is one of the biggest Specification of the Gears. The size of any Gear, is specified by the diameter of bitch circle."

2) Circular Pitch $\left(P_{c}\right)$:

Pitch circle diameter $=D$
No of teeth $=T$

$$
P_{c}=\frac{\pi D}{T}
$$

For two Mating Bodies:

$$
\begin{aligned}
& P_{C_{1}}=P_{C_{2}} \\
& \frac{\pi D_{1}}{T_{1}}=K \frac{D_{2}}{T_{2}} \\
& \frac{D_{1}}{T_{1}}=\frac{D_{2}}{T_{2}}
\end{aligned}
$$

3) Module (m)
fired Parameter is

$$
m=\frac{D(m m)}{T}
$$

Design

For two Mating Boccie

$$
m_{1}=m_{2}
$$

4) Diametral Pitch:

$$
P_{d}=\frac{T}{D(\text { inches })}
$$

$\left.Q_{n}\right) \quad P_{c} \cdot P_{d}=\frac{\pi \phi}{T} \times \frac{\pi}{\theta}$

$$
P_{c} \cdot P_{d}=\pi
$$

5) Backlash:

$$
\begin{aligned}
& \text { Tooth space - Tort thickness of }=\text { Backlash } \\
& \text { mating Gear }
\end{aligned}
$$

To Prevent. Jamming of teeth du to thermal expansion.

Both gear \& Pineim ares have to provide Backlash
6) Pressure Angle (ϕ)
$\phi \rightarrow$ Premier angle
H

* Angle b/w line of action 8 Comma tangent at P
$\phi \in 20^{\circ}-25^{\circ}$

(line of actin)
Neat imp. Parameter
Law of Gearing:-

For Proper Contact

$$
\begin{aligned}
V_{1} \cos \alpha & =V_{2} \cos \beta \\
\left(\theta_{1} \theta\right) \omega_{1} \frac{O_{1} M}{O_{1} \theta} & =\left(O_{2} \theta\right) \omega_{2} \frac{O_{2} N}{O_{2} \theta} \\
\frac{\omega_{1}}{\omega_{2}} & =\frac{O_{2} N}{O_{1} M}
\end{aligned}
$$

In $\triangle O_{1} P M \sim \triangle O_{2} P N$

$$
\frac{\omega_{1}}{\omega_{2}}=\frac{O_{2} N}{O_{1} M}=\frac{O_{2} P}{O_{1} P}=\frac{P N}{P M}
$$

If these these two Body are Gear:

$$
\begin{aligned}
& \frac{\omega_{1}}{\omega_{2}}=\text { Constant } \\
& \frac{O_{2} P}{O_{1} P}=\text { Constant }
\end{aligned}
$$

$P \rightarrow$ fired Point
$\left\{\begin{array}{l}\mathrm{O}_{1} \mathrm{O}_{2} \text { Already fired } \\ P-\text { Fixed Point }\end{array}\right.$
"Line of Action must Always Pas through the fired Point (Pitch Point) on the line joining the centre of potation of gears.

For a Body to be a Gear:
Line of Action must aluays pas through P \Downarrow

Line of Action Common normal at Q.
$\#$
"Mating Profile must be designed in Such a Relays, Such that Always Law of gearing is Satisfied."

It
\rightarrow Conjugate Profile:

Cycloidal
groolute

Velocity of sliding:

$$
\begin{aligned}
& V_{\text {sliding }}=\left|V_{1} \sin \alpha-V_{2} \sin \beta\right| \\
&=\left|\left(O_{1} Q\right) \omega_{1} \cdot \frac{Q M}{O_{1} Q}-\left(Q_{2} Q\right) \omega_{2} \frac{Q N}{O_{2} Q}\right| \\
&=\left|\omega_{1}(Q P+P M)-\omega_{2}(P N-Q P)\right| \\
&=\left|\omega_{1} Q P+\omega_{1} P M-\omega_{2} P N+\omega_{2} Q P\right| \\
&=\left(\omega_{1} Q P+\omega_{2} Q P\right) \\
& V_{\text {sliding }}=Q_{P}\left(\omega_{1}+\omega_{2}\right) * *
\end{aligned}
$$

Involute Profile (By nature Conjugate):It is defined as the locus of a point, on the line Which rolls Without sleeping on the fired circle". And this fixed Circle is I noun as Reese Circle, which is basically the generates of involute profile.

Involute Profile \rightarrow

fired circle (BAsecirch)

In Reality:

$$
\left.\begin{array}{c}
A P_{1} \\
P_{1} P_{2} \\
P_{2} P_{3}
\end{array}\right] \rightarrow \begin{array}{r}
0 \\
\text { Diftiential }
\end{array}
$$

$$
\operatorname{Arc}\left(A P_{1}\right)=P_{1} A_{1}
$$

Arc $\left(A P_{2}\right)=P_{2} A_{2}$

Are $\left(A P_{3}\right)=P_{3} A_{3}$

Now Profile Shown is get into straight

Diftrential Portion of circle having Centre PI \& Radius Pi Al $_{1}$
"Normal drawn at any Point on

Involute curve Will become tangent to ito base circle Automatically."
Actual Position of Base circle in an Involute Gear:-
gp, external gear
if $R_{\text {Base }}+$
and Presureangle A

$$
\left(20-25^{\circ}\right)
$$

$\rightarrow \mathrm{Non}$-Jrorlute Portion in an external gear can never be
 eliminated $-($ Reality $)$

Analysis of Involute Gears:-

Start of engagement: k
end of engagements L
Line of Action

1) Pass through Line of Action or (Pitch point)
2) Tangent to both of Bare Circle
\rightarrow Point of Contact is changing but line of action is not changing. Hence, $\phi=$ Constant
\rightarrow Point of Contact is travelling along the line of action.

$$
\begin{aligned}
& \text { Ling along the line of acts of } Q \text { (Point on contact) } \rightarrow \text { Straight } \\
& \text { Lines }
\end{aligned}
$$

Time interval in which Q is travelling for start to end of engagement.

$$
\sqrt{1}
$$

One engagement Period
and the distance trailed by Q in this period.

$$
\Downarrow
$$

Path of Recess.
Path of Approach

$$
\begin{aligned}
& O_{1} M=R \cos \phi \\
& P_{M}=R \sin \phi
\end{aligned}
$$

in $\triangle O_{1} \mathrm{KM}$

$$
\begin{align*}
& R_{A}^{2}=R^{2} \cos ^{2} \phi+(K P+R \sin \phi)^{2} \\
& K P=\sqrt{R_{A}^{2}-R^{2} \cos ^{2} \phi-R \sin \phi} \tag{1}
\end{align*}
$$

Path of Approach

Similarly

$$
\left.\bar{p}_{L}=\sqrt{r_{A}^{2}-r^{2} \cos ^{2} \phi}-r \sin \phi\right)-(2)
$$

Path of Recess
Sum or equ" (1) \& (2) is Path of Contact.

Arc of Contact:
When the point of contact is travelling from the start of engagement 8 end of engagement, the distance Trawled by Pinion and gear along their pitch circles, in this Period (one engagement period) is icnoun as Arc of Contact.

Arec of Coitact \rightarrow Travel of Pinim/Gear \&olong tith their Pitches Pitch circle in one engagement Period.

No. of Pair engagred in one engagement Period.

Contact Ratio lie blw (1.2-1.8)
fore.g
Representation
Contact Ratio 1.32
It means, one pair is engaged in full engagement Period, But in 32% time, of engagement period, alony with this Pair one more Pair is engaged on one engagement period.
its aurrage value comes out to be 1.32 .

Pb 471

$$
\begin{aligned}
& t=24 \\
& T=36 \\
& m=8 \mathrm{~mm} \\
& \phi=20^{\circ}
\end{aligned}
$$

Addendum (each) $=7.5 \mathrm{~mm}$

$$
\begin{aligned}
& N_{P}=450 \mathrm{rPm} \\
& \frac{N_{G}}{N_{\rho}}=\frac{t}{T}=\frac{24}{36} \\
& N_{G}=300 \times \mathrm{Pm}
\end{aligned}
$$

Gear:

$$
\begin{aligned}
\text { Gear: } & R=\frac{m T}{2}=\frac{8 \times 36}{2}=144 \mathrm{~mm} \\
& R_{A}=144+7.5=151.5 \mathrm{~mm} \\
\text { Pinion }= & r=\frac{m t}{2}=\frac{8 \times 24}{2}=96 \mathrm{~mm} \\
& r_{A}=96+7.5=103.5 \mathrm{~mm} .
\end{aligned}
$$

i) Path of Contact:

$$
\begin{aligned}
& K L=K P+P L \\
= & \left.\left\{\sqrt{R_{A}^{2}-R^{2} \cos ^{2} \phi}-R \sin \phi\right\}+3 \sqrt{r_{A}^{2}-r^{2} \cos ^{2} \phi}-r \sin \phi\right\} \\
K L= & (\quad) m m+() \mathrm{mm}
\end{aligned}
$$

Arc of Contact $=\frac{K L}{\cos 20^{\circ}}=$ (mmm

$$
\text { i) (Angle) })_{\text {Pininim }}=\frac{\operatorname{Arcos} \operatorname{contact}}{96} \times \frac{180}{\pi}=()^{\circ}
$$

ia)

$$
\begin{align*}
V(\text { leiden }) & =\left(\omega_{1}+\omega_{2}\right) Q P \\
& =\frac{2 \pi}{60}(300+450) Q P . \tag{1}
\end{align*}
$$

$$
(102)^{2}=(9620)^{2}+(96 \sin 20+Q p)
$$

$$
Q P=?
$$

Interference:- due to $R_{A} \& R R_{A} \uparrow$

$$
\text { It } k_{A}>O_{2} M
$$

arrear
\Rightarrow Involute Tip of the pinion veil truck nonInvolute flank Position of gear.
\Rightarrow Involute \rightarrow to non involute Connection
\Rightarrow Law of gearing is not be satisfied.
Involute dip of the pinion will remove some materialtiom nonInvolute flank Position of Gear. I (This Removal of the material is a Process called undercutting.)
Similarly

$$
R_{A}>O_{1} N
$$

Last Safety Points of $K \& L$ arr (M) and (N)
Which We can say Critical Point/ Interference Point

Methods to Prevent interference:
i) Under Cut Gears:

Lender Cutting is Provided by the Cutting tool at the tine of manufacturing

Strength of tooth is lessat root.

