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Chapter 1

Introduction

In most of the fields of computer graphics our main goal is to create images that are similar
to the ones we see in real life. This requires a deep understanding of how light interacts with
real world objects and even with the media it travels within. All these physical rules need to
be described by a mathematic formula that can be evaluated by computers. The mathematical
model of light transport is the so called rendering equation, which is — in its pure form — so
highly computation intensive that it cannot be evaluated in real-time even for simple scenarios.
On the other hand, real-time rendering is an essential requirement in case of interactive graphical
applications.

As we simulate light-object and light-media interactions, we need a way to store the virtual
model of real world objects, which have almost infinite geometric detail. To efficiently do this we
need either some kind of mathematical model or a rough simplification of the original surfaces.

This thesis work presents real-time methods that are based upon the discretization of scene
geometry to address the storing problem. With sampled geometry light ray-surface intersections
can be efficiently computed, which is the essential component of the advanced evaluation of the
rendering equation. The presented algorithms deal with large range of illumination effects from
diffuse indirect illumination to specular reflections and even participating media rendering.

1.1 Rendering equation

In scenes not incorporating participating media it is enough to calculate the light intensity
that is measured by the radiance at surface points since in vacuum the transferred radiance
does not change along a light ray. The radiance reflected off a surface is affected by the emission
of this point, the illumination provided by other surfaces, and the optical properties of the
material at this point.

Formally this dependence is characterized by a Fredholm type integral equation, which is
called the rendering equation. Denoting the radiance of point ~y in direction ~ω′ by L(~y, ~ω′),
the rendering equation expresses radiance L(~x, ~ω) at point ~x in direction ~ω as its own emission
Le(~x, ~ω) and its reflected radiance Lr(~x, ~ω):

L(~x, ~ω) = Le(~x, ~ω) + Lr(~x, ~ω), (1.1)

The reflected radiance is the sum of contributions scattered from all incoming directions:

Lr(~x, ~ω) =
∫

Ω′

L(~y, ~ω′)fr(~ω′, ~x, ~ω) cos+ θ′~xdω′, (1.2)

where ~y is the point visible from ~x at direction ~ω′, Ω′ is the directional sphere, fr(~ω′, ~x, ~ω) is
the BRDF, and θ′~x is the incident angle between the surface normal and direction −~ω′ at ~x.
If incident angle θ′~x is greater than 90 degrees — i.e. the light illuminates the “back” of the
surface — then the negative cosine value should be replaced by zero, which is indicated by

2



CHAPTER 1. INTRODUCTION 3

superscript + in cos+. Illuminating point ~y is unambiguously determined by shaded point
~x and illumination direction ~ω′.

The rendering equation describes the light transfer at a single representative wavelength. In
fact, we evaluate the radiance spectrum at a few representative wavelengths, most conveniently at
the wavelengths of red, green, and blue since this relieves us from the color matching calculation.

If we knew the radiance of all other points ~y, then the solution of the rendering equation
would be equivalent to the evaluation of an integral. Unfortunately, the radiance of other points
is not known, but similar equations should be solved for them. In fact, the unknown radiance
function shows up not only on the left side of the rendering equation, but also inside the integral
of the right side. The rendering equation is thus an integral equation. Solving integral equations
is difficult and requires a lot of computation.

1.2 Volumetric rendering equation

If light absorbing and scattering materials are present in space the rendering equation gets even
more complicated. Incoming radiance will depend not only on the geometric factor but also
on the absorbing and scattering properties of the media along the light path from one surface
point to another. In other words we should consider how the light goes through participating
media. The change of radiance L on path of length ds and of direction ~ω depends on different
phenomena:

• Absorbtion and outscattering: the light is absorbed or scattered out from its path
when photons collide with the particles. If the probability of collision in a unit distance
is τ , then the radiance changes by −τLds due to the collisions. After collision a particle
may be either absorbed or reflected with the probability of albedo a.

• Emission: the radiance may be increased by the photons emitted by the participating
media (e.g. fire). This increase is Leds where Le is the emission density.

• In-scattering: photons originally flying in a different direction may be scattered into the
considered direction. The expected number of scattered photons from differential solid
angle dω′ equals to the product of the number of incoming photons and the probability
that the photon is scattered from dω′ to ~ω. The scattering probability is the product
of the collision probability (τ), the probability of not absorbing the photon (a), and the
probability density of the reflection direction, called phase function P . This function
can be measured from the real world medium to be displayed, or preferably it can be an
analytic expression. The choice of the scattering phase function is a compromise between
realism and mathematical tractability.

The simplest phase function is the isotropic phase function:

P (~ω′, ~ω) =
1
4π

where the factor of 1/4π results from the normalization condition of a probability density
function: ∫

Ω′

P (~ω′, ~ω)dω′ = 1.

A more complex anisotropic function is the Henyey-Greenstein phase function, which
is widely used in light scattering simulation [HG40, CS92]:

P (~ω′, ~ω) =
1
4π

· 3(1− g2)(1 + (~ω′ · ~ω)2)
2(2 + g2)(1 + g2 − 2g(~ω′ · ~ω))3/2

, (1.3)

where g ∈ (−1, 1) is a material property describing how strongly the material scatters
forward or backward. This function can be used in a wide range of different areas from
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natural phenomena — like smoke or clouds — rendering to medical simulation — like
simulating light scattering in human dermis or aorta.

Taking into account all incoming directions Ω′, we obtain the following radiance increase
due to in-scattering:

τ(s)ds · a(s)




∫

Ω′

L(s, ~ω′)P (~ω′, ~ω)dω′

 .

Adding the discussed changes, we obtain the following volumetric rendering equation
for radiance L of the ray at s + ds:

L(s + ds, ~ω) = (1− τ(s)ds)L(s, ~ω) + Le(s, ~ω)ds + τ(s)ds · a(s)
∫

Ω′

L(s, ~ω′)P (~ω′, ~ω)dω′. (1.4)

This is also an integral equation, and the computation of the in-scattering term makes the
evaluation difficult. Depending on the runtime and quality requirements there are different
ways to incorporate the volumetric rendering equation into the rendering equation. We can
choose to use the volumetric equation only at light paths from visible surface points to the eye,
or at light paths from light sources to visible surface points so the shadows of participating
media will show up. If the presence of opaque objects are taken into account while solving the
volumetric equation shadowing and light shafts will appear. One can also choose to solve the
entire volumetric equation, or can use an approximate solution with eliminating, or somehow
approximating the in-scattering term.

1.3 Local illumination

Local illumination methods take a drastic approach, and approximate the radiance to be
reflected by a known term Lin(~x, ~ω′), which is some approximation of the incoming radiance at
point ~x:

L(~x, ~ω) = Le(~x, ~ω) +
∫

Ω′

Lin(~x, ~ω′)fr(~ω′, ~x, ~ω) cos+ θ′~xdω′, (1.5)

The name of the method came from the fact that — if shadows are ignored — radiance
calculations depend only on local properties of the surface. Visible surface points should be
searched only from the camera. To approximate incoming radiance, usually abstract light
sources are used, as they provide illumination just in a single direction for each point.

Graphics accelerator hardware uses rasterization and the z-buffer algorithm to compute
primary visibility, i.e. to determine what is visible from the camera, and any further calculation
is independent of the scene geometry and illumination of other surface points, so it can be highly
parallelized to achieve real-time performance for complex scenes (see Section 1.4).

The local illumination model examines only one-bounce light paths and ignores multiple
reflections. This clearly results in some illumination deficit, so the images will be darker than
expected. More importantly, those surfaces that are not directly visible from any light sources
will be completely dark. The old trick to add the missing illumination in a simplified form is
the introduction of the ambient light.

Let us assume that there is some ambient lighting in the scene of intensity La that is constant
for every point and every direction. According to the rendering equation (Equation 1.2), the
reflection of this ambient illumination in point ~x and at viewing direction ~ω is

L(~x, ~ω) =
∫

Ω′

Lafr(~ω′, ~x, ~ω) cos+ θ′~xdω′ = La a(~x, ~ω),
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where
a(~x, ~ω) =

∫

Ω′

fr(~ω′, ~x, ~ω) cos+ θ′~xdω′

is the albedo of the surface. The albedo is the probability that a photon arriving at a surface
from the viewing direction is not absorbed by the surface. Note that the albedo is not indepen-
dent of the BRDF but can be expressed from it, and with the exception of diffuse surfaces, it
is not constant but depends on the viewing direction. For diffuse surfaces, the correspondence
of the albedo and the diffuse reflectivity is

a(~x) =
∫

Ω′

kd(~x) cos+ θ′~xdω′ = kd(~x)π. (1.6)

As the ambient illumination model ignores the geometry of the scene, the resulting images
are plain and do not have a 3D appearance. A physically correct approach would be the solution
of the rendering equation that can take into account all factors missing in the classical ambient
lighting model. However, this approach is too expensive computationally when dynamic scenes
need to be rendered in real-time.

Instead of working with the rendering equation, local approaches examine only a neigh-
borhood of the shaded point. Ambient occlusion [Hay02, PG04, KA06] and obscurances
[ZIK98, IKSZ03] methods compute just how “open” the scene is in the neighborhood of a point,
and scale the ambient light accordingly. Originally, the neighborhood had a sharp boundary in
ambient occlusion and a fuzzy boundary in the obscurances method, but nowadays these terms
refer to similar techniques. As the name of ambient occlusion became more popular, we also use
this term in this thesis.

If not only the openness of the points is computed but also the average of open directions is
obtained, then this extra directional information can be used to extend ambient occlusion from
constant ambient light to environment maps [PG04]. In the spectral extensions the average
spectral reflectivities of the neighborhood and the whole scene are also taken into account, thus
even color bleeding effects can be cheaply simulated [MSC03, Bun05].

Since ambient occlusion is the “local invisibility of the sky”, real-time methods rely on
scene representations where the visibility can be easily determined. These scene representations
include the approximation of surfaces by disks [Bun05, HJ07] or spheres [SA07]. Instead of
dealing directly with the geometry, the visibility function can also be approximated [CAM08].
A cube map or a depth map [Mit07, Sai08] rendered from the camera can also be considered as
a sampled representation of the scene. Since these maps are already in the texture memory of the
GPU, a fragment shader program can check the visibility for many directions. The method called
screen-space ambient occlusion [Mit07] took the difference of the depth values. Horizon
split ambient occlusion [Sai08] generated and evaluated a horizon map on the fly.

1.4 The GPU pipeline

Though local illumination makes simplifications that cause notable quality loss in visual appear-
ance, the rough approximations make real-time rendering possible through high parallelization
and a special purpose hardware called the graphics accelerator. We often refer to graphics cards
with the name GPU which stands for the denomination of the processors located on the ac-
celerator cards, the Graphics Processing Units. In this dissertation we assume a Shader
Model 3 compatible GPU whose pipeline is shown in Figure 1.1.

Controlling the pipeline is possible from the CPU through a special 3D API, which is in
practice either Direct3D or OpenGL. 3D APIs are used to provide the input and define the
output of the computation outplaced to the dedicated hardware. The functionalities of the
rendering pipeline are set through render states, and computation is evoked with render
calls. The output of the rendering is a color buffer which will be displayed on the monitor,



CHAPTER 1. INTRODUCTION 6

vertex 
shader

clipping &
homogeneous

division

rasterization
& 

interpolation

fragment
shader

texture memory

merging

depth
buffer

color
buffer

Graphics Processing Unit

render to
texture

texture copytexture upload

texture
fetch

texture
fetch

stencil
buffer D

i
s
p
l
a
y

CPU
command
processor

memory

Host

vertex
buffer

Figure 1.1: Shader Model 3 architecture.

while the input is some kind of geometry data of the virtual world. The virtual world consists
of objects. Every object is defined in its own modeling space where the definition is simple.
Object definitions are mathematical formulae that identify which points belong to the surface
of the object. Though plenty of different models of surface definition exist, GPUs can process
only triangles. As in many cases, modelling the objects is easier in other type of definitions than
triangles, these descriptions should be converted to triangle meshes. The approximation of
surfaces by triangles is called tessellation.

Triangles output by tessellation are defined by triplets of vertices given in modeling space.
For every vertex, beside its position, local surface characteristics required for shading are also
calculated. These usually include the normal vector of the surface at the given vertex and
BRDF parameters, like diffuse or specular reflectivity or shininess. A useful property is a
texture coordinate that references surface properties stored in one-, two- or three-dimensional
arrays called textures. The records of triangle vertex data are stored in huge arrays called
vertex buffers, in which three consecutive vertex records form a triangle. Except deformable
geometry, vertex buffers are uploaded to the video memory of the GPU only once. Later to
generate the image of one particular mesh, the CPU program should bind the right vertex
buffer and issue a draw call to start the pipeline.

1.4.1 Vertex shader

The first parallelized part of the pipeline is the vertex shader that processes vertices one-by-
one and usually executes transformation and per-vertex lighting. To perform shading, vertex
positions and normals have to be transformed into the coordinate system where the camera
and lights are specified. This is the world space. Transformation parameters define where
the object actually resides in the virtual world, and the computation itself is referred to as the
modelling or world transformation. Making this transformation time dependent, objects
can be animated in the virtual world.

Where a triangle must be drawn on the screen is found by applying the camera, projec-
tion and finally viewport transformations after world transformation. Camera transformation
translates and rotates the virtual world as it is seen in the point of view of the camera, making
the z-axis look into the camera view direction. Projection transformation defines the size of the
window the camera can see through, and distorts the scene to make view rays meeting in the
camera become parallel if perspective projection is used to mimic real world cameras.

The vertex shader is one of the replaceable part of the pipeline, which means that its
behavior can be freely programmed in a special programming language. The base functionality
remains — namely it should project the triangles to the screen — but how it is performed, and
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what kind of other information is also calculated is not specified.

1.4.2 Clipping, rasterization and interpolation

After projection the useful part of the virtual world lies in an axis-aligned box defined by
inequalities −1 < x < 1,−1 < y < 1, 0 < z < 1, to which triangles are clipped. Finally
these normalized screen space coordinates — more precisely the x and y coordinates — are
transformed to screen pixel coordinates (screen space) to identify where exactly they should
be drawn in the output buffer.

After computing final vertex colors (with or without lighting) and screen space positions,
rasterization and linear interpolation are performed. During rasterization pixels which
fall into the interior of the projection of the triangle are identified by a scan line triangle filling
algorithm. The properties (e.g. colors and position) of the individual pixels are obtained from the
vertex properties using linear interpolation. The main advantage of this scan line algorithm
is that a property of a pixel can be obtained with a single addition from the property of the
previous pixel, only an increment constant should be calculated once for each property and for
each triangle.

1.4.3 Fragment shader

Pixels identified by rasterization are processed independently and parallel. For each pixel a tex-
turing operation is performed which enables per-pixel color definitions with the use of textures.
Textures are usually 2D arrays of color records in video memory. How these textures should
be mapped onto a triangle is specified texture coordinates assigned to every vertex. These
coordinates are also interpolated linearly within the triangles like other attributes. One can de-
cide to reject vertex color information and use texture colors instead, or can combine these two
colors (usually multiply) together to use both lighting and detailed surface color variations. An
important feature of textures is that a number of filtering techniques can be applied. Textures
are initialized either by the CPU code or their can be a copied from the frame buffer. Both color
buffer and textures can be read back to CPU memory at any time. We should always consider
that these data movings have heavy time cost.

Fragment shaders are the second replaceable part of the pipeline. Their inputs are in-
terpolated vertex shader output values. Plenty of arithmetic, geometric and texture sampling
functions can be used to calculate the final fragment color (and even fragment depth), which
enables a wide variety of special shading effects that can be implemented on the GPU.

1.4.4 Merging

Pixel colors after texturing stage are not directly written to the frame buffer, but they are
combined with the data already stored at the same location. This operation is called merging.
During this stage not only color values but also additional data is used, like depth, stencil or
alpha values. Besides color buffer memory a so called depth buffer is also maintained, that
contains screen space z coordinates. Whenever a triangle is rasterized to a pixel, the color and
the depth are overwritten only if the new depth value is less than the depth stored in the depth
buffer, this test is called the depth test. As a result, we get a rendering of triangles correctly
occluding each other. This process is commonly called the depth buffer algorithm. Depth
testing can be turned off, or can be reversed so only furthest pixels will be kept. If a pixel passes
the depth test not only color values but depth values are also overwritten. This depth writing
can be turned off even if depth testing is turned on, which is useful for transparent material
rendering.

Transparent surface rendering is achieved with blending. Color buffers can have four com-
ponents, where the fourth component beside red, green and blue channels is an alpha channel,
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which describes the transparency of a pixel. Blending is a process where final pixel color is com-
puted from the newly computed color (source color) and the previously stored color (destination
color) with some kind of blending operator. After the merging state the frame buffer is ready
to be displayed.

1.4.5 Render-to-texture feature

Shader Model 3 GPUs introduced an important feature essential for general computing called
render-to-texture. In the classic case the merging state works on the frame buffer, which will
be displayed on the screen. The content of this buffer could be copied to a texture to be reused
in later renderings. As this memory moving has a significant cost, newer GPUs can redirect the
final output from the frame buffer to a given texture. The frame buffer or the texture memory,
which is written by fragment shaders is called render target. As these targets are no longer
associated with the display device, it also became possible to output values simultaneously to
several textures, allowing more output data information. This feature is called multiple render
targets. This feature also extended the number of render output formats that can be used,
allowing signed and floating point representations for texture render targets, which opened the
possibility to precisely store general information.

1.5 Using GPUs for global illumination

Unlike local illumination, global illumination methods[Cso05, Ant04] do not take drastic
simplifications, and aim at solving the rendering equation in its original form. By accurately
simulating real world physics, we expect the results to be more realistic.

Let us consider equation 1.2, which expresses the reflected radiance of an arbitrary point ~x
as a function of the radiance values of illuminating points ~y. Radiance L(~y, ~ω′) at illuminating
point ~y is not known, but we can express it using the rendering equation inserting ~y into ~x.

Repeating the same step, the radiance caused by single, double, triple, etc. reflections can be
obtained. It means that to consider not only single bounce but also multiple bounce light paths,
the integral of the rendering equation should be recursively evaluated. From mathematical
point of view, global illumination rendering means the solution of the rendering equation, or
alternatively, the evaluation of the sequence of high-dimensional integrals for the representative
wavelengths.

When the scene is rendered by the GPU, the data passed to shaders are still only describing
local geometry and materials, or global constants, but nothing about other pieces of geometry.
Primitives and points are processed independently, dependence is introduced only at the last
merging step by depth testing and alpha blending. This still allows only local illumination.
However, when a point is shaded with a global illumination algorithm, its radiance will be
the function of all other points in the scene. From a programming point of view this means
that we need to access the complete scene description when shading a point. While this is
granted in CPU based ray tracing systems, the stream processing architecture of current GPUs
fundamentally contradicts this requirement. When a point is shaded on the GPU we have just
its limited amount of local properties stored in registers, and may access texture data. Thus
the required global properties of the scene must be stored in uniform registers — which have a
limited size and can be refreshed only by the CPU —, or more preferably in textures.

If the textures must be static or they must be computed on the CPU, then the illumination
computation is not making use of the processing power of the parallel hardware, and the graphics
card merely presents CPU results. Textures themselves have to be computed on the GPU. The
render-to-texture feature allows this: anything that can be rendered to the screen, may be stored
in a texture. Such texture render targets may also require depth and stencil buffers. Along with
programmability, various kinds of data may be computed to textures. They may also be stored
in floating point format in the texture memory.
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To use textures generated by the GPU, the rendering process must be decomposed to passes,
where one pass may render into a texture and another may use the generated textures. Since
the reflected radiance also depends on geometric properties, these textures usually contain not
only conventional color data, but they also encode geometry and prepared, reusable illumination
information as well.

Programmability and render-to-texture together make it possible to create some kind of pro-
cessed representation of geometry and illumination as textures. The different passes transferring
these information to each other are the keys to the addressing the self-dependency of the global
illumination rendering problem.

Illumination 
info precomputation

CPU+GPU

Texture 
memory

On the fly 
reuseable illumination 

info generation
GPU

Final gathering
GPU

Slower than 20 FPS At least 20 FPS

Off-line preprocessing

frame 
buffer

Figure 1.2: Structure of the GPU implementation of global illumination algorithms

An algorithm simulating a specific global illumination effect can be divided into two major
tasks. The first is an illumination information generation step, in which we create some
kind of information about the scene or about a part of it — like the geometry of the surround-
ing environment, or some kind of illumination information like incoming radiance, photon hit
position, ray parameters etc. — and store it as a texture. This information will be used in the
second main step, called the final gathering step. The final gathering step is the rendering
of an object to the frame buffer using a specific shader that uses the resources created in the
illumination info generation step to break the restriction of local illumination (see Figure 1.2).

While the final gathering step is executed in each frame, the illumination info generation
step should be executed only if needed. This update interval can vary according to the nature
of the given output resource (i.e. a texture or some simple variable). It can be updated in
each frame, only once before the first frame (can be implemented in a separate application and
run off-line), only if some conditions change (e.g. view position, view direction, object or light
position), or in an interval of a few frames defined by performance tuning.

