
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Diploma Thesis

Dynamic Data Structures for Scheduling

Bc. Ji°í Kulovaný

Supervisor: Prof. Dr. Ing. Zden¥k Hanzálek

Study Programme: Open Informatics, Master

Field of Study: Software Engineering

May 5, 2013

iv

v

Aknowledgements

I would like to thank to Ismael Ripoll, PhD., Polytechnic University of Valencia, for valuable
consultations and support during my stay at the university and to Jakub Marecek, PhD. for
problem discussions, data structures consultations and overall support provided.

vi

vii

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act �60 Zákon £. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Valencia on May 5, 2013 .

viii

Abstract

This thesis presents an heuristic algorithm for dynamic scheduling of non-preemptive

tasks with precedences on an arbitrary number of orthogonal resources, where the

resource allocation is continuous. It is based on two data structures: critical-path

task graph structure and constructive Container Loading Problem packing structure

with an approach called �Skyline�. Both structures have been extended to support

the algorithm. Algorithm complexity and computational results are shown.

ix

x

Contents

1 Introduction 1

1.1 Problem statement . 1

1.2 Motivation . 2

1.3 Outline . 2

2 Task scheduler analysis 3

2.1 Task graph structure . 4

2.1.1 Properties . 5

2.1.2 Methods . 6

2.1.3 Extension of the structure . 7

2.2 Skyline structure . 10

2.2.1 Container Loading and Strip Packing Problems de�nitions 10

2.2.2 The skyline approach . 12

2.2.3 Rectilinear Polygon and simple gap . 13

2.2.4 Orthogonal Polyhedron . 13

2.2.4.1 Representation . 14

2.2.4.2 Boolean operations . 14

2.2.4.3 Rectilinear decomposition . 15

2.2.5 Abstract Data Type . 16

2.2.6 ADT implementation overview . 17

2.2.7 Array representation . 18

2.2.8 Interval Tree representation . 19

2.2.8.1 Augmented Interval Tree . 19

2.2.8.2 ADT methods . 21

3 Proposed solution 23

3.1 Detailed description . 23

3.2 Illustrative example . 26

xi

xii CONTENTS

4 Performance overview 31

4.1 Complexity analysis . 31

4.2 Computational results . 35

4.2.1 Standard Task Graph set for multiprocessor scheduling 35

4.2.2 Graphs with constant node to edge ratio 36

4.2.3 Result discussion . 38

5 Conclusions 41

5.1 Future research . 42

A Terminology and symbols 45

B Attached CD contents 47

Chapter 1

Introduction

1.1 Problem statement

In common schedulers in personal computers it is needed to schedule nonpreemptive

tasks on one resource, which is usually the CPU. In large scale computation, scheduling

tasks with precedences on more resources at one time can be useful, for example

on processors, memory, communication buses, etc., while satisfying the maximum

capacity constraint on each of these resources. The restriction on resource use can be

extended further: the resource has to be allocated in a continuous block. Solving this

for an arbitrary number of resources is computationally demanding.

This thesis describes a dynamic nonpreemptive task scheduler with precedences on

an arbitrary number of resources with a continuous resource allocation constraint. The

task scheduler allows modi�cation of the resource allocation (�tness) function. There

is an algorithm shown to dynamically schedule tasks with precedences on resources,

while satisfying all the constraints. The program based on the algorithm is written

in C++ while focusing on code portability. The program was tested to compile and

run on Microsoft Windows and GNU/Linux platforms.

1

2 CHAPTER 1. INTRODUCTION

1.2 Motivation

The OpenCL is a framework for large scale parallel programming in heterogeneous

systems. It de�nes abstract hardware on which the execution of tasks can be sched-

uled. Tasks executed in this system are called kernels. Each kernel has some resource

demands and estimated execution time. In real life, the resource allocation plays

quite a large role. For example NUMA (Non-Uniform Memory Access) technology

introduces di�erent memory access speed depending on the CPU/memory cell combi-

nation. This problem can be limited if tasks are scheduled with this in account, using

resource allocation �tness function.

I hope this research might be useful in future versions of OpenCL framework or in

any related scheduling �elds.

1.3 Outline

This work is divided in the following chapters:

Task scheduler analysis chapter introduces the problem, two structures used for the

problem solution are described and extensions to these structures are explained.

Proposed solution chapter shows the problem solution with the algorithm and illus-

trative example.

Performance overview chapter contains complexity analysis based on the underlying

structures and also introduces basic framework for testing and shows actual run

properties.

Conclusions chapter summarizes the achievement and shows possible future progres-

sion.

Chapter 2

Task scheduler analysis

The de�nition of the problem solved is as follows: Given d resources, each resource

with maximum capacity ri, determine the schedule of n non pre-emptive tasks, where

each task tj = (pj, Rj, Pj) has processing time pj, set of resource constraints on each of

the resources Rj = {r1, ...rd} and set of precedence constraints on m other tasks Pj =

{t1, ..., tm}. Two sets of tasks will be considered: the basic task set T = {t1, ..., tn}

and expanding set U of an arbitrary number o tasks U = {t1, ..., to}. The precedence

constraints in T can be only on tasks from set T , however the precedence constraints

in U can be on tasks from both set T and U . The sets of tasks T and U must always

form an acyclic directed graph, where the edges are precedence constraints in the form

{a→ b} denoting task a must be �nished before the task b starts.

The goal is to schedule these tasks to minimize makespan and satisfy

all the constraints, while each task has to allocate a continuous block of

each of the resources.

The problem of dynamical scheduling tasks with precedences on an arbitrary num-

ber of resources while allocating continuous resource block is, as far as it is known to

the author, new and uncharted. The paper Scheduling with an Orthogonal Resource

Constraint [8] proposed an (2+ε)-approximation algorithm to an similar problem. The

work described the approximation algorithm for scheduling tasks on one additional

resource, e.g. memory cache and without precedence constraint.

3

4 CHAPTER 2. TASK SCHEDULER ANALYSIS

Scheduling tasks on multiple orthogonal resources with continuous allocation con-

straint without precedence constraints reduces the problem to n-dimensional Strip

Packing Problem (SPP). One of the ways to e�ciently solve Strip Packing/Container

Loading Problem is described by Allen et al. [1]. The basic algorithm represents the

solution space by skyline. Details are consulted in section 2.2. Other approaches are

reviewed by Bortfeldt et al. [2].

2.1 Task graph structure

Given the task graph of tasks to be scheduled a data structure is needed which can

e�ciently do the following:

• Insert new subgraph to the existing graph.

• Answer �what is to be scheduled next� query.

• Manage the precedence time for scheduling.

The longest path structure proposed at [7] satis�es the �rst two conditions and is

extended in this thesis to satisfy the third condition. The structure can answer the

�what next� query given the task graph with precedences and claims the algorithm

approaches optimality on the long run by the theorem below.

Theorem 1 (Papadimitriou and Tsitsiklis [9]). Processing the job with the highest

level ("largest sum of expected processing times along a path in the dependency graph")

�rst, as soon as any machine is available, is asymptotically optimal with respect to

weighted throughput, under certain conditions (*), among non-anticipative non-delay

non-preemptive policies and non-anticipative non-delay preemptive policies with zero

cost of preemption.

