Etherbots:
Strategic Battling and Reward-Based Economies in
Decentralised Multiplayer Games

Alex Connolly

February 18, 2018

Contents

1 Introduction 3

2 Rationale 3
2.1 Collectibility 3
2.2 Longevity 4

3 Battling 5
3.1 2PCR s 5
3.2 Part Level/Experience 7
3.3 Part Rarity Bonuses 7
3.4 User-based Perks, 7
3.5 Element Combination Bonuses 8
3.6 Randommess. 8
3.7 Outcome. 9

4 Rewards
4.1 Cooldowns

4.2 Experience

4.3 Part Rewardso

1 Introduction

This whitepaper is a published draft: for questions, queries, and concerns
please email alex@etherbots.io or contact the Etherbots team on discord.

CryptoKitties, released in November 2017, demonstrated that blockchain
games based on the collection, trading and ownership of virtual objects are
commercially viable and are able to attain significant popularity. However,
such games have so far been unable to present sophisticated gameplay me-
chanics, or effectively incorporate direct player-to-player interaction, apart
from marketplace functionality. To some degree, this is the result of the
present inability of the Ethereum network to scale beyond limited numbers
of transactions, which necessarily causes games to become more and more
expensive to play as they increase in popularity. This mechanic favours
games which require the fewest number of transactions, but as these issues
are gradually resolved or circumvented, future blockchain games may be able
to implement progressively more complicated gaming logic.

Nevertheless, these simpler games are necessary to prove the viability of
this new ecosystem, and as new games or extended functionality can be built
on top of existing game states, these collectibles may retain value after such
changes take place (provided users remain willing to ascribe value to them).
Further, player-to-player applications provide a valuable proving ground for
concepts which will be utilised by broader peer-to-peer systems. The cre-
ation of artificial, logically constrained economies on the blockchain (such
as those maintained by games) is a valuable trial of the future effectiveness
of these platforms.

Etherbots presents a new vision of these ’collectible’ games - one where
the value of a token is not only defined by its visual attractiveness or its
ability to appreciate in price, but by its relative utility with regard to inter-
actions between users (the battle system). This paper describes the ratio-
nale for the design of Etherbots and outlines its first implemented battling
system.

2 Rationale

2.1 Collectibility

The average transaction on the Ethereum network currently costs around
$0.70. At the height of Cryptokitties’ popularity, transaction fees surged,
leading to a backlog of tens of thousands of unconfirmed transactions which

had been sent without accounting for this increase. The fact that all transac-
tions are costly forces games, particularly those which require large volumes
of transactions between large numbers of users, to create financial value for
players as compensation for both their initial investment and ongoing costs.
This is also the product of the player base - many players are searching
for a return on their initial investment, which in most cases will be derived
from the collectible nature of the parts and their relative scarcity within
the game’s ecosystem and economy. There must therefore be predictable
scarcity, which in the case of Etherbots is achieved by a hard-capped pre-
sale, a small promotional allowance and a well-defined process of part infla-
tion. While there is a limited number of possible part types, parts will be
able to achieve differentiation from each other by virtue of their accumu-
lated experience and their battle record, as well as by having particular rare
characteristics.

This is one of the fundamental differences between Etherbots and other
Ethereum games: value is created through playing time and strategy (much
like regular games), rather than mere speculation or chance.

2.2 Longevity

CryptoKitties still remains popular, despite community interest having waned
significantly since it dominated the Ethereum network in late 2017 and early
2018. This is largely due to its strong community, its position as a market
leader, and the lack of non-ponzi scheme alternatives. However, in order for
CryptoKitties - or any other collectible - to be desirable in the long term,
games must offer the promise of continuing functionality: new tournaments,
upgrades, and improved user experience. This can be achieved through the
willingness of community members or developers to create extensions to the
original contract, as well as the ability of the contract to interact with future
systems (one of the key goals of ERC721 and standardisation more broadly).

