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Abstract

Although the rendering speed of modern GPUs is dramatically improved, it is still not fast
enough for some applications such as real time rendering and 3D interactive rendering. Many game
developers figure out many methods to reduce the computations of GPUs. One of them is impostor.
The impostor method first draw the object into a texture and then apply the texture on a quad or
two triangles to generate the illusion of the object. Since the two triangles replace the thousands of

triangles, we can reduce a lot of computations.

In this paper, we try to acquire all the benefits of impostor but hide the complex
implementation details. Therefore, we propose a hardware mechanism to implement the impostor
inside the hardware. With this, game developers do not need to worry about the implementations,
because the hardware apply the method automatically. Moreover, since we implement the impostor
in the hardware level, we can get some useful data which cannot see in the software. The data help
us to apply the impostor technique and use the memory space more efficiently. After all, we can

reduce more than 10% number of instructions of the whole GPU system.

Keywords: GPU, hardware, impostor, billboard.
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1. Introduction

Handhold devices are now very widely used, such as smartphone and pad. These
products are small, light, short battery life and lacking for computing power. Most of the
time people run video games on these devices. Since it requires lots of graphic processing
when running a game, many modern handhold devices have graphics processing unit
(GPU). Although modern GPUs improve the performance of rendering scenes dramatically,
it is still not enough for running fancy games, especially on embedded systems. In many
games, in order to make the scenes look fancy, game developers elaborate many delicate
but complicated objects that have enormous number of polygons. Games rely on real time
rendering. That means if it cannot keep a high frame rate (at least 20 frames per second)
rendering, the users will be disturbed by the gaps between two frames and are probably not
willing to play this game anymore. There are also other applications suffer from limited
computing power such as interactive 3D graphics system. Under the premise that the
limited computing power of embedded system and high frame rate requirement, not only

game developers but also researchers propose methods to speed up the scene rendering.



In the real world, a life-sized cardboard cut-out of a politicians are commonly seen
in governments. It provides the illusion that the person is there, but the really thing there is
the cardboard cut-out of the person. In the same way, in a game, cardboard cut-out is a
common technique called impostor used to speed up the rendering process. An imposters
IS made by an objects is rendered into a texture and of course, the actually object is not
rectangular so that the areas which beyond the outline of the object should be transparent.
We got an impostor now, we then need to apply the impostor on a quad or two triangles.
After that, object may appear to be in the three dimensions, but in fact actually is in the two
dimensional rendering on a quad. There are some situations lead the illusion be ruined,
firstly, when the camera gets too close to the impostor of an object, it causes a pixelation
problem. Secondly, when either the object rotates or the camera changes its orientation, the
quad which the imposter was applied on become thinner and pixels of the imposter are
messed up. Thirdly, when panning the camera, some objects get more and more pixels.
That means it is going to show pixels that we did not hold. Fourthly, when strafing the
camera, the third situation is shown again. Moreover, the player is going to see the side of

the object which the impostor did not hold.

Now, we know how people create illusions. On some game development web sides
[2] [3], we can clearly see the steps we need to follow to generate imposters and apply it
on a quad. Here are steps to follow: (a) to generate imposters, we need to introduce a
technique called frame buffer object (FBO). This technique allows us to set up a new
rendering target which is a texture instead of frame buffer for an object who wants to
generate an imposter. To use FBO, game developers should search the API calls and call

them correctly. (b) To prevent using imposter from previous situations (pixelation, rotation,



panning and strafing), game developers and researchers propose some tests to detect those
situations. These tests are described in [3]. (c) To apply imposter texture on a quad or two
triangles, there are a series of API functions to call. In addition, it requires game developers
figure out where to put the imposters and because the imposter has transparent areas, game
developers need to be careful when applying the imposters. (d) To generate and using
imposters on the fly for multiple objects, the game developers must create a data structure
to manage each imposter for each object. (e) To avoid memory waste, game developers

need to allocate and free the memory space carefully.

In actually games, it is common to have objects that sometimes do not change or
change slightly from frame to frame, for example, the game player may walk down the hall
and objects get closer but then he stops walking and objects stop changing. So, there will
be times when the objects are not changing or slightly changing. In addition, the player
may sometimes straight spin (turn his view or turn around). In this case, even though the
objects move, the actual pixels that are drawn may not change much. In other cases, the
objects may change but not very quickly, for instance, if he is walking down the hall slowly,
objects are coming closer but slowly. That is why game developers may acquire a
significant improvement in rendering scenes as long as they follow all above steps and do

them correctly.