The proof for any interested reader can be found in [7].

To show the extension of this structure to manage precedence times the basics of

the algorithm will be sketched �rst.

2.1. TASK GRAPH STRUCTURE 5

[a]

W L R

1 2 2

[b]

W L R

2 0 1

(a) Task graph with emphasisis on properties, W

is weight, L is level, R is resource demand

(b) Task graph with emphasisis on representa-

tion

Figure 2.1: Two equal task graph representation examples. {a → b} means task a has to

�nish before task b starts

2.1.1 Properties

As can be seen from the theorem 1, one needs to know level the for all the nodes,

to be able to choose the best task to be scheduled. The de�nition of level can be

expressed simplier than in that theorem - as a maximal length of the longest outgoing

path from the node. Another property used in every node is depth, which represents

the maximal length of ingoing path to the node. Last property of each of the nodes

is weight, which represents the runtime of the task represented by the node.

All the nodes are kept in three directed acyclic graph structures, one primary and

two auxiliary. Primary structure is called G and contains raw input nodes and edges

and is the single point of truth after each operation. First auxiliary structure is called

UL and is similar to G, except that all tasks in this structure have the same weight,

i.e. 1. Second auxiliary structure is WL and contains nodes with assigned weight.

All the nodes with precedency constraint satis�ed are stored in priority queue

called roots with their priority in descending order, where priority(ti) = weight(ti)+

level(ti).

6 CHAPTER 2. TASK SCHEDULER ANALYSIS

2.1.2 Methods

New node insertion

The new node inserted is automatically root node and as such is inserted in the roots

priority queue. It is also inserted in all three graph structures G, UL and WL.

New edge insertion

When new edge is inserted, the algorithm needs to update all nodes, which level or

depth is changed by this new edge and, if necessary, delete the adjacent nodes from

the roots structure. Update of the nodes in both UL and WL is done by methods

insertEdgeUpdateDownstream() and insertEdgeUpdateUpstream(). Details for an

interested reader on this methods can be found in [7].

Algorithm Schema 1: insertEdge(G, UL, WL, R, u→ v) [7]

1: Input: Digraph G, weighted and unweighted auxiliary structures UL and WL,

priority queue R, edge u→ v to be added

2: E�ect: Updated G, UL, WL, R

3: G = G ∪ {u→ v}
4: if has(R, v) then

5: remove(R, v)

6: end if

7: U = insertEdgeUpdateDownstream(UL, u, v)

8: U = U ∪ insertEdgeUpdateUpstream(UL, u, v)

9: U = U ∪ insertEdgeUpdateDownstream(WL,u, v)

10: U = U ∪ insertEdgeUpdateUpstream(WL,u, v)

11: while U 6= ∅ do
12: u =top(U)

13: update(R, u)

14: end while

2.1. TASK GRAPH STRUCTURE 7

New sub graph insertion

To insert new sub graph U in the graph T , with set P ut of cross-edges from U to

T , the directed graph structures G, UL and WL of both graphs have to be merged.

Then the sets of ready tasks are merged, except the tasks which represent vertexes in

edges in P ut. In the end, the precedence edges from set P ut are inserted via new edge

insertion method.

Best node query

For scheduling the best task, all that is needed to do is just to look at the �rst node

at roots, since the roots are ordered by priority in descending order. Simple top query

is done in O(1).

Node removal

When scheduling a+ task, removal of the node representing the task from the structure

is needed. This is done by removing the node from roots priority queue and by

updating the graphs G, UL and WL. In the graphs we have to remove all outgoing

edges from the node, recalculate all the depth and level properties of all dependent

nodes by calling popVertexUpdateDownstream()method (details again in [7]). While

removing edges, it is needed to check, if new roots should be inserted in the roots

queue.

2.1.3 Extension of the structure

The basic algorithm is not ready for multiple co-running tasks. Best node query

answer is the node with highest priority. This is correct as long as only one task can

run at the same time. By allowing two or more tasks to run at the same time, we

need to make sure that each task tj is scheduled when all predecessors have �nished.

8 CHAPTER 2. TASK SCHEDULER ANALYSIS

Algorithm Schema 2: popVertex(G, UL, WL, R) [7]

1: Input: Digraph G, weighted and unweighted auxiliary structures UL and WL,

priority queue R

2: E�ect: Updated G, UL, WL, R

3: v = top(R)

4: U = popVertexUpdateDownstream(UL, v)

5: U = U∪ popVertexUpdateDownstream(WL, v)

6: S = succ(UL, v)

7: while S 6= ∅ do
8: s = top(S)

9: push(R, s)

10: end while

11: while U 6= ∅ do
12: u = top(U)

13: update(R, u)

14: end while

15: G = G\{u→ v}

[a]

W L

1 2

[b]

W L

2 0

[c]

W L

1 0

(a) Initial structure T = {a, b, c, {a → b}}

[b]

W L

2 0

[c]

W L

1 0

(b) Structure after one step T ′ = {b, c}

Figure 2.2: Task graph to show solution problem on more processors. Node properties

described inside, where W is weight, L is level and {a → b} means a has to be �nished

before b is executed.

2.1. TASK GRAPH STRUCTURE 9

Problem example Lets have three tasks a and b and c with priorities priority(a) =

3, priority(b) = 2, priority(c) = 1 and precedency constraint precedency(b) = a as

can be seen in �rst part of �gure 2.2. There are two processors in the system. The roots

structure contains list of tasks in descending priority order roots = {a, c}. Best node

query answers a, lets remove the node from structure. That gives us roots = {b, c} as

can be seen in second part of �gure 2.2. Best node query answers b, which is incorrect

for two processors. Correct task has to be ready at the same time, as was a.

Solution To solve this problem, all is needed to do is to add the execution time

constraint. By extending the node properties with schedulingT ime property, one can

tell, when the node can be scheduled.

The node removal method will be extended to update all precedence dependant

nodes with their new schedulingT ime. Upon removing any node, it is needed to go

through all its outgoing edges and set the schedulingT ime to node schedule time +

execution time.

The best node query will be updated to get the �rst available node, with

schedulingT ime greater than or equal to the query time. It is enough to go through

the priority list and �nd the �rst node representing task, that can be scheduled.

Solution example Lets have three tasks a, b and c with priorities priority(a) = 3,

priority(b) = 2, priority(c) = 1, precedency constraint precedency(b) = a and newly

added schedulingT ime property equal to zero for all tasks, as can be seen in �rst part

of �gure 2.3. There are two processors in the system. The roots structure contains

a list of tasks in descending priority order roots = {a, c}. Best node query for time

zero answers a. While removing the a from structure, we update the schedulingT ime

of b to zero + weight(a) (execution time of a). That gives us roots = {b, c} and

schedulingT ime(b) = weight(a), as can be seen in second part of �gure 2.3. Second

processor is still at time zero, thus the query for the best node is in time zero. The

structure now correctly answers with c.