Games must also negotiate the tension between immutable functionality
and the fact that one mistake in an implementation can destroy the balance
of the game. This is particularly important to consider when adding new
battle types, as significant amounts of user investment will be put at risk
during this process (for example, if it is easy to collude to gain experience).
In general, we have adopted the following philosophy: where a mistake in
the value would cause one party to be at a clear disadvantage, such that
they would not engage in battle, the correct solution is to add a wholly
new battle contract. Users can use the old one if they wish, but would
have no incentive to do so if it were truly imbalanced. This is an excellent
differentiator for well-designed Ethereum games - players do not have to

rely on the developers creating constantly successful and enjoyable updates,
but are able to perform their own ‘system restores’ by calling a previous
contract. However, where a mistake in the contract could enable colluding
parties to gain an unfair advantage over other players, then developers must
have enough governance ability to fix - or limit - the bug, through centrally
controlled fields and functions.

3 Battling

The most fundamental mechanic of Etherbots, besides the ownership and
transfer of parts, is the ability for robots to engage in battle. Etherbots
defines a battle interface which can be implemented by various contracts,
such that more battle modes may be introduced in the future. The following
is a specification for a two player commit-reveal (2PCR) duel - the first battle
mode developed by the Etherbots team.

The main Etherbots contract defines an array of approved battles which
can be added to, but never removed from. These battle contracts are able to
access the state mutating functions in the main contract, such as those which
add experience to users, or those which add battle rewards. This allows for
new game modes to be introduced, without compromising the ability of
players to ’do a Runescape Classic’ and return to a previous iteration of a
battling system, subject to the caveats discussed earlier.

3.1 2PCR

There are three primary stages of a 2PCR battle, which functions similarly
to a standard commit-reveal process:

1. Defender commits to a move set
2. Attackers attack the defender

3. Defender reveals their moves

A ‘move set’ is a sequential combination of moves, pre-defined by the user
before the initiation of the battle phase. These moves cannot be changed
once sent to the contract, as battles with interactive-moves (each requiring
a state alteration), would clearly be unsuitable for the current Ethereum
chain’s transaction volume. The possible moves in the Etherbots 2PCR
Battle are defined in the following relation:

defence > attack > body > turret > defence

Therefore, for any moves a and b which are part of a possible move set
C, and given a predicate defeats(move, move) which may be implemented as
(a+1) mod |C| == b for sequentially numbered moves, the damage done
by both the attacker and the defender (with the total base round damage
being td, the loser split [and winner split w) is as follows:

(fuﬁld, %), if defeats(a, b)
(aDmg, dDmg) = q (X4, wxtd) = if defeats(b, a) (1)
(%17 %d)s otherwise

After base damage for the move has been calculated, the following mod-
ifiers are applied:

1. Part Level/Experience

2. Part Rarity Bonuses

3. User-based Perks

4. Element Combination Bonuses

5. Randomness

These modifiers each calculate a percentage bonus to the underlying
damage. In order to prevent bias in the ordering of percentage application,
the total percentage bonus is applied as a whole. However, in order for any
battle to be potentially winnable by a player who has selected the optimal
move sequence when compared to their opponent, the following constraint
on the loser’s perk bonus Ipb is maintained for each winning move doing
base damage wd and losing move doing base damage Id:

(Ipb + 100)% x Id < (wpb + 100)% x wd x (% +100)% (2)

where wpb is the perk bonus of the winner and rr is the random range
discussed later. This ensures that, even amongst robots with vastly different
levels of experience and part rarity, playing optimally will always give you
at least a chance of success.

3.2 Part Level/Experience

For each level a part attains, it gains a damage bonus. This is represented
by the equation below, where a is the ‘level boost’ and b is the number of
levels between boosts.

level
bonus = ax% (3)

This bonus is currently set at half a point per level, with ¢ = 1 and
b = 2. This ensures that part levels play a significant role in determining
the outcome of battles, without high level parts being at an immediate and
significant advantage. There is currently no need for the level boost to
be logarithmically scaled - we want to reward higher-leveled players and
encourage them to play against each other, as well as creating a thriving
market for pre-loved parts.

3.3 Part Rarity Bonuses

When using a part with a non-standard rarity (such as gold or shadow),
there is a s+n bonus for each part of that rarity in the current robot, where
s is a fixed constant and n is the number of rarity tiers below the current
part rarity. Currently s is fixed at 4, giving full shadow a 16% bonus and
full gold a 20% bonus.