It seems game developers have already been familiar with imposter technique, but
there are still some problems and inefficiency of this method. First of all, even though this
method has been used for many years, game developers still need to study a bunch of API
functions for generating and using imposters. Second of all, it is not easy to figure out and

fix the bugs in the series of API function calls, because it usually gives you wired scenes



when you do not do it right. Third of all, in the software level, it is impossible to know the
width and height values of the imposter texture so game developers may just guesstimate
a number. To ensure to allocate an enough space for an imposter, game developers cannot
give a tight number. So, there should be some wasteful spaces been created. Last but not
least, in terms of pixelated test, since game developers do not have ability to know the
width of imposters, they need to calculate angles instead of only comparing current width

with last one for detecting the pixelation.

In this thesis, we propose a hardware method to automatically generate imposters,
detect the imposter errors and apply the imposter on a quad or two triangles. We take all
the advantages of the software level method such as generating and using imposters on the
fly, detecting impostor errors to avoid using impostors from those situations, and acquiring
a significant improvement on scene rendering. Moreover, the game developers do not need
to micro manage the impostor technique but take all the benefits from the technique. The
whole details and implementations are hidden by the hardware. That saves game
developers a lot of time to survey the API functions and write and debug their program to
make the technique work. Since we implement the imposter technique in the hardware
level, we can get the useful information that game developers cannot acquire to save some
memory spaces and do more efficient imposter error testing. Besides, the memory spaces
in embedded system are very constrained, so we not only adopt RGB565 image format but
also do a run-length encoding based image compression to shrink the size of the impostor
texture. In addition, the game developers probably could not be doing imposters on the
times that the object we discovered, because we detect for all objects on the scene while

game developers only pick the objects they notice.



This thesis proposes several hardware modifications to make the impostors
technique automated and they are based on an existing hardware. The existing hardware is
developed by a collaborative group at our university. The group is dedicated to developing
a fully 3D graphics system for embedded system that includes the API, GPU hardware and
benchmarks. It gives us an entire view of a 3D system and we focus on GPU hardware
especially. In the hardware point of view, to increase the flexibility in rendering an image,
many modern graphics cards have two shaders, vertex shader and pixel shader. The vertex
shader is in charge of putting an object on the right place, while the pixel shader is
responsible for coloring an object. Reasonably, our GPU has two shaders but the stable
version of our GPU is a single core vertex shader and single core pixel shader while modern
GPUs have at most eight cores. The advantage is it is easier for us to explain the
modifications we propose for hardware based on the relatively simple GPU. But it must be
mentioned that this method should not be only worked for this specific hardware, it can
actually apply to any modern GPUs. This method is now not implemented in a real
embedded system GPU, but the collaborative project gives us an opportunity to implement

the method in it in the future.

There are some situations that the impostor should not be used. For example, two
objects interact each other and other special effects. Imaging that when we handshake with
others, the two hands interact each other. Because the impostor is a piece of paper, it only
holds one depth value. Therefore, when objects are overlapping, the scene would be mess
up. To solve this problem, we create an extended API function for game developers to turn
on the impostor mechanism of an object. If game developers notice an object is not a good

candidate to use the impostor, they just do not turn on the technique for an object.



To measure the expected benefits we can get from this method, we use real world
benchmark called GLBenchmark. This benchmark is a popular benchmark to test the
performance of the embedded system. There are advantages to choose this benchmark:
firstly, this benchmark has many kinds of camera motions, for instance, directly go straight,
rotate, spin and strafe. It allows us to test whether our impostor testing is operative or not.
Secondly, there are many objects in the scene. It gives us opportunities to see could our
method really catch the period of time to create the impostor textures and using these
impostor textures. Thirdly, because it is a real world benchmark, that makes our method

more robust.