1.6 Structure and objectives of the thesis work

This thesis work first summarizes the previous work in related fields, then presents the new
results in three parts. The three main parts of this work introduce methods that use sampled
geometry to achieve realistic illumination effects in case of common rendering problems: diffuse
and specular material rendering, and participating media rendering.

1.6.1 Diffuse material rendering

Indirect illumination is usually handled only in case of diffuse materials when the reflected
radiance is independent of the outgoing direction. This reduces the dimensionality of the light
transport operator making illumination pre-calculation easier. Several different methods have
been developed in real-time rendering that approximate indirect illumination, which would need
some kind of global illumination algorithm to be calculated exactly.
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The first part introduces an improved environment map based diffuse indirect illumination
algorithm, which provides more robust and accurate results than previous approaches [J8]. This
is followed by the presentation of a new screen space ambient occlusion method that effi-
ciently reduces the noise of this sampling based technique by rewriting the ambient occlusion
formula and introducing a new integration formula [F4].

1.6.2 Specular material rendering

The best way to display ideal reflections or refractions and caustics is to use a ray-tracing
algorithm, which remains an off-line solution due to its complexity. However in real-time graphics
new algorithms have been developed to render similar effects. Of course, these methods have
some limitations compared to ray-tracing. Self reflection may be missing, visible artifacts may
appear, or caustics may have poor quality.

The second part introduces a new method to render multiple reflections and refractions in
real-time enabling self reflections [D2]. Results can even be compared with classical ray-traced
solutions. A new method for caustic rendering is also presented, which replaces photon hit
splatting with caustic triangle rendering, which provides higher quality and requires less user
control [J5, J9].

1.6.3 Participating media rendering

Participating media is often represented by particle systems. Particles are usually drawn as
screen aligned small planes called billboards . As these billboards are two-dimensional objects
placing them in a three-dimensional environment causes several visual problems like clipping
and popping artifacts. The exact illumination calculation of participating media is also a chal-
lenging task, most particle rendering methods usually discard the scattering and light absorbtion
properties of the media.

The last part introduces methods to eliminate billboard rendering artifacts [J4, D1, J3, J2],
enable efficient rendering of high number of particles [J2], and to approximate light absorbtion
and scattering even under changing lighting conditions [J2, J1].



Chapter 2

Previous work

GPUs has a limited number of triangles they can render in each frame maintaining real-time
performance. To overcome this problem several methods — that are based on representing
geometry information in textures — have been developed to reduce triangle count while trying
to preserve geometric detail.

On the other hand, as the GPU processes triangles, vertices, and fragments independently
of each other, the only possibility to introduce self dependency of global illumination in a GPU
environment is the application of textures. Methods that use special textures to improve local
illumination have been used for several years in CPU computer graphics even before program-
able graphics hardware showed up. The next subsections cover the most important classical
techniques as well as their improvements used on the GPU.

As any extra information is stored in textures and during rendering we usually address
these textures with the texture coordinates of the actual geometry, this mapping can play
an essential role. In many cases geometry properties are sampled at their positions in texture
space. Creating the texture coordinates of a triangle mesh means unfolding it to a plane. This
can be a simple planar or spherical projection, but in many cases this mapping should meet some
requirements. The most common requirements are that the geometry should be mapped to a
unit square, and each triangle should have a unique mapping i.e. triangles should not overlap
each other in texture space. A texture storing some information with this special mapping is
usually called an UV atlas.

Geometry images [GGH02] use a special mapping, where no pixel in the texture atlas is
wasted (the geometry is seamlessly and perfectly flattened to a texture). All the three model
space position and normal coordinates of the original surface are stored in separate atlases,
which can be used later to reconstruct the geometry. For three adjacent pixels of the atlases, a
triangle is drawn whose vertex positions and normals are fetched from the position and normal
textures, respectively. The main advantage of this technique is that highly detailed geometry
can be efficiently stored and their triangle count can be hierarchically reduced, as for these
textures existing image compression techniques and mipmapping can be used.

On the other hand, if the texture coordinate pair is also directly utilized to identify the
represented point, storing three components for positions is not needed, a single additional
coordinate is enough. The texture containing this third coordinate can store distances from a
reference surface, when — according to its actual use — it is called a height map or depth
map, or from a reference point, when it is called a distance map. Methods described next
all exploit this compactness.

This chapter summarizes the most relevant previous work and discusses displacement map-
ping, impostors, distance map based indirect illumination approaches, and finally the par-
ticle system representation of participating media.

11
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2.1 Displacement mapping

Displacement mapping decomposes the definition of the surface to a rough macrostructure
geometry — which is a low resolution triangle mesh — and to details, which describe the
difference between the rough geometry and the original surface. The vertex shader transforms
only the macrostructure geometry, and the details are taken into account only when fragments
are processed, that is, when color texturing takes place. However, at this stage it is too late to
change the geometry, the point visible through the pixel is already defined. But as the vertex
shader processed only an approximate geometry, this surface point will also be incorrect. Thus
the visibility problem needs to be corrected in the fragment shader program by a ray-tracing
like algorithm. Vertex normals are also describing only the rough mesh, so normals needed for
proper lighting should also be corrected to match the bumps of the detailed surface.

The original surface normals and the displacements are stored in an UV atlases, called
normal map and height map.
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Figure 2.1: Tangent space

This information is defined in tangent space, which is a coordinate system attached to the
surface. Its basis vectors are normal ~N , tangent ~T , and binormal ~B which are defined for
each vertex (Figure 2.1). Normal points in the direction of the triangle normal, tangent and
binormal point to the the directions where the first and second texture coordinates increase
respectively. Vectors defined in this space are always relative to the triangle plane, making their
definition independent of triangle orientation. Vectors can be transformed from tangent space
to model space (or back) with a simple 3× 3 matrix multiplication.

The height map stores the distance of the detailed surface and the approximating geometry
along the triangle normal. Visible surface detection can be imagined as tracing rays into the
height field to obtain the texture coordinates of the visible point (Figure 2.2), which are used
to fetch color and normal vector data.

(u,v,0)

N

T, B

h

(u’,v’, h(u’,v’))

macrostructure 
surface

pixel

processed 
point

visible point

(u’,v’)

V

Figure 2.2: Ray tracing of the height field

Height function h is evaluated by fetching the texture memory. Let us define the ray by the
processed point (u, v) and by another tangent space point where the ray intersects the maximum
height plane. This point may be called entry point and is given as coordinates (uin, vin, 1) in
tangent space since the ray enters here the volume of possible height field intersections. Similarly,
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the tangent space processed point, (u, v, 0), on the other hand, can be considered as the exit
point. With the entry and exit points the ray segment between the minimum and maximum
height planes is

(u, v, 0)(1−H) + (uin, vin, 1)H, H ∈ [0, 1]. (2.1)

In this representation height value H directly plays the role of the ray parameter. The equation
to be solved is

(u′, v′) = (u, v)(1−H) + (uin, vin)H, h(u′, v′) = H.

In the following the most important displacement mapping techniques are reviewed. These
methods use different strategies to solve the height field ray-tracing problem.

2.1.1 Parallax mapping
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surface
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Figure 2.3: Parallax mapping

The texture coordinates are modified assuming that the height field is constant h(u, v) ev-
erywhere in the neighborhood of (u, v). As can be seen in Figure 2.3, the original (u, v) texture
coordinates get substituted by (u′, v′), which are calculated from the direction of tangent space
view vector ~V = (Vx, Vy, Vz) and height value h(u, v) read from a texture at point (u, v). The
assumption on a constant height surface simplifies the ray equation to

(u′, v′, h(u, v)) = (u, v, 0) + ~V t,

which has the following solution:

(u′, v′) = (u, v) + h(u, v)
(

Vx

Vz
,
Vy

Vz

)
.

Parallax mapping in its original form has a significant flaw. As the viewing angle becomes
more grazing, offset values approach infinity. When offset values become large, the odds of
(u′, v′) indexing a similar height to that of (u, v) fade away, and the result seems to be random.

A simple way to solve the problem of parallax mapping at grazing angles is to limit the
offsets so that they never get larger than the height at (u, v) [Wel04].

Parallax mapping assumes that the surface is a constant height plane. A better approxi-
mation can be obtained if we assume that the surface is still planar, but its normal vector can
be arbitrary (i.e. this surface is not necessarily parallel with the macrostructure surface). The
normal of the approximating plane can be taken as the normal vector read from the normal
map, thus this approach does not require any further texture lookups [MM05].

Parallax mapping makes an attempt to offset the texture coordinates toward the really seen
height field point. Of course, with a single attempt perfect results cannot be expected. The
accuracy of the solution, however, can be improved by repeating the correction step by a few
(say 3–4) times [Pre06].
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Figure 2.4: Parallax mapping taking into account the slope

(u’,v’)

N

T, B

3
1

2
4

V
5

Figure 2.5: Binary search that stops at point 5

2.1.2 Binary search

Suppose we have two guesses on the ray that enclose the real intersection point since one guess
is above while the other is below the height field. Points on the minimum and maximum height
values, i.e. points defined by height parameters Hmin = 0 and Hmax = 1, surely meet this
requirement.

Binary search halves the interval (Hmin,Hmax) containing the intersection in each iteration
step putting the next guess at the middle of the current interval [POC05, PO05]. Comparing
the height of this guess and the height field, we can decide whether or not the middle point is
below the surface. Then we keep that half interval where one endpoint is above while the other
is below the height field.

The binary search procedure quickly converges to an intersection but may not result in the
first intersection that has the maximum height value.

2.1.3 Secant search

Binary search simply halves the interval potentially containing the intersection point without
taking into account the underlying geometry. The secant method [YJ04, RSP06], on the other
hand, assumes that the surface is planar between the two guesses and computes the intersection
between the planar surface and the ray. It means that if the surface were really a plane between
the first two candidate points, this intersection point could be obtained at once. The height field
is checked at the intersection point and one endpoint of the current interval is replaced keeping
always a pair of end points where one end is above while the other is below the height field. As
has been pointed out in [SKALP05] the name “secant” is not precise from mathematical point
of view since the secant method in mathematics always keeps the last two guesses and does not
care of having a pair of points that enclose the intersection. Mathematically the root finding
scheme used in displacement mapping is equivalent to the false position method. We note
that it would be worth checking the real secant algorithm as well, which almost always converges
faster than the false position method, but unfortunately, its convergence is not guaranteed in
all cases.
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Figure 2.6: The secant method

2.1.4 Linear search

Linear search, i.e. ray-marching finds a pair of points on the ray that enclose the possibly
first intersection, taking steps of the same length on the ray between the entry and exit points
(Figure 2.7). Ray marching is an old method of rendering 3D volumetric data [Lev90].
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Figure 2.7: Linear search that stops at point 3

Using linear search alone results in stair-stepping artifacts unless the steps are very fine.
To make linear search really safe, each texel needs to be visited, which is slow if the texture
resolution is high. Linear search was used in steep parallax mapping [MM05].

2.1.5 Relief mapping

Combined iterative methods combine a safe or quasi-safe technique to provide robustness and an
unsafe method that is responsible for finding the intersection quickly. The safe method should
only find a rough approximation of the first intersection and should make sure that from this
approximation the unsafe method cannot fail.

This combined approach was used in relief mapping [OBM00, Oli00, POC05, PO05], which
uses a two phase root-finding approach to locate the intersection of the height field and the ray.
The first phase is a linear search, i.e. ray-marching, which finds a pair of points on the ray
that enclose the possibly first intersection. The second phase refines these approximations by a
binary search.

Ray marching can also be improved combined with a series of geometric intersections, ac-
cording to the secant method. The first pass of these algorithms is also a linear search. This
kind of combined approach was first proposed by Yerex [YJ04] and independently in parallax
occlusion mapping [BT04, Tat06a, Tat06b], and showed up in interval mapping [RSP06]
too.

Figure 2.8 compares the different bump mapping and displacement mapping techniques.

2.2 Impostors

A classical use of textures to represent geometry are impostors. These are previously prepared
semi-transparent images of complex objects stretched onto a rectangular object placed in the 3D
space which replaces the original geometry. In order to avoid the shortening of the visible image
when the user looks at it from grazing angles, the impostor plane is always turned towards the
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Figure 2.8: Comparison of mapping techniques assuming normal displacement sizes

camera. However the object always looks the same no matter from where we look at it. This
missing parallax effect makes the replacement too easy to recognize. In order to handle this
problem, we can pre-render a finite set of images from a few views, and present the one closest in
alignment with the actual viewing direction, or we can re-render the impostor image at a desired
frequency. This last method is called dynamically generated impostors, and is based on
the observation that image data can be re-used as long as the geometric and photometric errors
remain below a given threshold. Dynamically generated impostors distribute the problem of
rendering complex geometry between several frames to increase average performance. The main
problem of impostor based techniques is that they do not have real three-dimensional extents,
which makes correct occlusion handling problematic.

Billboard clouds [DDSD03] also use several images to replace a complex 3D object. A
billboard cloud is built by choosing a set of planes that capture well the geometry of the input
model, and by projecting the triangles onto these planes to compute the texture and transparency
maps associated with each plane of the billboard. Unlike billboards, these impostors are not
rotated when the camera moves, thus the expected parallax effects are provided. Billboard clouds
are displayed by rendering each polygon independently. The key of the method is how the planes
are defined, and how the triangles are clustered and projected onto the planes. Billboard clouds
can be used efficiently for smooth surfaces, complex, combined models, and even for crown of
trees [GSSK05].

In case of impostors an extra depth information can avoid occlusion artifacts as the actual
camera transformation and the position of the impostor plane is enough to reconstruct the
points of the sampled object. [Sch97] introduced nailboards that are used like classic impostor
billboards, but they also contained distance information from the billboard plane, which solved
the occlusion problem. This idea was used in [SK03] under a name 2.5D impostors, which
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was a complete GPU implemented version. It was successfully used to render trees with high
number of leaves. The crone was divided into blocks of leaves, and each block used the same
dynamically generated impostor with depth information. The technique was successfully applied
to handle occlusions between tree branches and leaf block impostors giving the illusion as each
leaf had its own geometry. [PMDS06] used depth complemented impostors to calculate accurate
multiple reflections of complex objects. The billboard cloud method was also extended with
depth information [MJW07].

billboard billboard cloud [GSSK05] 2.5D impostors [SK03]

Figure 2.9: Comparison of different impostor techniques used for tree rendering.

An other clever use of textures with geometry information is deferred shading [HH04,
BL08], which was developed to overcome the problem of lighting a scene with many light sources.
The main concept behind deferred shading is to gather all information of the visible surface points
that are needed by lighting. Deferred shading transforms geometry only once and performs
lighting calculation for each light source separately and combines their results. To do this first
geometry information is captured from the camera: a so called fat buffer or geometry buffer
is stored. This buffer is a collection of textures containing usually position, normal, color and
texture coordinate information of surface points visible from the camera. During lighting, no
geometry is processed only the fat buffer is used to reconstruct the necessary information in
each pixel. Each lighting pass computes the contribution of one light source and the result of
these passes are added together. Deferred shading overcomes the problem of limited instruction
count that can be used by shaders, and can greatly increase performance for complex scenes as
shading is performed only for finally visible points that have passed depth test after the entire
scene is drawn.

2.3 Sampled representation of indirect illumination

As mentioned before in Section 1.5, textures are our only tools to resolve the self dependency
of global illumination in a GPU environment. Methods that involve special textures to improve
local illumination have been used for several years in CPU computer graphics even before pro-
gramable graphics hardware showed up. The next subsections cover the most important classical
techniques as well as their improvements used on the GPU.

2.3.1 Light maps and shadow maps

Light maps store incoming radiance values for surface points. The surface is sampled in its
texture space so radiance values are stored in an UV atlas called light map. Light maps
are usually computed once in a pre-processing step, so to determine incoming radiance even
ray-tracing or any kind of global illumination software can be used. As all lighting calculation
is done off-line a single texture read is enough for a shaded surface point which makes the
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method extremely fast, but this also gives its main disadvantage namely it is suitable only for
static scenes under static lighting conditions, and supports only materials with view independent
BRDF models (diffuse objects only).

Light maps are still widely used in games on static geometry because of their effectiveness
(Figure 2.10). During the past few years several extensions have been developed to encode the
directionality of incoming radiance allowing more complex BRDF models and normal mapping
[MMG06]. Methods to support changing lighting conditions have also been developed [LLM06],
of course all these improvements go at the expense of performance.

(a) (b) (c)

Figure 2.10: Use of light maps: surface color (a), incoming radiance read from a light map (b),
final image using color and radiance information(c).

The most effective way to enhance the impression of real world lighting is to simply add
shadows to the local illumination model. Global illumination and ray tracing (and also light
mapping) techniques implicitly contain shadowing (and even soft shadowing) features. Shadow
generation in an incremental rendering pipeline however needs special algorithms. The most
widely used shadowing technique is shadow mapping [Wil78], which also uses geometry infor-
mation stored in textures.

Shadows occur when an object called shadow caster occludes the light source from another
object, called shadow receiver, thus prevents the light source from illuminating the shadow
receiver. To detect occluding geometry, the shadow mapping technique uses a depth image called
shadow map. This depth image is taken from a camera centered at the light source, looking
at the light source direction. Thus, the shadow map is a sampled representation of shadow
caster geometry where sampled depth values are distances from the light camera plane. During
shadow computation shaded surface points (which are visible from the avatar’s camera) are
projected back onto the light camera plane and their distances are compared to the previously
stored distance values. Shadowing occurs if the stored distance is smaller than the distance of
the shaded point meaning that an occluder surface point exist between the light source and the
shaded point.

Shadow maps are easy to generate, and can be effectively used even with special filtering
techniques required for eliminating aliasing artifacts and to mimic soft shadowing effects (Fig-
ure 2.11). As shadow mapping works for moving light sources and objects, it is often used in
real-time applications for dynamic geometry. We should note that each light source requires its
own shadow map, thus the number of lights that can be present is limited. Shadow mapping
techniques also completely neglect multiple light bounces, thus indirect illumination is not sup-
ported. Shadow maps and light maps are often used simultaneously, calculating the shadows of
dynamic objects with shadow mapping but for the static scene global illumination, information
is fetched from light maps.
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Figure 2.11: Soft shadows of dynamic objects with shadow mapping [J6]

2.3.2 Environment mapping and its generalization with geometry informa-
tion

The effects of dynamic objects on static geometry is usually handled with shadow mapping.
This technique can also be used to compute the shadows cast by static geometry on dynamic
objects. However these effects do not take multiple light bounces into account, which is essential
for reflections and refractions but also greatly increases rendering quality in case of diffuse and
glossy objects.

The idea of approximating the indirect illumination by a finite set of virtual lights was
born in the context of global illumination algorithms, such as in instant radiosity [Kel97], and
has been used in Monte Carlo algorithms [War94, SWZ96, WBS03, WFA+05].

For the computation of diffuse interreflections on the GPU, Dachsbacher [DS05] considered
shadow map lexels as virtual lights, while Lazányi [SKL06] assigned virtual lights to texels of
an environment map. Indeed, if only two-bounce indirect illumination is considered, a shadow
map lexel identifies the point which is directly illuminated by the light source. Such points may
indirectly illuminate other points, so can be considered as virtual lights.

Virtual light source algorithms suppose that virtual lights are point sources, and thus use
the point-to-point form factor (also called geometry factor) when the irradiance is computed.
Unfortunately, point-to-point form factor is numerically unstable since it goes to infinity when
the virtual light gets close to the shaded point, which results in bright spikes making the position
of the virtual lights clearly visible (see figures 3.3 and 3.4).

To address the numerical instability, in [SKL06] virtual lights were supposed to be small
disks, which made the geometry factor bounded. However, this approximation is still quite far
from being precise when the shaded point is close to the virtual light and the shaded point is
not in the normal direction from the virtual light source.

The indirect illumination from static environment to dynamic objects is often handled by
environment mapping. Similar to light maps, the environment mapping technique stores
incoming illumination to a texture, but sampling is not performed on surface points but on
incoming directions. As a pre-rendering step we capture the color information of surrounding
static environment to an appropriate texture called the environment map. A natural way
of storing the direction dependent information is an angular mapped texture, but in practice a
more GPU friendly possibility is to parameterize the directional space as sides of a cube centered
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at the origin of the dynamic object. Current GPUs have a built in support to group six images
of the six faces of a cube together and address them with a 3 dimensional direction vector. This
data structure is called a cube map.

When rendering ideally refractive or reflective dynamic objects the environment map is
looked up from a reflection or refraction direction respectively. However to support glossy and
diffuse materials many lookups should be made as their BRDF is not a Dirac-delta like in the
case of ideally reflections and refractions. These costly lookups can be saved if the environment
map is pre-convolved with the actual BRDF [RH01]. However this is a costly process which can
only be done in a pre-processing step, making the dynamic refreshment of environment maps
impossible.

Environment mapping is a very effective technique to compute specular effects, but it has
a main drawback. When storing incoming radiance we sample only a directional domain and
do not take surface locations into account, i.e. we assume that the dynamic objects is point
like, or in other worlds the environment is considered to be infinitely far away. This assumption
usually does not hold, which raises the error for surface points away from the cube map center
and closer to the surrounding environment.