Application
Fimitatein \rightarrow lesedin loo Pourer Transmission
ii) if Pressure Ratio (ϕ) is increased.

Mused for Medium Power
If ϕ is inculased by decreasing' Pase Transmission
\rightarrow nom involute Portion \downarrow
\rightarrow Interference $+\downarrow$ (Main Aim)
Limitation of $\phi=\left(20^{\circ}-25^{\circ}\right)$

iii) By stubbing the teeth

Cut by Mach ing

By Stubbing \Rightarrow Addcondum +
Adendum Circle Radius t
Interference th

By stubbing $\rightarrow \phi \rightarrow$ Not change
By stubbing \rightarrow Pot of contact of \downarrow
Are of Contact \downarrow
Contact Ratio \downarrow
min >1 Limitation
io) Increasing number of teth:
of $T \uparrow \Rightarrow \phi \rightarrow$ Nochange
\Rightarrow Addendum 中
\Rightarrow Adendum Circle Radius t
\Rightarrow Interference $\downarrow \downarrow$

If $T \uparrow \Rightarrow$ Arc of Contact t

$$
\Rightarrow P_{c}=\frac{\pi D}{T}+
$$

\Rightarrow ContactRatiin \uparrow

Velocity Ratio:

$$
\begin{aligned}
& \frac{\omega_{p}}{\omega_{S}}=\frac{\pi}{t}>1 \\
& \frac{\omega_{s}}{\omega_{p}}=\frac{t}{T}<1
\end{aligned}
$$

Gear Ratio (s):-

$$
G=\frac{T}{t} \quad \text { Always } \geqslant 1
$$

Rack:
Gear of infinite Pitch circle Diameter (P_{c})
\rightarrow Biggest Gear

Bax circe is scums to be straight butit in not

Straight it is
Circle Radices of infinite Dea
NoTe
$A \longrightarrow$ Fractional Addendum for 1 mm module in order to avoid interference.
$\left.A_{P}\right]$ Therefore, Addendum Required in order to curie
A_{R} interference.

$$
\begin{aligned}
& =m A \quad \text { Where (miss module) } \\
& =m A_{P} \\
& =m A_{G} \\
& =m A_{R}
\end{aligned}
$$

for examples:

$$
\left.\begin{array}{rl}
\text { Addendum } & =7.5 \mathrm{~mm} \\
\text { module }(m) & =8 \mathrm{~mm}
\end{array}\right] \quad \begin{aligned}
& m A=705 \\
& A
\end{aligned}=\frac{7.5}{8}<1 \text { So it is stab }
$$

Involute Gear System:
Full depth Involute: $\left(14 \frac{1}{2}, 20^{\circ}\right)$

$$
\begin{array}{rl}
\text { Addendum } & =\text { standard Addendum } \\
& =\text { one module vale } \\
\operatorname{mA} A & =1 \text { or } \\
A & A P=1 \\
A G & A A^{2}=1
\end{array}
$$

Stub 9 revolute $\left(20^{\circ}, 25^{\circ}\right)$
Addendum : $<$ Standard Add.

$$
\frac{\sin A<\ln n}{A<1}
$$

$$
\left.\begin{array}{l}
A p \\
A R \\
A G
\end{array}\right] \angle 1
$$

1) Ilesser Interference
2) Min no. of tath, relquirment is less.
3) Costis les
4) Stronger toelh

Mini mum Number of teeth le quirement on
Pinion or Gear, in order to avoid Interference:-

$\triangle O_{2} P L$
CosRule \rightarrow 是

$$
\begin{aligned}
r_{A}^{2} & =r^{2}+R^{2} \sin ^{2} \phi_{G}-2(r)(R \sin \phi) \cdot \cos (90+\phi) \\
& \left.=r^{2}\left(1+\left(\frac{R}{r}\right) \cdot\left(\frac{R}{r}\right)+2\right) \sin ^{2} \phi\right) \\
r_{A} & =r \sqrt{1+G(G+2) \sin ^{2} \phi} \\
& =r=r=\text { Add } \cdot \text { Piniom } \\
& =\frac{\left.r \sqrt{1+G(G+2) \sin ^{2} \phi}-1\right]}{2}\left(\sqrt{1+G\left(G+2 \sin ^{2} \phi\right.}-1\right)=\operatorname{rn} A p \\
& =\frac{2 A P}{\sqrt{1+G(G+2) \sin ^{2} \phi}-1}
\end{aligned}
$$

Similarly

$$
T_{\text {min }}=\frac{2 A G}{\sqrt{1+\frac{1}{G}\left(\frac{1}{G}+2\right)} \sin ^{2} \phi-1}
$$

Minimum number of teth requirement on the Pinion in order to avoid Interference in involute Rack \& Pinion
arrangement:

$$
\begin{aligned}
& \sin \phi=\frac{\text { Add. (Rack) }}{r \sin \phi} \\
& \text { Add Rack }=\text { R } \sin ^{2} \phi \\
& =\frac{\text { 保tmin }}{2} \sin ^{2} \phi=\operatorname{rof} A R \\
& t_{\text {min }}=\frac{2 A_{R}}{\sin ^{2} \phi} \times *
\end{aligned}
$$

Note
Maximum Safty limit for Pinion Addo to Protect gritorfoures

If Gear/Pimion
\longrightarrow Aeldendum Same.

1) forist Gear must be safe

$$
T_{\text {omin }}=\frac{2 A_{G}}{\sqrt{1+\frac{1}{a}\left(\frac{1}{a}+2\right) \sin ^{2} \phi}-1}
$$

2) Pimin will auetomatrally safe.

$$
t_{\mathrm{mmin}}=\frac{T_{\text {rin }}}{G}
$$

$$
\xi=3
$$

$$
\begin{array}{r}
28 \sim 30 \\
\text { toget } \\
(3
\end{array}
$$

ii) If Pinim/Gear $\xrightarrow[\longrightarrow \text { Adds-Different }]{\longrightarrow \text { Dear }}$
$\Leftrightarrow G_{2}$

$$
\begin{align*}
T_{\text {min }} & =\frac{2 A G}{\sqrt{1+\frac{1}{G}\left(\frac{1}{G}+2\right) \sin ^{2} \phi}-1} \\
t_{\text {min }} & =\frac{2 A_{p}}{\sqrt{1+G(G+2) \sin ^{2} \phi-1}} \\
& \frac{T_{\text {min }}}{t_{\text {min }}}=G
\end{align*}
$$

(m) 48

$$
\begin{aligned}
& \text { 48 } \quad G=3 \quad A p=A G= \\
& T_{\text {min }}=\frac{2 A G}{\sqrt{1+\frac{1}{G}\left(\frac{1}{G}+2\right) \sin ^{2} \phi-1}}=45 * \\
& T_{\text {min }}=\frac{45}{3}=15 * * \\
& C_{n=3} \rightarrow T_{\text {emani }}=12 \times 36=36 \%
\end{aligned}
$$

$$
A_{P}=A G=1 \quad \phi=20^{\circ} \quad t_{\text {rian }}=?
$$

\rightarrow Yes interfermacoccurs

$$
\begin{gathered}
T_{\min }=36=\frac{2 A g}{\sqrt{1+\frac{1}{a}\left(\frac{1}{a}+2\right) \sin ^{2} \phi-1}}= \\
\operatorname{Ag}=0.8
\end{gathered}
$$

20% Stebbing An

$$
\begin{gathered}
T_{\text {omin }}=36=\frac{2 A g}{\sqrt{1+\frac{1}{G}\left(\frac{1}{G}+2\right) \sin \phi-1}} \\
\phi=?
\end{gathered}
$$

$P_{b} 16$

$$
\begin{aligned}
& \phi=20^{\circ} \\
& m=10 \mathrm{~mm} \\
& A_{p}=A_{G}=1 \\
& T=50] \quad G=\frac{50}{13} \\
& t=13
\end{aligned}
$$

i) $T_{\text {min }}=\frac{2 \mathrm{Ag}}{\sqrt{1+\frac{1}{\omega}\left(\frac{1}{a}+2\right) \sin ^{2} \phi}-1}=60$
iiv)

$$
\begin{gathered}
T_{\text {Lemin }}=50=\frac{2 A g}{\sqrt{1+\frac{1}{a}\left(\frac{1}{a}+2\right)} \sin ^{2} \phi-1} \\
\phi=?
\end{gathered}
$$

Q

$$
\begin{aligned}
& \text { Pn } \quad \begin{aligned}
& G=4 \\
& A P=A G=1 \\
& \phi=20^{\circ}
\end{aligned} \\
& \\
& T_{\text {min }}=\frac{2 A g}{\sqrt{1+\frac{1}{G}\left(\frac{1}{a}+2\right)} \sin ^{2} \phi-1}=6 / 2
\end{aligned}
$$

$$
t_{\text {min }}=\frac{69}{4}=15.5
$$

(64)

$$
\begin{equation*}
G=\frac{t_{4}}{16}(4) \tag{16}
\end{equation*}
$$

find $T_{\text {min }}=$?
t min for Perion use करता जरती है।
$G=G_{c}$ ar Ratio के लिये।
as Gear saje Pinins sate
Chack Pisnim also
\rightarrow Effect of the Centre Distand Variation Due to Vibrations
On the perform ance of involute gears:-

Centre distance $=100 \mathrm{~mm}$

$$
\begin{aligned}
R & =60 \mathrm{~mm} \\
\gamma & =40 \mathrm{~mm} \\
\phi & =20^{\circ}
\end{aligned}
$$

At a moment
Centre distance is ϕ by 2%

$$
100 \mathrm{~mm}
$$

102 mm

$$
\begin{gathered}
R^{\prime} \cos \phi^{\prime}=60 \cos 20 \\
R^{\prime} \cos \phi^{\prime}=40 \cos 20 \\
\left(R^{\prime}+\lambda^{\prime}\right) \cos \phi^{\prime}=100 \cos 20^{\circ} \\
102 \\
\cos \phi^{\prime}=\frac{100 \cos 20^{\circ}}{102} \\
\phi-?
\end{gathered}
$$

Bey of Vibration:
\rightarrow Centre distance is Clanging
$\rightarrow P C$ chanseins
$\rightarrow P$ changing
$\rightarrow \phi$ Changing
r Base \rightarrow NoClange

Cycloidal Profile (By Nature Conjugate):

II
It is defined as locus of the point on the circumference of the Circle, which rolls lelithout sleeping, on the fired straight line.