The remainder of this thesis will mention several related works. Since GPUs are
not powerful in early years, many game developers and researchers were trying to figure
out some methods to speed up rendering scenes. Then we will describe the details of our
method such as the how to make the impostor technique automated, how to detect the
impostor errors and how to deal with multiple objects at same time. After that, comes the
rules we follow to measure the expected benefits we could acquire and the result of how

many expected benefits that we could get from this method.



2. Previous Work

2.1 Billboarding

The definition of the billboarding technique is describe in [1] as “Orienting a
textured polygon based on the view direction is called billboarding, and the polygon is
called a billboard”. The two common kinds of billboard are screen-aligned billboard and
world-oriented billboard. Figure 2.1 (from [1]) shows the major different of these two

billboards.

view plane-aligned viewpoint-oriented

view plane

viewpoint

Figure 2.1 A top view of the two billboard alignment techniques. The five billboards face
differently, depending on the method. (Figure references from [1].)

There are few ways to generate a billboard such as a picture of an actual object, a
pre-rendered image that was done offline, an artist-drawn object, and so on. And the

billboarding technique allows us to apply a billboards on a quad.



2.2 Impostors

2.2.1 What is impostor

The definition of impostor is also described in [1] as “An impostor is a billboard
that is created on the fly by rendering a complex object from the current viewpoint into an
image texture, which is mapped onto the billboard. Figure 2.2 from [1] shows how is an
impostor created. An impostor is actually the image of the object that is sent to the frame
buffer. The two parts in that image are opaque part and transparent part. The pixels been
touched by the object are opaque, otherwise are transparent. Impostors are created at the
run-time and billboarded onto a quad or two triangles to create illusion of the real object.
Recording that figure 2.1 shows two kinds of billboards. The impostor is belong to the

viewport-oriented billboard because the impostor must distort like the object does.

Figure 2.2 At the left, an impostor is created of the object viewed from the side by the
viewing frustum. The view direction is toward the center, c, of the object, and an image is
rendered and used as an impostor texture. This is shown on the right, where the texture is
applied to a quadrilateral. The center of the impostor is equal to the center of the object, and
the normal (emanating from the center) points directly toward the viewpoint. (Figure
references from [1].)



2.2.2 The motivation of using impostors

Although the performance of modern GPUs are dramatically increased, it is still a
challenge to keep the frame rate (at least twenty frames per second) because the objects in
the game and the effects of these objects or the environment are much more complex. In
order to speed up the rendering, the game developers do many tricks. The impostor
technique is one of the tricks. In a 3D scene, everything is an approximation of the real
object. Not only because the objects are rendering into a 2D screen, but also the 3D models
are the approximations in their own. An impostor is an approximation of an object. It has
only two triangles (6 vertices) while an object usually has thousands of vertices. So, the
motivation of using the impostor technique is to use two triangles to replace thousands of

triangles to speed up the rendering and still remain the quality of the scene.

2.2.3 The software implementations of impostors

Normally, in 3D rendering, a finished rendering pixel is sent to frame buffer to be
displayed on the screen. In order to use impostor technique, we must create an impostor
for the object. This section shows how game developers create an impostor and then how
to apply the impostor on a quad or two triangles. Moreover, we also mention that how to

apply this technique to multiple objects in last paragraph in the last paragraph.



2.2.3.1 Creating an impostor for an object

Figure 2.3 shows the code that we reference the frame buffer object (FBO) in
openGL tutorial on the Internet [2] and implement it ourselves. Although the tutorial on
the Internet provides the code for game developers, nonetheless, it is not just easily copying
it and pasting it into our code and there are details to take care: firstly, both a new frame
buffer and a new depth buffer need to be created. Of course, we must remember to create
the new frame buffer, because we are trying to use it. But someone might forget to create
the new depth buffer. A black quad would be displayed as the depth buffer was not created.
Secondly, to indicate a texture to be the new frame buffer and the other texture to be the
depth buffer, we have to change the current binding frame buffer and texture and then turn
them back. Making sure to switch correctly, otherwise the scene would be messed up.

Thirdly, the parameters should be given properly.

