
Activation of insulin and IGF-1 signaling pathways by melatonin
through MT1 receptor in isolated rat pancreatic islets

Introduction

Melatonin is a pineal secretory product whose synthesis and
release is related to the light–dark cycle [1–5]. In mammals,
melatonin is involved with several physiological processes.
These processes include regulation of the immune system [6,

7], cardiovascular functions [8], carbohydrate metabolism
[9, 10], and inhibition of tumor growth [11], among others
[12–14]. The effects of melatonin on cellular processes are

of two types: receptor- and/or non-receptor-mediated.
Because of the fact that melatonin can permeate the cell
membrane, it is possible to demonstrate that some of its

effects are mediated by direct molecular interaction with
calcium–calmodulin [15], or regulating several mitochon-
drial physiological processes [16], in addition to its ability to

interact with several oxygen and nitrogen radicals protect-
ing cells against deleterious oxidation processes [17].
In addition to nuclear receptors of the RZR-ROR type,

several effects of melatonin are mediated by specific high-

affinity G-protein-coupled receptors (GPCRs). In mam-
mals, two distinct receptor subtypes were cloned and named
MT1 (Mel1a) and MT2 (Mel1b) [18–21]. Functional,

autoradiographic and molecular investigations as well as
binding studies proved that the melatonin effects through
MT1 receptor are mediated by reduction in cAMP forma-

tion [22, 23]. Recently, melatonin receptors were found in
rat pancreatic B cells and in INS-1 cells (an insulin-secreting
cell line) [24, 25] and human pancreas [26]. In pancreatic
islets of neonate rats, B cells from adult rats and in INS-1

cells, melatonin diminished insulin release [21, 24, 25]. This

is in agreement with our observations that melatonin
decreases PKA activity in rat pancreatic islets [9].
Morphometric analysis of the pancreas from pinealec-

tomized rats showed degenerative pathological processes
with large islet area and low islet density [27]. In addition,
diabetic animals and humans have shown reduced serum
melatonin levels [28]. These observations indicate that

melatonin may play an important role to ensure the
functioning of pancreatic B cells.
The effect of melatonin on cell proliferation, growth and

differentiation has been reported to involve protein phos-
phorylation [29–31]. MT1 and MT2 receptors stimulate
c-Jun N-terminal kinase that is pertussis toxin (PTX)-

sensitive, Ras/Rac-dependent, and may involve tyrosine
kinase activity of the Src-family proteins [32]. Recently, it
was demonstrated that melatonin induces rapid tyrosine
phosphorylation and activation of the insulin receptor

b-subunit tyrosine kinase in rat hypothalamus [33].
The early steps of insulin growth factor-1 (IGF-1) and

insulin receptor-signaling pathways involve tyrosine phos-

phorylation of insulin receptor substrates 1 and 2 (IRS-1
and IRS-2) and Shc [34–37]. Tyrosine phosphorylation of
IRS proteins triggers signaling pathways inducing PI3K/

AKT and MAPK, which regulate essential processes (e.g.
intermediary metabolism and growth) in mammalian cells
including pancreatic islet cells [38, 39].

The ability of melatonin to induce phosphorylation of
IGF-R, IR, IRS-1, AKT/PKB, ERK1/2, STAT3 and
PTP-1B as well as IR/PTP-1B association were examined
in incubated rat pancreatic islets. Additionally, the PTP-1B
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content was determined. The involvement of MT1 or MT2
melatonin receptors was also investigated by using specific
inhibitors of these receptors.

Materials and methods

Reagents

The reagents for sodium dodecyl sulphate-polyacrylamide
gel electrophoresis (SDS-PAGE) and immunoblotting were

obtained from Bio-Rad (Richmond, CA, USA). Tris,
ethylenediaminetetraacetic acid (EDTA), aprotinin, phenyl-
methylsulfonylfluoride (PMSF), dithiothreitol (DTT), Tri-

ton X-100, Tween 20, glycerol, melatonin and collagenase
were purchased from Sigma-Aldrich (St Louis, MO, USA).
Melatonin receptor inhibitors, luzindole and 4-phenyl-2-
propionamidotetraline (4P-PDOT), were obtained from

Tocris Cookson Inc (Ellisville, MO, USA). Anti-IGF-R,
anti-IR, anti-IRS-1, and anti-phosphotyrosine antibodies
were from Santa Cruz Technology (Santa Cruz, CA, USA).