One possible solution is to use multiple environment maps [GSHG98, ZHL+05], which can
be compressed using spherical harmonics [RH01, KAMJ05] or wavelets [ZHL+05].

Another solution takes the geometry of the environment and the dynamic object into account.
As the position of the shaded point is available only the environment geometry should be stored.
This can be done with a distance environment map or distance impostor [SKALP05],
which is generated just like a classical cube map, but it stores distance values from the cube
map center in addition to the incoming radiance.

Section 2.1 showed techniques that performed ray-tracing in height fields with various search-
ing algorithms. This concept can be reused in case of distance environment maps. With special
searching methods intersection with the environment can be computed for light rays with arbi-
trary start position and direction. With this ray-tracing capability in our hands environment
map based reflections and refractions will be much more accurate (see Figure ??).

In the remaining part of this section the ray-tracing algorithm in a single distance map layer
is discussed, using the notations of Figure 2.12. Let us assume that center ~o of our coordinate
system is the reference point and we are interested in the illumination of point ~x from direction
~R.

x

l

R

o

l’

d surface represented 
by the layer

distance map layer

distance stored is |l’|

hit of the ray

Figure 2.12: Tracing a ray from reflection point ~x at direction ~R. When we have a hit point
approximation ~l on the ray, the distance and the radiance of point ~l′ will be fetched from the
cube map of reference point ~o.

The illuminating point is thus on the ray of equation ~x + ~Rd, where d is the ray parameter.
The accuracy of an arbitrary approximation d can be checked by reading the distance of the
environment surface stored with the direction of ~l = ~x+ ~Rd in the cube map (|~l′|) and comparing
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it with the distance of approximating point ~l on the ray (|~l|). If |~l| ≈ |~l′|, then we have found
the intersection. If the point on the ray is in front of the surface, that is |~l| < |~l′|, the current
approximation is an undershooting. On the other hand, the case when point ~l is behind the
surface (|~l| > |~l′|) is called overshooting. Ray parameter d of the ray hit can be found by a
simple approximation or by an iterative process.

Parallax correction

r

x

Ro

perpendicular
surface

p

p’ environment
surface

R

Figure 2.13: Parallax correction assumes that the surface is perpendicular to the ray and replaces
approximation ~r of the environment mapping by the intersection of the ray of origin ~x and
direction ~R with this perpendicular surface.

Classical environment mapping would look up the illumination selected by direction ~R, that
is, it would use the radiance of point ~r (Figure 2.13). This can be considered as the first guess
for the ray hit. To find a better second guess, we assume that the environment surface at ~r is
perpendicular to ray direction ~R. In case of perpendicular surface, the ray would hit point ~p
with ray parameter dp:

dp = |~r| − ~R · ~x. (2.2)

If we used the direction of point ~p to lookup the environment map, we would obtain the radiance
of point ~p′, which is in the direction of ~p but is on the surface. If the accuracy is not sufficient,
the same step can be repeated, resulting in an iterative process [Wym05, WD06b, SP07].

Linear search

The possible intersection points are on the half-line of the ray, thus the intersection can be found
by marching on the ray, i.e. checking points ~l = ~x+ ~Rd generated with an increasing sequence of
parameter d and detecting the first pair of subsequent points where one point is an overshooting
while the other is an undershooting [Pat95].

The complete search can be implemented by drawing a line and letting the fragment program
check just one texel [KBW06]. However, in this case it is problematic to find the first inter-
section from the multiple intersections since fragments are processed independently. In their
implementation, Krüger et al. solved this problem by rendering each ray into a separate row of
a texture, and found the first hits by additional texture processing passes, which complicates
the algorithm, reduces the flexibility, and prohibits early ray termination.

Secant search

Secant search can be started when there are already two guesses of the intersection point,
provided, for example, by a linear search [D2], by taking the start and the end of the ray
[SKAL05], or by pairing the end of the ray with the result of the parallax correction [SKALP05].
Let us denote the ray parameters of the two guesses by dp and dl, respectively. The corresponding
two points on the ray are ~p and ~l, and the two points on the surface are ~p′ and ~l′, respectively
(Figure 2.14).
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Figure 2.14: Refinement by a secant step. The new approximation ~pnew is the intersection of the
ray and the line segment of overshooting approximation ~p′ and undershooting approximation ~l′.

Computing the ray parameter at the intersection of the ray and line segment ~p′ and ~l′, we
obtain:

dnew = dl + (dp − dl)
1− |~l|/|~l′|

|~p|/|~p′| − |~l|/|~l′|
. (2.3)

The point specified by this new ray parameter gets closer to the real intersection point. If
a single secant step does not provide accurate enough results, then dnew can replace one of the
previous approximations dl or dp, and we can proceed with the same iteration step. If we keep
always one overshooting and one undershooting approximations, the method is equivalent to the
false position root finding algorithm.

Binary search

Hu et al. [HQ07] and Oliveira et al. [OB07] used binary search steps to refine the approximations
obtained by a linear search similarly to popular displacement mapping algorithms. Binary search
simply halves the interval of the ray parameter:

dnew =
dl + dp

2
.

Since it does not use as much information as the secant search its convergence is slower.

Single reflections or refractions using the sampled geometry

In order to render a scene with an object specularly reflecting its environment, we need to
generate the depth or distance map of the environment of the specular object. This requires
the rendering of all objects but the reflective object six times from the reference point, which
is put close to the center of the reflective object. Then non-specular objects are rendered from
the camera position in a normal way. Finally, the specular object is sent through the pipeline,
setting the fragment shader to compute the reflected ray, and to approximate the hit point as a
cube map texel. Having identified the texel corresponding to the hit point, its radiance is read
from the cube map and is weighted by the Fresnel function. To simulate refracted rays, just the
direction computation should be changed from the law of reflection to the Snellius-Descartes
law of refraction.

Inter-object multiple reflections and refractions

Cube map based methods computing single reflections can straightforwardly be used to obtain
multiple specular inter-reflections of different objects if each of them has its own cube map
[NC02]. Suppose that the cube maps of specular objects are generated one by one. When the
cube map of a particular object is generated, other objects are rendered with their own shader
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programs. A diffuse object is rendered with the reflected radiance of the direct light sources, and
a specular object is processed by a fragment shader that looks up its cube map in the direction
of the hit point of the reflection (or refraction) ray. When the first object is processed the cube
maps of other objects are not yet initialized, so the cube map of the first object will be valid
only where diffuse surfaces are visible. However, during the generation of the cube map for the
second reflective object, the color reflected off the first object is already available, thus diffuse
surface – first reflective object – second reflective object paths are correctly generated.
At the end of the first round of the cube map generation process a later generated cube map
will contain the reflection of other reflectors processed earlier, but not vice versa. Repeating the
cube map generation process again, all cube maps will store double reflections and later rendered
cube maps also represent triple reflections of earlier processed objects. Cube map generation
cycles should be repeated until the required reflection depth is reached.

If we have a dynamic scene when cube maps are periodically re-generated anyway, the cal-
culation of higher order reflections is not more expensive computationally than rendering single
reflections. In each frame cube maps are updated using other objects’ cube maps indepen-
dently of whether they have already been refreshed in this frame or only in the previous frame
(Figure 2.15). The reflection of a reflected image might come from the previous frame — i.e.
the latency for degree n inter-reflection will be n frames — but this delay is not noticeable at
interactive frame rates.

Figure 2.15: Inter-object reflections in a car game. Note the reflection of the reflective car on
the beer bottles, and vice versa [J6].

2.3.3 Caustic mapping

Caustics show up as high frequency patterns on diffuse or glossy surfaces, formed by light
paths originating at light sources and visiting mirrors or refracting surfaces. A caustic is the
concentration of light [Jen01, TS00, WS03].

Light paths starting at the light sources and visiting specular reflectors and refractors until
they arrive at diffuse surfaces need to be simulated to create caustic effects. Theoretically, such
paths can be built starting the path at the light source and following the direction of the light
(light or photon tracing), or starting at the receiver surfaces and going opposite to the normal
light (visibility ray tracing). If light sources are small, then the probability that visibility ray
tracing finds them is negligible, thus visibility ray tracing is inefficient to render general caustics.
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General and effective caustic generation algorithms have two phases [Arv86], where the first
phase identifies the terminal hits of light paths using some kind of photon ray tracing, and the
second projects caustic patterns onto the receiver surfaces.

In GPU based caustic algorithms, the photon tracing part requires the implementation of
some ray-tracing algorithm on the GPU. One effective solution to GPU ray tracing was intro-
duced in Section 2.3.2. This environment map based technique suits very well to the needs of
the photon tracing part of caustic generation.

In the first phase, putting the view plane between the light and the refractor (Figure 6.2),
the scene is rendered from the point of view of the light source, and the terminal hits of caustic
paths are determined. The location of the terminal hits are stored in pixels of the render target
called the photon hit location image.

From discrete photon hits a continuous caustic pattern needs to be reconstructed and pro-
jected onto the caustic receiver surfaces. During reconstruction a photon hit should affect
not only a surface point, but also a surface neighborhood where the power of the photon is
distributed. A neighborhood consists of points that are in the same direction from the caustic
generator object and are all visible from the caustic generator. In order to eliminate light
leaks, this neighborhood information should be preserved in the space where photon hits are
stored and caustics are reconstructed.

There are several alternatives for spaces to represent the location of a photon hit, having
different advantages and disadvantages:

3D grid [PDC+03]: Similarly to classical photon mapping photon hits can be stored inde-
pendently of the surfaces in a regular or adaptive 3D grid. When the irradiance of a point
is needed, hits that are close to the point are obtained. If the surface normal is also stored
with the photon hits, and only those hits are taken into account which have similar normal
vectors as the considered surface point, then light leaks can be minimized and photons
arriving at back faces can be ignored. Unfortunately, GPUs are not good in managing
adaptive data structures needed by this approach, so such approaches are not effective.

Texture space [GD01, SKALP05, CSKSN05]: Considering that the reflected radiance caused
by a photon hit is the product of the BRDF and the power of the photon, and the BRDF
is most conveniently fetched according to the texture coordinates, one straightforward
possibility to identify a photon hit is the texture coordinates of that surface point which is
hit by the ray. A pixel of the photon hit location image stores the two texture coordinates
of the hit position and the luminance of the power of the photon. Since the texture space
neighborhood of a point visible from the caustic generator may also include occluded
points, light leaks might occur.

Screen or image space [LC04, WD06b]: A point in the scene can be identified by the pixel
coordinates and the depth when rendered from the point of view of the camera. This
screen space location can also be written into the photon hit location image. If photon
hits are represented in image space, photons can be splat directly onto the image of the
diffuse caustic receivers without additional transformations. However, the BRDF of the
surface point cannot be easily looked up with this representation, and we should modulate
the rendered color with the caustic light, which is only an approximation. This method is
also prone to creating light leaks.

Ray space [IDN02, EAMJ05, KBW06]: Instead of the hit point, the ray after the last specular
reflection or refraction can also be stored. When caustic patterns are projected onto the
receiver surfaces, the first hit of these rays need to be found to finalize the location of the
hit, which is complicated. Thus these methods either ignore visibility [IDN02, EAMJ05]
or do not apply filtering [KBW06].

Shadow map space [SP07]: In the coordinate system of the shadow map, where the light
source is in the origin, a point is identified by the direction in which it is visible from the
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light source. An advantage of this approach is that rendering from the light’s point of view
is needed by shadow mapping anyway. The drawbacks are the possibility of light leaks
and that caustics coming from the outside of the light’s frustum are omitted.

Most of the GPU based algorithms reconstruct the continuous caustic pattern from discrete
hits with placing semi-transparent quadrilaterals with a filtering texture, this technique is called
photon splatting [WS03, SKALP05, SP07, WD06b, WD06a].

Figure 2.16: A photon map, a room without photon hit positions and a room with splat photons
[SKALP05].

2.4 Rendering volumetric media on the GPU

Light scattering is caused by small particles in the air. As we cannot examine all the billion
particles one-by-one, some kind of discretization of the continuous medium is needed, which
allows us to replace the differentials of the volumetric rendering equation by finite differences.
The two most common representations of volumetric media are grids and particle systems.

The most obvious way to discretize a volume is to sample it on a regular grid. Cartesian
grids have the advantage that neighborhood relations are straightforward, they can be stored
in a two- or three- dimensional array, and the mapping between an arbitrary point in space and
its array indices is easy to calculate.

Besides Cartesian grids several other types of grids can be chosen that may suit our needs
better for a given situation. Examples are the face centered (FCC) or the body centered
(BCC) cubic lattices [BB08], which sample the space more evenly at higher dimensions. These
grids can also be stored in a two-dimensional array or texture, however, neighborhood relations
and the mapping of array indices are not so straightforward.

GPUs have a special texture type, which is a three dimensional array with support for tri-
linear interpolation. Scattering media can be uploaded to a 3D texture and can be rendered
efficiently with hardware support [Wei06].

One of the most widely used GPU methods for texture based volume rendering is texture
slicing. This method renders view aligned polygons which are generated by the CPU and
clipped against the bounding box of the volume. Rasterization generates fragments on the
polygon slices, producing sampling positions through the volume. These sampling positions are
addressed by 3D texture coordinates attached to the vertices of the polygons. This technique
can be efficiently implemented even in the fixed function pipeline. Polygons should be rendered
in order (e.g. from back to front), z-buffer algorithm should be turned off, and blending should
be enabled.

With the evolution of pixel shaders a common technique — that has been used for long in
CPU volume visualization — could be reimplemented on the GPU, namely ray marching. Ray
marching traverses view rays from the camera through each pixel into the volume. For each ray,
the volumetric rendering equation is evaluated, with equidistance sampling along the view ray
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leading to a Riemann sum approximation. As sample positions usually differ from grid positions
a tri-linear sampling filter should be used. Only the front faces of the volume boundary need to
be rendered, the sampling is performed by the fragment shader. GPUs that support loops and
branching in fragment shaders (Shader Model 3 compliant GPUs) are most suitable for GPU
ray marching.

Besides the many advantages of sampling the media on grids it has a main disadvantage,
namely it is optimal for media that fills the sampled space evenly. In many cases most of the
grid points contain no important information as the scattering media has a free formed shape
or fills up only a small part of the sampled space. To capture enough information in these
cases, the grid resolution should be heighten, which makes the sampling too memory consuming
and wasteful and even unduly raises computation time. However, when neighbor information
is needed e.g. in case of fluid simulation or light scattering simulation or in case of distributed
computing, grid based techniques can be a good choice [J13, J7, J10, J12].

To overcome the problems of uniform sampling, a different representation can be used,
namely particle systems. The particle system model of the volume corresponds to an adap-
tive discretization, when we assume that scattering can happen only at N discrete points called
particles. We assume that particles are sampled randomly, preferably from a distribution propor-
tional to collision density τ , and we do not require them to be placed at grid points [GRWS04].
Let us assume that particle p represents its spherical neighborhood of diameter ∆sp, and intro-
duce its opacity as αp = 1− e−τp∆sp , its emission as Ep = Le∆sp, its incoming radiance by
Ip, and its outgoing radiance by Lp. The discretized volumetric rendering equation at
particle p is then:

Lp(~ω) = (1− αp)Ip(~ω) + Ep(~ω) + αpap

∫

Ω′

Ip(~ω′)Pp(~ω′, ~ω)dω′.

In homogeneous media, albedo a and phase function P are the same for all particles. In inho-
mogeneous media, these parameters are particle attributes [REK+04].

Particles are usually rendered with small screen aligned quadrilaterals called billboards.
These quads consist of two triangles and can be treated by graphics hardware just like any other
triangle meshes. This rendering method is closely related to impostor rendering described in
Section 2.2.

Billboard vertex data should be refreshed in each frame, as their properties change in time.
They are also usually sorted according to their distances from the current camera position.
Vertices can be rotated towards the camera on the CPU, or with newer hardware more prefer-
ably by the vertex shader on the GPU. As they represent volumetric media and not opaque
objects alpha blending and special depth testing should be set in the graphics pipeline (see Sec-
tion 1.4.4). Because their performance and flexibility particle systems are the most commonly
used representations of volumetric media (like smoke, fire or clouds) in real-time virtual reality
applications.

Some special effects like fog or underwater fog do not require complex sampling as they
have roughly uniform properties over the entire scene. Their contribution is affected only by
the distance from the camera to the shaded point, thus they can be calculated after the run
of fragment shader in the merging state. GPUs have a built in support for a fog merging
operator. This method simplifies the volumetric rendering equation as it assumes constant in-
scattering along the view ray (i.e. no objects can occlude incoming light), thus can simulate only
absorbtion and forward scattering. To take into account occluding geometry when producing
shafts of light, complex merging operator should be used, which can be implemented as a
post processing effect [J17, J16].
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Figure 2.17: GPU volumetric media rendering techniques.
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Chapter 3

Robust diffuse environment mapping

The rendering equation integrates in the domain of input directions Ω′. If a differential surface
dy is visible from illuminated point ~x, and the angle between direction ω′~y→~x from ~y to ~x and
the surface normal at ~y is θ~y, then this differential surface appears in solid angle

dω′ =
dy cos+ θ~y

|~x− ~y|2 ,

that is, it is proportional to the size of the illuminating surface, it depends on its orientation,
and inversely proportional to the square of the distance. If differential surface dy is occluded,
then solid angle dω′ is zero. To model visibility, we can introduce a visibility indicator v(~x, ~y)
that is 1 if the two points see each other and zero otherwise. With these, an equivalent form of
the transport operator uses an integration over the set of surface points S:

Lr(~x, ~ω) =
∫

S

L(~y, ~ω′~y→~x)fr(~ω′~y→~x, ~x, ω)G(~x, ~y)dy. (3.1)

In this equation

G(~x, ~y) = v(~x, ~y)
cos+ θ′~x cos+ θ~y

|~x− ~y|2 (3.2)

is the geometric factor, where θ′~x and θ~y are the angles between the surface normals and
direction ω~y→~x that is between ~y and ~x.

Final gathering, i.e. the computation of the reflection of the indirect illumination toward the
eye, is one of the most time consuming steps of realistic rendering. The evaluation of this integral
usually requires many sampling rays from each shaded point. Classical ray-casting would find
for all shaded point ~x and direction ~ω′ the visible surface point ~y.

virtual light sources

reference point

environment

object

cube map

area lights

reference point

environment

object

cube map

area lights

environment

object

cube map

x

Figure 3.1: Diffuse/glossy final gathering. Virtual lights correspond to cube map texels. These
point lights are grouped to form large area lights by downsamling the cube map. At shaded
point x, the illumination of the area lights is computed without visibility tests.
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The first idea to speed up this process is to separate dynamic and static objects and reuse
illuminating points when the illumination on the dynamic object is computed. It means that first
we obtain a set of virtual lights that represent the indirect illumination and calculate just the
single reflection of these lights during final gathering (Figure 3.1). Assuming that the same set of
illuminating points are visible from each shaded point, self-shadowing effects are ignored, and
apply just a simple test based on the normal vector and the illumination direction to determine
whether the virtual light may illuminate the point. However, while shadows are crucial for direct
lighting, shadows from indirect lighting are not so visually important. Thus the user finds this
simplification acceptable.

Unfortunately, this simplification alone cannot allow real time frame rates. The evaluation
of the reflected radiance at a shaded point still requires the evaluation of the irradiance and the
orientation angle, and the multiplication with the diffuse reflectance for all directions. In order
to further increase the rendering speed, we propose to carry out as much computation globally
for virtual lights, as possible. Intuitively, global computation means that the sets of virtual light
sources are replaced by larger homogeneous area light sources. Since the total area of these
lights is assumed to be visible, the reflected radiance can be analytically evaluated once for a
whole set of virtual light sources.

In this chapter we address the numerical instability of virtual lights and eliminate the need
of storing normal vectors at these lights. The basic idea is that we always consider four virtual
lights that are close to each other and assume that the surface is roughly planar between them.
Thus instead of point sources we have a set of homogeneous area light sources. Since self-
shadowing is ignored, the reflection of these area light sources can be computed analytically, in
a numerically stable way.

3.1 The new algorithm

The first step of the algorithm is the generation of virtual lights that may illuminate the given
dynamic object. To find these points, the scene is rendered from reference point ~o of the dynamic
object, and the resulting images are put into an environment map. Not only the radiance of the
visible points is evaluated but the distance between the reference point and the visible surface
is found and stored. In each texel of the environment map[?] a potential virtual light source is
visible.

In order to estimate the integral of the rendering equation, the set of surface points visible
from the reference point is partitioned according to the texels of the environment map. The
surface between four points visible from the texel corners is approximated by a quadrilateral,
thus the environment is assumed to be a list of quadrilaterals Si, i = 1, . . . , N . After partitioning,
the irradiance is expressed by the following sum:

I(~x) =
N∑

i=1

∫

Si

L(~y) · cos+ θ~x · cos+ θ~y

|~x− ~y|2 dy.

