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Abstract 

Background 

Although heart rate variability (HRV) has diagnostic and prognostic value for the assessment of cardiac 

risk, HRV analysis is not routinely performed in a hospital setting. Current HRV analysis methods are 

primarily quantitative; such methods are sensitive to signal contamination and require extensive post 

hoc processing. 

Methods and Results 

Raw electrocardiogram (ECG) data from the Sleep Heart Health Study was transformed into 

electrocardiomatrix (ECM), in which sequential cardiac cycles are aligned, in parallel, along a shared axis. 

Such juxtaposition facilitates the visual evaluation of beat-to-beat changes in the R-R interval without 

sacrificing the morphology of the native ECG signal. Diminished HRV, verified by traditional methods, 

was readily identifiable. We also examined data from a cohort of hospitalized patients who suffered 

cardiac arrest within 24 hours of data acquisition, all of whom exhibited severely diminished HRV that 

were visually apparent on ECM display. 

Conclusions 

ECM streamlines the identification of depressed HRV, which may signal deteriorating patient condition. 

Keywords 

electrocardiomatrix, heart rate variability, cardiac arrest  
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Introduction 

Heart rate variability (HRV) describes beat-to-beat changes in the length of the R-R interval (RRI) 

between normal sinus heartbeats. The precise mechanistic physiology behind HRV has yet to be fully 

elucidated. However, certain HRV functions are thought to reflect accelerated sympathetic nervous 

system activity, reduced parasympathetic activity, or both [1]. Specifically, accelerated sympathetic 

activity appears to drive a reduction in overall HRV. Reduced HRV is a known predictor of poor outcome 

in cases of ischemic stroke [2], sepsis [3], multiple organ dysfunction syndrome [4], myocardial infarction 

[5-8], and heart failure [9,10]. The manifestation of HRV abnormalities may also be a marker of clinical 

complications following acute stroke [11-13] and may signal the onset of dangerous ventricular 

dysrhythmias in cardiac patients [14,15]. Furthermore, studies using animal models of ischemic stroke 

[16] and sepsis [17] have suggested that measurable reductions in overall HRV appear to develop in 

advance of other abnormal clinical signs. 

Despite its potential diagnostic and prognostic utility, HRV is not routinely analyzed in a healthcare 

setting. This sparse adoption may be attributed to a number of factors, many of which are associated 

with current methods of data processing and HRV measurement. First, inferences regarding autonomic 

activity can only be derived from HRV analysis if the measured RRIs fall between heartbeats originating 

from the sinoatrial node. Thus, in the context of HRV analysis, the presence of atrial and subatrial ectopy 

constitutes data contamination [18]. A number of algorithmic methods exist for the purpose of 

correcting electrocardiogram (ECG) data featuring signal artifact and/or ectopy. Although these methods 

may be used to prepare suboptimal data for HRV analysis, they generally rely on the deletion of 

aberrant electrical activity, either with or without subsequent interpolation. The extent to which these 

procedures compromise the ability of the data to represent the subject’s true HRV depends on the 

severity of the contamination and the length of the recording [19]. In a subject with significant ectopic 

burden, the raw ECG recording may require substantial algorithmic alteration. What’s more, the validity 

of any automated data correction must be manually verified by a trained technician. Manual review is 

not only time consuming; it prevents the implementation of HRV analysis as a tool for real time 

assessment of autonomic tone and clinical condition. 

In addition to the complex problem of appropriate post hoc processing, the widespread use of HRV 

analysis as a clinical marker is hampered by strict data acquisition constraints. Although HRV 
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measurements may be derived from a typical ECG recording, subjects are usually placed in a supine 

position and instructed to remain still for the duration of the recording. In healthy subjects, data 

collected in this manner appears to provide valid, reproducible HRV measurements, especially when 

controlled breathing protocols are utilized [20]. However, such a protocol may be impractical for the 

measurement of HRV in critically ill or distressed patients, or patients who are otherwise unable to 

cooperative with the clinician. Moreover, HRV is best considered in a longitudinal manner [21] and may 

offer greater predictive power when measured over longer durations [22]. In order to effectively track 

patient progress, multiple, serial HRV measurements would need to be procured during the course of 

the patient’s hospital stay. Given current data processing methods described above, widespread 

implementation of HRV analysis for real time patient monitoring in a hospital setting is not feasible. 

