

1

USER MANUAL

v1.6

2

1. Overview

The Spin Wheel Effect (SWE) is a C# plugin for Unity3D thought to help developers to

avoid the ugly Stroboscopic Effect (a.k.a. Wagon Wheel Effect), which occurs when a

wheel rotates faster than the frame rate of the game.

The wagon-wheel effect is an optical illusion in which a spoked wheel appears to rotate

differently from its true rotation. The wheel can appear to rotate more slowly than the

true rotation, it can appear stationary, or it can appear to rotate in the opposite

direction from the true rotation.

[Source: Wikipedia]

You can consider this system as a fake motion blur, since it gives the same feels of a

motion blur but it only simulates it, dramatically increasing the runtime performance.

2. How to setup the system

In order to correctly set up the system there are some preliminary steps the user must

follow.

2.1 Create well-structured models

This step is the most important one and failing in this could produce

unwanted behaviors.

The automatic texture generation process for a wheel needs a well-structured

model (UV Maps, too!), since it works only with the model’s meshes and

3

materials. If you already have some wheel models, you may have to split them in

some parts, following this scheme:

Mesh Material(s)

Tyre
Tyre

Tread

Rim Rim

Spokes
Rim

Details

SpokesSpin SpokesSpin

RimCenter Rim

BrakeDisk BrakeDisk

2.1.1 TYRE

A SWE Tyre model is an only mesh with two materials: Tyre and Tread.

 Tyre’s UV Map must be front planar.

 Tread’s UV Map must be rectangular overlapped.

This difference allows the system to blur the textures in two different ways: the

tyre’s ones with a radial blur and the tread’s ones with a directional (vertical) blur.

4

5

2.1.2 RIM, SPOKES & RIM CENTER

 The Rim mesh is the cylindrical part of the rim, without the spokes. It has an

only material, conventionally named Rim

 The Spokes mesh is, obviously, the 3D representation of the spokes. It uses

two materials:

o Rim, the same of the other rim’s parts

o Details, distinguish logos and bolts from the spokes

Please note that the top spoke must be vertical

 The RimCenter mesh is something that is not visible when the wheel is not

moving but only when the effect is running

As you can see, once the effect blurs the spokes, a little cylinder appears in the

middle of the wheel, giving a quite realistic feeling.

It represents an always fully opaque area that is located at the middle of the rim.

It uses the Rim material and the system fades it in/out automatically.

6

The Rim’s faces must be UV Mapped with a planar frontal projection, while the

RimCenter‘s ones doesn’t need a fixed UV Map, so make it as you prefer. Here is an

example:

7

2.1.3 BRAKE DISK

A SWE BrakeDisk model just needs the BrakeDisk material with a front planar

UV Map, eventually relaxing the side faces:

8

2.1.4 SPOKES SPIN

The SWE SpokesSpin model is the most important one and the minimal part of the

effect. It is the representation of the blurred spokes during the wheel rotation. You

can think to this mesh as a “coverage” of the spokes mesh (like putting a sheet over

it). It will be faded-in while the Spokes will be faded-out.

The screenshot shows a detached mesh for SpokesSpin, but it should be very

close to the Spokes mesh (not completely welded because of some well-known

depth rendering issues).

Future optimizations may simplify the modeling & texturing workflow, reduce

the number of the needed materials and/or the needed meshes; this will be one

of the greatest objectives for new versions of SWE.

9

2.2 Texturing

This system currently supports only Diffuse and Bump maps for both PC and Mobile

platforms.

You can use bump maps on each material, and SWE will blur the maps of the

following materials:

Material Supported maps Blur type

Tyre
 Diffuse

 Bump

Radial

Tread
 Diffuse

 Bump

Directional

Rim Diffuse Radial

SpokesSpin Diffuse Radial

BrakeDisk
 Diffuse

 Bump

Radial

S.W.E. will use all the textures in the materials, if supported. This means that if

you do not want to use some diffuse or bump maps somewhere, simply don’t

use them in the material inspector.

In most car games, the scene’s geometry often hides the wheels and

depending on screen and camera settings, they can appear far and small. In

this case, bump maps are useless.

Note: S.W.E. works with most default shaders. It’s important that they use the

following names: “_MainTex” for diffuse and “_BumpMap” for bump map.