Since dy cos+ θ~y/|~x − ~y|2 is the projection of area dy onto the surface of a unit hemisphere
placed around ~x, and factor cos+ θ~x represents a further projection from the sphere onto the
tangent plane, the irradiance integral can also be evaluated on the tangent plane of the surface
at ~x:

I(~x) =
N∑

i=1

∫

Pi

L(~yp)dyp

where Pi is the double projection of the visible surface, first onto the hemisphere then onto the
tangent plane. Let us assume that L(~yp) is linear. In this case the irradiance is the product
of the area of Pi and the average of the radiances stored at the four corner texels:

I(~x) = |Pi| · L1
i + L2

i + L3
i + L4

i

4
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Let us consider a single term of this sum representing the radiance reflected from Si.

-

+

+

R l R l 1+

n i

Figure 3.2: Hemispherical projection of a planar polygon

Area |Pi| is in fact the polygon-to-point form factor [BRW89]. Consider only one edge
line of the polygon first, and two subsequent vertices, ~Rl and ~Rl⊕1, on it (Figure 3.2) [SKe95].
The hemispherical projection of this line is a half great circle. Since the radius of this great
circle is 1, the area of the sector formed by the projections of ~Rl and ~Rl⊕1 and the center of
the hemisphere is simply half the angle of ~Rl and ~Rl⊕1. Projecting this sector orthographically
onto the equatorial plane, an ellipse sector is generated, having the area of the great circle sector
multiplied by the cosine of the angle of the surface normal ~ni and the normal of the segment
(~Rl × ~Rl⊕1).

The area of the doubly projected polygon can be obtained by adding and subtracting the
areas of the ellipse sectors of the different edges, as is demonstrated in Figure 3.2, depending
on whether the projections of vectors ~Rl and ~Rl⊕1 follow each other clockwise when looking at
them from the direction of the surface normal. This sign value provided by the dot product of
the cross product of the two vertex vectors and the normal vector. Finally, the double projected
polygon is a summation:

L−1∑

l=0

1
2
· angle(~Rl, ~Rl⊕1) ·

(
(~Rl × ~Rl⊕1)
|~Rl × ~Rl⊕1|

· ~ni

)
. (3.3)

The proposed algorithm first computes an environment cube map from the reference point
and stores the radiance and distance values of the points visible in its pixels. We usually generate
6×256×256 pixel resolution cube maps. Then the cube map is downsampled to have M×M pixel
resolution faces (M is 4 or even 2). One texel of the low-resolution cubemap represents an area
light source. Note that both radiance and distance values are averaged, thus finally we have
larger lights having the average radiance of the small lights and placed at their average position.

During final gathering for each texel in each cube face we should calculate the virtual light
source’s exact location and area and evaluate it’s contribution to the reflected radiance. Algo-
rithm 1 shows the fragment shader pseudo code used to calculate diffuse indirect shading.

3.2 Results

In order to demonstrate the results, we took a simple environment consisting of a colored cu-
bic room. The first set of pictures shows the Stanford bunny model inside the room (Figure
3.3). The images of the first column were rendered by the traditional environment mapping
technique for diffuse materials where a precalculated convolution enables us to determine the
irradiance at the reference point with a single lookup. This method has correct results only
at the reference point and cannot deal with the position of the object, thus the bunny looks
similar everywhere. The second column shows the point-to-point form factor. Although this
method have pleasing results for points other than the reference point, it has artifacts for points
too close to the virtual light sources. The right column shows our polygon-to-point form factor
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600 FPS without SLI 60 FPS without SLI 11 FPS without SLI
300 FPS with SLI turned on 100 FPS with SLI turned on 23 FPS with SLI turned on

Figure 3.3: The Stanford bunny model (about 25000 vertices and 50000 faces) in a colored box.
On the right images diffuse reflections are calculated with only environment map convolution
and one environment lookup. On the center images point to point form factor while on the left
images polygon to point form factor is used. The simple one environment map only produces
pleasable results for points that are close to the environment reference point. The point to point
form factor method can handle greater distances, but as the shaded surface gets close to the
walls it gets unstable (see the bright green spikes on the bunny’s tail and back). The polygon to
point form factor has good results for any object positions. Configuration: 700x700 resolution
on NVIDIA GeForce 7950 GX2 with SLI support, AMD Athlon64 Dual 4600+ processor.
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150 FPS without SLI, 185 FPS with SLI turned on

32 FPS without SLI, 63 FPS with SLI turned on

Figure 3.4: Sphere (about 2300 vertices and 2300 faces) in a colored box. Upper row with point
to point form factor, bottom row with our polygon to point form factor. As the object gets
closer to the walls the virtual light sources become visible in case of point to point form factor,
while the polygon to point form factor method does not have this artifact. Configuration:
700x700 resolution on NVIDIA GeForce 7950 GX2 with SLI support, AMD Athlon64 Dual
4600+ processor.

Algorithm 1 Diffuse surface point shading
indirectIllum ← 0
for each cube map face do

for each texel do
triangleArea ← 0
Calculate texel corner directions L1, L2, L3, L4 from cube map center
Read texel corner distances d1, d2, d3, d4

L1 = L1 · d1, L2 = L2 · d2, L3 = L3 · d3, L4 = L4 · d4

Calculate texel corner directions R1, R2, R3, R4 from shaded point
for each texel quad edge do

texelContribution ← evaluate equation 3.3
triangleArea + = max(0, texelContribution)

end for
texelColor ← color of cube map texel
indirectIllum + = triangleArea · texelColor

end for
end for
return indirectIllum
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40 FPS without SLI 7 FPS without SLI
85 FPS with SLI turned on 19 FPS with SLI turned on

Figure 3.5: Diffuse Stanford Buddha (about 35000 vertices and 67000 faces) in a box. Left image
with point to point form factor, right image with our polygon-to-point form factor method.
Configuration: 700x700 resolution on NVIDIA GeForce 7950 GX2 with SLI support, AMD
Athlon64 Dual 4600+ processor.

method which has correct results for arbitrary point positions. The difference between point to
point and polygon-to-point factors can clearly be seen in the second set of pictures (Figure 3.4).
The first row shows point to point while the second row shows polygon-to-point form factor
results. While the two methods show similar results when the object is in the center of the
room there is a significant improvement in case of the polygon-to-point factor method when the
sphere gets close to the walls.

The third set of pictures (Figure 3.5) shows the Stanford Buddha model in the room with
point to point (left) and polygon-to-point form factors (right). The images on the left show
visual errors at surface points near the environment (see the keystone of the statue). In Figure
3.7 the Buddha was placed in a scientific laboratory. This environment was implemented in an
axctual game engine called Ogre3D.

The speed measurements show that evaluating the polygon-to-point form factor has high
computational costs, which can make it hard to integrate it into a real-time application. We
should note that all the discussed images and measurements were taken with the use of a
4× 4 resolution downsampled cube map. Using a smaller sized cube map can greatly improove
perfomance without significant image quality loss (Figure 3.6). We should also note that recent
graphics hardware like the NVIDIA GeForce GTX 260 has such high computational power that
even higher resolution cube maps can be used in real-time. Table 3.1 and 3.2 shows speed
mesurements on newer hardware and with lower cubemap resolutions.

4× 4 cube map resolution
GPU classic point to point polygon to point

GeForce 7900 GT 600 FPS 60 FPS 11 FPS
GeForce GTX 260 850 FPS 100 FPS 50 FPS

Table 3.1: Speed comparison of the different diffuse environment mapping methods on different
graphics hardware using 4× 4 downsampled cube map resolution.
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2× 2 cube map resolution
GPU classic point to point polygon to point

GeForce 7900 GT 600 FPS 150 FPS 80 FPS
GeForce GTX 260 850 FPS 400 FPS 150 FPS

Table 3.2: Speed comparison of the different diffuse environment mapping methods on different
graphics hardware using 2× 2 downsampled cube map resolution.

3.3 Conclusions

This chapter presented a GPU based method for computing diffuse reflections of the incoming
radiance stored in environment maps. The environment map is considered as a definition of large
area light sources whose reflections are obtained analytically without checking self-shadowing.
The presented method runs in real-time and provides visually pleasing results.

4× 4 2× 2
11 FPS 80 FPS

Figure 3.6: Speed and quality comparison of different cube map resolutions. On the right images
4×4, on the left images 2×2 resolution was used. Configuration: 700x700 resolution on NVIDIA
GeForce 7900 GT.
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Figure 3.7: Screen shots from Buddha in a laboratory (the whole scene with the Buddha is
about 38000 vertices and 70000 faces). Ogre3D implementation. 15 FPS, 800x600 resolution on
NVIDIA GeForce 7800GT, AMD Athlon 64 3500+ processor.



Chapter 4

Volumetric ambient occlusion

This chapter focuses on the fast computation of the reflection of the ambient light1. We shall
assume that the primary source of illumination in the scene is a homogeneous sky light source
of radiance La. For the sake of simplicity, we consider only diffuse surfaces. According to the
rendering equation, reflected radiance Lr in shaded point ~x can be obtained as:

Lr(~x) =
a(~x)
π

∫

Ω′

Lin(~x, ~ω) cos+ θ′dω′, (4.1)

where Ω′ is the set of directions in the hemisphere above ~x, Lin(~x, ~ω′) is the incident radiance
from direction ~ω′, a(~x) is the albedo of the surface, and θ′ is the angle between the surface
normal and illumination direction ~ω. If incident angle θ′ is greater than 90 degrees, then the
negative cosine value should be replaced by zero, which is indicated by superscript + in cos+.

If no surface is seen from ~x at direction ~ω′, then shaded point ~x is said to be open in this
direction, and incident radiance Lin is equal to ambient radiance La. If there is an occluder
nearby, then the point is called closed at this direction and the incident radiance is the radi-
ance of the occluder surface. The exact determination of this radiance would require a global
illumination solution, which is too costly in real-time applications. Thus, we simply assume that
the radiance is proportional to the ambient radiance and to a factor expressing the openness
— also called accessibility — of the point. The theory of classical ambient occlusion considers
an occluder to be “nearby” if its distance is smaller than a predefined threshold R. However,
such an uncertain property like “being close” is better to handle by a fuzzy measure µ(d(~ω′))
that defines how strongly direction ~ω′ belongs to the set of open directions based on distance d
of the occlusion at direction ~ω′. In other words, this fuzzy measure expresses how an occluder
at distance d allows the ambient lighting to take into effect. Relying on the physics analogy of
the non-scattering participating media, a possible fuzzy measure could be µ(d) = 1− exp(−τd)
where τ is the absorption coefficient of the media [IKSZ03, AMS+08]. Unfortunately, this
interpretation requires the distance of far occlusions as well, while the classical ambient occlusion
does not have to compute occlusions that are farther than R, localizing and thus simplifying the
shading process.

Thus, for practical fuzzy measures we use functions that are non-negative, monotonously
increasing from zero and reach 1 at distance R. The particular value of R can be set by the
application developer. When we increase this value, shadows due to ambient occlusions get
larger and softer.

Using the fuzzy measure of openness, the incident radiance is

Lin(~x, ~ω′) = Laµ(d(~ω′)),
1Should the scene contain other sources, e.g. directional or point lights, their effects can be added to the

illumination of the ambient light.

37
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thus the reflected radiance (Equation 4.1) can be written in the following form:

Lr(~x) = a(~x) · La ·O(~x),

where
O(~x) =

1
π

∫

Ω′

µ(d(~ω′)) cos+ θ′dω′. (4.2)

is the ambient occlusion representing the local geometry. It expresses how strongly the am-
bient lighting can take effect on point ~x. The computation of ambient occlusion requires the
distances d(~ω′) of occluders in different directions, which are usually obtained by computation-
ally expensive ray-tracing.

This chapter proposes an ambient occlusion algorithm where the directional integral of Equa-
tion 4.2 is replaced by a volumetric one that can be efficiently evaluated. The resulting method

• runs at high frame rates on current GPUs,

• does not require any pre-processing and thus can be applied to general dynamic models,

• can provide smooth shading with just a few samples due to partial analytic integration
and interleaved sampling.

These properties make the algorithm suitable for real-time rendering and games.

4.1 The new model of ambient lighting

The evaluation of the directional integral in the ambient occlusion formula (Equation 4.2) re-
quires rays to be traced in many directions, which is rather costly and needs complex GPU
shaders. Thus, we transform this directional integral to a volumetric one that can be efficiently
evaluated on the GPU. The integral transformation involves the following steps:

1. Considering its derivative instead of the fuzzy membership function, we replace the ex-
pensive ray tracing operation by a simple containment test. This replacement is valid if
neighborhood R is small enough to allow the assumption that a ray intersects the surface
at most once in interval [0, R].

2. Factor cos+ θ′ in Equation 4.2 is compensated by transforming the integration domain
mapping the hemisphere above the surface to the tangent sphere. This makes ambient
occlusion depend on the volume of that portion of the tangent sphere which belongs to
the “free” space that is not occupied by objects.

4.1.1 Replacing ray tracing by containment tests

Let us assume that the surfaces subdivide the space into an outer part where the camera is
and into inner parts that cannot be reached from the camera without crossing a surface. We
define the characteristic function I(~p) that is 1 if point ~p is an outer point and zero otherwise.
The boundary between the inner and outer parts, i.e. the surfaces, belong to the outer part by
definition (Figure 4.1).

The form of the indicator function I(~p) depends on the type or representation of the surfaces
(Figure 4.2).

1. Implicit surfaces are defined by equation f(~p) = 0. In this case I(~p) is 1 if f(~p) is
positive or zero (the point is outside of the object or on its surface), and zero otherwise.
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shaded point

ray 1 with occluded 
test point A

ray 2 with
unoccluded
test point B

outer part

inner part

Point A

Point B

Figure 4.1: Replacing ray tracing by containment tests. If a test point (Point B) along a ray
starting at the shaded point being in the outer region or on the region boundary is also in the
outer region, then the ray either has not intersected the surface or has intersected at least two
times. Supposing that the ray is short enough and thus may intersect the surface at most once,
the condition of being in the outer region is equivalent to the condition that no intersection
happened.

),( yxh

yx,

Implicit surface Height field z-buffer

surface represented
by the depth buffer

macrostructure
polygon

0)( >pf
r

0)( =pf
r

0)( <pf
r

Figure 4.2: Three examples for the definition of the characteristic function. Outer regions where
I = 1 are blank, inner regions where I = 0 are filled.
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2. Height fields represent a particularly important special case of implicit surfaces. A
height field is formed by points (x, y, z) satisfying equation z = h(x, y). Since the eye
is usually “above” the height field, the characteristic function should indicate the case
when for point ~p = (px, py, pz), relation pz ≥ h(px, py) holds. Note that a polygon of a
displacement mapped mesh can also be considered as a height field in the tangent space
of the macrostructure polygon.

3. As in screen-space ambient occlusion methods [Mit07, Sai08], the content of the z-
buffer can also provide an inner–outer distinction. If a point is reported to be occluded
by the depth map, then surfaces separate this point from the eye, thus its characteristic
value is zero. If the point passes the depth test, then it is in the same region as the eye,
so it gets indicator value 1.

Note that in all these three cases, not only are we able to classify a point as inner or outer,
but we can also determine the distance between point (px, py, pz) and the surface along axis z.
When the content of the z-buffer defines the separation, the z-direction is the viewing direction
in clipping space. Reading depth value z∗ with the px, py coordinates of the point, the distance
between the point and the surface can be expressed as z∗ − pz. If the characteristic function is
defined by height field h(x, y), then the distance along axis z is pz − h(px, py). Finally, when
the surface is defined by implicit equation f(x, y, z) = 0, we can use Taylor’s approximation to
estimate the distance between point (px, py, pz) and point (px, py, z

∗) that is on the surface:

f(px, py, pz + (z∗ − pz)) = 0 ⇒ z∗ − pz ≈ −f(px, py, pz)
∂f/∂z

.

In order to evaluate the ambient occlusion using containment tests, we express it as a three
dimensional integral. For a point at distance d, fuzzy measure µ(d) can be found by integrating
its derivative from 0 to d since µ(0) = 0. Then the integration domain can be extended from
d to R by multiplying the integrand by a step function which replaces the derivative by zero
when the distance is greater than d:

µ(d) =
d∫

0

dµ(r)
dr

dr =
R∫

0

dµ(r)
dr

ε(d− r)dr,

where ε(x) is the step function, which is 1 if x ≥ 0 and zero otherwise. Note that this formulation
requires generalized derivatives for classical ambient occlusion since its membership function is
a step function, and the derivative of the step function is a Dirac-delta (Figure 4.3).

Substituting this integral into the ambient occlusion formula, we get

O(~x) =
1
π

∫

Ω′

R∫

0

dµ(r)
dr

ε(d− r) cos+ θ′drdω′. (4.3)

Let us consider a ray of equation ~x + ~ω′r where shaded point ~x is the origin, ~ω′ is the direction,
and distance r is the ray parameter. Indicator ε(d− r) is 1 if the distance of the intersection d is
larger than current distance r and zero otherwise, that is, it shows whether or not intersection has
happened. If we assume that the ray intersects the surface at most once in the R-neighborhood,
then the condition that ~x + ~ω′r is in the outer part, i.e. I(~x + ~ω′r) = 1, also shows that no
intersection has happened yet. Thus, provided that only one intersection is possible in the R-
neighborhood, indicators ε(d−r) and I(~x+~ω′r) are equivalent. Replacing step function ε(d−r)
by indicator function I in Equation 4.3, we obtain

O(~x) =
1
π

∫

Ω′

R∫

0

dµ(r)
dr

I(~x + ~ω′r) cos+ θ′ drdω′. (4.4)
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r
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1
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Figure 4.3: Example fuzzy membership functions and their derivatives. Note that the exponen-
tial function [IKSZ03, AMS+08] can be given a physical interpretation but it requires global
visibility computations, while other functions need visibility checks only in a neighborhood of
radius R. Classical ambient occlusion [PG04] uses a non-fuzzy separation. The localized square
root is a good compromise between the global exponential and the non-fuzzy separation [MSC03].
We also included the membership function of the volumetric ambient occlusion that is proposed
in the next subsection.

One possibility for the estimation of this integral is the Monte Carlo quadrature. According
to the concept of importance sampling we use cosine distributed sample directions ~ωi and
distance samples ri following density dµ(r)/dr, that are obtained by transforming uniformly
distributed samples ξi as ri = µ−1(ξi). Note that in our case the number of samples n is
small and the random samples should be generated only once, thus we can hardwire samples
(Xi, Yi, Zi) = ~ωiri into the shader code computing

O(~x) ≈ 1
n

n∑

i=1

I
(
~x + Xi

~T + Yi
~B + Zi

~N
)

. (4.5)

where ~T , ~B, and ~N , are the tangent, binormal, and normal vectors, respectively. We call
this method the containment test based algorithm. This method would approximate the
quadrature averaging n binary numbers, thus the average would have binomial distribution
with mean O(~x) and standard deviation

√
O(~x)(1−O(~x))/n. Ambient occlusion O(~x) is in

[0, 1] and the standard deviation reaches its maximum 1/
√

4n when the ambient occlusion value
is 1/2. In order to reduce the maximum standard deviation (i.e. the error) below 0.01 in a pixel,
we need 2500 random samples, which are too many for real-time applications.

Thus, we need a better estimate for the ambient occlusion integral that requires less samples
to achieve the same accuracy. We combine three techniques to reach this goal. Most impor-
tantly, the integral is re-formulated to reduce the variation of the integrand and to allow the
incorporation of all available information into the quadrature. In particular, we use the distance
to the separating surface as such additional information. Secondly, we replace statistically inde-
pendent random samples by low-discrepancy samples following the Poisson-disk distribution.
Finally, we use interleaved sampling, i.e. exploit the samples obtained in the neighboring pixels
to improve the estimate in the current pixel.

4.1.2 Exploiting the distance to the separating surface

Inspecting Equation 4.4 we can observe that the ambient occlusion is a double integral inside a
hemisphere where the integrand includes factor cos+ θ′, thus directions enclosing a larger angle
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R/2θ
θ

R/2

Rcosθ

R

R

original hemisphere
above the shaded point

surface

transformed sphere S
has radius R/2 and is the 
tangent of the surface

shaded point

Figure 4.4: Transforming a hemisphere of radius R by shrinking distances by cos θ results in
another sphere of radius R/2.

with the surface normal are less important. Instead of the multiplication, the effect of this cosine
factor can also be mimicked by reducing the size of the integration domain proportionally to
cos+ θ. Note that this is equivalent to the original integral only if the remaining factors of the
integrand are constant, and can be accepted as an approximation in other cases:

O(~x) ≈ 1
π

∫

Ω′

R cos+ θ′∫

0

dµ(r)
dr

I(~x + ~ω′r)drdω′.

Transforming a hemisphere by shrinking distances in directions enclosing angle θ with the
surface normal by cos θ results in another sphere, which is denoted by S (Figure 4.4). This new
sphere has radius R/2 and its center is at distance R/2 from shaded point ~x in the direction
of the surface normal. While the original hemisphere had the shaded point as the center of its
base circle, the surface will be the tangent of the new sphere at shaded point ~x.

dω

shaded point

r

dr

Differential volume: dp=r2drdω

surface

Figure 4.5: Differential volume swept when r changes by dr and direction ~ω is in dω.