Given these short comings with the current HRV analytic approaches, a new method that allows one-

glance estimation of patients’ HRV status and permit real time monitoring of their HRV trend is expected 

to facility the use of HRV in clinical practice.   

Here, we describe a method for qualitative, visual assessment of overall HRV in real time without the 

need for artifact correction, post hoc processing, or the imposition of strictly controlled conditions. 

Electrocardiomatrix (ECM) is a new technique for the efficient assessment of lengthy sections of ECG 

data without compromising signal morphology or resolution. ECM facilitates the single-glance 

identification of decreased HRV even in the presence of ectopic contamination, signal noise, or 

incorrectly annotated R peaks.  

Methods 

ECM construction 

ECM has been previously described and validated for the evaluation of cardiac dysrhythmias [23]. ECM is 

a representation of electrophysiological signals constructed in an automated fashion from standard ECG 

data. R peaks are detected via a modified variable threshold algorithm and peak selection is 

subsequently interpreted via a graphical user interface.  

The construction of the ECM heat map from a short section of representative ECG is illustrated in Figure 

1. First, the ECG recording (panel A) is divided into short segments, each containing at least two adjacent 

heartbeats (panel B). The duration of the constituent segments may be adjusted to ensure two 
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consecutive heartbeats remain in frame regardless of heartrate. The first R peak is situated at time 0, 

such that the corresponding P wave remains visible in frame. The second R peak in the first time 

segment assumes the time 0 position in the second segment. Subsequent time segments are aligned 

along the first of their two R peaks. The entire series of ECG segments is transformed into a colorimetric 

heat map, such that positive voltage deflections are represented by warmer colors (red) and negative 

deflections are represented by cooler colors (blue). The resulting ECM consists of consecutive R-R 

intervals aligned in parallel along a shared axis (panel C). The juxtaposition of sequential time segments 

with partial overlap exposes very subtle beat-to-beat changes in RRI and other important ECG intervals 

(PR, QT, and ST) (panel D) that may be difficult to discern from a traditional ECG tracing (panel A).  

ECM-based visual estimation of HRV 

In a completed ECM panel, at least two rows of heartbeats should be visible: the Rn row, invariably 

positioned at time 0, and the Rn+1 row (panel E).  The Rn row should always be a straight line, as 

determined by the ECM algorithm, whereas the appearance of the Rn+1 row varies, depending on the 

extent of HRV.  If HRV is extremely low or absent, these two rows will appear completely parallel.  In the 

subject shown in Figure 1, HRV is readily visible. Thus, ECM allows users to rapidly formulate an overall 

impression of HRV as soon as the matrix is formed, even when artifacts or noise are present in patients’ 

ECG data (see Figure 4 below).  

Data sourcing 

We examined data from the Sleep Heart Health Study (SHHS) [24], a prospective cohort study principally 

designed to examine the relationship between sleep disordered breathing and cardiovascular disease. In 

total, the study includes 6441 participants, all aged 40 years and older. Participants underwent in-home 

polysomnography (PSG) including continuous three-lead ECG and chin electromyogram (EMG) [25,26]. 

ECG data were recorded in modified Einthoven lead II (MLII) at a sample frequency of 250 Hertz. The 

SHHS attempted to collect a full night of ECG data from each subject. The length of the recordings 

ranges from approximately 6-13 hours, depending on the success of signal acquisition and the time each 

subject spent in bed. For our study, a total of four hours of data were considered from each subject, 

beginning at the moment of sleep onset. Onset time varies widely among subjects, and HRV values 

collected during subsequent periods of nighttime wakefulness were not excluded. 
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Additional ECG recordings were obtained from critically ill, adult patients admitted to the Neurological 

Intensive Care Unit (NICU) at the University of Michigan (UM), five of whom showed high-quality data 

suitable for quantitative data analysis. NICU patient ECG data was recorded at a sample frequency of 

512 Hertz in MLII. 

HRV analysis 

The SHHS selected 495 overnight ECGs for HRV analysis. The complete ECG recordings were divided into 

five-minute segments for HRV analysis. The SHHS performed quantitative HRV analysis on each 5-minute 

segment beginning at the time of sleep onset and continuing until termination of signal [25]. From this 

cohort, we identified 493 participants suitable for comparison with critically ill NICU patients. Two 

participants were excluded for having fewer than four hours of sleep time, rendering them unsuitable 

for comparison to the four-hour recordings collected from the NICU patients. Our study is principally 

concerned with the standard deviation of all normal-to-normal intervals (SDNN). 