10

2.3 Configuring S.W.E.

3.3.1. Scripts architecture

S.W.E. uses a simple script architecture, which follows by this scheme:

As convention, I recommend to attach the SpinEffect.cs script to the root

object of the car, the SpinWheel.cs scripts directly to the wheels and the

SpinInput_ xxx.cs script on some other object (the car itself it’s a good

choice). This will help to get support.

11

3.3.2 Scripts overview

SpinEffect.cs

This is the main script of S.W.E.

It stores information about wheels, materials and settings to generate the

textures and swap them at runtime. Here is how the inspector will look like:

Shading mode: If you use the Standard Shader for ALL the wheel materials it’s
recommended to set the Standard mode, but if you use ALL legacy shaders you
must use the Legacy mode. Using both Standard and Legacy shaders in the
same wheel may work but it’s not guaranteed.

Wheels: all the wheels to be blurred while spinning (they must have a
SpinWheel component)

Spokes No: the number of the spokes of the wheel(s) used in this configuration
of S.W.E. Using a wrong number or 0 causes bad positioning of the spin texture.

Materials: all the materials the system will use. These materials will be
assigned to the right meshes, so it would be better to put in the list the materials
already used in the scene’s meshes

Compress textures: if on, it compresses the generated textures in the High
Quality DXT format. Useful to reduce the memory usage (only for DXT
supporting platforms). Note that this will slow the generation process, since the
DXT compression needs a Texture2D, and the conversion from RenderTexture
to Texture2D is quite slow. For a total of 100 textures with size 256x256 the
process will take about 0.1s if they are uncompressed and about 2s if they are
compressed (200 times slower). [recommended: OFF]

Auto grab textures: if on, the system will use as reference textures the ones
already set in the chosen materials [recommended: ON]

Resolution Spin Effect: the resolution of the generated textures to be applied
to the SpinRim mesh.

Rim downsample: the downsample factor of the rim’s generated texture

Tyre downsample: the downsample factor of the tyre’s generated texture

Tread downsample: the downsample factor of the tread’s generated texture

BrakeDisk downsample: the downsample factor of the brake disk’s generated
texture

12

Max blur: the maximum angle of the spin blur effect. Generally, the maximum
blur should be 360, but something like 90-100 will be good, too. Use lower
values to limit the blurriness at high speeds

Alpha multiplier: multiplication factor for the generated transparent maps.
Generally, a value between 1 and 2 will be good

Samples: how many textures the system have to generate for each map? 10-20
is a good value

Samples distribution: the distribution of the computed blur angle over the total
rotation space [0°,360°]. It uses different mathematic formulas. Useful for a
better low speed blur spreading when using a small amount of textures

Min opacity: if this variable isn’t 0, the rim model won’t be completely faded out
and its alpha will be at least equal to this value

Min Speed: the minimum speed to reach in order to start blurring the wheel

Max Speed: after this speed the wheel will always have the maximum blur

Adaptive occlusion (see 3.4): If true, this adds extra alpha to the spinning
mesh accordingly to the angle between the wheel and the camera's view. This
adds some realism to the effect, since it simulates the occlusion the side faces
of the spokes create on the inner parts of the wheel when you see the wheel
from the side. Adaptive occlusion doesn't work on double-sided spokes, i.e.
plane propeller. Use it on car wheels only!

Max adaptive occlusion : maximum obscurance of the inner part of the wheel.
A value of 1 will completely hide the inner parts at low camera angles, a value of
0 won’t obscure anything.

Texture arrays: these arrays are shown in the inspector in play mode as read
only. This is intentional, because these arrays are automatically allocated, filled
and assigned to the game elements

13

SpinWheel.cs

For each wheel, you must attach this script to the wheel object and set all the

asked meshes. You will need to drag the wheel objects in the SpinEffect.sc

script and, eventually, in the input script.

S.W.E. will use as wheel speed the value passed with the SpinWheel’s public

function SetSpeed().

SpinInput_xxx.cs – input handlers

S.W.E. does not know what logic the user uses to move the wheels, so it

requires accessing the wheels’ speed from the outside. An Input Handler script

adapts S.W.E. to the wheel moving system.

A simple script named SpinInput_Custom.cs allows the user to accelerate and

brake basing on keyboard or touch input. It’s used in the Complete Car

example scene and it is a good start for writing a custom input handler.