In order to replace integrals over directions and distances by a volumetric integral, let us
examine the volume swept when distance r changes by dr and direction ~ω′ varies in solid angle
dω′ (Figure 4.5). During this, we sweep a differential volume dp = r2drdω′. Thus, we can
express the ambient occlusion as a volumetric integral in S instead of a double integral of
directions and distances in the following way:

O(~x) ≈ 1
π

∫

~p∈S

dµ(r(~p))
dr

1
(r(~p))2

I(~p)dp

where r(~p) is the distance of point ~p from the shaded point. If we set the fuzzy membership
function such that dµ(r)/dr is proportional to r2 (last column of Figure 4.3), then the ambi-
ent occlusion integral becomes just the volumetric integral of the membership function. This
observation leads us to a new definition of the openness of a point, which we call the volu-
metric ambient occlusion and denote by V (~x) to distinguish it from ambient occlusion O(~x).
The volumetric ambient occlusion is the relative volume of the unoccluded part of the tangent
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sphere S. Formally, the volumetric ambient occlusion function is defined as:

V (~x) =

∫
S
I(~p)dp

|S| , (4.6)

where |S| = 4(R/2)3π/3 is the volume of the tangent sphere, which makes sure that the volu-
metric ambient occlusion is also in [0, 1]. Figure 4.6 compares the computation of volumetric
ambient occlusion to ray-tracing based methods and to the containment test based algorithm.

R

Ambient occlusion 
with ray tracing

surface

weight=µcosθ

R/2

cosθdµ
dr

Ambient occlusion 
with containment test

Volumetric
ambient occlusion

weight= weight=1

Figure 4.6: Comparison of the ambient occlusion computation with ray-tracing, containment
test, and with the volumetric interpretation. Note that these methods differ both in sample
generation and weighting.

When evaluating volumetric integral
∫
S I(~p) dp, we can take advantage of the distances to

the separating surface. The volume is computed as a sum of “pipes” (Figure 4.7). The axes
of these pipes are parallel to axis z and they have the same cross section area. The pipes are
limited by either the separating surface or the surface of the tangent sphere.

Let us denote the center of the tangent sphere by (xc, yc, zc) and consider a disk of radius
R/2 around this point that is perpendicular to axis z. We sample n uniformly distributed points
(xi, yi) in a unit radius disk, and transform them onto the considered disk of the tangent sphere,
that is perpendicular to direction z. A transformed point has coordinates (xiR/2, yiR/2, zc) and
is called sample in Figure 4.7. A line crossing the ith sample point and being parallel with axis
z enters the sphere at zentry

i = zc − R
2

√
1− x2

i − y2
i and exits it at zexit

i = zc + R
2

√
1− x2

i − y2
i .

The points on this line belong to the outer region when their z coordinates are less than z∗,
where z∗ represents the intersection of this line with the surface.

The length of traveling in the outer, i.e. unoccluded part of the sphere is ∆zi = z∗i − zentry
i

when zentry
i ≤ z∗i ≤ zexit

i (Case A in Figure 4.7). The traveled distance is ∆zi = zexit
i − zentry

i

if the surface is behind the sphere (Case B). If z∗i < zentry
i , then ∆zi = 0 since this part of the

sphere is occluded (Case C).
If n sample points are uniformly distributed on the disk of radius R/2, then a line is associated

with (R/2)2π/n area of the disk. Thus, we get the following approximation of the volume of the
unoccluded part of the tangent sphere:

∫

S

I(~p)dp ≈ R2π

4n

n∑

i=1

∆zi. (4.7)

The fragment shader gets samples (xi, yi) as a constant array and estimates the volumetric
ambient occlusion of the point as

V (~x) =

∫
S
I(~p)dp

|S| ≈ 3
2Rn

n∑

i=1

∆zi =
1
F

n∑

i=1

∆zi. (4.8)
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Figure 4.7: Computation of the volumetric ambient occlusion. The volume of the unoccluded
part of the tangent sphere of radius R/2 is approximated by uniformly sampling n points called
sample on the disk that is perpendicular to axis z. Each sample represents the same base area
(R/2)2π/n of the disk. Such a base area is the cross section of a “pipe” inside the unoccluded
part of the sphere. The volume of the pipe associated with a sample is the base area multiplied
with the length of the line segment that is in the unoccluded part of the tangent sphere. The
line crossing the sample point enters the sphere at z coordinate zentry, exits it at zexit, and
intersects the surface at z∗. To obtain length ∆z of the line segment that is in the unoccluded
part of the sphere, we identify three main cases. In Case A the line–surface intersection is in
the sphere. In Case B the surface is behind the sphere. In Case C the surface is in front of the
sphere.

Algorithm 2 Volumetric screen space ambient occlusion
V ← 0
for each sample direction do

Calculate sample location on sample disk
Calculate enter and exit points zenter

i , zexit
i

Calculate unoccluded part ∆zi = min(zexit
i , z∗i )−min(zenter

i , z∗i )
V + = ∆zi

end for
V/ = F
return V
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Note that the normalization constant F is the ratio of the tangent sphere’s volume |S| =
4(R/2)3π/3 and R2π/(4n), which can be analytically computed. However, instead of the exact
value of |S|, it is worth approximating it with the same samples as used to compute the volume
of the unoccluded part (Equation 4.7), which results in the following constant

F = R
n∑

i=1

√
1− x2

i − y2
i .

In this case, the approximations of the volume of the unoccluded part and the volume of the
tangent sphere have correlated error. Thus, when their ratio is computed, the error of the
volume of the unoccluded part is reduced, as proposed by weighted importance sampling
[PS66]. Algorithm 2 shows the pseudo code of the volumetric ambient occlusion algorithm, that
should be run by a fragment shader.

4.1.3 Noise reduction with interleaved sampling

The quasi-Monte Carlo quadrature has some error in each pixel, which depends on the particular
samples used in the quadrature. If we used different quasi-random numbers in neighboring
pixels, then dot noise would show up. Using the same quasi-random numbers in every pixel
would make the error correlated and replace dot noise by “stripes”. Unfortunately, both stripes
and pixel noise are quite disturbing. In order to reduce the error without taking excessive
number of samples, we apply interleaved sampling [KH01] that uses different sets of samples
in the pixels of a 4 × 4 pixel pattern, and repeat the same sample structure periodically. The
16 different sample sets can be obtained from a single set by a rotation around the surface
normal vector by random angle α. The rotation is executed in the fragment shader that gets
16 (cosα, sinα) pairs in addition to quasi-random samples (xi, yi). The errors in the pixels of
a 4 × 4 pixel pattern are uncorrelated, and can be successfully reduced by a low-pass filter of
the same size. Thus, interleaved sampling using a 4 × 4 pixel pattern multiplies the effective
sample number by 16 but has only the added cost of a box-filtering with a 4× 4 pixel window.
When implementing the low-pass filter, we also check whether or not the depth difference of the
current and the neighbor pixels exceeds a given limit. If it does, then the neighbor pixel is not
included in the averaging operation.

4.2 Results

The proposed methods have been implemented in DirectX/HLSL environment and their perfor-
mance has been measured on an NVIDIA GeForce 8800 GTX GPU at 800× 600 resolution.

Figure 4.8 compares Crytek’s screen-space ambient occlusion2, the containment test based
method (Equation 4.5), the volumetric ambient occlusion (Equation 4.8), and a reference that is
obtained with the software ray-tracer of MentalRay. We note that screen-space ambient occlusion
takes samples on the whole sphere and is not based on the original ambient occlusion formula,
thus it assigns middle gray even for completely unoccluded surfaces, giving an unrealistically
dark touch to the image. Note that both the containment test based and the volumetric methods
are faster than Crytek’s SSAO, and the speed is sensitive to the size of the neighborhood in all
cases (Figure 4.12). This sensitivity is due to the degraded cache efficiency of z-buffer accesses
when the large R requires distant samples to be fetched. This degradation can be avoided by
reducing the z-buffer resolution by an additional z-buffer filtering before the ambient occlusion
computation. In terms of quality the volumetric ambient occlusion is the closest to the ray-traced
reference. The quality degradation with respect to the ray-traced result is mainly due to the
assumption that in the R-neighborhood at most one intersection can happen. This assumption
limits the simultaneous consideration of close and distant occlusions, which reduces the level of
details in the final image. This is the price we should pay for real-time rendering.

2http://en.wikipedia.org/wiki/Screen Space Ambient Occlusion
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Crytek’s SSAO
74 FPS 53 FPS

Containment test
116 FPS 61 FPS

Volumetric AO
101 FPS 57 FPS

Ray-traced reference

Figure 4.8: Comparison of Crytek’s screen-space ambient occlusion, the containment test based
method, volumetric ambient occlusion, and a reference that is obtained with ray-tracing. Images
in the upper and lower rows are rendered with a smaller (R = 3) and a larger (R = 9) neigh-
borhood, respectively. We used 32 samples per pixel in all cases. We incorporated membership
function µ = (r/R)3 in the containment test based and in the ray-tracing methods, which is the
same membership function that is implicitly used by volumetric ambient occlusion.
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Containment test
1 sample, 720 FPS 4 samples, 700 FPS 8 samples, 430 FPS

Containment test + interleaved sampling
1 sample, 625 FPS 4 samples, 415 FPS 8 samples, 299 FPS

Volumetric AO
1 sample, 720 FPS 4 samples, 660 FPS 8 samples, 430 FPS

Volumetric AO + interleaved sampling
1 sample, 600 FPS 4 samples, 409 FPS 8 samples, 283 FPS

Figure 4.9: Comparison of the containment test based and the volumetric ambient occlusion
(AO) using different numbers of samples per pixel and turning interleaved sampling on and off.
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Figure 4.9 evaluates the performance-quality tradeoff for the containment test based and the
volumetric ambient occlusion algorithms, and also shows the effect of interleaved sampling. As
the volumetric approach evaluates a part of the integration analytically, its results are smoother
when just a few samples per pixel are computed. The additional interleaved sampling helps
eliminating sampling artifacts in all cases, but it also has a cost and mildly blurs the image.
Figure 4.12 shows how the number of samples influence the performance of the screen space
ambient occlusion algorithm.

Analytic, 4 samples WIS, 4 samples Reference, 32 samples

Figure 4.10: Effects of the proposed weighted importance sampling (WIS). Note that the image
rendered with weighted importance sampling from 4 samples is much closer to the reference
image generated from 32 samples.

Figure 4.10 shows the power of weighted importance sampling. We rendered the left image
with the analytic formula (Equation 4.8) and the middle image with weighted importance sam-
pling taking only 4 samples per pixel. Note that the image obtained with weighted importance
sampling is closer to the reference rendered with 32 samples.

Crytek’s SSAO Classical AO Volumetric AO
µ = ε(d−R)

Figure 4.11: Comparison of Crytek’s screen space ambient occlusion, the containment test based
ambient occlusion using the step membership function, and volumetric ambient occlusion. We
used as few as 8 samples per pixel. The scene is built of 70138 triangles. Crytek’s SSAO is a
little slower than the other two algorithms that run at 250 FPS.
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Figure 4.11 demonstrates the differences of Crytek’s screen-space ambient occlusion, the
classical ambient occlusion obtained with containment tests, and our new volumetric ambient
occlusion. We took only n = 8 samples per pixel in all cases, and frame rates were also similar
(about 250 FPS). As the volumetric ambient occlusion method needs to integrate a lower vari-
ation integrand, it provides smoother and better results than screen-space ambient occlusion or
containment test based methods.

In our implementation the characteristic function may be a product of two characteristic
functions. One separates the inner and outer parts according to the z-buffer. The other handles
displacement mapped polygons considering them as height fields defined in tangent space. The
z-buffer based classification is responsible for occlusions of other objects, while the height field
based classification handles self-shadowing. Note that this way the ambient occlusion value can
be obtained for displacement mapped surfaces even if the depth value is not modified in the
fragment shader, and the accuracy problems of the z-buffer are also eliminated.
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Figure 4.12: The effect of the neighborhood distance and the number of samples on performance.

Figure 4.13 compares images rendered with only the z-buffer based characteristic function
and when height field occlusions are also considered, and also shows the final image due to
environment map lighting. The volumetric ambient occlusion is computed with n = 12 samples
per pixel. Note that our ambient occlusion computation is just slightly more expensive than
environment lighting, but significantly enhances the details both on the level of macrostructure
geometry and on the level of displacement maps.

4.3 Conclusions

This chapter proposed a fast method for the computation of ambient occlusion. The new ap-
proach is based on rewriting the ambient occlusion integral to evaluate the volume of the un-
occluded part of the tangent sphere, and on its accurate approximation taking advantage of
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environment lighting only z-buffer based occlusions + height-field occlusions + environment lighting
115 FPS 112 FPS 80 FPS 70 FPS

Figure 4.13: A tree with stones rendered by volumetric ambient occlusion taking 12 samples per
pixel. The scene is defined by 109784 triangles.

uniform sequences transformed to mimic the new integrand. We also examined the correspon-
dence of the new volumetric ambient occlusion formula to the classical obscurances or ambient
occlusion. However, we have to emphasize that the volumetric ambient occlusion can also be
considered as a new definition for the openness or accessibility of a point. The important ad-
vantage of the new formula is that it can be evaluated more accurately with the same number
of samples, thus, it is more appropriate in real-time systems where low noise results are needed
with just a few cheap samples. The method also works for dynamic geometry with dynamic
height fields and displacement maps. It does not require pre-processing and runs at high frame
rates, since it only needs as few as 8-10 samples per pixel.
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Chapter 5

Robust specular reflections and
refractions

Section 2.3.2 showed how to render single reflections and refractions using environment maps.
In this chapter we propose a simple and robust ray tracing algorithm running on the GPU for
tracing secondary rays, which can be used to compute real-time, multiple and refractions. The
geometry is stored in layered distance maps. Note that this map is the sampled representation
of the scene geometry. Thus, when a ray is traced, the intersection calculation can use this
information instead of the triangular meshes. Since the layered distance map is generated on
the fly and refreshed regularly, the method does not rely on preprocessing and can cope with
dynamic scenes and deformable objects. The algorithm is simple to implement, efficient, and
accurate enough to handle self reflections as well. In our approach ray tracing may support
searches for the second, third, etc. hit points of the path, while the first point is identified by
rasterization.

5.1 The new method of tracing secondary rays

The proposed ray tracing algorithm works on the geometry stored in layered distance maps. A
single layer of these layered distance maps is a cube map, where a texel contains the material
properties, the distance, and the normal vector of the point that is in the texel’s direction.
The material property is the reflected radiance for diffuse surfaces and the Fresnel factor at
perpendicular illumination for specular reflectors. For refractors, the index of refraction is also
stored as a material property. The distance is measured from the center of the cube map, which
is called the reference point.

5.1.1 Generation of layered distance maps

The computation of distance maps is very similar to that of classical environment maps. The
only difference is that not only the color, but the distance and the normal vector are also
calculated and stored in additional cube maps.

Since the distance is a non linear function of the homogeneous coordinates of the points,
correct results can be obtained only by letting the pixel shader compute the distance values.

The set of layers representing the scene could be obtained by depth peeling [Eve01, LWX06]
in the general case. However, in our case correct depth order is not required between subsequent
layers. Since the proposed searching step is more efficient if the distance values are smooth in a
single layer, for the closer part of the scene, layers are organized to maintain the smoothness of
the distance values instead of assigning the closest points to the same layer. On the other hand,
occluded layers with larger distance values could not be visible from any points close to the
reference point. Thus the reference point is put close to the reflective objects and the far part
of the scene is replaced by a single distance map (Figure 5.1). To make a distinction between
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Figure 5.1: A layered distance map with 3+1 layers

close and far parts of the scene, objects close to the reference point are rendered using depth
peeling into several layers, while objects far from the reference points are rasterized into a single
distance map. As a consequence of this, incomplete layers may be generated, where a texel may
also contain no visible point.

5.1.2 Ray-tracing of layered distance maps

The new algorithm for ray-tracing in layered distance map is based on the algorithms used for
single layer ray-tracing described in section 2.3.2. However as layers can be incomplete, special
considerations must be made. First a safe search method should be used to find an undershooting
and an overshooting point, which provides the two endpoint of a continuous surface on which
an unsafe but fast secant search can be performed.

Linear search

Figure 5.2: Cube map texels visited when marching along ray ~x + ~Rd.

Let us use the notations on figure 5.2, and the ray to be traced with equation ~x + ~Rd. The
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basics of linear search in distance maps was described in section 2.3.2, however definition of the
increments of ray parameter d needs special considerations since it is not worth checking the
same sample many times while ignoring other samples. Unfortunately, making uniform steps on
the ray does not guarantee that the texture space is uniformly sampled. As we get farther from
the reference point, constant length steps on the ray correspond to decreasing length steps in
texture space. This problem can be solved by marching along a line segment that looks identical
to the ray from the reference point, except that its two end points are at the same distance
[D2]. The end points of such a line segment can be obtained by projecting the start of the ray
(~r(0)) and the end of the ray (~r(∞)) onto a unit sphere, resulting in new start ~s and end point
~e, respectively (Figure 5.2).

The intersection algorithm searches these texels, making uniform steps on the line segment
of ~s and ~e:

~r′ = ~s(1− t) + ~et, t = 0, ∆t, 2∆t, . . . , 1.

The correspondence between ray parameter d and line parameter t can be found by projecting
~r′ onto the ray, which leads to the following formula:

d(t) =
|~x|
|~R|

t

1− t
.

This algorithm finds a pair of subsequent undershooting and overshooting points in a single
layer, advancing on the ray making uniform steps ∆t in texture space. Step size ∆t is set
proportionally to the length of line segment of ~s and ~e, and also to the resolution of the cube
map. By setting texel step Dt to be greater than the distance of two neighboring texels, we speed
up the algorithm but also increase the probability of missing the reflection of a thin object. At
a texel, the distance value is obtained from the alpha channel of the cube map. As linear search
finds a pair of undershooting and overshooting points additional secant steps can be used to
refine the result (see Section 2.3.2).

Acceleration with min-max distance values

To speed up the intersection search in a layer, we compute a minimum and a maximum distance
value for each distance map. When a ray is traced, the ray is intersected with the spheres
centered at the reference point and having radii equal to the minimum and maximum values.
The two intersection points significantly reduce the ray space that needs to be marched. This
process moves the start point s and end point e closer, so fewer marching steps would provide
the same accuracy. See Figure 5.3.

5.2 Application to multiple reflections and refractions

Light may get reflected or refracted on an ideal reflector or refractor several times. If the hit point
of a ray is again on the specular surface, then reflected or refracted rays need to be computed and
ray-tracing should be continued, repeating the same algorithm recursively. Generally, searching
multi-layer distance maps is equivalent to searching every layer with the discussed single layer
algorithms and then selecting the closest intersection.

The set of layers representing the scene could be obtained by depth peeling [SKP98, Eve01,
LWX06] in the general case. However, in many cases a much simpler strategy may also work.

If we simulate only multiple refractions on a single object, then the reference point can be
put to the center of the refractor, and a single cube map layer can be assigned to the refractor
surface, and one other for the environment, thus two layers can solve the occlusion problem
(Figure ??). On the other hand, in case of a reflecting surface, we may separate the specular
surface from its environment, place the reference point close to the specular object, and assign
one layer for the front faces of the specular surface, one for the back faces, and a third layer for
the environment (Figure 5.6).



CHAPTER 5. ROBUST SPECULAR REFLECTIONS AND REFRACTIONS 55

Figure 5.3: Min-max acceleration

The computation of the reflected or refracted ray requires the normal vector at the hit surface,
the Fresnel function, and also the index of refraction in case of refractions. These attributes
can also be stored in distance maps. We use two cube maps for each layer. The first cube map
includes the material properties, i.e. the reflected color for diffuse surfaces or the Fresnel function
at perpendicular illumination for specular surfaces, and the index of refraction. The second cube
map stores the normal vectors and the distance values. To distinguish ideal reflectors, refractors,
and diffuse surfaces, the sign of the index of refraction is checked. Negative, zero, and positive
values indicate a reflector, a diffuse surface, and a refractor, respectively. Algorithm 3 shows
the pseudo code of the recursive layered distance map ray tracing function supporting both
reflections and refractions.

Algorithm 3 Ray-trace
for each cube map layer do

Find undershooting and overshooting points with linear search
Refine intersection point xl with secant search

end for
Find closest intersection x = min(x0, .., xl)
Read normal and surface properties at x
if diffuse surface then

return surface color
else

if max ray depth reached then
return zero

else
Calculate reflection direction Rl and refraction direction Rf
Calculate Fresnel function F
return F ·RayTrace(x,Rl) + (1− F ) ·RayTrace(x,Rf)

end if
end if
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Figure 5.4: Multiple refractions and reflections when the maximum ray depth is four.

5.3 Results

Our algorithm was implemented in a DirectX 9 HLSL environment and tested on an NVIDIA
GeForce 8800 GTX graphics card. To simplify the implementation, we represented the reflective
objects by two layers (containing the front and the back faces, respectively) and rasterized all
diffuse surfaces to the third layer. This simplification relieved us from implementing the depth-
peeling process and maximized the number of layers to three. To handle more-complex reflective
objects, we need to integrate the depth-peeling algorithm. All images were rendered at 800×600
resolution. The cube maps had 6× 512× 512 resolution and were updated in every frame. We
should carefully select the step size of the linear search and the iteration number of the secant
search because they can significantly influence the image quality and the rendering speed. If we
set the step size of the linear search greater than the distance of two neighboring texels of the
distance map, we can speed up the algorithm but also increase the probability of missing the
reflection of a thin object. If the geometry rendered into a layer is smooth (that is, it consists
of larger polygonal faces), the linear search can take larger steps and the secant search is able
to find exact solutions with just a few iterations. However, when the distance value in a layer
varies abruptly, the linear search should take fine steps to avoid missing spikes of the distance
map, which correspond to thin reflected objects.