We processed four hours of ECG data preceding cardiac arrest in hospitalized patients from the UM-

NICU. NICU patients’ ECG data was divided into consecutive 30-minute epochs, terminating at the loss of 

signal. From each of eight 30-minute epochs, a 5-minute section with minimal artifact and ectopic 

contamination was selected for quantitative HRV analysis. Effort was taken to identify suitable 5-minute 

segments from the beginning of each epoch, in order to confer the greatest degree of sampling 

regularity. This screening process was performed with the aid of ECM. Signal artifact and ectopic beats, 

where present, were addressed through simple deletion of the affected RRIs using methods described 

by Kaufmann et al. [27]. Quantitative analysis was performed for 5-minute segments within each 30-

minute epoch until loss of signal or the onset of ventricular tachycardia, ventricular fibrillation, profound 

bradycardia (less than 40 beats per minute), or 2nd/3rd-degree atrioventricular block. Each of the five 

patients suffered cardiac arrest within 24 hours following the end of their recording. 

Statistical analysis 

SDNN values from NICU patients and SHHS patients were compared using a two-sample Student’s t-test 

assuming unequal variances. 

Results 
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SHHS participants were sorted according to SDNN. This study was primarily concerned with the 

translation of traditional quantitative HRV measurements to observable morphological features within 

the corresponding ECM heat map. Accordingly, eight 5-minute sections of ECG data from participants 

with known SDNN were transformed into ECM. No single participant provided more than one 5-minute 

section for analysis. We selected four participants known to have very low SDNN and four participants 

known to have mean SDNN values. SDNN values for these subjects are shown in Table 1, including those 

reported by SHHS and those produced by our own independent analysis. Our measured SDNN values 

and those reported by SHHS differ only slightly. We attribute these differences to slight variations in R 

peak labeling between our detection algorithm [23] and that used by SHHS. 

By design, the ECM is constructed such that the Rn peaks of each time segment are uniformly aligned at 

time 0 seconds. Consequently, the bottom Rn row of R peaks forms a uniform, straight line of high 

colorimetric intensity (red/yellow). In subjects with normal HRV, no such alignment is present in the 

upper row of R-peaks (Rn+1) (Figure 1E). In fact, participants (#1-4) with moderate to high SDNN values 

show consistent variations in RRI that are visible upon inspection of the ECM (Figure 2A). Low-SDNN 

participants (#5-8), however, produce ECM images exhibiting strikingly uniform alignment of the Rn+1-

peaks. In subjects with extremely diminished HRV, the upper row of Rn+1-peaks adopts such severe 

uniformity that it begins to appear parallel with the bottom row of Rn-peaks (Figure 2B). This feature is 

common to all of the low-SDNN participants and is a direct reflection of the extreme RRI consistency 

quantified by the corresponding SDNN value. Note that values reported in Table 1 are measurements 

taken from 5-minute segments of data, but the corresponding ECM images in Figure 2 display only two 

minutes of each 5-minute segment. ECM images were shortened for efficient presentation and side-by-

side comparison. 

In order to validate the utility of ECM for the assessment of HRV in hospitalized patients, we examined 

pre-arrest ECG data from a small cohort of NICU patients. SDNN values measured are significantly and 

persistently depressed in critical patients compared to outpatient SHHS participants (Figure 3A). Average 

5-minute HRV values, sampled from every 30-minute epoch for the duration of the four-hour recording, 

were calculated (Table 2). We also collected longitudinal, 5-minute ECM images from ICU patients in 

order to determine if measurable changes in HRV could be perceptible using ECM, alone. Representative 

images from Patient D, collected during the hours prior to cardiac arrest, appear to display a gradual 
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decline in HRV towards the end of the recording (Figure 3B). The patient’s time of death was marked in 

the electronic medical record at 3:28 PM. 