10 CHAPTER 2. TASK SCHEDULER ANALYSIS

[a]

W L PT

2 2 0

[b]

W L PT

2 0 0

[c]

W L PT

1 0 0

(a) Initial structure T = {a, b, c, {a → b}}

[b]

W L PT

2 0 2

[c]

W L PT

1 0 0

(b) Structure after one step T ′ = {b, c}

Figure 2.3: Task graph to show problem on more processors. Node properties described

inside, where W is weight, L is level, PT is precedency time and {a→ b} means a has to be

�nished before b is executed.

2.2 Skyline structure

This section describes the Skyline structure proposed by Allen at al. [1] for Container

Loading Problem solving. First the problem de�nition is shown, then the supporting

structures used in Abstract Data Type (ADT) and the ADT itself. In the end of the

section, the ADT implementations are presented.

2.2.1 Container Loading and Strip Packing Problems de�nitions

Container Loading Problem (CLP) and Strip Packing Problem (SPP) de�nition is as

follows:

�A large d-dimensional (typically three dimensional) parallelepiped C is given, with

dimensions L1
0, L

2
0, ..., L

d
0 ∈ R+ indicating, in the three-dimensional case its width,

height, and length, respectively. A set B of n d-dimensional parallelepipeds to pack

are also given with dimensions L1
i , L

2
i , ..., L

d
i ∈ R+, again indicating width, height, and

2.2. SKYLINE STRUCTURE 11

length in three dimensions; X1
i , X

2
i , ..., X

d
i ∈ R≥0, indicating the relative coordinates

of their leftmost/lowest/deepest, etc., corner (i.e., that which is closest to origin); and

Pi ∈ {0, 1}, indicating whether box i is packed or not. In all cases i ∈ {1, ..., n}. The

objective is to position as many of the boxes B within the container C to maximise

the volume utilisation, i.e.,

Maximise

(
n∑

i=1

Pi

d∏
j=1

Lj
i

)
. (2.1)

The following constraints have to hold. The interiors of all the boxes should be

disjoint (i.e., the non-overlapping constraint). This means that the boxes have to be

non-overlapping in at least one dimension. The non-overlapping constraint can be

expressed as

Pi

d∏
k=1

overlap(k, i, j) = 0 ∀1 ≤ i < j ≤ n, (2.2)

where

overlap(k, i, j) =

 1 if Xk
i < Xk

j + Lk
i and Xk

j < Xk
i + Lk

j

0 otherwise.
(2.3)

The domain constraint states that the extremities of all placed boxes have to lie

within the bounds of the container; i.e., the boxes cannot be positioned such that

they are sticking out of the container, as formalised below:

Pi

d∑
k=1

uncontained(k, i,) = 0 ∀1 ≤ i ≤ n, (2.4)

where

uncontained(k, i) =

 1 if Xk
i < 0 or Xk

j + Lk
i > Lk

0

0 otherwise.
(2.5)

The orthogonality constraint states that all placed boxes be positioned such that

each side has to be parallel to a side of the container; i.e., if rotations of the boxes are

permitted, then only those of 90◦ may be made. This constraint is implicitly held in

the representation of boxes given here� [1]

12 CHAPTER 2. TASK SCHEDULER ANALYSIS

0 1 2 0 1 2

1 1

2 2

Figure 2.4: Skyline example.

Strip packing problem is similar problem to the CLP only with few di�erences.

One of the dimensions (we can choose dth dimension without loss of generality) is

unbounded or rather bounded by in�nity and the objective function is to minimize

the size used in this dimension.

2.2.2 The skyline approach

This approach is called skyline, because it resembles the real-life skyline. In real

life, the skyline means the outline between earth and sky. Here it is the outline of the

topmost packed d-dimensional hyper-rectangles. Their outline is the d−1 dimensional

projection with assigned height (or dth dimensional proportion) property. The skyline

is used as a representation of positions, where the box can be placed in the container.

All space lower than the skyline is e�ectively disregarded in the packing process.

Demonstration is shown in two dimensions space with its properties width and

height for �rst and second dimension respectively. Extension to more dimensions is

as follows - second dimension will be dth dimension and �rst dimension represents

the d − 1 dimensions. In the example at �gure 2.4, the skyline will be represented

by thick line and the container and box borders by slim line. In the �rst part the

empty container can be seen. The skyline thus covers the base of the container. The

second part of �gure 2.4 shows what happens after inserting a box with both height

and width of size one. The skyline now consists of two parts, �rst part is on top of

the inserted box, second is still at the base of the container.

2.2. SKYLINE STRUCTURE 13

(a) First polyhedron. (b) Second polyhedron.

Figure 2.5: Orthogonal polyhedron example.

2.2.3 Rectilinear Polygon and simple gap

As the abstract data type interface described further on uses terms rectilinear polygon

and simple gap, it is needed to introduce these constructs �rst. The rectilinear polygon

is commonly known as a type of polygon, whose edges meet at right angle. Allen et al.

[1] uses the rectilinear polygon representation with additional constraints called simple

gap. Simple gap used further on will be convex parallelepiped, that can be described

with a set of extreme coordinates by following formula: rp = {X1
1 , ...X

d
1 , X

1
2 , ...X

d
2}.

X i
1 and X

j
2 being �rst and second extreme coordinate in dimension i.

2.2.4 Orthogonal Polyhedron

Orthogonal polyhedron 1 is a �nite union of full-dimensional hyper-rectangles. The

whole skyline can be represented as n-dimensional orthogonal polyhedron or as a set

of n-1 dimensional orthogonal polyhedrons for each height in skyline.

De�nition: �Let x = (x1, ..., xd) be a grid point. The elementary box associated

with x is a closed subset of X of the form B(x) = [x1, x1 + 1]× ...× [xd, xd + 1]. The

point is called the leftmost corner of B(x). The set of boxes is denoted by B. An

orthogonal polyhedron P is a union of elementary boxes, i.e. an element of 2B.� [3]

1Orthogonal polytope generally for n-dimensional space.

14 CHAPTER 2. TASK SCHEDULER ANALYSIS

2.2.4.1 Representation

To represent an polyhedron a set of vertexes with associated color function is used.

Color function �Let P be orthogonal polyhedron. The color function c : X ← {0, 1}

is de�ned as follows: If x is a grid point, than c(x) = 1 i� B(x) ⊆ P ; otherwise c(x)

= c(bxc).� [3]

The grid point x is black if c(x) is 1 and white otherwise. Example can be seen

on �gure 2.5. The di�erence between �rst and second polyhedra is done by di�erent

color of one vertex. The �rst one has gap in the middle, because of the white color of

the corresponding vertex. The second is full.

Bournez et al. [3] shows three di�erent representation possibilities:

• Vertex representation

• Neighbourhood representation

• Extreme vertex representation

All representations are interchangeable. The di�erence between representations is

mainly in the space used for storing each polyhedron, thus only vertex representation

will be introduced here. This representation is based on keeping all vertexes, that

form the polyhedra with their corresponding color. I.e. all the vertexes in example

�gure 2.7 are stored in a list.

2.2.4.2 Boolean operations

The boolean operation shown by Bournez et al. [3] on vertex polyhedra representation

is straight forward. The approach will be shown on intersection (without loss of

generality, the intersection can be replaced with any boolean operation). First, it is

needed to introduce neighbourhood and vertex rules.