Now, we have two textures, one is used as frame buffer and the other is used as
depth buffer. Then we have to draw the object into the texture to get the impostor. Figure
2.4 shows how to draw an object into the texture. After that, we would have the impostor

of an object.
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GLint curTexturelD;
Glint curFBO;
glGetintegerv(GL_TEXTURE_BINDING_ 2D, &curTexturelD);
glGetintegerv(GL_DRAW_FRAMEBUFFER_BINDING, &curFBO);
glGenFramebuffers(1, &obj.myFBO);
glBindFramebuffer(GL_FRAMEBUFFER, obj.myFBO);
glGenTextures(1, &obj.texColorBuffer);
glBindTexture(GL_TEXTURE_2D, obj.texColorBuffer);
glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, WWW, HHH, 0, GL_RGBA,

GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_ CLAMP_TO_BORDER);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO,

GL _TEXTURE_2D, obj.texColorBuffer, 0);

glGenTextures(1, &obj.depthBuffer);
glBindTexture(GL_TEXTURE_2D, obj.depthBuffer);
glTexlmage2D(GL_TEXTURE_2D, 0, GL_ DEPTH_COMPONENT, WWW, HHH, 0,

GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

GL _TEXTURE_2D, obj.depthBuffer, 0);

glBindTexture(GL_TEXTURE_2D, curTexturelD);
glBindFramebuffer(GL_FRAMEBUFFER, curFBO);

Figure 2.3 Codes to create a new rendering target.

glBindFramebuffer(GL_FRAMEBUFFER, myFBO);
glClear(GL_DEPTH_BUFFER_BIT);

Drawing the object
glBindFramebuffer(GL_FRAMEBUFFER, 0);

Figure 2.4 Codes to render the object into the new rendering target which is the impostor
billboard.
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2.2.3.2 Applying an impostor on two triangles

Figure 2.5 shows the code that we reference the texturing in openGL tutorial on the
Internet and implement it ourselves. Although the website provides the source code to
apply the impostor on a quad, it is still not easy to do it right. To achieve this, we need to
follow several steps: first, writing shader codes to tell GPUs how to render the impostor.
Fortunately, because the impostor must be transformed like the object and the model view
projection matrix has been set for the object, we just use it for vertex shader. For fragment
shader, it is also easy, since we just try to apply a texture on the quad. Second, we have to
indicate the texture coordinate. If we do not do it right, then we might see a black quad on
the screen. Third, sending the six vertices of the quad to GPUs. If we do not do it correctly,
then we might even not see the quad be displayed on the screen. Fourth, here comes a series
of API functions to compile the shader code and link them to tell GPUs what the current
program it is. If there are bugs in the series of code, then it might crashes the system. So,
making sure to call every functions right. Fifth, because some pixels in the impostor are
transparent, remembering to not update the depth buffer and color buffer as the pixel is
transparent. Otherwise, the transparent pixels would blend with the pixels that has already
been drawn. That is not what we want, because we want to only draw the opaque part of

the texture to the screen.
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const GLchar* vertexSource =
"#version 150 core\n"

"in vec3 position;"

"in vec2 texCoord;"

"out vec2 TexCoord;"

"void main() {"

" TexCoord = texCoord;"

" gl_Position = vec4(position, 1.0);"
B

const GLchar* fragmentSource =
"#version 150 core\n"

"in vec2 TexCoord;"

"out vecd outColor;"

"uniform sampler2D texFramebuffer;"
"void main() {"

" outColor = texture2D(texFramebuffer, TexCoord);"

nmun,
’