Another source of undersampling artifacts is the limitation of the number of layers and of the
resolution of the distance map. In reflections we may see parts of the scene that are coarsely,
or not at all, represented in the distance maps because of occlusions and their grazing angle
orientation for the center of the cube map. Figure 5.5 shows these artifacts and demonstrates how
they can be reduced by appropriately setting the step size of the linear search and the iteration
number of the secant search. Note how the stair-stepping artifacts are generally eliminated by
adding secant steps. The thin objects zoomed-in on in the green and red frames require fine
linear steps because, if they are missed, the later secant search is not always able to quickly
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correct the error. Note that in Figure 5.5b, the secant search was more successful for the table
object than for the mirror frame because the table occupies more texels in the distance maps.
The aliasing of the reflection of the shadowed area below the table in the left mirror of Figures
5.5a and 5.5c, which is zoomed-in on in the blue frame, is caused by the limitation of distance
map layers to three. This area is not represented in the layers, so not even the secant search can
compute accurate reflections (Figures 5.5b and 5.5d). We can address these types of problems
by increasing the number of layers.

(a) (b)

(c), 36 FPS (d)

Figure 5.5: Aliasing artifacts when the numbers of linear/secant steps are maximized to 15/1,
15/10, 80/1, and 80/10, respectively. (a) Max 15 linear and 1 secant steps. (b) Max 15 linear
and 10 secant steps. (c) Max 80 linear and 1 secant steps. (d) Max 80 linear and 10 secant
steps.

Figure 5.6 shows images of a reflective teapot in a box, rendered with the proposed method
and with Maya (for comparison), limiting the maximum number of reflections in a path to one,
two, and three, respectively. Note the high similarity between the GPU-rendered and software-
rendered images. It is also worth mentioning that the frame rate decreases very little when
the maximum number of reflections increases. This scenario indicates the excellent dynamic
branching performance of the latest NVIDIA cards and also shows that early ray termination
can improve performance, even in GPU solutions. Figure 5.7 compares multiple reflections and
refractions in more complex scenes rendered by the proposed method and Maya. Finally, figure
5.8 shows images of a more complex scene containing a reflective sphere and a mirror, when the
maximum ray depth variable is incremented from one to eight. The assignment of all diffuse
surfaces to a single layer causes minor blurring artifacts where view-dependent occlusions occur
(for example, in the reflection of the handle of the lamp on the mirroring sphere). We could



CHAPTER 5. ROBUST SPECULAR REFLECTIONS AND REFRACTIONS 58

eliminate these artifacts by using more layers, but at the cost of a more complex implementation
and lower rendering speed.

5.4 Conclusion

In this chapter, we presented a robust algorithm to trace rays in scenes represented by layered
distance maps. The method is used to compute single and multiple reflections and refractions
on the GPU. An important advantage of tracing rays in rasterized geometric representations
instead of directly implementing classic ray tracing is that these methods can be integrated
into game engines, benefit from visibility algorithms developed for games [WB05], and use the
full potential of the latest graphics cards. This method is particularly effective if the geometry
rendered into a layer is smooth (that is, consists of larger polygonal faces). In this case, the linear
search can take larger steps and the secant search is able to find exact solutions, taking just a
few iterations. However, when the distance value in a layer varies abruptly, the linear search
should take fine steps to prevent missing thin, reflected objects. Note that a similar problem
also arises in relief mapping, and multiple solutions have been developed [PM07, Don05]. In the
future, we would consider integrating similar solutions into our technique.
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max 1 reflection, 50 FPS Maya reference

max 2 reflections, 36 FPS Maya reference

max 3 reflections, 30 FPS Maya reference

max 4 reflections, 27 FPS Maya reference

Figure 5.6: Single and multiple reflections on a teapot, and comparisons with the software ray
tracer of the Maya 7 renderer
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Figure 5.7: Comparing multiple reflections and refractions rendered by the proposed method
(left) and Maya (right)

Figure 5.8: Multiple reflections incrementing the maximum depth variable from one up to eight



Chapter 6

Caustic triangles

Light paths starting at the light sources and visiting specular reflectors and refractors until
they arrive at diffuse surfaces need to be simulated to create caustic effects. In GPU based
caustic algorithms, the photon tracing part requires the implementation of some ray-tracing
algorithm on the GPU. When a ray is traced, the complete scene representation needs to be
processed. Since the shader processors of GPUs may access just the currently processed varying
item (vertex, primitive or fragment), global parameters, and textures, this requirement can be
met if the scene geometry is stored in textures.

Photon hits form a discrete representation of a continuous phenomenon. The distribution of
these photon hits are very uneven, since the photon density follows the high frequency caustic
patterns. Thus the reconstruction filter and the number of traced photons need to be carefully
selected. If the number of traced photons is low, then undersampling effects occur. If this
number is high, then the algorithm would be slow.

Figure 6.1: The problems of splatting. The left image was rendered with too small splatting
filter, the right one with too large. To obtain the middle image, the splatting size was manually
optimized.

Most of the GPU based algorithms reconstructed the continuous caustic pattern from dis-
crete hits with photon splatting [WS03, SKALP05, SP07, WD06b, WD06a]. However, photon
splatting has drawbacks. The size of splats should be carefully selected in order to preserve
high frequency details but to eliminate dot patterns (Figure 6.1). Finding a uniformly good
splat size is impossible due to the very uneven distribution of the photon hits. On the other
hand, splatting does not take into account the orientation of the receiver surface, which results
in unrealistically strong caustics when the surface is lit from grazing angles. The reconstruc-
tion problems of splatting can be reduced by adaptive size control [WD06a] or by hierarchical
methods [Wym07], but these approaches either always work with the largest splat size or with
multiple hierarchical levels, which reduces their rendering speed.

In addition to splatting, another possibility for reconstruction is to take three neighboring
hits, assume that they form a caustic triangle or caustic beam, and this beam is intersected
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with the caustic surfaces. Evolving on an original idea from Nishita and Nakamae [NN94]
for rendering underwater caustics based on the beam-tracing approach, Iwasaki, Dobashi and
Nishita [IDN02, IDN03] developed methods for the fast rendering of refractive and reflective
caustics due to water surfaces, which were subdivided into triangular meshes. At each water
surface mesh vertex, the refracted vector is computed. They call the volume defined by sweeping
the reflected or refracted vector at each vertex of a caustic generator triangle the illumination
volume. Caustics patterns are displayed by drawing the intersection areas between all of the
illumination volumes and the receiver surfaces, and by accumulating the intensities of light
reaching the intersection area. Unfortunately, this method treated neither shadows nor the case
of warped volumes which can occur in beam tracing Ernst et al. [EAMJ05] solved some of these
problems and also presented a caustic intensity interpolation scheme to reduce aliasing, which
resulted in smoother caustics. However, this algorithm also ignored occlusions, so was unable
to obtain shadows.

To attack the problems of previous GPU based methods, we propose a new algorithm that

• stores photon hits and reconstructs caustic patterns in the cube map space of the caus-
tic generator and takes into account visibility information when projecting reconstructed
caustic patterns onto the surfaces in order to avoid light leaks,

• renders caustic triangles instead of splatting to reduce undersampling artifacts.

Photon hit 
location image

Photon hits on 
diffuse caustic receiver

Caustic generator
specular object

Figure 6.2: Caustics generation renders into the photon hit location image where each pixel
stores the location of the photon hit with respect to some coordinate system.

6.1 The new caustics generation algorithm

As concluded during the review of the previous work, a critical issue of all caustic algorithms
is the selection of the coordinate system where photon hits are stored and the definition of the
algorithm that reconstructs the continuous caustic pattern from these discrete hits.

In order to support artifact free filtering and reconstruction, in this space two points should
be close if they are seen in similar directions from the point of view of the caustic generator
object. Furthermore, we need a way to separate those points which can be hit by rays leaving
the caustic generator objects from those points which cannot be hit due to occlusions.

Let us note that the coordinate system of the distance map used to trace rays leaving the
caustic generator meets these requirements. Points that are represented in neighboring texels
are seen in similar direction from the center of the cube map, and are potentially affected by
neighboring photon paths. On the other hand, comparing the distance of the point from the
center of the cube map to the stored distance of the cube map layers, we can decide whether a
point is occluded or visible from the center of the caustic generator object.
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A point is identified by the direction in which it is visible from the reference point, i.e.
the texel of the cube map, and also by the distance from the reference point. An appropriate
neighborhood for filtering is defined by those points that are projected onto neighboring texels
taking the reference point as the center of projection, and having similar distances from the
reference point as stored in the distance map. Note that this approach is very similar to classical
shadow mapping and successfully eliminates light leaks.

The caustic generation algorithm has multiple passes. See Figure 6.3. Firstly, the photon
tracing pass builds the photon hit location image, followed by the caustic reconstruction pass
which reconstructs the caustic patterns on the cube map face of the distance map and, finally,
the camera pass, which projects the caustic patterns onto the caustic receiver surfaces.

Figure 6.3: Overview of the new caustics generation algorithm: Firstly, the Photon tracing pass
(a), followed by the Caustic reconstruction pass (b) and finally, the Camera pass(c).

6.1.1 Photon tracing pass

The caustic generator algorithm first identifies those caustic generators that are visible from
the light sources and may cast caustics onto caustic receivers that are visible from the camera.
Theoretically, one layered distance map is enough for the whole scene for ray-tracing, but due
to accuracy reasons we generate a separate distance map for each of these caustic generators if
they are far from each other.

Then each caustics generator is rendered from the point of view of each light source (Fig-
ure 6.2). The shaders are set so that the vertex shader transforms the caustic generator to
clipping space, and also to the coordinate system of the cube map by first applying the model-
ing transform, then translating to the reference point. When the fragment shader processes a
point on the caustic generator, the light ray defined the light source position and the current
pixel is traced, possibly multiple times, until a diffuse or glossy surface is found. The direction
of this point with respect to the center of the cube map and the power of the photon are written
into the processed fragment. The power is obtained by multiplying the power going through a
pixel of the light’s camera and the Fresnel factors along the path (or the complement of the Fres-
nel if refraction happens). To distinguish fragments where the caustic generator is not visible,
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the render target is initialized with negative power values.

6.1.2 Caustic reconstruction pass

∆A

Figure 6.4: Computation of the irradiance at the vertices of caustic triangles. The same caustic
triangle is shown on the photon hit location image, on the light cube map face, and projected
onto the caustic receiver.

We propose caustic patterns to be reconstructed on the cube map face of the distance map,
and then projecting the caustic patterns onto the caustic receiver surfaces (Figure 6.4).

During reconstruction neighboring photon hits are found in adjacent texels of the photon hit
location image. These texels contain all information (direction and distance) to determine the
vertices of the caustic triangle. A caustic triangle is drawn onto the surface of the cube map,
where the vertex locations are set as the directions stored in the photon hit location image. We
send two times as many triangles as pixels the photon hit location image has (Figure 6.5) down
the pipeline. We can avoid the expensive GPU to CPU transfer of this image, if vertices are
sent with dummy coordinates, or with photon hit location image coordinates, and the vertex
shader sets the world or cube map space coordinates according to the content of the photon hit
location image. This operation requires at least Shader Model 3 GPUs that allow the vertex
shader to access textures. If a pixel of the photon hit location image has negative power, i.e. it
is invalid since the caustic generator is not visible in this pixel, then the corresponding vertex is
placed outside the clipping region. This way we can exploit the clipping hardware to eliminate
invalid triangles and vertices.

Photon hit 
location image

Vertex
shader

Pixel
shader

Triangles with
vertex coords
of the photon hit 
location image

Triangle with vertices 
in cube map space

Cube map face

Figure 6.5: Rendering to the light cube map.

The irradiance at a vertex can be computed as the ratio of power ∆Φ arriving at neighbor-
hood of area ∆A, i.e. as I = ∆Φ/∆A. Area ∆A is approximated from the areas of projected
caustic triangles adjacent to this vertex (Figure 6.4). Since we use Gouraud shading, i.e. linear
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interpolation between vertices, power distribution area ∆A is computed as the half of the total
areas of triangles attached to this vertex.

The compositing operator should be set to “add” since the contributions of different photon
hits should be added.

The resulting cube map with irradiance values in its texels is called the light cube map(or
caustic cube map), which can be considered as a direction dependent point light source that
is responsible for adding the caustic contribution.

6.1.3 Camera pass

light cube map

blurred
photon 
hits

caustic
receiver

Figure 6.6: Light projections in the final camera pass.

During the final camera pass, the light cube map acts as an additional light source (Fig-
ure 6.6). The texels of the cube map already have distance information, thus this cube map is
also a shadow map. When a point is processed by the fragment shader during final gathering,
the direction between the center of the light cube map and the shaded point is obtained. The
light cube map is looked up in this direction. If the distance stored in the light cube map texel is
similar to the distance to the shaded point, then the irradiance stored in the texel is multiplied
by the BRDF of the shaded point and result is added to the reflection of other light sources.
Note that not only the irradiance but also the direction of the illumination is available during
this computation thus glossy BRDFs can also be correctly processed. Algorithm 4 shows the
pseudo code of the entire caustics generation process.

6.2 Optimizations

In the presented method the area computation of a triangle is repeated if a vertex is reused
in other triangles. So we can implement a separate pass to render just a single quad at the
resolution of the photon hit location image. This pass computes the area of triangles adjacent
to a single vertex.

This step can also be utilized to execute hierarchical reconstruction similarly to [Wym07],
but unlike in Wyman’s approach not the photon hits but caustic triangles are merged together.
The hierarchical reconstruction can address the oversampling problem, i.e. that caustic triangles
may be very small in the focus (i.e. smaller than a texel of the light cube map or a pixel on
the screen). It is worth combining small triangles into a single triangle adding up their power,
using the geometry shader of Shader Model 4 GPUs. We consider the implementation of this
mipmap based approach as an important future work.

Another important area of further study is the representation of high frequency caustics
into the process: now, represented caustics are limited by the resolution of both the photon
hit location image and the cube map surface. Although the usage of triangles built from the



CHAPTER 6. CAUSTIC TRIANGLES 66

Algorithm 4 Caustic triangles
for each caustic caster do

Create cube map storing distance values from caster object center
Create photon hit location image

Place camera in light source and orient to caster
Use ray-tracing to identify hit point location
Write hit point direction from caster center

Create caustic cube map placed in caster center
Setup triangles for adjacent texels in photon location image
Read vertex positions from photon location image
Place vertices with invalid photon hits outside clipping region
Calculate adjacent triangle areas
Calculate vertex intensity
Draw triangle with additive blending

end for
for each caustic receiver do

for each caustic caster do
Calculate direction between shaded point and caster center
Read distance stored in distance cube map
Compare with distance of the shaded point
if distances are similar then

Read caustics intensity from caustic cube map
Add caustics intensity to shaded color

end if
end for

end for

photon hit location image generates patterns without noticeable artifacts, small details could
be lost. A possible workaround this problem is to employ an adaptive or hierarchical solution,
as mentioned before. In our experiments, we have not seen any serious problem with respect to
the dependency on the cubemap resolution (we used maps of 6× 512× 512, see below).

6.3 Results

The discussed algorithm has been implemented in DirectX/HLSL environment and integrated
into the Ogre3D game engine. Figure 6.8 shows the photon hit location image, the projected
photon hits visualized by point primitives, and the result with caustic triangles. We used a
128×128 pixel resolution photon hit location image, and a Cubemap of 6×512×512. Figure 6.7
shows a glass head in the “laboratory” scene. Since the caustic cube map can be looked up not
only when the primary ray hits a surface but also when secondary reflective or refractive rays are
traced, the proposed method can produce the reflections or refractions of caustics as well. Note
that even with shadow, reflection, and refraction computation, the method runs at 60 FPS on an
NV6800GT GPU. Table 6.1 shows speed measurements with different photon hit location image
resolution and caustic cube map resolution settings. We should note that on recent hardware
(like the NVidia GTX 260) we can count on a tripled speedup of the algorithm.

6.4 Conclusions

We proposed a robust algorithm to compute caustics by tracing rays in distance maps. Un-
like splatting-based methods our caustic algorithm does not exhibit problems depending on a
splatting filter since caustic triangles provide continuous patterns without overblurring even at
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Caustic cube map Photon hit location image resolution
resolution 32× 32 64× 64 128× 128 256× 256

64× 64 300 FPS 175 FPS 63 FPS 16FPS
128× 128 290 FPS 170 FPS 62 FPS 16FPS
256× 256 280 FPS 165 FPS 60 FPS 16FPS
512× 512 260 FPS 155 FPS 60 FPS 16FPS

Table 6.1: The effect of photon hit location image resolution and caustic cube map resolution
on performance (NV6800GT).

Figure 6.7: Real-time caustics caused by a glass head and rendered by the proposed method
rendered at 60 FPS on an NV6800GT GPU.

(a) (b) (c)

Figure 6.8: (a) The 128 × 128 resolution photon hit location image, (b) photon hits rendered
as points, and (c) the caustics as a collection of transparent triangles rendered at 80 FPS on an
NV6800GT GPU.
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moderate resolutions. Also, unlike [EAMJ05], the proposed approach can correctly take into
account occlusions and warped volumes, which allows accurate shadow computations. On the
other hand, the method presented here inherits some of the limitations of distance map based ray
tracing: the number of search iterations should be carefully chosen to guarantee that artifacts
in the ray tracing stage are minimized.
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Chapter 7

Spherical billboards

Particle system rendering methods usually splat particles onto the screen [Ree83, WLMK02].
Splatting substitutes particles with semi-transparent, camera-aligned rectangles, called bill-
boards [Sch95].

billboard

visible

billboard

invisible

object

Figure 7.1: Billboard clipping artifact. When the billboard rectangle intersects an opaque object,
transparency becomes spatially discontinuous.

Billboards are planar rectangles having no extension along one dimension. This can cause
artifacts when billboards intersect opaque objects making the intersection of the billboard plane
and the object clearly noticeable (Figure 7.1). The core of this clipping artifact is that a
billboard fades those objects that are behind it according to its transparency as if the object
were fully behind the sphere of the particle. However, those objects that are in front of the
billboard plane are not faded at all, thus transparency changes abruptly at the object–billboard
intersection.

On the other hand, when the camera moves into the media, billboards also cause popping
artifacts. In this case, the billboard is either behind or in front of the front clipping plane, and
the transition between the two stages is instantaneous. The former case corresponds to a fully
visible, while the latter to a fully invisible particle, which results in an abrupt change during
animation (Figure 7.2).

The issue of billboard clipping artifacts has been addressed in [HL01, Har02] where the
splitting of the intersected billboards is proposed. Instead of using the z-buffer to identify the
visible fragments, a back to front rendering is executed, which draws two billboards instead of
a single intersected billboard, one before, and the other after the object rendering. While this
approach eliminates artifacts in case of a single object, it gets unmanageable for many included
objects.

If billboard pixels are either fully visible or fully opaque, then another possibility exists to mix
billboards and conventional 3D objects. To avoid incorrect clipping, billboards are equipped with
per pixel depth information as happens, for example in nailboards [Sch97] and 2.5D impostors
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billboard

Frame A billboard
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Frame B
billboard

fully
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front plane

front plane

billboard

Figure 7.2: Billboard popping artifact. Where the billboard gets to the other side of the front
clipping plane, the transparency is discontinuous in time (the figure shows two adjacent frames
in an animation).

[Szi05, J2].
In this chapter we propose a novel solution for including objects into the participating

medium without billboard clipping and popping artifacts. The basic idea of spherical bill-
boards is introduced in Section 7.1. Unlike nailboards, the proposed method can also handle
semi transparent billboards needed for natural phenomena, such as fire, smoke, clouds, and
explosions. Instead of associating depth textures to billboards, we obtain two depth values an-
alytically, one for the front, and another one for the back surfaces, and compute the opacity
according to the real distance the light travels inside the particle.

The proposed idea is used then to render realistic explosions in real-time in Section 7.2. In
our explosion rendering system fire and smoke particles are animated and colored in a physically
plausible way similarly to [NFJ02, Ngu04].

7.1 The new method using spherical billboards

Billboard clipping artifacts are solved by calculating the real path length a light ray travels inside
a given particle since this length determines the opacity value to be used during rendering. The
traveled distance is obtained from the spherical geometry of particles instead of assuming that
a particle can be represented by a planar rectangle. However, in order to keep the implementa-
tion simple and fast, we still send the particles through the rendering pipeline as quadrilateral
primitives, and take into account the spherical shape only during fragment processing.

To find out where opaque objects are during particle rendering, first these objects are drawn
and the resulting depth buffer storing camera space z coordinates is saved in a texture.