2.2. SKYLINE STRUCTURE 15

Neighbourhood The vertex x neighbourhood are verticles of a box lying between

x− 1 and x, that is verticles N(x) = {x1 − 1, x1} × ...× {xd − 1, xd}.

Vertex rules The vertex rules de�ne, if the queried point is on an facet of the

polyhedra, and if it is or it is not a vertex of the polyhedron. The distinction is made

based on the color of neighbourhood. More details can be found at [3].

Let there be two polyhedra P1 and P2 with respective verticle sets V1 and V2.

First, it is needed to generate all possible verticles created by these two polyhedrons.

That means set V = V1 ∪ V2 ∪ {x : ∃y1 ∈ V1∃y2 ∈ V2|x = max(y1, y2)}, where

max(x, y) is applied coordinatewise. Second, it is needed to determine the color of

neighbourhoods of set V in both P1 and P2. Then the intersection function (or any

other boolean function as stated above) is applied on all corresponding neighbourhood

verticles. The result is checked by vertex rules and all points, that are verticles are

stored in the new polyhedra P .

2.2.4.3 Rectilinear decomposition

The problem of rectilinear polyhedron decomposition to a set of simple gaps is as

follows: Having an rectilinear polyhedron P , �nd the set of simple gaps G, where the

union of the gaps covers P fully and exactly. The set G is maximal, gaps can overlap

but no gap fully contains any other.

The idea in [1] to is generate all starting points, that is all possible points in the

polyhedra (not only the vertexes, but also all points on grid de�ned by verticles). For

each starting point s generate all simple gaps gi contained by polyhedra starting from

the largest ones and insert gi to result set G, if the set doesn't already contain any

gap, that fully contains the generated gap gi.

Proposed extension: Not every point in the polyhedron is adept to be one of the

starting points. We can remove all the white points as no gap can be generated from

them and it is thus pointless to try generate any simple gaps from them. By removing

all the white points, we lower the number of starting points by more than half.

16 CHAPTER 2. TASK SCHEDULER ANALYSIS

2.2.5 Abstract Data Type

For scheduling, we need to e�ectively (complexity-wise) go through all the possible

positions, where the box can be placed. The skyline at each single height can be viewed

at as an n − 1-dimensional rectilinear polyhedra. Since the boxes are n-dimensional

parallelepipeds it is good to have all the positions pre-computed before trying to �t

the boxes in the skyline. Based on this thought Allen et al. [1] proposed an ADT to

the skyline approach, which works with uni�ed representation of the skyline. Each

height of the skyline is represented as a set of rectilinear polygons. As was stated in

section 2.2.3, the simple gap representation of rectilinear polygon will be used.

ADT interface is de�ned as follows [1]:

• getLowestGaps() : {RectilinearPolygon}

• getNeighbouringGaps(rp : RectilinearPolygon) : {RectilinearPolygon}

• splitGap(rp : RectilinearPolygon, gap : RectilinearPolygon)

• changeHeight(rp : RectilinearPolygon, newHeight : Integer)

• isContained(rp : RectilinearPolygon, gap : RectilinearPolygon) : Boolean

getLowestGaps() function returns a list of all simple gaps that are located at the

lowest position in the skyline (i.e., the deepest position in the container).

neighbouringGaps() function returns a list of the gaps in the skyline that are at

higher positions than the gap being queried but touch its perimeter.

splitGap() function is used to split a gap into a number of new gaps. The number

of new gaps ranges from 0 if the box �ts the gap perfectly to any positive number if

the box does not �ll the gap entirely; e.g., its footprint is smaller than the gap.

changeHeight() function is used to change the height of part of the skyline to a new

value, for example, when a box has been placed or an unusable gap is found.

2.2. SKYLINE STRUCTURE 17

Height 0

Height 1

Figure 2.6: 2D Skyline example for 3D CLP.

isContained() function returns a Boolean value: true if the speci�ed box �ts within

the speci�ed gap and false otherwise.

2.2.6 ADT implementation overview

The skyline hidden behind ADT interface can be represented in many ways. Allen et

al. [1] show �ve di�erent ways, which then result in di�erent algorithm complexities.

The possibilities shown in the paper are using:

• Array representation

• Collision detection representation

• Plane representation

• Axis-aligned Bounding-box Tree representation

• Interval tree representation

Only the �rst and the last will be shown further on. The array representation is

the easiest one, but with worst complexity. Interval tree on the other hand is the

most e�ective one, with some great features (i.e. problem scaling does not a�ect

complexity).

18 CHAPTER 2. TASK SCHEDULER ANALYSIS

2.2.7 Array representation

Representing container space with an array is straight-forward. Lets create an d− 1

dimensional array representing the resource space with size ri for each resource. That

is A = {a11, ...a
r1
1 , a

1
2, ..., a

rd−1

d−1 }, where each cell aji represents one position in skyline

in dimension i and distance j. Each cell has assigned a number, which represents

its height in the container. Example is shown in �gure 2.6: two dimensional skyline

representation in three dimensional container with assigned height property after in-

serting one two-by-two box with height one. Given this representation it is needed to

meet the ADT interface.

getLowestGaps() To get all the gaps representing the lowest height in skyline, the

whole array has to be traversed �rst, to get the height of the lowest gaps 2. Next, the

array has to be traversed again, to �nd all possible gap starting points and for each of

the starting points the algorithm traverses the array space to get the largest possible

gaps for the point.

neighbouringGaps() To �nd a list of neighbouring gaps it is only needed to inspect

all array elements around the query gap.

splitGap() This operation does not need to be called in this representation. All the

gaps are computed dynamically, thus splitting the gap does not a�ect the array at all.

changeHeight() Changing height of part of the skyline is simple. It is just a matter

of updating all the array cells representing the query gap.

isContained() Because the size of each gap is determined on generation, only thing

needed is to check the size of gap and query polygon in each dimension.

2This can be cached, but won't a�ect asymptotic complexity

2.2. SKYLINE STRUCTURE 19

2.2.8 Interval Tree representation

This approach represents the skyline by a set of simple gaps d− 1-dimensional space.

Each of the simple gaps is decomposed in a set of lines to improve complexity of some

of the Skyline ADT queries.

2.2.8.1 Augmented Interval Tree

The interval i is de�ned as space between low to high endpoints in one dimension

and, depending on the type of the interval, one or both extreme values. The types of

the interval can be:

• Open i = (low, high) None of the extreme values is part of the interval

• Half-open i = [low, high) or i = (low, high] One of the extreme values is part of

the interval

• Closed i = [low, high] Both the extreme values are part of the interval

The interval tree structure can e�ectively answer the intersection query on a set

of intervals with an interval or point in one dimension and can be extended to answer

queries on lines in more dimensions. The naive approach to intersection query is to

check all the lines with the query line and remember the ones, which intersected. The

use of the interval tree reduces the query computational complexity from O(n) to

O(log n).

The methods supported are:

• Insert() which inserts interval to the structure.

• Delete() which deletes interval from the structure.

• IntersectionQuery() which returns list of intervals intersecting the query in-

terval.