Phospho-AKT (Ser473), phospho-ERK1/2 MAPK
(Thr202/Tyr204), and phospho-STAT3 (Ser727) antibodies
were from Cell Signaling Technology (Danvers, MA,

USA). PTP-1B antibody was from Upstate Biotechnology
(Lake Placid, NY, USA) and anti-phosphoserine was from

Chemicon International (Temecula, CA, USA). The
enhanced chemiluminescence reagent kit, ECL, was from
Amersham-Pharmacia Biotech (Buckinghamshire, UK).

Animals

Six- to 8-week-old female albino rats (150–200 g) were

used. The experiments were performed following the
guidelines of the Animal Experimental Committee of the
Institute of Biomedical Sciences, University of Sao Paulo.

The rats were kept in groups of five at 23�C in a room with
a light/dark cycle of 12/12 hr (lights on at 07:00 hours).

Isolation of pancreatic islets

Islets of Langerhans were isolated after collagenase
digestion [40]. Briefly, rat islets were isolated by distension

of the pancreas via the pancreatic duct with collagenase
(0.68 mg/mL). The pancreas was then removed and
digested in a shaking water bath at 37�C.

Western blot analysis

Batches of 300 islets were incubated for 30 min at 37�C in
the Krebs–Henseleit (KH) buffer (139 mm Na+, 5 mm K+,
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Fig. 1. Time-course of melatonin-ind-
uced tyrosine phosphorylation and
Induction of IGF-R and IR tyrosine
phosphorylation by melatonin treatment.
Isolated pancreatic islets were incubated
in KB buffer containing 2.8 mm glucose,
in the presence (+) of 0.1 lm melatonin
for 0 (basal), 15, 30 and 60 min. Islet
proteins were extracted and processed as
described in Materials and Methods. The
nitrocellulose membranes containing the
soluble proteins were submitted to immu-
noblotting with antiphosphotyrosine
monoclonal antibody. (A) Representative
autoradiogram from time-course experi-
ments; (B) quantification of pp90 and
pp185 tyrosine phosphorylation; (C) pro-
teins extracted from pancreatic islets incu-
bated for 30 min in the presence of
2.8 mm glucose and 0.1 lm melatonin
(+) were immunoprecipitated with anti-
IGF-R and anti-IR antibodies and then
submitted to immunoblotting with
antiphosphotyrosine. The phosphoryla-
tion levels are shown as mean ± S.E.M.
of the scanning densitometric analysis of
four distinct experiments.*P < 0.05 ver-
sus basal condition.

Melatonin on IGF/insulin-signaling pathway

89



1 mm Ca2+, 1 mm Mg2+, 124 mm Cl), 24 mm HCO3
)) in

presence or absence of 0.1 lm melatonin or melatonin
receptor inhibitors as indicated in the figure legends.

Thereafter, solubilization buffer containing 100 mm Tris,
pH 7.6, 1% Triton X-100, 0.01 mg/mL aprotinin, 2 mm

PMSF, 10 mm Na3VO4, 10 mm NaF, 10 mm Na4P2O7, and
10 mm EDTA was added and the isolated pancreatic islets

were sonicated to disrupt the cells. Insoluble material was
removed by 30 min of centrifugation at 12,800 g at 4�C.
The supernatant was used for immunoprecipitation with

anti-IGF1-R, anti-IR, anti-IRS-1, anti-PTP-1B and
protein A. Sepharose 6 MB was added before sample
treatment with Laemmli buffer and 8% SDS-PAGE as

described elsewhere [41, 42]. For whole-tissue extracts,
similar-sized aliquots (80 lg protein) were subjected to
SDS-PAGE and immunoblotted with anti-phosphotyro-
sine, anti-phospho-AKT, anti-phospho-p42/44 MAP

kinase, anti-STAT3 antibodies. Electrotransfer of proteins
from the gel to nitrocellulose was performed for 90 min at
120 V (constant). To reduce non-specific protein binding to

the nitrocellulose, the filter was preincubated overnight at
4�C in a blocking buffer (5% nonfat dry milk, 10 mm Tris,
150 mm NaCl and 0.02% Tween 20). The nitrocellulose

blots were incubated for 4 hr at 22�C with the specific
antibodies described in the figure legends diluted in
blocking buffer (3% nonfat dry milk). To visualize the

autoradiogram, enhanced chemiluminescence reagents
exposed to photographic film were used. Quantitative

analysis of the blots was performed using Scion Image
software (Frederick, MD, USA).