(4)

bonus = (s +n) ¢ {1 if rarity(p) == a and rarity(p) != 0
0

= 0, otherwise

Where c is the number of parts, and a is the rarity of the ‘moving’ part
as defined above.

3.4 User-based Perks

Perks are tied to user accounts, and may be unlocked through the acqui-
sition of experience. Perks only apply where the ‘moving part’ activates
those perks - for instance, the electricity perk will only apply when using
electricity-based moves. For each active perk, the user receives a fixed bonus
f. In addition to this, for every ‘prestige’ obtained by the user, this fixed
bonus is increased by the current prestige level p.

bonus = (f + p) x activePerks(user, move) (5)

Users can prestige after filling the perk tree. However, ‘prestiging’ re-
moves your current perk bonuses, and you must start completing the tree
again from scratch, but with the benefit of higher bonuses once the perks
are unlocked again. The perk levels are below:

1. Offensive/Defensive
2. Melee/Body/Defence/Turret
3. Android/Mech

4. Steel/Water/Fire/Electric

3.5 Element Combination Bonuses

Elemental bonuses provide a fixed percentage bonus of e based on how many
elemental parts align with the ‘moving’ part.

bonus = (e — 1) Z

p=0

(6)

|1 if element(p) == a
0, otherwise

Where c is the number of parts, and a is the element of the ‘moving’ part.
Note that e—1 is used to avoid granting a bonus to robots without elemental
combinations. Currently, elements all do equal damage against each other,
as a Pokemon-style system would have the effect of making all elemental
bots very vulnerable when defending. However, it is being considered for
future battle implementations, which may rely on a double commit and thus
avoid this issue.

3.6 Randomness

Randomness is chosen by performing a bitwise XOR operation on the move
strings. While this randomness is predictable where the parties are collud-
ing, colluding parties could control the result of the battle in any case by
selecting move strings which guarantee a particular victor. (A separate,
and independently secure source of randomness generates battle rewards).
Where both parties intend to defeat the other, it is an adequate way of
creating variability in the outcome of any given duel.

Randomness is applied to the damage done by each player after each
move, through the application of a percentage-based range of randomness
(if 7r = 40, values can range by 20% on either side of calculated damage).

(7)

dmg — w, otherwise

+Dimg = {dmg + 7dmglf)6a"d if rand > &
where rand is the random seed mod rr. Randomness is applied after all
of the part and perk bonuses are used to modify the base damage.

3.7 Outcome

The winner of each battle is therefore defined as the player with the highest
total score over ¢ moves:

score = Z applyRandom(((base(a[m], d[m]) x (100 + bonus(a[m])%))))
m=0
(8)

Where a is the move string of the attacker and d is the move string of
the defender. The battle is reported in stages to allow for a suspenseful Ul,
but the entire calculation happens in one executeMoves internal call.

4 Rewards

Etherbots aims to reward players for both engaging in large amounts of
gameplay and for playing skilfully. While grinding is still viable, investing
effort into your battle strategies may result in significant long-term savings
on both time and battle fees.

4.1 Cooldowns

One of the central features of CryptoKitties’ gameplay is the cooldown which
limits the ability of cats to breed. However, this mechanic (limiting the pri-
mary functionality of the game) can be frustrating for users - particularly in
a game which tries to promote player activity and emphasise the ownership
of parts. It is also a blunt and arbitrary restriction, which feels out of place

in a game whose economy should be inherently secure without resorting to
time-locks. To avoid these cooldowns, but prevent the system from being
abused by those who have enough money to continually pay battle fees,
Etherbots uses experience and reward cooldowns. These cooldowns, which
are implemented as scaled fall-off functions, increase the incentive of players
to focus on winning duels rather than playing volume. These cooldowns ex-
pire after a 24 hour period, and will never prevent a user from participating
in a battle or tournament. They are not rolling, and will reset at 24 hour
intervals (a necessary compromise to save significant amounts of storage and

gas).