Erroneous algorithmic peak annotation, difficult to detect in traditional HRV analysis based solely on 

ECG raw data, can be a source of artefact that would affect HRV analysis. In contrast, misidentified R 

peaks are readily and clearly visible upon viewing ECM, since they precipitate an obvious irregularity in 

the Rn line of peaks (Figure 4A). Normally, Rn peaks are aligned with perfect uniformity. Regardless of 

the detection algorithm used, undetected peaks present as gaps in the Rn row. Incorrect R peak 

detection will also disrupt the uniformity of the Rn alignment and draw the attention of the viewer. In 

this figure (upper panel), black arrows correspond to the detected peaks. In this particular case, three T 

waves have labeled as R peaks. This error creates a striking abnormality in the Rn row, which can then 

be corrected, if desired (Figure 4A). In this particular example, we had R-peaks purposefully labelled on 

the T-waves to show how misidentified R peaks appear on ECM. In reality, misidentification of R peaks 

occurs more commonly when the T-waves are tall and peaked.   

The presence of arrhythmic beats in ECG signal, which must be removed manually in traditional 

methods of HRV analysis, can also constitute the source for artefact that affect HRV analysis. To 

demonstrate how heart period fluctuation appears on ECM for signals with arrhythmic beats, we 

selected a 5-minute segment of NICU ECG data with multiple premature atrial contractions (PACs; Figure 

4B). For this particular segment, the uncorrected SDNN was found to be 35.92 ms. When corrected by 

simple deletion of the affected RRIs, the true SDNN was found to be 2.31 ms. This example shows just 

how wildly the presence of arrhythmias can change the values of HRV, if left uncorrected. In contrast, 

the marked parallel alignment of the Rn and Rn+1 peaks, a qualitative marker of reduced HRV on ECM, is 

not disrupted, and the low HRV remains visually apparent on the ECM display (lower panel). This data 

shows that ECM-based visual HRV estimation is less influenced by the presence of arrhythmia. 

Discussion 

ECM enables single-glance inspection of large amounts of electrophysiological data. While such 

functionality has applications in dysrhythmia identification, this paper focuses on the use of ECM to 

assess and monitor HRV without relying on traditional methods of quantitative analysis. Previous 

methods of HRV analysis have not seen widespread clinical use, possibly due to lengthy data processing 
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times and the lack of robust methods for artifact correction [18]. In many cases, ECM-mediated analysis 

effectively bypasses the need for HRV quantification, while still providing a faithful representation of the 

subject’s overall HRV. Furthermore, continuous ECM streaming, which can be easily added to any ECG 

monitoring device, allows real time evaluation of cardiac signals in a manner akin to the ubiquitous ECG, 

and permit visual identification of transient cardiac events such as minibursts in heart period 

fluctuations that link heartbeats to other physiological events [28].  

Generally, ECG data that is heavily contaminated with ectopy or musculoskeletal noise is not suitable for 

HRV analysis without manual correction [18]. These constraints are likely to be particularly relevant in 

seriously ill patients in a hectic ICU setting, where baseline tremors, abnormal respirations, and altered 

mental status may hinder the acquisition of ideal data. However, since ECM-mediated HRV analysis is 

qualitative and does not rely on sensitive algorithmic processing, we are able to demonstrate its utility 

for the inference of overall HRV in unedited ECG recordings with various ectopic beats and signal 

artifact. The presence of premature ventricular contractions (PVCs) or PACs does not significantly disrupt 

the underlying ECM morphology. Upon inspection of the ECM, even a heavy ectopic burden does not 

obfuscate the variability of the underlying sinus rhythm. Similarly, signal noise attributable to 

musculoskeletal activity causes a local disruption in the quality of the cardiac signal but does not 

compromise the ability of a discerning analyst to develop an impression of the subject’s HRV on ECM. 

Notably, if quantitative analysis is desired, manual correction is still required. However, ECM expedites 

the process by allowing the compact evaluation of long ECG recordings and enhancing the appearance 

of algorithmic errors. Thus, while quantitative HRV reporting is likely indispensable, ECM-mediated HRV 

analysis may be a viable and useful addition to the existing repertoire of methods for monitoring patient 

progress and directing the clinical treatment plan. It must be noted, however, ECM-based HRV survey 

requires human eye interpretation, and automatic interpretation remains challenging at this point. 