Statistical analysis

Results are presented as mean ± S.E. (anova). Student–
Newman–Keuls comparison test was used to verify if

significance were appropriate, with confidence levels set at
P < 0.01. The level of significance was set at P < 0.05.

Results

A representative immunoblot with anti-phosphotyrosine

antibody of soluble intracellular proteins from freshly
isolated pancreatic islets incubated in KB buffer containing
2.8 mm glucose plus 0.1 lm melatonin for 15, 30 and
60 min is shown in Fig. 1. In the basal state and absence of

melatonin, two faint bands were detected. One upper broad
band migrated at 170–140 kDa band and a lower band
migrated between 90 and 100 kDa (Fig. 1A). The maximal

tyrosine phosphorylation in both bands occurred at 30 min
of incubation. Phosphotyrosine-containing proteins were
increased by 1.5-fold above basal levels as indicated by

densitometric analysis (Fig. 1B, bar graph). Posterior
incubation of nitrocellulose sheets with specific insulin
receptor substrate 1 (IRS-1) antibody confirmed that the

upper 170–140 kDa band corresponded mainly to IRS-1
(data not shown).
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Fig. 2. Effect of MT receptors inhibitors,
luzindole (A) and PPDOT (B), on the
melatonin-induced tyrosine phosphoryla-
tion of IRS-1 and IR in isolated pancre-
atic islets. Isolated pancreatic islets were
pré-incubated for 30 min in the presence
of 2.8 mm glucose and 0.1 lm luzindole
(A,B) or 10 lm PPDOT (C,D) and then
incubated with 0.1 lm melatonin. Islet
proteins were extracted and processed as
described in Materials and Methods. The
nitrocellulose membranes containing the
soluble proteins were submitted to
immunoblotting with anti-phosphotyro-
sine monoclonal antibody of four distinct
experiments. The tyrosine phosphoryla-
tion levels are shown as mean ± S.E.M.
of the scanning densitometric analysis of
four distinct experiments. *P < 0.05 as
indicated in the figure.

Picinato et al.

90



To examine if the increased tyrosine phosphorylation of
the 90–100 kDa band was due to activation of IR or IGF-R,
samples from melatonin-treated islets were used for immu-

noprecipitation with anti-IR or anti-IGF-1R antibodies,
followed by immunoblotting with anti-phosphotyrosine
antibody. Melatonin induced a twofold increase
(P < 0.01) in insulin receptor tyrosine phosphorylation

and a similar effect was observed on IGF-R phosphoryla-
tion (Fig.1C).

In the presence of 2.8 mm glucose and luzindole (0.1 lm),

an inhibitor of both MT1 and MT2 receptors, melatonin
induction of tyrosine phosphorylation of IRS-1 and IR was
abolished (Fig. 2A,B). Conversely, 4P-PDOT (10 lm), a

specific MT2 receptor inhibitor, did not interfere with the
induction of tyrosine phosphorylation by melatonin
(Fig. 2C,D).

The effect of melatonin on AKT serine phosphorylation

(Fig. 3A), ERK1/2 threonine and tyrosine phosphorylation
was then investigated (Fig. 3B). Melatonin (at 0.1 lm)
increased the phosphorylation state of these proteins by

1.6-fold above basal level. By using an anti-phospho-
STAT3 (Ser 727)-specific antibody it was found that
melatonin induced a 1.7-fold increase above basal values

of STAT3 serine phosphorylation (Fig. 3C).
The phosphotyrosine phosphatase, known as PTP-1B,

plays a role in the regulation of IR tyrosine phosphoryla-

tion [43]. Melatonin induced a twofold increase in PTP-1B
tyrosine phosphorylation with no further increase in
PTP-1B serine phosphorylation (Fig. 4A,B). Using PTP-1B

antibody in membranes containing immunoprecipitated IR,
it was observed that melatonin induces a 53% reduction
(P < 0.05) in the IR/PTP-1B association (Fig. 4C).