20 CHAPTER 2. TASK SCHEDULER ANALYSIS

0 5 10 15

[5,8]

[3,6]

[0,4] [8,12]

(a) Interval set

[3,6]
12

[0,4]
4

[5,8]
12

[8,12]
12

(b) Augmented red-black tree

Figure 2.7: Four interval set and associated augmented tree.

Cormen et al. [4] describes an e�ective implementation using augmenting red-

black tree. The process of augmenting is extending the properties of any structure,

to suit our needs. Each node n of the RB-tree will store one interval with both low

and high properties. The key of the node n will be interval low endpoint. We store

additional property max to the node n, which will be the maximum high property of

subtree with node n as root. The Insert() and Delete() queries will update this

property for all nodes a�ected.

An example of four intervals and associated augmented RB-tree can be seen on

�gure 2.7.

The IntersectionQuery() method shown in schema 3 on the interval tree root

node n and query interval i will check, if the query interval is not to the right of all the

nodes by comparing i.low to the n.max property. If it is to the right of all the intervals

stored in the interval tree, the result is empty set. If it is to the left, the algorithm

calls the IntersectionQuery() method on left subtree of node n and compares the

interval stored in the node n to the query interval i. In next step queries the right

subtree, if the query interval is not to the left from the starting point of interval stored

in node n.

Higher dimensions The basic interval tree structure can be generalized to arbitrary

number of dimensions assuming the lines are orthogonal. De Berg et al. [5] shows the

generalization in second dimension for centered interval tree, which uses range tree

2.2. SKYLINE STRUCTURE 21

Algorithm Schema 3: IntersectionQuery(n, i)

1: Input: Interval Tree root n, the query interval i

2: Returns: Set of intervals intersecting i

3: Q← ∅

4: if n is not a leaf and i.low ≤ n.max then

5: Q←IntersectionQuery(n.left, i)

6: if intersects(n.interval, i) then

7: Q← Q ∪ n.interval

8: end if

9: if i.high ≥ n.interval.low then

10: Q← Q∪IntersectionQuery(n.right, i)

11: end if

12: end if

13: return Q

with associated interval trees in every node, details consulted in depth by de Berg et

al [5]. For augmented interval tree, the solution is to nest the interval trees. Having

an interval tree in one dimension and nesting interval trees in every node n for next

dimension for all the nodes in subtree where n is root.

2.2.8.2 ADT methods

As was stated in the beginning of this section, all the possible gaps are represented

by rectilinear polygons d-dimensional space. Each of the rectilinear polygons can be

decomposed in a set of lines. The interval tree is used to e�ciently store this set of

lines and then to do the intersection query. Another structure used is a height ordered

list of the polygons from lowest to the highest to e�ciently answer some of the queries.

getLowestGaps() To get all the gaps representing the lowest height in skyline it is

needed to go through the ordered list of the polygons from the beginning and return

all, that have the same height as the �rst polygon.

22 CHAPTER 2. TASK SCHEDULER ANALYSIS

neighbouringGaps() To �nd a list of neighbouring gaps it is needed to query the

interval tree with all the lines of the query polygon and from the result set of lines

determine the set of gaps.

splitGap() To split a gap it is needed to:

• Remove from structure all gaps covering the query gap

• Unite them to one polyhedron by boolean masking operation described in section

2.2.4.2

• Substract the query gap from the polyhedron

• Decompose the polyhedron to simple gaps. Details have been consulted in section

2.2.4.3

• Insert the gaps back to the structure

changeHeight() To change height of part of the skyline it is needed to remove the

query gap from the ordered list of polygons, update the new height of the gap and

join with all the gaps at the new height. That means querying all neighbouring gaps

on the same level, creating and decomposing polyhedron representing the gaps and

reinsertion of all the new gaps.

isContained() All gaps are represented as rectilinear polygons, thus only thing

needed is to check the size of gap and query polygon in each dimension.

Chapter 3

Proposed solution

In this chapter, the algorithm for scheduling is presented. It is based on the structures

shown in the previous chapter. The scheduling algorithm combines the use of �nding

the best task to schedule presented in section 2.1 and scheduling it by placing in

the skyline data structure (section 2.2). The tasks which are ready for scheduling

are sorted by the task graph data structure in a descending priority order and their

schedule time and resource allocation is determined by the skyline data structure

position.

3.1 Detailed description

The full pseudo-code of the algorithm is presented in algorithm schema 4. The algo-

rithm execution is following: The scheduler initializes properties at lines 4 to 8. The

set G contains all simple gaps representing lowest height in skyline. The property

bestScore is set to zero, denoting no task has been found. The bestTask property is

set to empty task. time is set to represent the lowest height in skyline, the height

where the scheduling will take place.

When initialized, the algorithm �nds the best task to be scheduled. Priority class,

where at least one task can be scheduled needs to be found and in this class the best

task to schedule is determined. That is done on lines 8 to 21 and all tasks can be

23

24 CHAPTER 3. PROPOSED SOLUTION

queried. On lines 9 to 11 it is checked, if the best task has been found and (if it has

been found), if the queried task Ti is in the same priority class as the task found. If

the best score is not zero and the queried task is not from the same priority class, the

best task to schedule has been found and this part ends. Otherwise, the queried task

is checked on line 12, if it can be scheduled at the lowest height in skyline. If not,

continue is called and the next task is queried.

At this moment, it is clear, that the task Ti can be scheduled. All gaps on low-

est height are queried and checked, if the task Ti can be scheduled on the resources

denoted by the gap Gj. If Ti can be scheduled on Gj, then the �tness function

evaluationScore() is called. If the queried task Ti �ts better in gap Gj than

bestTask in bestGap, the best combination so far has been found and it is assigned

in bestTask, bestGap and bestScore.

When all relevant tasks have been queried, the algorithm checks if the best task

has been found. This is done at line 26. If it has been found, the task is updated with

position information on line 27. Then the modi�cation of skyline is done, to represent

the old skyline with the task inserted in it. On line 31, the task is removed from the

taskgraph T and all dependant tasks are updated with precedencyTime property as

stated in chapter 2.1.

If no task is suitable for scheduling at the time de�ned by lowest height of the sky-

line structure, then all lowest gaps are lifted to closest higher gaps and the algorithm

is repeated.

3.1. DETAILED DESCRIPTION 25

Algorithm Schema 4: schedule(T , S)

1: Input: Taskgraph structure T , Skyline structure S

2: E�ect: Empty T , Updated S

3: while not empty(T) do

4: G←getLowestGaps(S)

5: bestScore← 0

6: bestTask ← ∅
7: time← getLowestHeight(S)

8: for all i such that 1 ≤ i ≤ |T | do
9: if bestScore != 0 and priority(Ti) != priority(bestTask) then

10: break

11: end if

12: if time < precedencyTime(bestTask) then

13: continue

14: end if

15: for all j such that 1 ≤ j ≤ |G| do
16: if isContained(Ti, Gj) then

17: s← evaluationScore(Ti, Gj)

18: if s > bestScore then

19: bestScore← s

20: bestGap← Gj

21: bestTask ← Ti

22: end if

23: end if

24: end for

25: end for

26: if bestScore 6= 0 then

27: position bestTask in bestGap

28: splitGap(bestGap, bestTask)

29: height← getHeight(bestGap) + getHeight(bestTask)

30: changeHeight(bestGap, height)

31: updateSchedulableTime(T , bestTask, height)

32: popVertex(T , bestTask)

33: else

34: for all j such that 1 ≤ j ≤ |G| do
35: N ← neighbouringGaps(Gj)

36: changeHeight(Gj , min(getHeight(N)))

37: end for

38: end if

39: end while

40: return S

26 CHAPTER 3. PROPOSED SOLUTION

3.2 Illustrative example

The initial task graph to be scheduled can be seen in �gure 3.1a. It consists of four

tasks and three precedency constraints. The initial skyline can be seen in �gure 3.1c,

with skyline denoted by thick line. On x-axis, the resource r with capacity 3 can be

seen. The y-axis represents the in�nite time.