1) Per tooth Cost is more.

Overall Cost of Geax-lens' (No machining or extra removal of (Almond equal) tort bottom surface)

Interference is absent
2) Flanks wide \rightarrow Stronger teth
3) Convere-Concave Connection
\rightarrow Lesslear \& tear
Life is 5 times more than involute (1000 years)
ϕ changing
$\phi_{\text {max }} \rightarrow$ At start of engagement
$0 \rightarrow$ At Pitch Point
$\phi_{\text {max }} \rightarrow$ at end of engagement

NoTe:
Power component of force:- $F \cos \phi$
for example
The Pourer Component of force is 0.94 times the Normal Trent. $\stackrel{+}{+}$

Torque

$$
\begin{aligned}
& T_{\text {Pining }}=F \cos \phi \times r \\
& T_{\text {Gear }}=F \cos \phi \times R
\end{aligned}
$$

$$
P_{\text {cower }}=T \times w
$$

$9+$ means

$$
\begin{aligned}
F \cos \phi & =0.94 \neq \\
\cos \phi & =0.94
\end{aligned}
$$

So we can calculate
value of ϕ
ice Pressure angle

Gear Train is Combination of Gears.
\rightarrow Why it is Required?
i) Large centre distance
ii) Very high/dery Low Requirment of velocity Ratio $\rightarrow \frac{\omega_{1}}{\omega_{2}}=\frac{10}{1}=\frac{R_{2}}{R_{1}}$
iii) Multiple velocity Ratios are re squired

Any gear train is Combination of following
(i) Main Driver
ii) Main Driven

Max. iii) Intermediate Gear
iv) Arm. (for epi-cyelic Gear Train) esd in Diftrential Box.

$$
\begin{aligned}
& W_{\text {main }} \text { Driver } \\
& \omega_{\text {main Driven }}
\end{aligned} \quad \begin{aligned}
& \text { Speed Ratio }(S R) \\
& \text { Of Gear Train }
\end{aligned} * *
$$

$\frac{\omega_{\text {main }} D V N}{\omega_{\text {main }} D V R}=\frac{1}{S \cdot R}=\operatorname{Train}$ Value
$\omega_{\text {main }}$ DVR

Simple Gear Train:

Every shaft is having only one Gear in use.

$$
\begin{aligned}
m_{1}= & m_{2}=m_{3}=m_{4} \\
& m_{\text {all }} \rightarrow \text { same }
\end{aligned}
$$

No contribution in

Intermediate Gear
or

$$
\begin{align*}
& (1,2) \quad \frac{\omega_{1}}{\omega_{2}}=\frac{T_{2}}{T_{1}} \tag{1}\\
& (2,3) \quad \frac{\omega_{2}}{\omega_{3}}=\frac{T_{3}}{T_{2}} \\
& (3,4) \quad \frac{\omega_{3}}{\omega_{4}}=\frac{T_{4}}{T_{3}} \tag{B}
\end{align*}
$$

Product of (1) (2) (3)

$$
\frac{\omega_{1}}{\omega_{4}}=\frac{T_{4}}{T_{1}}{ }^{* *} \text { Speed Ratio }
$$

Gear which mating having Same module allays Pinion (Small one) is tater as Driver.

Compound Gear Train:

At least one of the intermediate shaft must have stan one gear in use.

$$
\left.\begin{array}{l}
m_{1}=m_{2} \\
m_{3}=m_{4} \\
m_{5}=m_{6}
\end{array}\right]
$$

$D \cup R=(1,3,5)$
$\operatorname{DVN}=(2,4,6)$

Main Dvr

$$
\begin{array}{ccc}
\text { IV. } & \psi^{5} & \text { Main DVN } \\
2-3 & 4-5 \\
\text { comp. } & \text { comp. } & \\
\left(\omega_{2}=\omega_{3}\right) & \left(\omega_{4}=\omega_{5}\right) &
\end{array}
$$

(1-2) $\frac{\omega_{1}}{\omega_{2}}=\frac{T_{2}}{T_{1}}-$ (1)
$(3,4) \quad \frac{\omega_{3}}{\omega_{4}}=\frac{T_{4}}{T_{3}}$ - (2)
$(5,6) \quad \frac{\omega_{5}}{\omega_{6}}=\frac{T_{6}}{T_{5}}-(3)$
Product of (1) (2) (3)

$$
\frac{\omega 1}{\omega 6}=S \cdot R=\frac{T_{2} \times T_{4} \times T_{6}}{T_{1} \times T_{3} \times T_{5}} \not \approx
$$

Shed Ratio $=$ Product of the no. of Teathon DVN Product of the no. of teeth on $D V R$

Reverted Gear Trains:-
\rightarrow That Comperend Gear Train which is used to Connect CO-asial Shaft.

$$
\begin{aligned}
& m_{1}=m_{2}=m \\
& m_{3}=m_{4}=m^{\prime} \\
& \operatorname{DVR}=(1,3) \\
& \operatorname{DVN}=(2,4)
\end{aligned}
$$

$$
S \cdot R=\frac{\omega_{1}}{\omega_{4}}=\frac{T_{2} T_{4}}{T_{1} T_{3}} * *
$$

Note:
If in the Problem of Reverted gear train, speed reduction is jim Same
Then Take

$$
\frac{T_{2}}{T_{1}}=\frac{T_{4}}{T_{3}}
$$

$$
\begin{aligned}
& \left(r_{1}+r_{2}\right)=\left(r_{3}+r_{4}\right) \quad r^{2} \frac{m T}{2} \\
& \frac{m T_{1}}{2}+\frac{m T_{2}}{2}=\frac{m^{\prime} T_{3}}{2}+\frac{m^{\prime} T_{4}}{2} \\
& m\left(T_{1}+T_{2}\right)=m^{\prime}\left(T_{3}+T_{4}\right)
\end{aligned}
$$

if all gears have Same Moclules; (All same)

$$
T_{1}+T_{2}=T_{3}+T_{4}
$$

For example

$$
r_{1}+2 r_{2}=r_{3}
$$

Mall same

$$
T_{1}+2 T_{2}=T_{3}
$$

Gium:	$m=2 \mathrm{~mm}$ $m^{\prime}=3 \mathrm{~mm}$ $\omega_{4}<\frac{\omega_{1}}{12}$ $T_{2:}: ?$ $T_{4}=?$ $T_{1}=T_{3}=24$ givm

$$
\begin{aligned}
& \frac{\omega_{1}}{\omega_{2}}>12 \\
& \frac{T_{2} T_{4}}{24 \times 24}>12 \\
& T_{2} T_{4}>6912-(1) \\
& m\left(T_{1}+T_{2}\right)=m^{\prime}\left(T_{3}+T_{4}\right) \\
& 2\left(24+T_{2}\right)=3\left(24+T_{4}\right) \\
& \downarrow \\
& T_{1} \quad \frac{1}{3}
\end{aligned}
$$

$48+2 T_{2}=72+3 T_{4}$

$$
\begin{aligned}
& 3 T_{4}=2 T_{2}-24 \\
& T_{4}=\frac{2}{3}\left(T_{2}-12\right)-(2)
\end{aligned}
$$

Peetting 2 in 1

$$
\begin{aligned}
& \frac{2}{3}\left(T_{2}-12\right) T_{2}>6912 \\
& T_{2}^{2}-12 T_{2}-10638 \Rightarrow 0 \\
& T_{2}>108
\end{aligned}
$$

Assume

$$
\begin{aligned}
T_{2}=109 \Rightarrow T_{4} & =\frac{2}{3}(109-12) \\
T_{4} & =64.66
\end{aligned}
$$

Hit and trical Mettwod;
Asoume $T_{4}=65$

$$
\begin{gathered}
T_{3}=24-1=23 \\
m\left(T_{1}+T_{2}\right)=m^{\prime}\left(T_{3}+T_{4}\right) \\
2\left(24+T_{2}\right)=3(23+65) \\
T_{2}=108
\end{gathered}
$$

$$
\left.\begin{array}{l}
T_{1}=24 \\
T_{2}=108 \\
T_{3}=23 \\
T_{4}=65
\end{array}\right] \quad \frac{\omega_{1}}{\omega_{4}} \cdot \frac{T_{2} T_{4}}{T_{1} \cdot T_{3}}=\frac{108 \times 65}{24 \times 23}=12.718
$$

Central distanes

$$
\begin{aligned}
& =\left(r_{1}+r_{2}\right) \\
& =\frac{m t_{1}}{2}+\frac{m t_{2}}{2} \\
& =\frac{x}{2}(24+108)
\end{aligned}
$$

$$
\text { Contre }=132 \mathrm{~mm}
$$

Distames

On) A riveted gear train is used in a clock to drive the hour hand with help of minute hoad. Find the writable NO of the teeth for the gear. any gear should not have less than 11 teeth.

$$
\begin{aligned}
& T_{1}, T_{2} ; T_{3}, T_{4}<111 \\
& m_{1}=m_{2}=m_{3}=m_{4}
\end{aligned}
$$