As a reflection of sympathetic tone, HRV may signal impending cardiovascular events in hospitalized 

patients. We obtained ECG data from a small cohort of hospitalized, critically ill patients who 

subsequently suffered in-hospital cardiac arrest. All of these patients exhibited persistent reduction in 

SDNN during the hours immediately preceding cardiac arrest.  Although these findings are only 

preliminary and the etiology of such HRV changes is largely unknown, sympathetic overdrive has been 

implicated in the pathophysiology of heart failure and is, itself, associated with poor outcome in heart 

failure patients [29]. Importantly, our initial evaluation in prearrest patients reveals reduced HRV that 
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appears to manifest independent of tachycardia, an accepted metric for gauging the severity of heart 

failure-associated sympathetic dysfunction [30,31]. Thus, the progress of HRV changes may offer an 

additional indicator of cardiac function and treatment efficacy. 

It must be noted that our analysis only considered NICU patients who ultimately suffered in-hospital 

cardiac arrest. We were unable to source data from an analogous cohort of critically ill patients with 

favorable outcomes. Thus, based on the results of this study, alone, we are not able to establish a strong 

correlation between diminished HRV and poor outcome. In addition, we were not able to obtain clinical 

event data for the recording period. It is, therefore, impossible to isolate the effects of treatment 

interventions on cardiac electrophysiology. Furthermore, the onset of an arrest rhythm is only captured 

in one of our five NICU recordings. All other patients were removed from monitoring for a number of 

hours prior to the time of death. Thus, we do not capture sufficient data to draw conclusions about HRV 

during the period immediately preceding cardiac arrest. Future studies ought to collect longer 

recordings and aim to capture the moment of cardiac arrest. The longitudinal ECM images shown for 

Patient D in Figure 3B do appear to capture a declining trend in overall HRV. However, such a trend was 

not visually apparent upon examination of the ECM images from the other four NICU patients, which 

appeared only to display persistently low HRV. We are, therefore, unable to conclude that declining HRV 

is a development signaling imminent cardiac arrest. 

Nevertheless, our results do suggest diminished HRV is associated with life-threatening illness, with 

near-death patients consistently exhibiting SDNN values well below those of outpatients. It is also worth 

noting that, although none were sufficiently ill at the time of PSG to merit hospitalization, many 

participants in the SHHS cohort do have significant medical history. Thus, HRV measurements taken 

from a completely healthy population would, potentially, contrast even more starkly with HRV observed 

in ICU patients. 

In conclusion, our data suggest that ECM can promote qualitative and visual assessment of overall HRV 

and facilitates the single-glance identification of decreased HRV even in the presence of ectopic 

contamination or signal noise. These features may support the use of the HRV in clinical practice.   
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Table 1.  

HRV was validated quantitatively for eight subjects from the Sleep Heart Health Study (SHHS). From 

the SHHS dataset of 495 subjects for which HRV measurements were obtained, four were selected with 

extremely low standard deviation of all normal-to-normal intervals (SDNN) values. An additional four 

subjects were selected for their proximity to the mean SDDN for the dataset. SDNN values were 

measured from a 5-minute section of ECG data. The absolute time marking the start of each section is 

reported in seconds. Measured values for each 5-minute segment are displayed alongside those 

reported by the SHHS in their publicly available dataset. All SDNN values were measured in milliseconds. 

 

  

Subject SHHS ID Start time (s) 
HRV 

Appearance 

SDNN 

Measured 

(ms) 

SDNN 

Reported 

(ms)[25] 

Difference 

(ms) 

1 203853 25320 Normal 52.22 52.24 0.01 

2 205086 9480 Normal 52.18 52.24 0.06 

3 200116 29820 Normal 52.28 52.23 0.05 

4 205587 19500 Normal 55.13 52.24 2.90 

5 200978 9060 Low 6.57 4.70 1.87 

6 203424 7890 Low 2.86 2.91 0.06 

7 204587 19860 Low 7.86 8.15 0.29 

8 204865 10680 Low 6.45 6.31 0.13 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 
 

14 

Table 2. 

Average HRV measurements were obtained for each NICU patient over a four-hour recording shortly 

before cardiac arrest. Each reported value represents the simple average of all 5-minute segments from 

a total of eight 30-minute epochs. We measured the mean R-R interval (mean RRI), SDNN, and root 

mean square of successive difference between R-R intervals (RMSSD). The mean instantaneous heart 

rate (mean IHR) was calculated from the mean RRI value. 