Each task scheduled will introduce di�erent execution path of the algorithm. The

overview of the execution path is explained �rst in high-level view, then the detailed

view is shown.

For description convenience, few named lines or named parts of the algorithm will

be introduced.

Main loop will denote the loop at line 3

Best task search will denote the lines 8 to 25

Task placement will denote lines 26 to 31

Lifting skyline will denote lines 33 to 37

First task placement

(a) Initial task graph

t

r

(b) Initial skyline (c) Task to be scheduled

t

r

(d) Skyline after inser-

tion

Figure 3.1: Algorithm �rst step.

3.2. ILLUSTRATIVE EXAMPLE 27

This example shows simple insertion of task to skyline. The skyline split can be

seen.

Given the task graph in �gure 3.1a there is only possible task to be scheduled.

The best task search thus gives the task shown at �gure 3.1b. With the best task

known, the task placement will be executed. The gap is split and height is raised to

the height of the task, which is shown in �gures 3.1c and d. The taskgraph is updated,

the descendants of the node scheduled will have their precedencyTime set to 2. The

skyline now consists of two gaps, �rst at height 0 and second at height 2.

Second task placement

(a) Initial task graph

t

r

(b) Initial skyline

t

r

(c) Skyline after

one step

(d) Task to be sched-

uled

t

r

(e) Skyline after

insertion

Figure 3.2: Algorithm second step.

This example shows what happens, if no task can be scheduled due to precedency

time constraint. The lowest height of the skyline needs to be raised before the task

can be scheduled.

The task graph now contains two root nodes, both with precedencyTime set to 2

and the lowest height of skyline is at 0. Since both nodes need to be scheduled at

time higher, then the lowest height of skyline, the best task search will not �nd any

task to schedule and task placement can't be executed. The lifting skyline is executed

instead. The simple gap representing the skyline on the lowest height is raised to

28 CHAPTER 3. PROPOSED SOLUTION

height 2, where it is joined with another simple gap. The skyline is again represented

only by one simple gap, now at height 2 as can be seen in �gure 3.2c.

The main loop is executed again and now the best task search will �nd the task

shown at �gure 3.2d and task placement will insert this task to the skyline, splitting

and lifting the �rst part of the gap, as shown at �gure 3.2e.

Third task placement

(a) Initial task graph

t

r

(b) Initial skyline (c) Task to be scheduled

t

r

(d) Skyline after inser-

tion

Figure 3.3: Algorithm third step.

This example shows what happens if we have more heights of skyline available.

Always only the lowest height is examined.

The task graph is now made of two tasks, where �rst task precedencyTime is 2.

The lowest height of skyline is 2 and it is represented by one simple gap, representing

resource of capacity 2. The best task search �nds the task at �gure 3.3b, which �ts

in the simple gap of resource capacity 2. The task is simply placed in the skyline and

the simple gap representing the lowest height is raised atop the task as seen at �gure

3.3d. The precedencyTime of the last task is set to 3.

3.2. ILLUSTRATIVE EXAMPLE 29

(a) Initial task

graph

t

r

(b) Initial skyline

t

r

(c) Skyline after

one step

(d) Task to be

scheduled

t

r

(e) Skyline after

insertion

Figure 3.4: Algorithm fourth step.

Fourth task placement

This example shows what happens, if no task can be scheduled due to resource capacity

constraint. The lowest height of the skyline needs to be raised before the task is

scheduled.

The task graph is now represented only by one task with precedencyTime set to

3. The lowest height of skyline is at height 3, so the best task search will not fail on

this, but it will fail on resource capacity. The simple gap on height 3 represents only

capacity 2 and the task needs capacity 3. Thus lifting skyline will take place as can

be seen at �gure 3.4b and c. Then the main loop will be executed again and the best

task search is successful as can be seen on �gure 3.4d and the task is scheduled as can

be seen at �gure 3.4e.

30 CHAPTER 3. PROPOSED SOLUTION

Chapter 4

Performance overview

In this chapter the algorithm complexity is shown and then the runtime results are

presented. The tests were executed on notebook HP ProBook 4530s with Intel Core

i5 processor in Ubuntu Linux operating system.

4.1 Complexity analysis

First the methods from used structures are presented, then the methods invented for

this algorithm.

External methods

Claim 1 ([1]). The time complexity of getLowestGaps() is O(log(n)+ k) where n is

the number of gaps and k is the number of gaps returned.

The getLowestGaps() function returns a list of gaps that are located at the low-

est position in the skyline. The gaps are queried in a depth-sorted list of gaps in

O(log(n) + k).

Claim 2 ([1]). The time complexity of neighbouringGaps() is O(df ∗ log(f) + k)

where d is the number of dimensions, f is the number of facets de�ning gap and k is

the number of gaps returned.

31

32 CHAPTER 4. PERFORMANCE OVERVIEW

The set of neighbouring gaps is determined by query to the interval tree in O(df ∗

log(f) + k).

Claim 3 ([1]). The time complexity of splitGap() is O(f 2d32d) where f is the number

of facets de�ning gap and d is the number of dimensions.

Splitting gap is case of removing the gap from both interval tree and ordered

list taking O(df ·log(f)) and O(log(n)), then performing boolean masking operation

taking O(f 2d32d) and insertion back to the tree and list again taking O(df ·log(f))

and O(log(n)).

Claim 4 ([1]). The time complexity of changeHeight() is O(f 2d32d) where f is the

number of facets de�ning gap and d is the number of dimensions.

To change height of a gap, similar operations as in splitGap() are executed. The

gap is removed from the structure, joined with all gaps at new height and reinserted

in the ordered list.

Claim 5 ([1]). The time complexity of isContained() is O(df) where d is the number

of dimensions and f is the number of facets de�ning gap.

To check whether the box �ts in the gap, one needs to check all 2d facets of the

box to all f facets of the gap.

Claim 6 ([7]). The time complexity of insertEdge() is O(|δ|Q(|δ|) + ||δ||) where

Q(n) is the complexity of insertion and extraction of an element in a priority queue

with n elements, |δ| are vertices to be updated and ||δ|| are neighbouring vertices to be

checked.

The insertEdge() function inserts edge between two vertexes and updates the

level property of all vertexes a�ected.