New Tries
Assume all module Same

$$
\begin{aligned}
& T_{1}+T_{2}=T_{3}+T_{4} \\
& \frac{\omega_{1}}{\omega_{4}}=\frac{T_{2} \times T_{4}}{T_{1} \times T_{3}}, \omega_{1}=\frac{2 \pi}{60 \times 60}=\operatorname{Rad} / \mathrm{sec} \\
& \frac{\omega_{1}}{\omega_{4}}=12=\frac{T_{2}}{T_{1}} \times \frac{T_{4}}{T_{3}} \quad \omega_{4}=\frac{2 \pi}{12 \times 60 \times 60}=\mathrm{rad} / \mathrm{sec} \\
& \frac{\omega_{1}}{\omega_{4}}=12
\end{aligned}
$$

all mare Same

$$
T_{1}+T_{2}=T_{3}+T_{4}
$$

Assume $\pi=12$
Assume, $\frac{T_{2}}{T_{1}}=4 \quad \frac{T_{4}}{T_{3}}=3$

$$
T_{2}=48
$$

$$
\begin{array}{r}
(12+48)=T_{3}+T_{4}=3 T_{3}+T_{3}=4 T_{3} \\
T_{3}=\frac{60}{4}=15, \quad T_{4}=3 T_{3}=45
\end{array}
$$

$$
\begin{aligned}
& T_{1}=12 \\
& T_{2}=48 \\
& T_{3}=15 \\
& T_{4}=45
\end{aligned} \mathrm{~A}_{\mathrm{n}}
$$

Arsume

$$
\left.\begin{array}{rlr}
\frac{T_{2}}{T_{1}}=6 & T_{2}=6 T_{1}=\sigma_{7} \\
12+72 & =T_{3}+T_{4} & \\
84 & =3 T_{3} & T_{1}=12 \\
T_{3} & =28 & T_{2}=72 \\
T_{4} & =56 & T_{3}=28 \\
& T_{4}=56
\end{array}\right]
$$

$$
\begin{array}{ll}
\frac{T_{2}}{T_{1}}=2 & \frac{T_{4}}{T_{3}} 6 \\
T_{2}=2 T_{1} & T_{4}=3 T_{3}
\end{array}
$$

Epi-Cyclic Gear Cycle:-
Aries \rightarrow Rotation
11
A Part from the rotation of the gears, if any gear aries is also locating wor to some other asir, the trains Inonu as EiPi-cyclic gear Train:"
It may be Simple epicydic, Compound epicystic, Roverted epicyelic, Bevel epicyetie \& so m .

To rotate the Arise of the gear, a link is used Which is Known as Atm or Carrier. Arm is not a gear. its Simply a list \& most imp Part of Epi-cyclic gear Train.

bill
Law of gearing

$$
\begin{aligned}
& \frac{\omega_{2}}{\omega_{1}}=\frac{T_{1}}{T_{2}} \\
& \omega_{2}=\frac{T_{1} \omega_{1}}{T_{2}}
\end{aligned}
$$

Let ustake Gear $A \rightarrow 100$ Rem (Ac).

Pb?

$$
\begin{aligned}
& T_{A}=20 \\
& T_{B}=30 \\
& T_{E}=T_{F}=10
\end{aligned}
$$

And All gear have same Module.

$$
\begin{aligned}
& T_{A}+2 T_{E}= T_{C} \\
& \vdots \\
& 40 * \\
& T_{B}+2 T_{F}= T_{D}= \\
& \downarrow \\
& 50
\end{aligned}
$$

Planetary Gear Trains:

I Input

Sun	Rings
Fired	Input
Inpeit	fired

III Input
ARM

* Generally in Planetary gear train, no. M Planet gear armure than me Why
i) For the Balancing of system
ii) For the loo distribution arming the Plants in high Prover Trasmussin (On) 45 Pa 24

Arm	$\cdot S$	P	D
(A)	$\cdot\left(T_{s}\right)$	$\left(T_{p}\right)$	(72)
0	$+x$	$-x \frac{T_{s}}{T_{p}}$	$-x \frac{T_{s}}{I_{P}} \cdot \frac{T_{P}}{7_{2}}$
y	$(y+x)$	$y-x \frac{T_{s}}{T_{p}}$	$y-x \frac{T_{s}}{72}$

$\frac{252}{3,5}=T_{D}, \quad T_{D}=72, \quad T_{S}+2 \overline{T_{p}}=72$
$N_{D}=$
$N_{S}=5 N_{A}$

$$
\begin{gathered}
y+x=5 y \\
x=4 y \\
y-x \frac{T 5}{72}=0
\end{gathered} \quad y\left(1-\frac{I S}{18}\right)=0
$$

Diecction Considerations in Bevel Epe-cyclic Gear Trains:-

مrm	1	$2 / 3$	4	5
0	$+x$	$\pm x \frac{T_{1}}{T_{2}}$	$\Theta x \frac{T_{1}}{T_{2}} \cdot \frac{T_{2}}{T_{4}}$	$\theta^{x} \frac{T_{1}}{T_{2}} \cdot \frac{T_{3}}{T_{5}}$
y	$y+x$	$\left(y \pm x \frac{T_{1}}{T_{2}}\right)$	$\left(y-x \frac{T_{1}}{T_{4}}\right) \cdot\left(y-x \frac{T_{1}}{T_{2}} \frac{T_{3}}{T_{5}}\right)$	

Fixing/Holding Torque in an epi-cyclic Gear Train:-
Total Torque in an epicyclic gear Train;

$$
\begin{equation*}
\sum T=T_{\text {irput }}+T_{\text {outpect }}+T_{\text {fising }}=0 \tag{1}
\end{equation*}
$$

Tirseing

Pover Comervation;

$$
\text { Tirput } \cdot W_{\text {input }}+\text { Toutpat } \cdot W_{\text {oulput }}=0
$$

$$
\eta_{\text {gear }} \text { Train }=1
$$

(50)

$$
\begin{aligned}
& N_{\text {inpect }}=+100 \\
& N_{\text {outpect }}=+250 \\
& T_{\text {input }}=+50
\end{aligned}
$$

$T_{\text {fising }}=$?

$$
\begin{aligned}
& \text { Toutput }=-20 \\
&(50)+(-20)+T_{\text {fising }}=0 \\
& T_{\text {fixing }}=-30 \\
&=30 \mathrm{kN}-m A C
\end{aligned}
$$

$$
\frac{\text { Balancing }}{\psi}
$$

Vibrations Causing Funbalanced

Rotating unbalance
(By rotating mars)
Resiprocating unbalance (ByPesiprocating mam)

Balancing

$$
\begin{aligned}
& \sum \vec{F}=0 \\
& \sum \vec{M}=0
\end{aligned}
$$

Always Constant in Magriteds bet changing in die?

Rotating unbalance

Hers lele Balance only forces, Moments are alltomatically Balanced \dagger

Applied for $\#$
When all the masses are Rotating i in same plane.

Dynamic Balancing H

Here We Balance both forces as well as moment $+1$

Applied for
H
When all the masses are not Rotating in same Plane

Static Balancing of Rotating Masses:
All the masses are rotating in a same plane.

After Balanctung

$$
\begin{aligned}
& \sum \vec{F}=0 \\
& F_{x}=0 ; F_{y}=0 \\
& F_{x}=0 \\
& \left(m_{1} r_{1} \omega^{2}\right) \cos \theta_{1}+\left(m_{2} r_{2} \omega^{2}\right) \cos \theta_{2}+\left(m_{3} r_{3} \omega^{6}\right) \cos \theta_{3}+\left(m_{b} r_{b} \omega^{b^{2}}\right) \cos \theta_{b}=0
\end{aligned}
$$

as Balancing does't dependon speed.

$$
\begin{align*}
& \left(m_{B} r_{B}\right) \cos \theta_{B}=-\sum m r \cos \theta-1 \tag{1}\\
& \left(m_{B} r_{B}\right) \sin \theta_{B}=-\sum m r \sin \theta-2
\end{align*}
$$

Squaring (1) and (2) and then adding them,

$$
m_{B} r_{B}=\sqrt{(-\Sigma m r \cos \theta)^{2}+(-\Sigma m r \sin \theta)^{2}}
$$

for angle there man to beattoched for Balancing

$$
\tan \theta_{B}=\frac{-\sum m r \sin \theta}{-\sum m r \cos \theta}
$$

Note
The final sign of Numerator 8 denomirater will clecide the Quadrant of Balance mass.
for example

$$
\begin{aligned}
& \sum m r \cos \theta=+4 \\
& \sum m r \sin \theta=-5 \\
& \sum_{m}=+ \\
& \tan \theta_{B}=\frac{-(-5)}{-(+4)}=\frac{5}{-4}=-\frac{5}{4}
\end{aligned}
$$

Griphical Method

$F\left(\omega^{2}\right.$

Dynamic Balancing
(All the masses are not rotating in Same Plane)
WorkBook Cluestion 30 Pg. 40

$$
\begin{aligned}
& M_{B}=? \\
& M_{D}=? \\
& \theta_{B}=? \\
& \theta_{D}=?
\end{aligned}
$$

$$
\operatorname{inn}_{p^{*}}\left[\begin{array}{l}
\text { Force }=m \text { mew } w^{2} \\
\frac{F}{\omega^{2}}=m R
\end{array}\right.
$$

Moment Polygen

for Moment Polygen Value:
(1) Reference Plane Select कइना है। dir shoun Hai. $](\mathrm{m} . r)$. I
(2) Main target if unevabe becme zero. Plane.
जो value-ve आएगी उसे outaनाना है lik
and + ve ao usival
$\overline{F_{\text {Force }}} \equiv m \cdot R$ Always ont never be in .