 

Patient Mean RRI (ms) Mean IHR 

(beats/min) 

SDNN (ms) RMSSD (ms) 

A 668.18 89.80 8.12 3.28 

B 709.83 84.53 2.09 2.89 

C 762.00 78.74 5.37 2.95 

D 809.87 74.09 18.46 9.09 

E 618.64 96.99 7.33 4.06 
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Figure Legends 

Figure 1. ECM preserves ECG signal morphology while conveniently juxtaposing consecutive RR-

intervals (RRI). A traditional ECG (panel A) displays beat-to-beat variations in the RRI, a normal 

phenomenon known as HRV. Although this RRI variation is difficult to meaningfully assess when viewing 

a traditional ECG strip, it becomes apparent when overlaying sequential interbeat intervals (panel B). 

Sequential RRIs, arranged in this way, are converted to a colorimetric heat map (panel C) to enable 

efficient evaluation of large sections of data containing many heartbeats. In panel D, the morphology of 

the ECG signal is completely preserved and beat-to-beat variations in RRI are perceptible. In this 

example, which contains six pairs of sequential cardiac cycles, the P wave and T wave are denoted by 

bands of light blue and light green colorimetric intensity, respectively. Thus, the ECM also allows at-a-

glance evaluation of QT internal, PR interval, and ST segment dynamics. This very short section of ECM 

was extracted from a greater collection of cardiac signals (panel E), the examination of which reveals the 

highly dynamic nature of the RRI. Panels A-D are modified from Li et al. [23]. 

Figure 2. ECM facilitates visual interpretation of overall HRV. ECM images, each two-minutes in length, 

were constructed from Sleep Heart Health Study (SHHS) subject data representative of average (panel 

A) and very low (panel B) HRV, determined according to the standard deviation of all normal-to-normal 

intervals (SDNN) of 495 subjects. The ECM is constructed as described by Li et al. [23] and shown in 

Figure 1. Subjects with diminished HRV exhibit extreme RRI consistency, resulting in the parallel 

alignment of adjacent Rn+1-peaks. Subjects with SDNN values close to the sample mean do not display 

such striking alignment, due to RRI variation with each heartbeat. 

Figure 3. Critically ill patients in the UM-NICU exhibit HRV much lower than that of relatively healthy 

outpatients from the SHHS. The SDNN was calculated from 5-minute sections of ECG data drawn from 

30-minute epochs. ECM was used to facilitate the selection of 5-minute sections of data with minimal 

artifact contamination within each epoch. Consequently, 5-minute segments were collected in a 

somewhat irregular fashion within the full recording. SDNN values were computed in this manner for 4 

hours of electrophysiological data collected from NICU patients who suffered cardiac arrest less than 24 

hours from the time of the recording (n=5). SHHS participants (n=493) were used for comparison; 5-

minute SDNN values were imported from SHHS data for analogous 30-minute epochs, with each 4-hour 

recording beginning at the time of sleep onset. SDNN values for each epoch are reliably diminished in 

critically ill patients compared to relatively healthy individuals (panel A). For a single patient recording of 
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sufficient duration, 5-minute ECM images were constructed from the twelve hours prior to cardiac 

arrest. Representative images from Patient D are displayed from various time points during the 

recording. The patient’s time of death was entered at 3:28 PM and loss of signal occurred at 8:42 AM. 

The time at which each 5-minute segment begins is displayed to the right of each image (panel B). 

*P<0.05, **P<0.01, ***P<0.001 between groups as determined by two-sample Student’s t-test. 

Figure 4. ECM-based qualitative HRV evaluation is less sensitive to erroneous algorithmic peak 

annotation and the presence of arrhythmias. Wrongly detected R peaks are visually apparent and can 

be corrected before consideration for HRV changes (panel A). The positions of the wrongly placed peaks 

are indicated in the ECG panel (upper) as downward black arrows on three of the heartbeats on the P 

waves, and in the ECM panel (lower) as the area boxed. The misplaced peaks are visually apparent on 

ECM display and can be manually corrected if needed. Ectopic contamination with PACs does not 

significantly disrupt the appearance of diminished HRV (panel B). The representative PAC is indicated by 

a horizontal black bar on the ECG panel (upper) and a black arrow on the ECM panel (lower). There are 6 

PACs in this 5-min long ECM epoch, none of which interferes with the HRV inspection on ECM.  For this 

particular segment, the uncorrected SDNN was found to be 35.92 ms. When corrected by simple 

deletion of the affected RRIs, the true SDNN was found to be 2.31 ms, 

ACCEPTED MANUSCRIPT



Figure 1



Figure 2



Figure 3



Figure 4