Having rendered the opaque objects, particle systems are processed. The particles are ren-
dered as quads perpendicular to axis z of the camera coordinate system. These quads are placed
at the farthest point of the particle sphere to avoid unwanted front plane clipping. Disabling
depth test is also needed to eliminate incorrect object–billboard clipping.

When rendering a fragment of the particle, we compute the interval the ray travels inside
the particle sphere in camera space. This interval is obtained considering the saved depth values
of opaque objects and the camera’s front clipping plane distance. From the resulting interval we
can compute the opacity for each fragment in such a way that both fully and partially visible
particles are displayed correctly, giving the illusion of a volumetric medium. During opacity
computation we assume that the density is uniform inside a particle sphere.

For the formal discussion of the processing of a single particle, let us use the notations of
Figure 7.3. We consider the fragment processing of a particle of center ~P = (xp, yp, zp), which
is rendered as a quad perpendicular to axis z. Suppose that the current fragment corresponds



CHAPTER 7. SPHERICAL BILLBOARDS 72

billboard

P

d

w

r

F Q B

O

x,y

x

z

front 

clipping plane

f Zs

s
object

particle sphere

Figure 7.3: Computation of length ∆s the ray segment travels inside a particle sphere in camera
space.

to the visibility ray cast through point ~Q = (xq, yq, zq) of the quadrilateral. Although visibility
rays start in the origin of the camera coordinate system and thus form a perspective bundle,
for the sake of simplicity, we consider them as being parallel with axis z. This approximation
is acceptable if the perspective distortion is not too strong. If the visibility ray is parallel with
axis z, then the z coordinates of ~P and ~Q are identical, i.e. zq = zp.

The radius of the particle sphere is denoted by r. The distance between the ray and the
particle center is d =

√
(x− xp)2 + (y − yp)2. The closest and the farthest points of the particle

sphere on the ray from the camera are ~F and ~B, respectively. The distances of these points
from the camera can be obtained as

|~F | ≈ zp − w, | ~B| ≈ zp + w, (7.1)

where

w =
√

r2 − d2. (7.2)

The ray travels inside the particle in interval [|~F |, | ~B|].
Taking into account the front clipping plane and the depth values of opaque objects, these

distances may be modified. First to eliminate popping artifacts, we should ensure that |~F | is
not smaller than the front clipping plane distance f , thus the distance the ray travels in the
particle before reaching the front plane is not be included. Secondly we should also ensure that
| ~B| is not greater than Zs which is the stored object depth at the given pixel, thus the distance
traveled inside the object is not considered.

From these modified distances we can obtain the real length the ray travels in the particle:

∆s = min(Zs, | ~B|)−max(f, |~F |). (7.3)

7.1.1 “Gouraud shading” for spherical billboards

Assuming that the density is homogeneous inside a particle and using equation ?? to obtain
the respective opacity value correspond to the piece-wise constant finite-element approximation.
While constant finite-elements might be acceptable from the point of view of numerical precision,
their application results in annoying visual artifacts.

Figure 7.4 depicts the accumulated density (
∫
∆sj

τ(s)ds) and the respective opacity as a
function of ray–particle distance d, assuming constant finite-elements. Note that at the contour
of the particle sphere (d = 1) the accumulated density and the opacity become zero, but they
do not diminish smoothly. The accumulated density has a significant derivative at this point,
which makes the contour of the particle sphere clearly visible for the human observer.

This artifact can be eliminated if we use piece-wise linear rather than piece-wise constant
finite-elements, that is, the density is supposed to be linearly decreasing with the distance
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Figure 7.4: The accumulated density of a ray (left) and its seen opacity (right) as the function
of the distance of the ray and the center in a unit sphere with constant, unit density.
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Figure 7.5: The accumulated density of a ray as the function of the distance of the ray and
the center in a unit sphere with density function linearly decreasing with the distance from the
particle center.
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from the particle center. The accumulated density computed with this assumption is shown by
Figure 7.5. Note that this function is very close to a linear function, thus the effects of piece-wise
linear finite elements can be approximated by modulating the accumulated density by this linear
function. It means that we use the following formula to obtain the opacity of particle j:

αj ≈ 1− e−τj(1−d/rj)∆sj (7.4)

, where d is the distance between the ray and the particle center, and rj is the radius of this
particle. Note that this approach is very similar to the trick applied in radiosity methods. While
computing the patch radiosities piece-wise constant finite-elements are used, but the final image
is presented with Gouraud shading, which corresponds to linear filtering.

7.1.2 GPU Implementation of spherical billboards

The evaluation of the length the ray travels in a particle sphere and the computation of the
corresponding opacity can be efficiently executed by a custom fragment shader program. The
fragment program gets some of its inputs from the vertex shader: the particle position in camera
space, the shaded billboard point in camera space, the particle radius, and the screen coordinates
of the shaded point to address the depth map. Some uniform parameters should also be given,
including the density, and the camera’s front clipping plane distance. Algorithm 5 shows the
pseudo code of the spherical billboard algorithm, that can be used in a fragment shader to
calculate opacity.

Algorithm 5 Spherical billboard
alpha ← 0
Calculate distance d from particle center
if d < particleRadius then

Calculate w using equation 7.2
Calculate enter and exit points on sphere using equation 7.1
Read scene depth
Calculate ray length inside sphere using equation 7.3
alpha ← evaluate equation 7.4

else
Discard pixel

end if
return alpha

With this simple calculation the shader program obtains the real ray segment length and
computes opacity of the given particle that controls blending of the particle into the frame buffer.
The consideration of the spherical geometry during fragment processing eliminates clipping and
popping artifacts (see Figure 7.6).

7.2 Rendering explosions

An explosion consists of dust, smoke, and fire, which are modeled by specific particle systems.
Dust and smoke absorb light, fire emits light. These particle systems are rendered separately,
and the final result is obtained by compositing their rendered images.

7.2.1 Dust and smoke

Smoke particles are responsible for absorbing light in the fire. These particles typically have low
albedo values (a = 0.2, τ = 0.4). High albedo (a = 0.9, τ = 0.4) dust that is swirling in the air,
on the other hand, is added to improve the realism of the explosion (Figure 7.7).
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Figure 7.6: Particle system rendered with planar (left) and with spherical (right) billboards.

When rendering dust and smoke we assume that these particles do not emit radiance so
their emission term is zero. To calculate the in-scattering term, the length the light travels in
the particle sphere, the albedo, the density, and the phase function are needed. We use the
Henyey-Greenstein phase function [HG40, CS92] (equation 1.3). We have found that setting g
to constant zero gives satisfactory results for dust and smoke.

The real length the light travels inside a smoke or dust particle is computed by the proposed
spherical billboard method.

Figure 7.7: High albedo dust and low albedo smoke.

In order to maintain high frame rates, the number of particles should be limited, which may
compromise high detail features. To cope with this problem, the number of particles is reduced
while their radius is increased. The variety needed by the details is added by perturbing the
opacity values computed by spherical billboards. Each particle has a unique, time dependent
perturbation pattern. The perturbation is extracted from a grey scale texture, called detail
image, which depicts real smoke or dust (Figure 7.8). The perturbation pattern of a particle
is taken from a randomly placed, small quad shaped part of this texture. This technique has
been used for a longer time by off-line renderers of the motion picture industry [AG00]. As time
advances this texture is dynamically updated to provide variety in the time domain as well. Such
animated 2D textures can be obtained from real world videos and stored as a 3D texture since
inter-frame interpolation and looping can automatically be provided by the graphics hardware’s
texture sampling unit [Ngu04].

7.2.2 Fire

Fire is modelled as a black-body radiator rather than participating medium, i.e. the albedo is
zero, so only the emission term is needed. The color characteristics of fire particles are deter-
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Figure 7.8: Images from real smoke and fire video clips, which are used to perturb the billboard
fragment opacities and temperatures.

mined by the physics theory of black-body radiation. For wavelength λ, the emitted radiance
of a black-body can be computed by Planck’s formula:

Le,λ(x) =
2C1

λ5(eC2/(λT ) − 1)

where C1 = 3.7418 · 10−16Wm2, C2 = 1.4388 · 10−2m◦K, and T is the absolute temperature of
the radiator [SH81]. Figure 7.9 shows the spectral radiance of black-body radiators at different
temperatures. Note that the higher the temperature is, the more blueish the color gets.

1,0

0,8

0,6

0,4

0,2

380 480 580 680 780

2000 K

4000 K

6000 K

8000 K

10 000 K

wavelength (nm)

n
o

rm
al

iz
ed

 i
n

te
n

si
ty

Figure 7.9: Black-body radiator spectral distribution

For different temperature values, the RGB components can be obtained by integrating the
spectrum multiplied by the color matching functions. These integrals can be pre-computed and
stored in a texture. To depict realistic fire, the temperature range of T ∈ [2500◦K, 3200◦K]
needs to be processed (see Figure 7.10).

The opacity of fire particles is calculated by the spherical billboards.
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0 K 2500 K−3200 K 10 000 K

Figure 7.10: Black-body radiator colors from 0◦K to 10000◦K. Fire particles belong to temper-
ature values from 2500◦K to 3200◦K.

High detail features are added to fire particles similarly to smoke and dust particles. However,
now not the opacity, but the emission radiance should be perturbed. We could use a color video
and take the color samples directly from this video, but this approach would limit the freedom
of controlling the temperature range and color of different explosions. Instead, we decided to
store the temperature variations in the detail texture (Figure 7.8), and its stored temperature
values are scaled and are used for color computation on the fly. A randomly selected, small
quadrilateral part of a frame in the detail video is assigned to a fire particle to control the
temperature perturbation of the fragments of the particle billboard. The temperature is scaled
and a bias is added if required. Then the resulting temperature is used to find the color of this
fragment in the black-body radiation function.

7.2.3 Layer composition

To combine the particle systems together and with the image of opaque objects, a layer com-
position method has been used. This way we should render the opaque objects and the particle
systems into separate textures, and then compose them. This leads to three rendering passes:
one pass for opaque objects, one pass for dust, fire, and smoke, and one final pass for composition.
The first pass computes both the color and the depth of opaque objects.

One great advantage of rendering the participating medium into a texture is that we can use
floating point blending. Another advantage is that this render pass may have smaller resolution
rendering target than the final display resolution, which considerably speeds up rendering since
blending needs a huge amount of pixel processing power to overdraw a pixel many times (see
Figure 7.11). Table 7.1 shows how the ratio of screen resolution and particle render target
resolution influence performance. On recent hardware even with high screen and render target
resolutions considerably high frame rates can be achieved.

GPU Render target ratio
screen resolution 1 1/2 1/4 1/8

GeForce 6800GT 30 40 50 60
512× 512 FPS FPS FPS FPS

GeForce GTX260 330 750 750 750
512× 512 FPS FPS FPS FPS

GeForce GTX260 130 345 730 750
1024× 768 FPS FPS FPS FPS

Table 7.1: Speed comparison of different screen resolutions, render target resolutions and graph-
ics hardware.

To enhance realism, we also simulated heat shimmering that distorts the image [Ngu04].
This is done by rendering particles of a noisy texture. This noise is used in the final composition
as u, v offset values to distort the image. With the help of multiple render targets, this pass can
also be merged in the pass of rendering of fire particles.

The final effect that could be used through composition is motion blur, which can easily be
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Figure 7.11: Particles rendered to render targets of different resolutions (GeForce 6800GT).
Upper left: particle render target with screen resolution. Upper right, lower left, lower right:
render target with half, quarter and one eights of the screen resolution.
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Figure 7.12: Rendering algorithm
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done with blending, letting the new frame fade into previous frames. The complete rendering
process is shown in Figure 7.12.

7.3 Results

The presented algorithm has been implemented in OpenGL/Cg environment on an NV6800GT
graphics card. The dust, the fire, and the smoke consist of 16, 115, and 28 animated particles,
respectively. Note that these surprisingly small number of larger particles can be simulated very
efficiently, but thanks to the opacity and temperature perturbation, the high frequency details
are not compromised. The modeled scene consists of 16800 triangles. The scene is rendered with
per pixel Phong shading. During particle simulation we detected collisions between particles and
a simplified scene geometry. Our algorithm offers real-time rendering speed (40 FPS) with high
details (see Figure 7.13). The frame rate strongly depends on the number of overridden pixels.
For comparison, the scene without the particle system is rendered at 70 FPS, and the classic
billboard rendering method would also run at about 40 FPS. This means that the performance
lost due to the more complex spherical billboard calculations can be regained by decreasing the
render target resolution during particle system drawing.

7.4 Conclusion

This chapter proposed to consider particles as spheres rather than planar billboards during
fragment processing, while still rendering them as billboards, which eliminated billboard clipping
and popping artifacts. The paper also introduced an efficient method to display explosions
composed of fire, smoke, and dust. The discussed method also used post rendering effects and
runs at high frame rates.
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Figure 7.13: Rendered frames from the animation sequence.



Chapter 8

Hierarchical Depth Impostors

The in-scattering term requires the evaluation of a directional integral at each particle j.
Real-time methods usually simplify this integral and consider only the directions of the light
sources in these integrals, and thus allowing only attenuation and forward scattering [Har02].
The incoming radiance for all particles can be effectively evaluated executing a light pass for
each light source. In a light pass, particles are sorted along the light direction, and their opacity
billboards are rendered one by one in this order. Before rendering a particle, the color buffer is
read back to obtain the light attenuation at this particle, then the opacity texture of the particle
is combined with the image to prepare the light attenuation for the subsequent particle.

The incoming radiance of a particle due to a given light source is computed from the light
source intensity and the opacity accumulated so far.

If we know the incoming radiance of particles, the volume can efficiently be rendered from
the camera using alpha blending. The in-scattering term of a particle is obtained by multiplying
the albedo and the phase function with the incoming radiance values due to the different light
sources, which is attenuated according to the total opacity of the particles that are between
the camera and this particle. This requires the sorting of particles in the view direction before
sending them to the frame buffer in back to front order. At a given particle, the evolving image
is decreased according to the opacity of the particle and increased by its in-scattering term.

In this chapter we propose the application of particle hierarchies to reduce the computational
burden of rendering. On the lower level, particles are grouped into blocks, that are rendered once
for the current viewing or lighting direction, then the role of the individual particles are taken
by these blocks. To eliminate the read-backs of the color buffer, we compute the attenuation at
discrete depth samples during light passes.

8.1 The new method using particle hierarchies

To reduce the computational burden of rendering, particle hierarchies are formed, and the full
system is built of smaller similar blocks. As most natural phenomena shows self-similarity, we
can use this approximation in most cases.

A single particle block represents particles that are close to each other. Before rendering
for a given direction, the image of the particles of a block is determined from this direction, and
then we use these images instead of individual particles. The image is called depth impostor.
A pixel of the depth impostor stores information that is needed about the particles which
project onto this pixel, particularly their total opacity, their minimum (front) and maximum
(back) depths. During rendering an impostor pixel acts as a “super-particle” that concentrates
all those particles of the block, which are projected onto it. The total opacity is used in the
radiance transfer, while the depths are taken into account to eliminate artifacts caused by
objects included in the volume. The idea of approximate particle systems with blocks and
double layered depth impostors is was an extension of 2.5D impostors originally used to
render crown of trees [SK03](section 2.2).
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Replacing particles by blocks, the computation burden can be reduced significantly. If we
want a system with N particles, we can build a block of b particles and instance it N/b times. The
hierarchical approach needs only b+N/b calculations during simulation and color computation,
in contrast to N calculations of the non-hierarchical method.

8.1.1 Generating a depth impostor

To generate a depth impostor representing a block for a particular direction (either light or
camera), the particles of the block are rendered and the total opacity, and front and back
depths are computed for each pixel on the GPU. These depth impostors are first generated for
particle spheres and then for volume blocks. The opacity texture of a particle is pre-defined,
and the depth textures of a particle sphere can be created analytically evaluating the depths of
a sphere in the preprocessing phase.

The total opacity of a block could be determined using alpha blending of the opacity textures
of the particles. The depth values of the block, however, require a different operation. A simple
approach would generate the front and back depth textures of a block by rendering particle the
front and back textures of the particles, overwriting the fragment depth value in the fragment
shader, and letting the z-buffer to find the minimum and the maximum in two different passes.

However, this simple approach needs three rendering passes for each particle block. Fortu-
nately, it is also possible to execute the three different calculations in a single rendering pass if
depth testing is replaced by alpha testing and with enabling special blending operators of the
GPUs. The layers of a depth impostor are shown in Figure 8.1.

Figure 8.1: Depth impostor layers of a block: front depth, back depth, and accumulated opacity

8.1.2 Using depth impostors during light passes

Rendering participating media consists of a separate light pass for each light source determining
the approximation of the in-scattering term caused by this particular light source, and a final
gathering step. Handling light volume interaction on the particle level would be too computation
intensive since the light pass requires the incremental rendering of all particles and the read back
of the actual result for each of them. To speed up the process, we render particle blocks one by
one, and separate light–volume interaction calculation from the particles.

During a light pass we classify particle blocks into groups according to their distances from
the light source, and store the evolving image in textures at given sample distances. These
textures are called light slices. The first texture will display the accumulated opacity of the
first group of particle blocks, the second will show the opacity of the first and second groups
of particle blocks and so on. The required number of depth samples depends on the particle
count and the cloud shape. For a roughly spherical shape and relatively few particles (where
overlapping is not dominant), even four depths can be enough. Figure 8.2 shows this technique
with five light slices. Four slices can be computed simultaneously if we store the slices in the
color channels of one RGBA texture. For a given particle, the vertex shader will decide in
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which slice (or color channel) this particle should be rendered. The vertex shader sets the color
channels corresponding to other slices to zero, and the pixel is updated with alpha blending.

8.1.3 Using depth impostors during final gathering

During final rendering we obtain the depth impostors of the blocks for the viewing direction,
sort them and render them one after the other in back to front order. The in-scattering term is
obtained from the sampled textures of the slices that enclose the pixel of the block (Figure 8.2).

The accumulated opacity of the slices can be used to determine the radiance at the pixels
of these slices and finally the reflected radiance of a particle between the slices. Knowing the
position of the particles we can decide which two slices enclose it. By linear interpolation between
the values read from these two textures we can approximate the attenuation of the light source
color. Harris used a similar technique in [HBSL03], where he stored these slices in a 3D texture
called oriented light volume. In order to obtain a better multiple scattering approximation, the
radiance of those pixels of both enclosing slices are taken into account, for which the phase
function is not negligible.

sky color

depth impostor

slice 1

slice 2

slice 3

light source

light
pass

final gathering
pass

Figure 8.2: Final gathering for a block

8.1.4 Objects in clouds

As we are working with billboards, this method suffers from the main problem of billboard
rendering described in Section 7, namely clipping artifacts. This problem is solved using the
extension of the particle block, i.e. the interval of the block in the depth direction, which is
stored in impostor texels. This idea is similar to the spherical billboard method (Section
7), but in this case the particles cannot be treated as spheres and no analytic expression can
describe their density distribution. Our solution is a volumetric extension of the 2.5D impostor
method described in [SK03].

In order to attack this problem, first we render all objects of the scene and save the depth
buffer in a texture. Then the particle blocks are rendered one by one, enabling depth test but
disabling depth write. When rendering a particle block, we compute the interval the ray travels
inside the block adding the depth value of the block center to the front and back depth values
of the depth impostor. This interval is compared with the value storing the depth of the visible
object. If the object depth value is outside the interval, then the object is either fully visible
or fully occluded by the particle sphere, thus we can rely on the z-buffer and alpha-blending
hardware to compute the correct result. However, when the interval of the block encloses the
depth of the object, only a part of the volume block occludes the object. In this case, the
opacity of the particle block is scaled according to the relative distance between the front depth
of the particle block and the object, and the depth interval of the particle block. This scaling
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Figure 8.3: Problems caused by objects in a volume rendered as billboards. Where the billboard
plane intersects the object, transparency becomes discontinuous.

corresponds to the assumption that the density is uniform inside a block. The results are shown
in Figure 8.4. Algorithm 6 shows the pseudo code of the rendering algorithm.

Figure 8.4: Volume rendered with depth impostors eliminating billboard clipping artifacts

8.2 Results

The presented algorithm has been implemented in OpenGL/Cg environment on an NV6800GT
graphics card. The animated cloud of Figure 8.5 consists of 8000 particles grouped to different
number of blocks, and is illuminated by a directional light. The rendering speed increases as we
put more particles in a single block until 40 blocks. For higher number of particles per block,
rendering gets slower, because of the block computation overhead (Figure 8.6). We should note
that on recent hardware (like the NVidia GTX 260) the performance of the algorithm doubles.