$\left.\left(O_{n}\right) T 5\right)[1$

Plane	m	r	$m \cdot r$	Distamafrom $(R \cdot P)(l)$	$m \cdot R L$
$A(R \cdot P)$	m_{A}	8	$8 m_{A}$	0	0
B	18	6	108	10	1080
C	12.5	6	75	30	2250
D	m_{D}	8	$8 m_{D}$	$30+x$	$8 m_{D}(30+x)$

Balancing of Reciprocating Masses:-
$m \rightarrow$ man of Presiprocating Parts

Il Always constant in dir (line) but every moment changing in magnitude.

$$
F_{\text {usb }}=\frac{\left(m r \omega^{2} \cos \theta\right)}{F_{\text {usb }}\left(P_{\text {rimoryy }}\right)}+\frac{\left(m \cos ^{2} \frac{\cos 2 \theta}{n}\right)}{F_{\text {ur }}(\text { secondary })}
$$

Primary Balancing of Reciprocating Masses:

Sir Jamesulat \&
Team
(1)

Vibration due to line of Resipnoction

Artificial thisteing

But Sir James Comidened
it as Rotations, he sucud by New devecorest \uparrow
They failed ion the Balangaing of Peiproating marses.
We will not Balance the Reciprocating masses Completely, 'le will balance them Partillay
Partial Balancing of Reciprocating masses (Primary) (By Mr. Allen \quad Carly)
Let $C \rightarrow$ fraction of Reciprocating mas to be balanced.

$$
0<c<1
$$

$$
B \cdot b=C m r<m \cdot r
$$

After Partial Balancing

$$
\begin{aligned}
F_{\text {limb }}(A \log \operatorname{Los})= & m r \omega^{2} \cos \theta-B \cdot b \omega^{2} \cos \theta \\
& =(1-C) m r \omega^{2} \cos \theta \\
\cos)= & B b \omega^{2} \sin \theta \\
= & \left(m r \omega^{2} \sin \theta\right.
\end{aligned}
$$

$$
\operatorname{Fun}\left(1 t_{0} \cos \right)=B b \omega^{2} \sin \theta
$$

first use in Locomotive
\rightarrow Vibrator are there bet intersily 'es les

Two Cylinder Locomotive:
\rightarrow Inside cylinder Locomotive
\rightarrow Outside Cylinder Locomotive X
11
First time to start the engine both of the Cranks were Kept 90° to each otter".

Effect of Partial Balancing on two cylinder locomotive :-
i) Variation in Tractive Forces: Pulley

Tractive force $=(1-c) m r \omega^{2} \sin \theta+(1-c) \operatorname{mrw}^{2} \cos (90+0)$

$$
=(1-c) m r \omega^{2}(\cos \theta-\sin \theta)
$$

from Maximum differentiate it?

$$
\begin{aligned}
& \frac{d}{d \theta}(\cos \theta-\sin \theta)=0 \\
& \tan \theta=-1 \quad\left(\text { at } \theta=135^{\circ}, 315^{\circ}\right)
\end{aligned}
$$

ii) Variation in Surging Couple:

$$
\begin{aligned}
\text { Swaying Couple } & =(1-c) m r \omega^{2} \operatorname{sos} \theta \frac{a}{2}-(1-c) m r \omega^{2} \cos (90+\theta) \frac{a}{2} \\
& =\frac{a}{2}(1-c) m r \omega^{2}(\cos \theta+\sin \theta)
\end{aligned}
$$

For Max; cliftrentiate it,

$$
\frac{d}{d \theta}(\cos \theta+\sin \theta)=0
$$

$\tan \theta=1$

$$
\theta=45^{\circ}, 225^{\circ}
$$

Variation in Swaying Couple $= \pm \frac{a}{\sqrt{2}}(1-c)$ row 2
iii) Hammer Blow:

In Reality the balance masses Cannot be attached ruversesto the crank.
In lecality Balancer masses are attached on the Lelkels.

$$
B \cdot b \neq c \mathrm{mr}
$$

$\begin{aligned}\left(B b \omega^{2} \sin \theta\right)_{\text {max }}= & B b \omega^{2} \\ & \text { Hammerblow }\end{aligned}$

10% of total. Pover ofengent is used

Hammer Blow $=$ (B) b ω^{2}. (per wheel)
23
only that Balance Mass will be responsible for Hammer Blow which is required for Reci balancing.

Prob
(31) Dy. planes gap $=0.7 \mathrm{~m}$

$$
\gamma=0.3 \mathrm{~m}
$$

Cranks are at 90°

$$
\begin{gathered}
\text { Rat. Mass } / \mathrm{cy}=160 \mathrm{~kg} \\
\text { Reci. mass } / \mathrm{ky},=180 \mathrm{~kg} \\
\text { Balance } \rightarrow \text { Rat. }+\frac{2}{3} \text { Reci. } \\
b=0.80 \mathrm{~m}
\end{gathered}
$$

Wheels planes gap $=1.5 \mathrm{~m}$.

$$
N=300 \mathrm{\gamma} \cdot \mathrm{p} \cdot \mathrm{~m} .
$$

(1)

$$
\begin{aligned}
& \operatorname{Rot}+\frac{2}{3} \text { Rec. } \\
= & 160 \mathrm{~kg}+\frac{2}{3} \times 180 \mathrm{~kg} \\
= & 160 \mathrm{~kg}+120 \mathrm{~kg} \\
= & 280 \mathrm{~kg} / \mathrm{cg} .
\end{aligned}
$$

(i) BALSNCING

$$
\begin{aligned}
& M_{A}=? \text { Same } \\
& M_{D}=? \\
& Q_{D}=i \\
& Q_{D}=i
\end{aligned}
$$

(ii) Hammer Blaw: $\frac{\text { ? }}{16}$

INTRODUCTION OFCOUPLING ROD IW.TWO Cy-LOCOMOTIVEC
Coupling Pad wass Basically Intrendnced to degress the amant of Hounmer blaw by ving the BAlANCe moss reauirement for the recipracoting. Belancirg through spliting the seccipraenting \&alancing b/w the driving \in trailing whecls. Thes cuas sle develaponent. fram passenger lo comatives to the Express latematines (in which 2-2 wheels wera coupled to the superfast docomotines (In which of 3-3 wheels inere Caupled).

secomdary balancing:-

2) 4-cy-Indize Cayize

3) 4-cy- Iulite engize

Binares

Scconderry

ROL OF THE FIRING ORDERIN
mutticyllinder INLINE ENG. IN BALANUNSG
PFP \rightarrow primary farce palistion
PMP $\rightarrow 11$ Moment 11
$S F P \rightarrow$ Secandory Farce. "
SMP \rightarrow ', maneit 1 ,
4-cy. Inline Ensine:-

primares
PFP:-
PMP:-

Primary

PMP:

The Real firing of der of 4 -cy. Inline ensine in practical is

Bestinn 4 -cyileng.

Primary
Securdary

SFP:

smp:-

NOTS
4-cy. Inline engine
\rightarrow Mat Campletly Balanced.
6-cy. Inline engize
Campletelly Balanced

© This F, order used in Highly costly coars. Highlis. (BmLO, Farari)

DIRECT EREUERSE CRAN大, METHOD:-
Cl This mettod is basicaly applied in mecticyradial enfer eng. to get the ragnitude f dion of primary \& secardererg inbalenced forces?!

(m)Recip

severse

Draw
Forces

Camponetts Components

Add-

$\vec{F}_{\text {sécandory }}=$?

Theree cy Padial engive. in pactial there is only
one crank.

$\vec{F}_{\text {prinary }}=$?
$3 \times \frac{m}{2} r \omega^{2}$

Prob
1 go - u-engine

$$
\overrightarrow{\text { Fprimang }} \longrightarrow \text { man } ?
$$

$$
\overrightarrow{F_{\text {secandery }} \rightarrow \text { man? }}
$$

Primary

Secondory

n

$$
\begin{aligned}
& F_{x}=\frac{m}{2} \frac{r \omega^{2}}{n}\left[\cos ^{2} \theta+\sin y 2 \theta+\cos ^{2} \theta-\sin x \theta\right] \\
& \rightarrow F_{x}=\frac{m r \omega^{2}}{n} \cos 20 \\
& F_{y}=\frac{\pi}{2} \frac{r \omega^{2}}{n}[\sin 20-\cos 2 \theta-\sin 2 \theta-\cos 2 \theta] \\
& \rightarrow F_{y}=\frac{-m \gamma \omega^{2}}{n} \cos 2 \theta \left\lvert\, F_{\text {secandary }}=\sqrt{\sqrt{2} \frac{m \gamma \omega^{2}}{n} \cos 2 \theta}\right.
\end{aligned}
$$

Vibrations

$$
\begin{aligned}
& \text { Equilibirum Position } 7 \begin{array}{l}
\text { having } \\
\text { Force (et) } \\
\text { Mean Position } \\
\text { i NerMoment } \\
\text { zero. }
\end{array}
\end{aligned}
$$ of some initial disturbances.

Any vibration System

i) K.E storing device (mam)
ii) POE storing device (stiffen) \rightarrow Resistance to diformio
iii) Energy loss due to Kinetic friction $\neq 0$
iv) Unbalanced forces Fun $\neq 0$
i, \dot{i}, iii are Basic cause of Non-Rumning Vibrating System.
i, ii, iii sinduding iv are Basic Cause of Running vibrating System.

Natural Vibrations:- By Sir Galileo \rightarrow

"The vibration in which there is no kinetic friction at all, as Well as there is no external force, after the initial Release of the System, are known as Natural vibrations".