Input Handlers must always set the wheels’ speed by calling the function

SpinWheel.SetSpeed().

Since most car games use a physics engine, a custom SpinInput_xxx.cs

script should access that physics engine’s properties and set the

SpinWheel’s speed accordingly to the engine’s wheel speed values.

S.W.E. is compatible with UnityCar and the Input Handler

SpinInput_UnityCar.cs will link S.W.E. and UnityCar.

Note: You will need to un-comment the UnityCar input handler if you want

to use it.

14

SwapWheels.cs

This script simulates a real game situation: dynamic wheel spawn/swap.

It can avoid the following questions:

1) What should I do when I spawn a wheel at runtime?

2) Which values do I have to set in SpinEffect.cs?

Simply, fill the required fields and add some wheels (for each wheel you should

choose some config file). See the example scene named “Scene_Car”.

15

3.3 Build

S.W.E. has been tested on PC and Android, so it should compile without

problems at least on these two platforms (any feedback for other platforms build

is welcome).

Anyway there’s an important step to do before building your project: add all the

S.W.E. shaders in Edit->Project Settings->Graphics->Always included shaders

16

3. Under the hood

SWE generates a pool of blurred textures basing on the models’ original shape, color

and textures and swaps them at runtime accordingly to the speed of the wheels.

This is completely automatic and the only thing to do is configuring the system. Almost

all the texture generation is GPU-powered, so SWE can generate dozens of textures in

no time! There is no FPS impact at all except for the generation routine that generally

operates in less than 0.1 seconds (more than 100x times faster than v1.3!) and in most

cases it will be called only one time (at startup). For this reason, the “critical resource” is

not the time but the memory usage. The average amount of used memory is 20-50 MB.

But let’s look inside this system a bit deeper…

3.1 Base Spin Texture generation

This is the first automatic step S.W.E. takes in order to create all the other textures. A

Base Spin Texture is just a front photo of the Spokes mesh of a wheel with an unlit

material.

17

3.2 Blurred Spin Textures generation

S.W.E. uses the Base Spin Texture to generate the Blurred Spin Textures that will be

applied on the SpokesSpin mesh.

The system will generate N blurred textures following a D distribution function, where N

is the value of the property samples and D is the value of samplesDistribution. In this

way, you can get different blur angles for each texture. Let’s make some examples:

samples = 10

samplesDistribution = Linear

maxBlur = 360

textures: | 0° | 36° | 72° | 108° | 144° | 180° | 216° | 252° | 288° | 324° | 360° |

samples = 10

samplesDistribution = SquareRoot

maxBlur = 360

textures: | 0° | 19° | 39° | 59° | 82° | 106° | 133° | 163° | 200° | 247° | 360° |

samples = 10

samplesDistribution = CubeRoot

maxBlur = 360

textures: | 0° | 13° | 26° | 41° | 57° | 75° | 95° | 120° | 150° | 193° | 360° |

As you can see the CubeRoot distribution have a greater left density. Trying different

combinations of distributions is a good approach to get the desired results.

3.3 Runtime Textures Swap

Once all the textures have been created, the system will automatically swap them

accordingly to the parameters minSpeed and maxSpeed. The first (less) blurred

texture will be set as main texture of the SpokesSpin material when the wheel speed

will be minSpeed and the last (most) blurred texture will be set as main texture of the

SpokesSpin material when the wheel speed will be a little less than maxSpeed.

18

3.4 Adaptive Occlusion

If the Adaptive Occlusion feature is enabled, another pass is made in order to occlude

the inner part of the wheel when the angle of the camera relatively to the wheel is high.

The original blurred texture is replaced by one with extra alpha, so this cause the GPU

create one more texture for each wheel and depending on the texture size this could be

expensive.

19

The angle between the camera and the wheels depends on the orientation of the

single wheel (left or right), so all the wheels on left side must have a localScale.x

less than zero (the opposite value of the corresponding right wheel). Check the

example scene to see how the wheels are positioned. It’s easy to customize the

way S.W.E. gets informations about the wheel orientation: just change the lines

362 and 390 of the SpinEffect.cs script.

4. Other uses

S.W.E. is an effect for car games but it can work with other kind of games. For

example, it can simulate a plane/helicopter propeller or a tourbillon mechanism. The

Plane or Tourbillon example scenes are a good start for these particular applications

of S.W.E.