Claim 7 ([7]). The time complexity of popVertex() is O(|δ|Q(|δ|) + ||δ||) where |δ|

are vertices to be updated and ||δ|| are neighbouring vertices to be checked

The popVertex() function deletes the vertex with no in-going edges and updates

properties of all neighbours in the process.

4.1. COMPLEXITY ANALYSIS 33

Developed methods

evaluationScore() time complexity is O(d), where d is number of dimensions.

Execution outline with complexities:

O(d) : In a l l d imensions

O(1) : Query two extreme po in t s o f both gap and job

updateSchedulableTime() time complexity is O(n).

Execution outline with complexities:

O(n) : For a l l descendants o f the node

O(1) : Update the s chedu lab l e time property

getLevel() time complexity is O(1), time complexity of getHeight() is O(1), time

complexity of getLowestHeigh()t is O(1)

These functions returns properties of parameter objects and therefore have con-

stant run time.

34 CHAPTER 4. PERFORMANCE OVERVIEW

schedule() time complexity is O(n2d+1d52d)

Follows the complexity calculation pseudo code with references to the algorithm

on page 25. Each line is annotated with the cost and then the whole complexity for

all branches is computed.

O(ng) : In the worst case a l l the gaps w i l l be l i f t e d f o r every

box placed . The main loop on l i n e 3 w i l l be c a l l e d with a

bound o f ng t imes .

O(log(n) + k) : getLowestGaps()

O(1) : getLowestHeight()

O(n) : The loop on the l i n e 8

O(1) : priority()

O(1) : precedencyTime()

O(g) : The loop on the l i n e 15

O(d) : isContained()

O(d) : evaluationScore()

The cond i t i on on l i n e 26 w i l l be t rue once f o r every

task

O(d) : To po s i t i o n box in the gap , we a s s i gn the

po s i t i o n in each dimension

O(f 2d32d) : splitGap()

O(f 2d32d) : changeHeight()

O(n) : updateSchedulableTime()

O(n l og (n)) : popVertex()

The cond i t i on w i l l be f a l s e f o r a l l o ther o ca s i on s .

O(g) : The loop on l i n e 34

O(g) : neighbouringGaps()

O(d52d) : changeHeight()

4.2. COMPUTATIONAL RESULTS 35

Total complexity on the branches:

O(ng l og (n) + n2g2d+ nf 2d32d + n2 l og (n) + ng2d52d + ng3) : The main loop

on l i n e 3 .

O(ngd) : The loop on the l i n e 8

O(gd) : The loop on the l i n e 15

O(nf 2d32d + n2 l og (n)) The cond i t i on on l i n e 26 (f i n a l

complexity)

O(gd52d + g2) : The cond i t i on w i l l be f a l s e f o r a l l o ther

o ca s i on s .

O(gd52d + g2) : The loop on l i n e 34

With the bound on the number of gaps being O(g) = O(nd) and facets being

O(f) ≤ O(dn) this leads to: O(n2d+1d52d).

4.2 Computational results

This section shows the execution runtime for di�erent kinds of graphs. First the algo-

rithm makespan results are compared to the Standard Task Graphs for multiprocessor

scheduling optimal makespan and then the time dependence on di�erent properties

of random graphs are shown.

All the values presented are the average over a set of repeated executions.

4.2.1 Standard Task Graph set for multiprocessor scheduling

Based on the standard task graph set for fair evaluation of multiprocessor scheduling

algorithms by Tobita et al. [10], the makespan ratios are shown. For one resource

type (processors) and if each of the tasks need exactly one processor, the problem

solved by Tobita et al. [10] and the problem solved in this thesis are the same and

the e�ectiveness can be compared.

In the tables 4.1, 4.2 the results on �rst 50 task graphs from each of the sets

from the standard task graph set can be seen. Task graph with 50, 300, 500 and

36 CHAPTER 4. PERFORMANCE OVERVIEW

750 nodes were tested. First the average, maximum and minimum makespan ratio is

shown on the task graphs for 2, 4, 8 and 16 processors and then the overall results

are summarized in table 4.3.

The makespan ratio for optimal makespan o given by Tobita et al. [10] and algo-

rithm makespan a is computed as ratio = 100·o
a

[%].

Nodes 50 50 50 50 300 300 300 300

Processors 2 4 8 16 2 4 8 16

Makespan ratio (avg) [%] 99,33 96,66 99,65 100,00 99,41 97,33 98,14 100,00

Makespan ratio (max) [%] 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00

Makespan ratio (min) [%] 94,29 82,72 91,67 100,00 94,76 89,11 91,59 100,00

Table 4.1: Results on standard task graphs

Nodes 500 500 500 500 750 750 750 750

Processors 2 4 8 16 2 4 8 16

Makespan ratio (avg) [%] 99,52 97,37 98,26 99,98 99,49 97,32 97,84 100,00

Makespan ratio (max) [%] 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00

Makespan ratio (min) [%] 97,23 90,46 88,75 99,04 97,53 89,18 88,66 99,78

Table 4.2: Results on standard task graphs

Makespan ratio (avg) [%] 98,81

Makespan ratio (max) [%] 100,00

Makespan ratio (min) [%] 82,71

Table 4.3: Overall results

4.2.2 Graphs with constant node to edge ratio

The graphs presented here are randomly generated graphs based on the G(p,N)model

proposed by Erdös et al. [6]. The graphs used for comparison are generated with these

properties: Task dimension d, task amount n, node to edge ratio ne and size ratio s.

4.2. COMPUTATIONAL RESULTS 37

The node ratio is computed in following way: ne = n
|E| . The size ratio is used to scale

the whole problem, that means actual edge size es is calculated for some constant c

as es = s · c.

The e�ect of the number of nodes on execution time

The graph presented on �gure 4.1 shows function of time t on amount of nodes, such as

t = f(n). The size ratio is constant and equals to s = 1. The dimension and edge ratio

combinations used are as follows: {d = 3, ne = 4}, {d = 3, ne = 8}, {d = 2, ne = 4}.

Figure 4.1: t = f(n) for {d = 3, ne = 4}, {d = 3, ne = 8}, {d = 2, ne = 4}

The e�ect of the length scale ratio on execution time

The graph presented on �gure 4.2 shows function of time t on the size ratio, such as

t = f(s). The dimension used is d = 2, amount of task queried n = 100 and edges to

nodes ratio ne = 4.

38 CHAPTER 4. PERFORMANCE OVERVIEW

Figure 4.2: t = f(s) for d = 2, n = 100, ne = 4

The e�ect of the edge ratio on execution time

The graph presented on �gure 4.2 shows function of time t on the length scale ratio,

such as t = f(ne). The dimension used is d = 3, amount of task queried n = 100 and

size ratio s = 1.

Figure 4.3: t = f(ne) for d = 3, n = 100, s = 1

4.2.3 Result discussion

As far as the author knows, there is no such algorithm on the bibliography, thus

general comparison to previous works is not possible. The results can be compared if

4.2. COMPUTATIONAL RESULTS 39

the problem is limited on two resources (time and processors) and the tasks allocate

exactly one processor, as was stated in the beginning of the chapter. The algorithm

makespan to optimum makespan is compared. The worst makespan ratio is 82,71 %

to the optimum and average case is 98,81% on the set of standard task graphs shows

the advantage of using the critical-path structure proposed by Marecek et. al [7].