At $t=t$ system Free body diagram

By using Newtons Second Law:

$$
\begin{aligned}
& 0-8 x=m a \\
& m a+\beta x=0
\end{aligned}
$$

D'Alembert Principle: Fatter Of inertia force.

$$
\begin{aligned}
& m a+\beta x=0 \\
& a+\left(\frac{8}{m}\right) x=0 \\
& \ddot{x}+\frac{8}{m} x=0
\end{aligned}
$$

equ" of Natural System

$$
\ddot{x}+\frac{s}{m} x=0
$$

Solution of above eu. is

Where $R \& \phi$ are Constant
vibration Leith frequency

$$
\omega_{n}=\sqrt{\frac{8}{m}} \text { rads Angular frequency }
$$

Amplitude V)

Constant.
$T_{n}=\frac{2 \pi}{\omega_{n}} \sec \quad$ time period
$f_{n}=\frac{\omega_{n}}{2 \pi} \mathrm{~Hz}$ linear frequency
$\rightarrow R, \phi$ are freed by Initial condition ie at $t=0$
i) At $t=0<\begin{aligned} & \rightarrow \dot{x}=x_{0} \\ & \dot{x}=0\end{aligned}$
ii- Att $=0 \longleftrightarrow \begin{aligned} & x=0 \\ & \dot{x}=v_{0}\end{aligned}$
iii) At $t=0<\begin{aligned} & x=x_{0} \\ & \dot{x}=v_{0}\end{aligned}$
finally, equation of Natural vibration

$$
\ddot{x}+\omega_{n}^{2} x=0
$$

估)

$$
\begin{aligned}
& \text { The Natural vibration system equ" is Relate with this } \\
& \qquad \begin{array}{c}
5 \ddot{x}+3 x=0 \text {, } \\
\ddot{x}+\frac{3}{5} x=0 \\
6 n^{2} \sqrt{\frac{3}{5}} \mathrm{rad} / \mathrm{sec} \text { An }
\end{array}
\end{aligned}
$$

Cutting of springs:
i)

ii)

v)

iii)

iv)

Energy Method:
In Natural vibration, Kinetic friction is 0 . but static friction is there Totalenergy $(E)=$ Cost. $\frac{d E}{d t}=0$

$$
\frac{d E}{d t}=\frac{1}{2} m \cdot d x \frac{d v}{d t}+\frac{1}{2} s \not 2 x \cdot \frac{d x}{d t}=0
$$

$$
m \ddot{x}+s x=0
$$

$$
\ddot{x}+\frac{s}{m} x=0
$$

$$
\omega_{n}=\sqrt{\frac{\beta}{m}} *^{* *}
$$

eneray $=\frac{1}{2} m v^{2}+\frac{1}{2} s x^{2}$

Problem 2M

At $t=t$

$$
\begin{aligned}
& E=\frac{1}{2} s x^{2}+\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2} \\
& =\frac{1}{2} s x^{2}+\frac{1}{2} m v^{2}+\frac{1}{2}\left(\frac{m R^{2}}{2}\right) \omega^{2} \\
& =\frac{1}{2}\left(8 x^{2}+\frac{1}{2} \frac{S_{m}}{2} N^{2}\right. \\
& \omega_{n}=\sqrt{\frac{8}{\frac{8}{2}}} \quad \Rightarrow \quad \omega_{n}=\sqrt{\frac{2 S}{8 m}}
\end{aligned}
$$

Various Moment of inertia:
Ring/Hollow cylinder $\Rightarrow I=m R^{2}$
Dix/solidcylinder $\Rightarrow I=\frac{m R^{2}}{2}$
Hollow sphere $\Rightarrow \quad I=\frac{2}{3} m R^{2}$
Soled sphere $\Rightarrow \quad I=\frac{2}{5} m R^{2}$

Very imp
Spring Mass System:
(Spring is also having man)

At $t=t$

$$
\begin{aligned}
& t=t=\frac{1}{2} s x^{2}+\frac{1}{2} m v^{2}+\frac{1}{6} m s v^{2} \\
&=\frac{1}{2} \Delta x^{2}+\frac{1}{2}\left(m+\frac{m_{s}}{3}\right) v^{2} \\
& \omega_{n}=\sqrt{\frac{8}{m+\frac{m_{s}}{B}}}
\end{aligned}
$$

Torque Method :- (for Small oscillations)

$$
\begin{aligned}
& I \ddot{\theta}+(m g l) \theta=0 \\
& \ddot{\theta}+\left(\frac{m g l}{I}\right) \theta=0 \\
& \ddot{\theta}+\frac{m g l}{m l^{2}} \theta=0 \\
& \ddot{\theta}+\frac{g}{l} \theta=0 \\
& \omega_{n}=\sqrt{\frac{g}{l}} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

䧑
$I=\frac{m l^{2}}{12}+m\left(\frac{l}{2}\right)^{2}$

$$
=\frac{m l^{2}}{12}+\frac{m l^{2}}{4}
$$

$$
I=\frac{m l^{2}}{3}
$$

$$
I \ddot{\theta}+\frac{m g l}{2}+S l^{2}=0
$$

$$
\ddot{\theta}=\frac{\frac{m g l}{2}+\delta l^{2}}{m l^{2} / 3} \theta=0
$$

$$
\omega_{n}={\sqrt{\frac{\frac{m g l}{2}+s l^{2}}{\frac{m l^{2}}{3}}}}^{* *}
$$

Note: Horizontal System

$$
m g_{\frac{l}{2}}=s x_{i} \neq l
$$

[mg torque is cancleled by $\mathrm{S}_{\mathrm{x}} \mathrm{i}$ torque my torque will not be considered

$$
\begin{aligned}
& \omega_{n}=\sqrt{\frac{s l^{2}}{\frac{m l^{2}}{3}}} \\
& \omega_{n}=\sqrt{\frac{38}{m}}
\end{aligned}
$$

Torsional vibration:

Poll
Marten

Torsional steftren

$$
\Delta_{\tau}=\frac{G J}{l}
$$

" $\mathrm{J} \rightarrow$ Polar moment of inertia (By Area)

$$
I \ddot{\theta}
$$

$I \ddot{\theta}+\left(S_{T}\right) \theta=0$

$$
\ddot{\theta}+\frac{\delta I}{I} \theta=0
$$

$$
\omega_{\omega_{n}=}^{\frac{\frac{B}{r}^{I}}{}}{ }^{* * *}
$$

Note

$$
\text { Ie } \operatorname{Io} \operatorname{Rot} \text { (shoft)in having mas. (Ishopt) }
$$

Two Rotor System:

$$
l_{1}+l_{2}=l
$$

$$
\sqrt{\frac{s_{I_{1}}}{I_{1}}}=\sqrt{\frac{S_{T_{2}}}{I_{2}}}
$$

$$
\frac{S_{T_{1}}}{I_{1}}=\frac{\Delta T_{2}}{I_{2}}
$$

$$
\frac{G J}{l_{1} I_{1}}=\frac{G J}{l_{2} I_{2}} \Rightarrow \frac{l_{1}}{l_{2}}=\frac{I_{2}}{I_{1}} .
$$

h
by (1) q (2) we con Colatate $l_{1} \& l_{2}$

Roplegan Metas
Mettor of static Deffection of Mass

$$
\Delta \rightarrow \text { Mas }
$$

Basic Spring-mansystem
equiradent
Steftreast
the System

$$
\Delta=\frac{m g}{s}
$$

$$
\sqrt{\frac{g}{\Delta}}=\sqrt{\frac{g}{\frac{m g}{s}}}=\sqrt{\frac{s}{m}}=\omega_{n}
$$

$$
\omega_{\eta}=\sqrt{\frac{g}{\Delta}}=\sqrt{\frac{s}{m}}{ }^{*}
$$

B_{1})

$$
\begin{aligned}
& \Delta_{1}=\frac{m g(b / a)}{s_{1}} \\
& m g b=F \cdot a \\
& {\left[F=\frac{m g \cdot b}{a}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Delta}{b}=\frac{\Delta_{1}}{a} \Rightarrow \Delta=\Delta_{1} \frac{b}{a}=\frac{m g}{s_{1}} \cdot\left(\frac{b}{a}\right)^{2} \\
& \omega_{n}=\sqrt{\frac{g}{\Delta}}=9=\sqrt{\frac{\beta}{m}} \rightarrow q ?
\end{aligned}
$$

($\mathrm{B}_{2} 2$

(1) Cilell Remaily aluvay same
(0,5

B

$$
\Delta=2 \Delta 1+\Delta 2
$$

$\frac{\text { Lonjitudnal vibrations: }}{\dagger}$
Vibration along the lenget

longitadnal stiftren

$$
\begin{aligned}
& S=\frac{A E}{l} \\
& \omega_{n}{ }^{2} \sqrt{\frac{s}{m}}
\end{aligned}
$$

Pb.

$$
\frac{\Delta s_{2} s_{1}+s_{2}}{\omega_{n}=\sqrt{\frac{s}{m}}}
$$

Transverse vibration of Beams
Vibration in the dir \perp to length

stiftion of system for Tramsussivits

Damped System (Kinetic friction $\neq 0$)
\Downarrow
Technical Name of Kinetic friction in vibration system \Downarrow
Damping
ψ
And damping is Represented by the symb of \downarrow

Damping in Any System

Damping force in any system is pirpotional to \dot{x}

$$
\begin{aligned}
& \text { (Damping force) system } \propto \dot{x} \\
& =C x \\
& \rightarrow \text { Coefficunt of combing }
\end{aligned}
$$