4.2 Experience

Players are rewarded with more experience for playing more successfully
- in particular, for defeating robots which have a higher total level than
their own and are therefore presumed to have a base combat advantage.
Experience gained will apply to all parts used in the current battle, as well
as the user’s account, where it can be used to purchase perks. A crucial
goal of the experience system is preventing colluding parties from using
one high-leveled robot to ‘boost’ other parts, devaluing the effort of other
players. It is thus necessary for users who lose battles, despite having a
significant combat advantage, to lose experience. However, such losses must
be rare where the parties have not colluded to pre-empt the outcome of a
duel. Levels are linear, and each currently requires 1000 experience.

The primary formulas used to calculate the experience gained by both
parties in battle are as follows, where w and [are the winner and loser’s total
level, WS and LS are the winner’s and loser’s split, and WE and LE are
abbreviations for WinExperience and LoseExperience respectively. bMax
and bMin are the maximum and minimum amount of experience which can
be awarded in a single battle:

bMax — max('&l\\/[/[;x(w —1), lf)l\l\//[[?;‘ (w—1))

slowing factor

totalEzp = max(bMin,

))

(total Exp x WS)(L)
WS+ LS

) (10)

winExp = max(minW E, min(mazW E,

loseExp = totalExp — winFExp (11)

10

At launch, the following constants will be set: minW E = 75, mazWE =
1000, minLE = 250, maxLE = —900, slowing factor = 3.

Each part’s experience is related to the number of battles it has partic-
ipated over a 24-hour period through the following quadratic. It begins at
a vertex with y-coordinate v and then declines until it reaches an artificial
asymptote a, with the constant ¢ determining the rate of the falloff. How-
ever, if the part has a negative base experience, this function will not be
applied, and the full cost of the experience will be deducted.

eop = max(a, = (games)? +v) if base ‘> 0 (12)
base otherwise
At launch, the following constants will be set: v = maxWFE, a =

minWE, ¢ = 8.

This also disincentivises very small bots from constantly attacking high-
leveled defenders. They will consume the battle fee of both parties, but will
be acting entirely against their own self-interest by selecting a target against
whom (if they are not colluding) they have almost no chance of succeeding,
and thus will have very low expected experience rewards. Further, they will
be unable to reduce their own exp reward.

4.3 Part Rewards

After every battle, there is a chance of a reward being generated for each
participant. These parts are dependent on performance in battle, and are
directly correlated to experience received, so that the part reward system is
equally resistant to collusion. To allow for negative experience to impact this
process, the distribution of randomness is between the maximum experience
lost (-900) and the maximum gained in a single battle (1000). These rewards
may be either parts, with rarity distributed in the same manner as in the
presale crates, albeit with 1% of the parts being gold, and 2% being shadow,
or part shards, which can be forged together to create a part. These shards
are simply represented as a per-user count, and are not ERC721 tokens nor
transferrable. The number of shards per part s is fixed at 500, and cannot
be changed.

The drop distribution from reward crates in terms of parts is as follows,
where a part will drop every c¢ crates and the average number of shards in
non-part reward crates is a:

11

art a
ki,

c s(1—r¢) (13)

expected reward =

This will be further modified by experience scaling.

At launch, a will be set to 1, but in order to ensure that the system
remains responsive to market demand, this value will be centrally alterable.
Some market-based solutions were considered but seem open to manipula-
tion, particularly during periods of low transaction volume, and a highly
variable battling fee may make core game functionality too expensive. A
centralised solution, while undesirable from a principled perspective, pro-
tects the market from these challenges, and will be made transparent to
allow battlers to always have full information about their current chance of
reward. a should be initially low and increased only where required, rather
than vice-versa in order to placate legitimate community concerns about
developer manipulation.

The following function parts(¢) estimates the number of parts in the game
after ¢ battles, and with ps presale parts and a small number of promotional
parts pp (which will be given away (not sold) as advertising, or to start
partnerships).

at(100 — c)

t
parts(t) = ps + pp + . + (14)

This does not consider the deflation caused by users breaking parts down
into shards (for s x 70%).

As the number of parts in the game increases, the number of battles
being held will also increase (as users will be able to form more robots).
This creates a slow but steady linear increase in the number of parts relative
to the number of battles, and should allow for the potential player base to
increase without compromising the value of the parts purchased by early-
adopters.

12