The execution time function is shown for graphs with di�erent properties. First,

the time function on the amount of nodes is shown on �gure 4.1 and the polynomial

time complexity can be seen. Then the time function on problem scale is shown.

Thanks to Interval tree based Skyline structure, the execution time function is con-

stant for di�erent problem sizes. Last graph shows the linear progression of time

function on the number of edges.

40 CHAPTER 4. PERFORMANCE OVERVIEW

Chapter 5

Conclusions

The original goal was to develop an algorithm for dynamic non-preemptive task sched-

uler with precedencies on an arbitrary number of resources with a continuous resource

allocation constraint and the goal was achieved. The presented algorithm provides a

solution to this problem, relying on two di�erent data structures - the critical path

task graph structure proposed by Marecek et al. [7] and Skyline structure proposed by

Allen et al. [1]. In order to support the algorithm, some extensions to the structures

were needed and are presented in the second chapter.

The problem solved belongs to the NP-hard class. The algorithm shown provides

an approximate solution, with complexity bound being polynomial to the number of

the nodes, when the resource count is considered constant. The relation between time

and problem size scale is constant and between time and amount of edges is linear.

The result makespan for task graphs tested is quite �attering. The tests have

shown that the ratio of worst makespan to optimal makespan is at 82% to optimum

and the average case is above 98,81% on the data sets provided for fair multiprocessor

scheduling.

As far as I know, the problem solved is not on the bibliography and thus this is

the �rst algorithm to do so.

41

42 CHAPTER 5. CONCLUSIONS

5.1 Future research

During the development I discovered several research lines that can be explored. To

mention a few:

• Extend the structure to allow for richer task graph models, i.e with tardiness,

multiple task alternatives, . . .

• Extend allocation functions:

Some resource combinations might be prioritized

The function might modify the execution time based on allocation or prior-

itize with this taken in account

Bibliography

[1] ALLEN, S. D. � BURKE, E. K. Data Structures for Higher-Dimensional Recti-

linear Packing. INFORMS Journal on Computing. Summer 2012, 24, 3, s. 457�

470. doi: 10.1287/ijoc.1110.0464. URL: <http://joc.journal.informs.org/

content/24/3/457.abstract>.

[2] BORTFELDT, A. � WäSCHER, G. Container Loading Problems - A State-of-

the-Art Review. FEMM Working Papers 120007, Otto-von-Guericke University

Magdeburg, Faculty of Economics and Management, April 2012. URL: <http:

//ideas.repec.org/p/mag/wpaper/120007.html>.

[3] BOURNEZ, O. � MALER, O. � PNUELI, A. Orthogonal Polyhedra: Represen-

tation and Computation, 1999.

[4] CORMEN, T. H. et al. Introduction to Algorithms. McGraw-Hill Higher Educa-

tion, 2nd edition, 2001. ISBN 0070131511.

[5] BERG, M. et al. Computational Geometry: Algorithms and Applica-

tions. Springer-Verlag, second edition, 2000. URL: <http://www.cs.uu.nl/

geobook/>.

[6] ERDöS, P. � RéNYI, A. On random graphs, I. Publicationes Mathematicae

(Debrecen). 1959, 6, s. 290�297. URL: <http://www.renyi.hu/~{}p_erdos/

Erdos.html#1959-11>.

[7] MARECEK, J. et al. Dynamic Data Structures for Taskgraph Scheduling Policies

with Applications in OpenCL Accelerators. In FOWLER, J. � KENDALL, G. �

43

http://joc.journal.informs.org/content/24/3/457.abstract
http://joc.journal.informs.org/content/24/3/457.abstract
http://ideas.repec.org/p/mag/wpaper/120007.html
http://ideas.repec.org/p/mag/wpaper/120007.html
http://www.cs.uu.nl/geobook/
http://www.cs.uu.nl/geobook/
http://www.renyi.hu/~{}p_erdos/Erdos.html#1959-11
http://www.renyi.hu/~{}p_erdos/Erdos.html#1959-11

44 BIBLIOGRAPHY

MCCOLLUM, B. (Ed.) In proceedings of the 5th Multidisciplinary International

Conference on Scheduling : Theory and Applications (MISTA 2011), 9-11 August

2011, Phoenix, Arizona, USA, s. 322�334, 2011. Paper.

[8] NIEMEIER, M. � WIESE, A. Scheduling with an Orthogonal Resource

Constraint. In 10th Workshop on Approximation and Online Algorithms

(WAOA2012), 2012.

[9] PAPADIMITRIOU, C. H. � TSITSIKLIS, J. N. On stochastic scheduling with

in-tree precedence constraints. SIAM J. Comput. 1987, 16, 1, s. 1�6. ISSN

0097-5397. doi: 10.1137/0216001.

[10] TOBITA, T. � KASAHARA, H. A standard task graph set for fair evaluation of

multiprocessor scheduling algorithms. Journal of Scheduling. 2002, 5, 5, s. 379�

394. doi: 10.1002/jos.116. URL: <http://dx.doi.org/10.1002/jos.116>.

http://dx.doi.org/10.1002/jos.116

Appendix A

Terminology and symbols

Terminology

Task Execution unit without pre-emption, i.e. program function.

Kernel Task in OpenCL framework.

Taskgraph Directed acyclic graph where edges are formed by precedency constraints.

Makespan Time di�erence between start and �nish of tasks scheduled.

Level In taskgraph, this goes by de�nition from [9] as "largest sum of expected

processing times along a path in the dependency graph". In other words: Length

of longest outgoing path from the node.

Depth Length of longest incoming path to the node.

SPP Strip Packing Problem

CLP Container Loading Problem

ADT Abstract Data Type

Gap Set of resources in Skyline structure

Rectilinear Polygon see Gap

45

46 APPENDIX A. TERMINOLOGY AND SYMBOLS

Symbols

d The number of resources and dimensions

ri Resource i capacity

tj Task j

T , U Sets of tasks

pj Task processing time of task j

Rj Set of resource constraints of task j

Pj Set of precedence constraints on other tasks of task j

aji Array cell in dimension i in distance j from beginning

f The number of object (i.e. gaps) facets

g The number of gaps

Appendix B

Attached CD contents

Figure B.1: Attached CD contents

47

	Introduction
	Problem statement
	Motivation
	Outline

	Task scheduler analysis
	Task graph structure
	Properties
	Methods
	Extension of the structure

	Skyline structure
	Container Loading and Strip Packing Problems definitions
	The skyline approach
	Rectilinear Polygon and simple gap
	Orthogonal Polyhedron
	Representation
	Boolean operations
	Rectilinear decomposition

	Abstract Data Type
	ADT implementation overview
	Array representation
	Interval Tree representation
	Augmented Interval Tree
	ADT methods

	Proposed solution
	Detailed description
	Illustrative example

	Performance overview
	Complexity analysis
	Computational results
	Standard Task Graph set for multiprocessor scheduling
	Graphs with constant node to edge ratio
	Result discussion

	Conclusions
	Future research

	Terminology and symbols
	Attached CD contents