$A t=t$
free Body diagram of System

$$
\begin{equation*}
\ddot{x}+\left(\frac{c}{m}\right) \dot{x}+\omega_{n}^{2} x=0 \tag{A}
\end{equation*}
$$

equation of Damped System
And the solution of above equ" is

$$
x=A e^{\alpha_{1} t}+B e^{\alpha_{2} t} \quad \alpha_{1} \neq \alpha_{2}
$$

or

$$
x=(A+B t) e^{\alpha t} \longrightarrow \alpha_{1}=\alpha_{2}=\alpha
$$

$\alpha_{1,2} \rightarrow$ Roots of Ausillary eq n

$$
\alpha^{2}+\frac{c}{m} \alpha+\omega_{n}^{2}=0
$$

$$
\begin{aligned}
& \alpha_{1,2}=-\frac{c}{m} \pm \sqrt{\left(\frac{c}{m}\right)^{2}-4 \omega_{n}^{2}} \\
& \alpha_{1,2}=-\frac{c}{2 m} \pm \sqrt{\left(\frac{c}{2 m}\right)^{2}-\omega_{n}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{C}{2 m}\right)^{2}}{\left(\omega_{n}\right)^{2}}=\text { Degree of Dampen } \\
& \sqrt{\frac{\left(\frac{c}{2 m}\right)^{2}}{\omega_{n}^{2}}}=\frac{\xi}{2}=\begin{array}{c}
\text { Damping factor } \\
\text { or } \\
\text { Damping Ratio }
\end{array} \\
& \sqrt{\frac{\frac{c^{2}}{4 m^{2}}}{\frac{s}{m}}}=\frac{c}{2 \sqrt{s m}} \\
& 2 \zeta \omega_{n} \\
& \frac{\not 2}{2 \times \frac{c}{2 \sqrt{s m}} \times \sqrt{\frac{s}{m}} \Rightarrow \frac{c}{m}} \\
& \sqrt{2 \xi \omega_{n}=\frac{c}{m}}
\end{aligned}
$$

finally
equ" of Damped System

$$
\begin{aligned}
& \text { equ of Damped System } \\
& \Rightarrow \quad \ddot{x}+\left(2 \xi \omega_{n}\right) \dot{x}+\left(\omega_{n}^{2}\right) x=0
\end{aligned} \times \times x
$$

Sol" of this eau",

$$
\begin{gathered}
x=A e^{\alpha_{1} t}+B e^{\alpha_{2} t} \quad\left(\alpha_{1} \neq \alpha_{2}\right) \\
\text { or }
\end{gathered}
$$

$$
x=(A+B t) e^{\alpha t}
$$

where,

$$
\alpha_{1,2}=\left(-\xi \pm \sqrt{\xi^{2}-1}\right) \omega_{n}
$$

If $Z>1 \Rightarrow$ over Damped System (over damping Coulamb damping)
If $z=1 \Rightarrow$ Critically Damped System (Critical damping)
If $\Sigma<1 \Rightarrow$ under damped system (under damping/ viscous damping)
(i) if $Z 1$ Over Damped System

The sot" well be

$$
x=A e^{\alpha_{1} t}+B e^{\alpha_{2} t}, A e^{\left(-z+\sqrt{z^{2}-1}\right)^{\omega_{n} \theta}}+B e^{\left(-z-\sqrt{z^{2}-1}\right)^{\omega \cdot \omega}(t)}
$$

No vibration en this system. e.g Door closer

Over Damped System
ii) Critically Damped System $(\xi=1)$

$$
\alpha_{1}=\alpha_{2}=\alpha=-\omega n
$$

The sol chill be;

$$
\underset{\text { Novis }}{\sim(A+B \Theta)} e^{-\omega_{n}(t)}
$$

A, B are constant AK-47 example
$660 / \mathrm{min}$

Note
Critical Damping Response is much faster than over damping system.

iii) Under Darned System $(\Sigma<1)$

$$
\begin{aligned}
& \alpha_{1,2}=-Z \omega_{n} \pm i \sqrt{1-Z^{2} \cdot \omega_{n}} \\
& \omega_{d=\text { cont }} \\
& \alpha_{1,2}=\left(-Z \omega_{n} \pm i \omega_{d}\right)
\end{aligned}
$$

This Sol will be;

$$
\begin{gathered}
x=A e^{\alpha_{1} t}+B e^{\alpha_{2} t} \\
x=A e^{\left(-z \omega_{n}+i \omega d\right) t}+B e^{\left(-\xi \omega_{n}-i \omega d\right) t} \\
x=e^{-\xi \omega_{n} t}\left[\frac{\left.(A+B) \cos \omega l d t+\frac{i(A-B) \sin \omega) d t}{\downarrow}\right]}{x \sin \phi} \times \cos \phi\right. \\
x=e^{-3 \omega_{n} t} \times \sin \phi(\omega d z+\phi)
\end{gathered}
$$

$1 \downarrow$ With time

$$
\begin{aligned}
& T_{d}=\frac{2 \pi}{\omega_{d}} \quad B_{e c}-\text { cost } \\
& F_{d}=\frac{\omega d}{2 \pi} \quad H_{3}-\text { cont }
\end{aligned}
$$

At $t=0$

$$
x_{0}=x \sin \phi
$$

At, $t=T d$

$$
x_{1}=X e^{-\bar{T} \omega_{n}(T d)} \operatorname{Sin} \phi
$$

At $t=2 T d$

$$
x_{2}=X_{e}^{-\xi \omega_{n}(2 T d)} \sin \phi
$$

Decrement Ratio

$$
\frac{\text { R Ratio }}{\frac{x_{0}}{x_{1}}=\frac{x_{1}}{x_{2}}=\frac{x_{2}}{x_{3}}=\frac{x_{3}}{x_{4}} \ldots . . .=e^{\text {z } \omega_{n} T_{d}}=\text { Cont }}
$$

Logrittimic Decrement (S):

$$
\begin{aligned}
\delta & =\ln e^{\xi \omega_{n} T d} \\
& =\xi \omega_{n} T_{d} \\
& =\xi \omega_{n} \frac{2 \pi}{\sqrt{1-\xi^{2} \cdot \omega_{n}}} \\
\delta & =\frac{2 \pi \xi}{\sqrt{1-\xi^{2}}}
\end{aligned}
$$

Critical Damping Coefficient (Cc):-

$$
\frac{\not 2 \xi \omega / n=\frac{c}{m}}{\not 2 \times 1 \times \phi_{n}=\frac{c c}{m}} \Rightarrow \bar{m}=\frac{c}{C_{c}}=\frac{\text { Actual Darning Coif. }}{\text { Critical Damping Coefto }}
$$

- The Ratio of Displacement Fend of $3^{\text {rd }}$ cycle to Start of $8^{\text {mi }}$ cycle is 2.5

$$
\frac{x_{3}}{x_{7}}=2.5
$$

- The Ratio of Displacement of $3^{\text {rat }}$ cycle to 8^{n} cycle is 2.5

$$
\sqrt{\frac{x_{3}}{x_{8}}}=2.5
$$

P_{b}

$$
\begin{aligned}
& I=\frac{m l^{2}}{3} \\
& I \ddot{\theta}+\left(C b^{2}\right) \dot{\theta}+\left(\frac{m g l}{2}+\Delta a^{2}+s_{T}\right) \theta=0
\end{aligned}
$$

$$
m \ddot{x}+c \dot{x}+k x=0
$$

Problem
Q n The Damping Coefficient in vibn equ" will be $\rightarrow C b^{2}$
$\left.Q_{n}\right) \omega_{n} \rightarrow$

$$
\omega_{n}=\sqrt{\frac{\frac{m g l}{2}+s a^{2}+s_{T}}{I}} \quad I=\frac{m l^{2}}{3}
$$

(Only) $\omega_{d}=?$

$$
\begin{gathered}
\omega_{d}=\sqrt{1-\xi^{2} \cdot \omega_{n}} \\
\omega_{n} ?
\end{gathered}
$$

$$
\begin{aligned}
C c=? & \rightarrow \\
& 2 \omega_{n}=\frac{C_{c} b}{I}
\end{aligned}
$$

Note:
Horizintal System.

Mg torque lelill be Consedered

$$
I \ddot{\theta}+\left(C b^{2}\right) \dot{\theta}+\left({\left.s c^{2}+s t\right) \theta}_{\prime}\right.
$$

Vibrations Causing unbalanced Forces in Running Mechanical
System:
At $t=t$
In a Particular dir ${ }^{n}$

$$
\begin{aligned}
& F_{u n}=\left(M_{0} \operatorname{tr} \cdot e \omega^{2}\right) \sin \theta \\
&=\left(m \text { rotor } \cdot e \omega^{2}\right) \sin \omega t \\
& F_{\text {un }}=F_{0} \sin \omega t \\
& F_{0}-\text { max } \cdot \text { value } \\
& \omega \rightarrow \text { Force Frequency. }
\end{aligned}
$$

in Case of Resiprocating unbalance:
At $t=t$

$$
\begin{aligned}
& F_{u m}=\left(M \text { resi } r \omega^{2}\right) \sin \omega t \\
& F_{u_{0}}=F_{0} \sin \omega t \\
& F_{0} \rightarrow \text { max. value }
\end{aligned}
$$

$\omega \rightarrow$ Force frequency.
Clare form:

$$
\begin{aligned}
& V=f \lambda \\
& 20=F \times 5 \Rightarrow f=4 \mathrm{nz} . \\
& \omega \times 2 \pi f
\end{aligned}
$$

$$
\omega=2 \pi x y=8 \pi \mathrm{rad} / \mathrm{s}
$$

Forced Dared System :-

Free body diagram at $t=t$

$$
\begin{gathered}
F_{\text {un }}=F_{0} \sin \omega t \\
F_{0} \rightarrow \text { Max. value }
\end{gathered}
$$

$\omega \rightarrow$ Force Frequency

$$
m \ddot{x}+c \dot{x}+8 x-F_{0} \sin \omega t=0 \quad \text { eau } 4 \text { of damped (Forced) systems }
$$

$$
\ddot{x}+\left(2 z \omega_{n}\right) \dot{x}+\omega_{n}^{2} x=\frac{F_{0}}{m} \sin \omega t
$$

Sol" of this eru"is;

$$
x=C F+P I
$$

After some time.