8.3 Conclusions

This chapter proposed to build particle clouds of blocks. A block itself represents many particles,
and is defined by a depth impostor. We also applied depth sampling to compute self-shadowing
and multiple forward scattering quickly. As a combined effect of these improvements, the pre-
sented method renders realistically shaded dynamic smoke or cloud formations under changing
lighting conditions at high frame rates, taking advantage of the GPU. On the other hand, the
inclusion of front and depth information into the depth impostors eliminated billboard clipping
artifacts when the volume contains 3D objects.
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Algorithm 6 Participating media rendering with depth impostors
Store scene depth

Define ortogonal projection oriented to view direction and fitted to particle block
Store minimum depth values of the particle block
Store maximum depth values of the particle block
Store total opacity of the particle block

Define ortogonal projection oriented to light direction and fitted to the particle system
for each light slice do

Clear with white color
for each particle in this slice do

Render with alpha blending and black color using block opacity
end for

end for

for Each particle do
Render block-sized screen aligned quad
for Each drawn fragment do

Read opacity from impostor image
Read minimum depth from impostor image
Read maximum depth from impostor image
Read scene depth
Calculate ray length inside block
Calculate opacity from ray length
Identify adjacent light slices
Read attenuated light intensities from light slices
Interpolate between slices to obtain incoming radiance
Calculate reflected radiance according to computed opacity

end for
end for

no block, 8000 particles, 8 FPS 1600 blocks, 20 FPS 800 blocks, 42 FPS

400 blocks, 60 FPS 40 blocks, 200 FPS 20 blocks, 180 FPS

Figure 8.5: Images of animated volumes of 8000 particles organized in different number of blocks



CHAPTER 8. HIERARCHICAL DEPTH IMPOSTORS 87

0

50

100

150

200

0x8000 4000x2 1600x5 800x10 400x20 40x200 20x400 10x800 5x1600 1x8000
block x particle count

FP
S

Figure 8.6: The effect of grouping different number of particles into different number of blocks.

Figure 8.7: Swirling cloud rendered at 180 FPS

Figure 8.8: Swirling cloud crossed by a plane rendered at 180 FPS



Chapter 9

Parcipating media rendering with
illumination networks

We solve the discretized volumetric rendering equation by iteration. The volume is represented
by a set of randomly sampled particle positions. Suppose that we have an estimate of particle
radiance values (and consequently, of incoming radiance values) at iteration step n−1. The new
particle radiance in iteration step n is obtained by substituting these values to the right side of
the discretized volumetric rendering equation:

Ln
p (~ω) = (1− αp)In−1

p (~ω) + Ep(~ω) + αpap

∫

Ω′

In−1
p (~ω′)Pp(~ω′, ~ω) dω′. (9.1)

This iteration is convergent if the opacity is in [0, 1] and the albedo is positive and less than
1, which is always the case for physically plausible materials.

In order to calculate the directional integral representing the inscattering term of equa-
tion 9.1, we suppose that D random directions ~ω1, . . . , ~ωD are obtained from uniform distribution
of density 1/(4π), and the integral is estimated by Monte Carlo quadrature:

∫

Ω′

Ip(~ω′)Pp(~ω′, ~ω) dω′ ≈ 1
D

D∑

d=1

Ip(~ω′d)Pp(~ω′d, ~ω)4π.

Note that replacing the original integral by its approximating quadrature introduces some error
in each iteration step, which accumulates during the iteration. This error can be controlled by
setting D according to the albedo of the participating media since if the error of a single step is
ε and the albedo is a, then the error is bound by ε/(1− a).

9.1 The new method using illumination networks
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ω2ω3

ω5

ω4

ω6

p

V[p,5] V[p,6]

V[p,3]
V[p,2]

V[p,1]

V[p,4]

I[p,6]I[p,5]
I[p,4]

I[p,1] I[p,2]
I[p,3]

Figure 9.1: Illumination and visibility networks
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If we use the same set of sample directions for all particles, then the incoming radiance and
therefore the outgoing radiance are needed only at these directions during iteration. For a single
particle p, we need D incoming radiance values Ip(~ωd) in ~ω1, . . . , ~ωD, and the reflected radiance
needs to be computed exactly in these directions. In order to update the radiance of a particle,
we should know the indices of the particles visible in sample directions, and also the distances
of these particles to compute the opacity. This information can be stored in two-dimensional
arrays I and V of size N×D, indexed by particles and directions respectively (figure 9.1). Array
I is called the illumination network and stores the incoming radiance values of the particles
on the wavelengths of red, green, and blue. Array V is the visibility network and stores index
of visible particle vp and opacity α for each particle and incoming direction, that is, it identifies
from where the given particle can receive illumination (figure 9.2).

particles

directions

particles

r,g,b vp,a

pp

d

vp

pvp
r,g,b

illumination network visibility network

ωd

Figure 9.2: Storing the networks in arrays

In order to handle emissions and the direct illumination of light sources, we use a third
array E that stores the sum of the emission and the reflection of the direct illumination for each
particle and discrete direction. This array can be initialized by rendering the volume from the
point of view of the light source and identifying those particles that are directly visible. At a
particular particle, the discrete direction closest to the illumination direction is found, and the
reflection of the light source is computed from the incoming discrete direction for each outgoing
discrete direction.

Visibility network V expressing the visibility between particles is constructed during a pre-
processing phase (Figure 9.3). The bounding sphere of the volume is constructed and then D
uniformly distributed points are sampled on its surface. Each point on the sphere defines a
direction aiming at the center of the sphere, and also a plane perpendicular to the direction. A
square window is set on this plane to include the projection of the volume, and the window is
discretized to M ×M pixels.
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Figure 9.3: Constructing the visibility network
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When a particular direction is processed, particles are orthographically projected onto the
window, and rendered using a standard z-buffer algorithm, having set the color of particle p
equal to its index p (Figure 9.3). The contents of the image and depth buffers are read back to
the CPU memory, and the indices and depths of the visible particles are stored together with the
pixel coordinates. The particles that were visible in the preceding rendering step are ignored in
the subsequent rendering steps. Repeating the rendering for the remaining particles and reading
back the image and depth buffers again, we can obtain the indices of those particles which were
occluded in the previous rendering step. Pairing these indices to those previously obtained ones
which have the same pixel coordinates, we can get the pairs of particles that occlude each other
in the given direction. On the other hand, the difference of the depth values is the distance of the
particles, from which the opacity can be computed. Repeating the same step until the image is
empty, we can build lists of particles that are projected onto the same pixel. Subsequent pairs of
these lists define a single row of array V corresponding to this direction (figure 9.2). Executing
this algorithm for all predefined directions, the complete array can be filled up.

Note that multiple z-buffer steps carry out a depth peeling procedure. Since this happens
in the preprocessing step, its performance is not critical. However, if we intend to modify
the illumination network during rendering in order to cope with animated volumes, then the
performance should be improved. Fortunately, the depth peeling process can also be realized on
the GPU as suggested by [Eve01, Hac04].

9.1.1 Setting the parameters of the illumination network

The illumination network depends on radius R of the bounding sphere, number of discrete
directions D, and on resolution of the windows M ×M . These parameters are not independent,
but must be set appropriately taking into account the density of the medium as well. Since
point rendering is used during the projection onto the window of size 2R× 2R and of resolution
M ×M , the projected area of a particle is implicitly set to A = 4R2/M2. The solid angle in
which a particle at point ~x is seen from another particle at ~y is ∆ω = A/|~x−~y|2. Approximating
the maximum distance by the expected free run length 1/τ , we get ∆ω ≥ Aτ2.

If we do not want to miss particle interactions due to the insufficient number of sample direc-
tions, solid angle ∆ω should not be smaller than the solid angle assigned to a single directional
sample, which is 4π/D. Substituting the implicit projected area of a particle, we obtain that the
number of sample directions and the resolution of the window should meet D(Rτ)2/π ≥ M2.
The number of sample directions is typically 128, factor Rτ is the expected number of colli-
sions while the light travels through half of the volume, which usually ranges in 10–100, thus
maximum resolution M is in 60–600, i.e. it is usually quite small.

9.1.2 Iterating the illumination network

The solution of the global illumination problem requires the iteration of the illumination network.
A single step of the iteration evaluates the following formula for each particle p = 1, . . . , N and
for each incoming direction i = 1, . . . , D:

I[p, i] = (1− αV[p,i])I[V[p, i], i] + E[V[p, i], i] +
4παV[p,i]aV[p,i]

D

D∑

d=1

I[V[p, i], d]PV[p,i](~ω
′
d, ~ωi).

Interpreting the two-dimensional arrays of the emission, visibility and illumination maps as
textures, the graphics hardware can also be exploited to update the illumination network. The
first texture is visibility network V storing the visible particle in red and the opacity in green
channels, the second stores emission array E in the red, green, and blue channels, and the third
texture is the illumination map, which also has red, green and blue channels. Note that in
practical cases number of particles N is about a thousand, while number of sample direction
D is typically 128, and radiance values are half precision floating point numbers, thus the total
size of these textures is quite small (1024× 128× 8× 2 bytes = 2 Mbyte).
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Figure 9.4: Cloud illuminated by two dynamic directional light sources (the first is left-up, the
second is bottom-right) and sky illumination, and rendered by an animated camera at 26 FPS.

In the GPU implementation a single iteration step is the rendering of a viewport sized,
textured rectangle, having set the viewpoint resolution to N ×D and the render target to the
texture map representing the updated illumination network. A pixel corresponds to a single
particle and single direction. The pixel shader obtains the visibility network, the emission array,
and the illumination map from textures. The phase function is implemented by a texture lookup
of prepared values allowing different phase functions to be easily incorporated [REK+04]. In our
implementation we assume that opacity is precomputed and stored in the visibility texture, but
albedo are constant for all particles. Should it not be the case, the albedo could also be looked
up in a texture.

When no other particle is seen in the input direction, then the incoming illumination is
taken from the sky radiance (sky). In this way not only a single sky color, but sky illumination
textures can also be used [PSS99, REK+04].

For each particle and for each direction, the fragment shader finds opacity and the visible
particle, takes its emission or direct illumination, and computes its radiance as the sum of the
direct illumination and the reflected radiance values for its input directions.

The illumination network provides a view independent radiance representation. When the
final image is needed, we can use a traditional participating media rendering method, which
sorts the particles according to their distance from the camera, splats them, and adds their
contributions with alpha blending.

When the outgoing reflected radiance of a particle is needed, we compute the reflection from
the sampled incoming directions to the viewing direction. Finally the sum of particle emission
and direct illumination of the external lights is interpolated from the sample directions, and is
added to the reflected radiance. Algorithm 7 shows the pseudo code of the illumination networks
algorithm.

9.2 Results

The proposed algorithm has been implemented in OpenGL/Cg environment and run on an
NV6800GT graphics card. We compute one iteration in each frame, and when the light sources
move, we take the solution of the previous light position as the initial value of the iteration,
which results in fast convergence.

The results are shown in Figures 9.4, 9.5, and 9.6. Where it is not explicitly stated, the
cloud model consists of 1024 particles, and 128 discrete directions are sampled. With these
settings the typical rendering speed is about 26 frames per second, and is almost independent
of the number of light sources and of the existence of sky illumination. The albedo is 0.9, and
the expected number of photon–particle collisions (2Rτ) is 20, and material parameter g is 0.
Figures 9.4 shows how two external light sources illuminate the cloud. In figure 9.5 we can
follow the evolution of the image of the same cloud after different iteration steps, where we can
observe the speed of convergence. Figure 9.6 describes how the number of sample directions
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Algorithm 7 Illumination networks

Precomputation:
for each particle do

for each direction do
Find visible particle
Compute opacity from distance to visible particle
Store opacity and index of visible particle

end for
end for

Iteration:
Initialize direct illumination map with particle emission values
for each light source do

for each direction do
for each particle do

Calculate the reflection of direct illumination and add to direct illumination map
end for

end for
end for
for number of iterations do

for each particle do
for each direction do

I ← 0
Read visible particle and opacity
Read direct illumination and add to I
for each direction do

Read illumination from illumination map and calculate reflected radiance
Add to I

end for
Store I in illumination map

end for
end for

end for

Final render:
for each rendered particle do

I ← 0
for each direction do

Read incoming radiance
Calculate reflected radiance to camera
Add to I

end for
Render particle with color I

end for
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20 iterations 40 iterations

60 iterations 80 iterations

Figure 9.5: A cloud illuminated by two directional lights rendered with different iteration steps

and the number of particles affect the image quality and the rendering speed. Note that using
128 directions and 512 particles we can obtain believable clouds at interactive frame rates, and
the method is not too sensitive to the number of discrete directions. Changing the number of
particles, however, has more significant impact on the image.

The proposed method has some limitations in case of shader model 3 graphics cards, namely
the available texture resolution is maximized in 4096×4096, which limits the number of simulated
particles to 4096. This limit can be overcome with a little modification of the storage of the
two dimensional arrays. However as it can be seen from the speed measurements of figure 9.6
around only 2000 particles can be simulated on such hardware in real-time. Fortunately recent
graphics hardware (like GeForce GTX 260) not only has three or four times more computational
power, but also offers higher resolution textures, which enables real-time simulation of even 8000
particles using 64 discrete directions.

9.3 Conclusions

This chapter presented a global illumination algorithm for participating media, which works with
a prepared visibility network, and maintains a similar illumination network. These networks are
two-dimensional arrays that can be stored as textures and managed by the graphics hardware.
The resulting algorithm can render multiple scattering effects at high frame rates.

The current implementation assumes that the volume is static. To cope with evolving vol-
umes, such as clouds in wind, fire, or smoke, we plan to gradually update the illumination
network, re-evaluating the visibility just in a single direction at a time, and thus amortizing the
cost of the building the data structure during animation. We also plan to extend the method
for hierarchical particle systems to handle complex phenomena.
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D = 32, N = 1024 (90 FPS) D = 64, N = 1024 (50 FPS) D = 128, N = 1024 (26 FPS)

D = 128, N = 512 (45 FPS) D = 128, N = 2048 (15 FPS) D = 512, N = 4096 (reference)

Figure 9.6: Effect of number of discrete directions D and number of particles N on the image
quality and on rendering speed. The light source is in the direction of the white point in the
upper right part of the image.

Figure 9.7: Globally illuminated clouds rendered with illumination networks.



Chapter 10

Conclusions

We have seen that efficient global illumination algorithms can be implemented on graphics
hardware that can simulate one particular illumination effect in real-time. We proposed a
robust environment map based method to calculate indirect diffuse illumination, and introduced
a new ambient occlusion formula to compute self occlusion of the geometry that can be used
in diffuse ambient lighting. These two algorithms can be used side-by-side to enhance each
other, combining the color bleeding effect from the environment map based method and the self
shadowing of the ambient occlusion method.

We discussed a robust environment map based method to render multiple reflections and
refractions, and introduced a new triangle based caustic generation algorithm. These two algo-
rithms are also completions of each other, the photon tracing part of caustic generation can be
enhanced with tracing multiple refractions, which results in more accurate caustic patterns.

We also introduced solutions to eliminate billboard artifacts using spherical billboards. We
extended this efficient method to render blocks of particles without artifacts, which enables
efficient rendering of particle systems with huge amount of particles. We also gave a high speed
solution to simulate light absorbtion in these particle systems. Finally we proposed an iteration
method to compute multiple scattering under changing light conditions in static participating
media with moderate particle count.

Though these algorithms shown pleasable results in the main fields of illumination and run
real-time on current hardware, we can not lie back and think that our problems with real-time
global illumination are solved. We should look for further enhancing possibilities.

In diffuse illumination we should consider using multiple environment map layers, or compute
multiple indirect light bounces. We can also consider to use environment based methods for
simulating subsurface scattering. We should also exploit frame-to-frame coherency, multiple
depth layers and color information in screen space ambient occlusion techniques.

The speed of the robust search method used in ray tracing of multiple reflections and re-
fractions can be enhanced with the use of special data structures (similar to cone maps for a
possible example), which were efficiently used in displacement mapping.

We should explore particle based and grid based fluid simulation techniques, and rewrite the
illumination networks algorithm to regular grids. We should examine the possibility of a more
efficient reimplementation of the proposed algorithms on new architectures like Shader Model
4, or CUDA.
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Chapter 11

Thesis summary

Thesis Group 1. Diffuse material rendering

Robust diffuse environment mapping

I have shown that treating environment texels as rectangular area light sources, polygon to
point form factor can be implemented on the GPU, which makes environment map based diffuse
indirect illumination calculation more accurate than form factors used before. The indirect light
receiver object can be large compared to its environment and can move close to the sampled
geometry still maintaining good visual quality. I have also made comparisons with a global
illumination software to prove the relevancy of the new algorithm [J8].

Figure 11.1: Robust diffuse environment mapping.

Volumetric screen space ambient occlusion

Screen space ambient occlusion techniques sample a depth map taken from the camera to cal-
culate the openness of the surfaces. The quality is highly influenced by the number of samples.
More samples provide smoother, less noisy results. I have introduced a new integration method
that is based on a novel interpretation of ambient occlusion that measures how big portion of
the tangent sphere of the surface belongs to the set of occluded points. The integrand of the
new formula has low variation, thus can be estimated accurately with a few samples. The new
method provides much smoother results with the same number of samples and has the same
computing requirements as the classical solutions [F4].
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Figure 11.2: Volumetric ambient occlusion.

Thesis Group 2. Specular material rendering

Environment map based robust multiple refections and refractions

Environment map based reflection and refraction rendering techniques usually suffer from in-
accuracy or visible artifacts. Neither they support multiple ray bounces. I have proposed a
method that uses multiple layers of environment maps and a safe searching algorithm to reduce
visible artifacts, make intersection calculation more accurate, and to enable multiple reflections
and refractions. The developed algorithm runs entirely on the GPU at interactive frame rates
and provides results close to a ray traced reference [D2].

Figure 11.3: Multiple reflections.
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Caustic triangles

I have proposed a caustic generation technique that uses triangle primitives instead of splatted
sprites. The new algorithm provides just as high frame rates as classical splatting, but frees up
the user from tuning caustic attributes like size and transparency. It can also produce sharper
caustic patterns with fewer photon count [J5, J9].

Thesis Group 3. Participating media rendering

Spherical billboards

I have proposed an analytic method to eliminate the main drawbacks of billboard rendering
including clipping and popping artifacts. Treating each particle as a sphere, the exact length
that a light ray travels inside the particle can be computed and transparency can be changed
respectively. I have also presented a complete rendering method that uses spherical billboards
and composition to render explosion with dust, fire, smoke, and heat shimmering [J4, D1, J3].

Figure 11.4: Explosion with spherical billboards in a car game.
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Hierarchical particle systems for volumetric media

I have shown that hierarchically built particle systems with distance impostors can be efficiently
used to simulate high number of particles. I have proposed a real time illumination method that
exploits the hierarchical property and special hardware possibilities to simulate light absorbtion
in scattering media under changing light conditions and with animated particles [J2].

Figure 11.5: Hierarchical particle systems.

Illumination networks for particle systems

I have introduced a novel method that can simulate light scattering in static participating media
by reusing light scattering paths generated with global ray bundles. The proposed method can
simulate multiple scattering computed by iteration that spreads illumination in the media. Light
path information is stored and refreshed in 2D arrays that can be efficiently implemented on
graphics hardware. Changing light conditions and even light sources inside the media can be
simulated real-time. I have shown that this method can be used to render realistic clouds with
moderate particle count [J1].

Figure 11.6: Globally illuminated clouds rendered with illumination networks.
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[BL08] Tóth Balázs and Szirmay-Kalos László. Deferred shading in distributed visualization. In
MIPRO 2008, GVS, pages 295–300, 2008.

[BRW89] D.R. Baum, H.E. Rushmeier, and J.M. Winget. Improving radiosity solutions through the use
of analytically determined form-factors. Computer Graphics (SIGGRAPH ’89 Proceedings),
pages 325–334, 1989.

[BT04] Zoe Brawley and Natalya Tatarchuk. Parallax occlusion mapping: Self-shadowing,
perspective-correct bump mapping using reverse height map tracing. In Wolfgang Engel,
editor, ShaderX 3. Charles River Media, Cambridge, MA, 2004.

[Bun05] M. Bunnel. Dynamic ambient occlusion and indirect lighting. In M. Parr, editor, GPU Gems
2, pages 223–233. Addison-Wesley, 2005.
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illumination information generation, 9
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shadow, 62

shadow caster, 18
shadow map, 18, 24
shadow mapping, 18
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single reflection, 22, 30
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Snellius-Descartes law, 22
spectral, 5
spherical billboard, 70, 71, 75
spherical harmonics, 20
splatting, 25, 61
steep parallax mapping, 15
step function, 40
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tangent plane, 30
tangent space, 12
tangent sphere, 42
tessellation, 6
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texture coordinate, 6, 7, 11
texture slicing, 25
texture space, 11, 24
triangle meshes, 6

undershooting, 21, 53
UV atlas, 11

vertex buffer, 6
vertex shader, 6, 12, 26
viewport, 6
virtual light source, 19, 30
visibility indicator, 29
visibility network, 89
volumetric ambient occlusion, 37, 42
volumetric integral, 42
volumetric rendering equation, 4

wavelets, 20
weighted importance sampling, 45
world space, 6
world transformation, 6

z-buffer, 83
z-buffer algorithm, 4



Nomenclature

Ω domain of directions

θ outgoing angle

θ′ incident angle

~ω outgoing direction

~ω′ incoming direction

~B surface binormal direction

~L light direction

~N surface normal direction

~R reflected direction

~T surface tangent direction

~V view direction

~x shaded surface point

~y visible surface point

d distance

fr bidirectional refection distribution function (BRDF)

h height

L radiance

Le emitted radiance

Lr reflected radiance

P (~ω′, ~ω) phase function

t line parameter
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