Discussion

The present study demonstrates, for the first time, in rat

pancreatic islets, that melatonin induces IGF1-R and IR
tyrosine phosphorylation and activates two intracellular
signaling pathways: the PI3 K/AKT, which is mainly

involved with cell metabolism, and MEK/ERKs that
participates in cell proliferation, growth and differentiation.
To investigate if the effect of melatonin-induced tyrosine
phosphorylation of IR and IRS-1 was due to activation of

one or both membrane melatonin receptors (MT1 and/or
MT2), isolated islets were incubated with 0.1 lm luzindole,
an inhibitor of MT1 and MT2 melatonin receptors at this

concentration [44]; 10.0 lm 4P-PDOT, a specific MT2
receptor inhibitor was also used in our experiments [44].
Complete inhibition of melatonin action was observed with

luzindole, whereas 4P-PDOT did not influence tyrosine
phosphorylation induced by melatonin. These results sug-
gest that the effect of melatonin on tyrosine phosphoryla-

A

C

B

Fig. 3. Induction of AKT, ERK1/2 and
STAT3 activation bymelatonin treatment.
Isolated pancreatic islets were incubated in
KB buffer containing glucose 2.8 mm, in
the presence (+) of 0.1 lm melatonin, for
30 min. The proteins from the islets were
extracted and processed as described in
Materials andMethods. The nitrocellulose
membranes containing the soluble proteins
were submitted to immunoblotting with
(A) anti-phospho-AKT(Ser473) antibody;
(B) antiphosphoERK1/2 antibody and
(C) anti-phospho-STAT3 (Ser727) anti-
body. The phosphorylation levels are
shown asmeans ± S.E.M. of the scanning
densitometric analysis of four distinct
experiments. *P < 0.05 due to melatonin
effect.
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tion of IR and IRS-1 in pancreatic B-cells is, probably,
mediated by the MT1 receptor, a GPCR. Similar observa-

tions were described in our previous studies [9] and by
Peschke et al. [21].
Studies on cell proliferation have shown that GPCRs

activate proteins with tyrosine kinase activity including
those of the MAPK pathway [45–47]. The effects of
melatonin on cell proliferation and differentiation are

reported to be mediated by the MAPK signaling cascade
[48, 49]. Melatonin increases MEK and ERK1/2 phospho-
rylation as shown in MT1-CHO cells and GT1-7 neurons
[50, 51]. Cells from pars tuberalis treated with IGF-I after

incubation with melatonin show a marked increase
(10-fold) in phosphorylation status of p42/p44 (also known
as ERK1/2 activity) [39]. The molecular mechanisms by

which the MT1 receptor, which lacks intrinsic tyrosine
kinase activity, couples with tyrosine phosphorylation are
not known. MT1, through Gi protein activation, could

control tyrosine kinase activity of the IR by modulating the
activity of specific phosphotyrosine phosphatases that
respond to intracellular cAMP levels.
Treatments of adipocytes with agents that elevate

intracellular cAMP levels partially abolish the ability of
Gi2 to suppress PTP-1B activity [51]. Gi2 activates the
insulin-signaling pathway by suppression of PTP-1B

activity [51]. The results presented herein show that
melatonin increases tyrosine phosphorylation of PTP-1B,
which was accompanied by reduced association of this

protein with IR. The decreased activity of PTP-1B was
not accompanied by a change in its context since serine
phosphorylation was not altered. Several MAPK family

members have been identified as kinases capable of
phosphorylating STAT3 serine including extracellular

regulated kinase (ERK) [52–54]. Espanel et al. [55] have
suggested that STATs are PTP-1B substrates. The absence
of PTP-1B in embryonic fibroblasts results in GH-

dependent hyperphosphorylation of JAK2 and activates
STAT3 and STAT5. In the present study, melatonin also
induced STAT3 serine phosphorylation.

In conclusion, MT1 receptors in addition to decreasing
cAMP, activates additional signaling pathways acting on
IGF-R, IR, IRS-1, AKT, ERK1/2 and STAT3 phosphor-
ylation in pancreatic islets. This effect probably involves a

reduction in PTP1B activity indicated by higher tyrosine
phosphorylation and lower association with IR. Thus
melatonin inhibits insulin secretion by reducing cAMP

levels but may regulate growth and differentiation of
pancreatic islets by activating signaling pathways of IGFI
and insulin receptors.
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