$$
\begin{aligned}
& C F \rightarrow 0 \\
& x=P \cdot I
\end{aligned}
$$

$$
\begin{aligned}
& P \cdot I=\frac{\frac{F_{0}}{m} \sin \omega t}{D^{2}+\left(2 \pi \omega_{n}\right) D+\omega_{n}^{2}} \\
& =\frac{F_{0}}{m} \sin \omega t\left\{\left(\omega_{n}^{2}-\omega^{2}\right)-(2 \text { 之 } \omega n) D\right\} \\
& \left.\left.\left.\left(\omega_{n}^{2}-\omega^{2}\right)+\left(2 \xi \omega_{n}\right) D\right\} \omega_{n}^{2}-\omega_{0}^{2}\right)-(2 \text { ₹ } \omega n) D\right\} \\
& \frac{\left.=\frac{F_{0}}{m} \frac{\left(\omega_{n}^{2}-\omega^{2}\right)}{R \cos \phi} \sin \omega t-\frac{2 \xi \omega \omega_{n}}{1}\right) \cos \omega t}{\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\left(2 \xi \omega \omega_{n}\right)^{2}} \\
& =\frac{F_{0}}{m} \cdot \frac{\left.R \operatorname{Sin}(\omega t-\phi)^{2}\right)}{R^{2}} \\
& P \cdot I=\frac{F_{0} / m}{\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\left(2 z \omega_{n}\right)^{2}} \sin (\omega t-\phi)
\end{aligned}
$$

Amplietude
Frequency ω

Inclependent If time (moul Dangerous) Nevirends

After some teme

$$
\begin{aligned}
& C F \rightarrow 0 \\
& P I=x
\end{aligned}
$$

$$
x=A \sin (\omega t-\phi)
$$

Cheri; $A=$ Fo/s

$$
\sqrt{\left(1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right)^{2}+\left(\frac{2 \text { ow }}{\omega n}\right)^{2}}
$$

Amplitude of steady vibration (forced vi ${ }^{n}$) dos't depend on time

Vibration in Running systern will never stop. every mechanical system must have one Running life
0

$$
\left.M \cdot F=\frac{A}{F_{0} / s} \rightarrow M \cdot F=\frac{1}{\left(1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right)^{2}+\left(\frac{23 \omega}{\omega_{n}}\right)^{2}}\right]
$$

Magnification foetor depend on:-

1) $\frac{w}{w n}$
2) \sum

Resonance $\frac{\omega}{c o n}=1$
i) \uparrow underdambing $\Rightarrow \bar{Z} \downarrow$

$$
M F \uparrow \Rightarrow A \uparrow \quad \text { luenning life } \downarrow \downarrow
$$

ii) (A) max at (MFmaral)

$$
a t=\frac{\omega}{\omega n}<1 \rightarrow \text { under damping (viscous) }
$$

at $=\frac{\omega}{\omega_{n}}=1 \rightarrow$ No Damping
at $2 \frac{\omega}{\omega n}=0 \rightarrow \operatorname{orr} /$ critical damping (Coulamb).
3)

$$
\left|(A)_{\text {Rename }}=\frac{\left(F_{5 / 8}\right)}{2 z}\right| \propto \frac{1}{2} .
$$

Note:
After Some time,

$$
\begin{aligned}
x & =A \sin (\omega t-\phi) \\
\dot{x} & =A \omega \cos (\omega t-\phi) \\
& =A \omega \sin \left(\frac{\pi}{2}+(\omega t-\phi)\right\} \\
\ddot{x} & =-A \omega^{2} \sin (\omega t-\phi)
\end{aligned}
$$

Basic equation ulas;

$$
\begin{aligned}
& F_{0} \sin \omega t-m \ddot{x}-c \dot{x}-\Delta x=0
\end{aligned}
$$

$\vec{C}=$? Damping force max.
$\vec{D}=$ Spring force Mas.

Vibration Isolation :-(Foundation)
How to Isolate the ground from the vibration of Running Machine.

Where:
$F_{T} \rightarrow$ Transmitted force to ground. (ϵ)

$$
\begin{aligned}
& F_{T} \lll \lll F_{0}{ }^{*} \\
& \epsilon=\frac{F_{T}}{F_{0}} \quad 0<\epsilon<1 \\
& \epsilon \rightarrow 0 \quad \text { Best }
\end{aligned}
$$

Tranomissibility $(\epsilon):$ (Performance of Vibration Isolation system)

$$
\begin{aligned}
F_{T} & =\sqrt{(S A)^{2}+(C \omega A)^{2}} \\
& =S A \sqrt{1+\left(\frac{Q_{N} \omega A}{\frac{S}{m}}\right)^{2}} \\
F_{T} & =S A \sqrt{1+\left(\frac{2 \xi \omega}{\omega n}\right)^{2}}
\end{aligned}
$$

$b_{c z}$ both are \perp to each other.

$$
\begin{aligned}
& \text { Other } \\
& \text { Es \& } F_{c} \rightarrow \text { Mar. Responses }
\end{aligned}
$$

$$
\begin{gathered}
F_{0}=S A \sqrt{\left(1-\left(\frac{\omega}{\omega n}\right)^{2}+\left(\frac{23 \omega}{\omega n}\right)^{2}\right.} \\
\quad G=\frac{F_{T}}{F_{0}}
\end{gathered}
$$

$$
\epsilon=\frac{\sqrt{1+\left(\frac{2 Z \omega}{\omega n}\right)^{2}}}{\sqrt{\left(1-\left(\frac{\omega}{\omega n}\right)^{2}\right)^{2}+\left(\frac{23 \omega}{\omega n}\right)^{2}}}
$$

$E \rightarrow$ depends on;
i) w / w_{n}
ii) 3
of,
if
 $\underline{C=1 \text { for all valves of } Z^{*}}$

$$
\frac{\omega}{\omega n}=\sqrt{2}
$$

i) If underdamping $\rightarrow 3+$
ϵ lelill \uparrow if $\frac{\omega}{\omega n}<\sqrt{2}$
\in weill t if $\frac{\omega}{\omega n}>\sqrt{2}$
E Will Remain same if $\frac{\omega}{\omega_{n}}=\sqrt{2}$
ii) Vibration Isolation will be effective,

$$
\begin{aligned}
& \text { when } \in<1 \\
& \text { If }\left(\frac{\omega}{\omega n}>\sqrt{2}\right)
\end{aligned}
$$

iii) If effective V.I zone

$$
\frac{\omega}{\omega n}>\sqrt{2} \quad(\epsilon<1)
$$

\longrightarrow No damping iss Best $(\epsilon \rightarrow \infty)$
\rightarrow Damping becomes determintal (harmful)]
Pb) foreffective vibration solation the (ω_{n})
i) ω
ii) 2ω
ivy) $\omega / 4$
$i v$) - low
for effective V.I

$$
\begin{aligned}
& \frac{\omega}{\omega n}<\omega \\
& \frac{\omega}{\omega_{n}}>\sqrt{2} \\
& \omega_{n}<\frac{\omega}{\sqrt{2}}
\end{aligned}
$$

Wherling of shaft: - (stafttailure)

Afer stme time

$$
\begin{aligned}
& m(y+e) \omega^{2}=s y \\
& m y \omega^{2}+m e \omega^{3}=s \cdot y \\
& s y-m y \omega^{2}=m e w^{2} \\
& \text { pry } w^{2}\left(\frac{s}{m \omega^{2}}-1\right)=\text { ime } w^{2} \\
& y=\frac{e}{\left(\frac{\omega}{\omega}\right)^{2}-1}
\end{aligned}
$$

In some systems
Whose Running life io less
\leftrightarrows How to \uparrow running life.
low life
i) Heavy
2) More delicate item

If $\omega>\omega_{n}$
\rightarrow Y will become -ve.
\rightarrow Shaft bending weill be in opposite dir.
Aries

(To stop opposich Torque is used)

Qn) \qquad

$$
\begin{aligned}
& m=17 \mathrm{~kg} \\
& s=1000 \frac{\mathrm{~N}}{\mathrm{~m}} \\
& \omega_{n}=\sqrt{\frac{1000}{17}} \mathrm{Rad} / \mathrm{s}
\end{aligned}
$$

$$
\frac{\omega}{\omega n}, ?
$$

$$
Z=0.20
$$

1) $A=\frac{F_{0} / s}{\sqrt{\left(1-\left(\frac{\omega}{\omega n}\right)^{2}\right)^{2}+\left(\frac{2 Z \omega}{\omega n}\right)^{2}}}$
2) $E=\frac{\sqrt{1+\left(\frac{23 \omega}{\omega n}\right)^{2}}}{\sqrt{\left(1-\left(\frac{\omega}{\omega n}\right)^{2}\right)^{2}+\left(\frac{2 \omega}{\omega n}\right)^{2}}}, ?$

$$
\epsilon_{N}^{2} \frac{F_{T}}{F_{0}} \cdot F_{T} ?
$$

Steftren is opposi to deforne
Bendimgsititors ${ }^{2}$

On)

4

π

P

D. OF of Vibrating system

$D \circ F=1$
p_{p}

D.OF= 2

$D O F=2$

$F_{x} \gamma_{2}=I_{2} \dot{\theta}_{2}$
$F_{2}=\frac{I_{2} \ddot{\theta}_{2}}{2} \ll$
$r_{1} \omega_{1}=r_{2} \omega_{2}$
$\dot{\gamma}_{1} \alpha_{1}=\gamma_{2} \alpha_{2}$
$\gamma_{1} \ddot{\theta}_{1}=\gamma_{2} \dot{\theta}_{2}$.
$\tau_{1}=F_{1} r_{1}=I_{1} \ddot{\theta}_{1}$
$\ddot{\theta}_{2}=\frac{n}{\gamma_{2}} \ddot{\theta}_{1}$
$\tau_{1}=F_{1} \mu_{1}+I_{1} \ddot{\theta}_{1}$
$=F_{2} \dot{r}_{1}+I_{1} \ddot{\theta}_{1}$
$=I_{2}\left(\frac{r_{1}}{\gamma_{2}}\right)^{2} \ddot{\theta}_{1}+I_{1} \ddot{\theta}_{1}$
$\Rightarrow \tau_{1}=\left[I_{1}+I_{2}\left(\frac{r_{1}}{r_{2}}\right)^{2}\right] \ddot{\theta}_{1}$
$F_{2}=\frac{I_{2} \theta_{1} \theta_{1}}{\partial 2}$