GLuint myvbo;
GLint curvbo;
glGetintegerv(GL_VERTEX_ARRAY_BINDING, &curvbo);
glGenBuffers(1, &myvbo);
obj.p2_min_value.x <0 ? tminX = (1 - abs(obj.p2_min_value.x)) / 2.0 :
tminX = (1 + abs(obj.p2_min_value.x)) / 2.0;
obj.p2_max_value.x <0 ? tmaxX = (1 - abs(obj.p2_max_value.x)) / 2.0 :
tmaxX = (1 + abs(obj.p2 max value.x))/ 2.0;
obj.p2_min_value.y <0 ? tminY = (1 - abs(obj.p2_min_value.y)) /2.0 :
tminY = (1 + abs(obj.p2_min_value.y)) / 2.0;
obj.p2_max_value.y <0 ? tmax¥ = (1 - abs(obj.p2_max_value.y))/ 2.0:
tmaxY = (1 + abs(obj.p2_max_value.y)) / 2.0;
GLfloat myvertices[] = { // 6 vertices of the two impostor triangles
obj.p3_min_value.x, obj.p3_min_value.y, obj.p3_min_value.z, tminX, tminY,
obj.p3_min_value.x, obj.p3_max_value.y, obj.p3_min_value.z, tminX, tmaxy,
obj.p3_max_value.x, obj.p3_max_value.y, obj.p3_min_value.z, tmaxX, tmaxy,
obj.p3_max_value.x, obj.p3_max_value.y, obj.p3_min_value.z, tmaxX, tmaxy,
obj.p3_max_value.x, obj.p3_min_value.y, obj.p3_min_value.z, tmaxX, tminY,
obj.p3_min_value.x, obj.p3_min_value.y, obj.p3_min_value.z, tminX, tminY
by
GLint status = GL_FALSE;
glBindBuffer(GL_ARRAY_BUFFER, myvbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(myvertices), myvertices, GL_STATIC_DRAW);
// Create and compile the vertex shader
GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertexShader, 1, &vertexSource, NULL);
glCompileShader(vertexShader);
// Create and compile the fragment shader
glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &status);
GLuint fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragmentShader, 1, &fragmentSource, NULL);

13




glCompileShader(fragmentShader);

glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &status);

/{/ Link the vertex and fragment shader into a shader program

GLuint shaderProgram = glCreateProgram();

glAttachShader(shaderProgram, vertexShader);

glAttachShader(shaderProgram, fragmentShader);

glBindFragDatalocation(shaderProgram, 0, "outColor");

gllinkProgram(shaderProgram);

GLint current_program;

glGetIntegerv(GL_CURRENT_PROGRAM, &current_program);

glUseProgram(shaderProgram);

glUniform1li(glGetUniformLocation(shaderProgram, "texFramebuffer"), 0);

/{ Specify the layout of the vertex data

GLint posAttrib = glGetAttribLocation(shaderProgram, "position");

glEnableVertexAttribArray(posAttrib);

glVertexAttribPointer(posAttrib, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), 0);

GLint texAttrib = glGetAttribLocation(shaderProgram, "texCoord");

glEnableVertexAttribArray(texAttrib);

glVertexAttribPointer(texAttrib, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat),
(void*)(3 * sizeof(GLfloat)));

glViewport(0, 0, WWW, HHH);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

glEnable(GL_BLEND);

glEnable(GL_DEPTH_TEST);

glDisable(GL_CULL_FACE);

glAlphaFunc(GL_GREATER, 0);

glEnable(GL_ALPHA_TEST);

GLint curTexturelD;

glGetIntegerv(GL_TEXTURE_BINDING_2D, &curTexturelD);

glBindTexture(GL_TEXTURE_2D, obj.texColorBuffer);

glActiveTexture(GL_TEXTUREQ);

glDrawArrays(GL_TRIANGLES, 0, 6);

glUseProgram(current_program);

glBindTexture(GL_TEXTURE_2D, curTexturelD);

glBindBuffer(GL_ARRAY_BUFFER, curvbo);

Figure 2.5 Codes to render the impostor on a quad or two triangles.
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2.3 Existing software approaches to using impostors

2.3.1 Dynamically Generated Impostors

This paper [3] describes some situations to re-generate the impostor of an object.
The impostors are expected to be re-used as much as possible. If we over re-use the
impostors to replace the object, then the game player might notice the fakes. And there are
some situations described in [3] can ruin the illusions. They includes (1) when the
resolution of texels (pixels in a texture) are lower than pixels on a screen, (2) when the
camera translates and (3) when the camera gets to closer to impostors. The methods to

detect these situations are also describe in [3].

Figure 2.6 from [3] shows the first situation. The paper describes that if ouex > ciscreen,
then the texels in the texture could be distinguished by viewer. That causes the pixelation
problem and it means the impostor need to be regenerated. In addition, the paper also
describes that the distant impostor could still be re-used even though the test is failed. That
IS because the viewer may not notice the low resolution when the impostor is far from the

camera.

screen resolution maximum texture resolution

A, —
Iy \

Figure 2.6 Pixel and texel viewing angles. (Figure references from [3].)

15



Figure 2.7 from [3] shows the second situation. When the camera translates from
V1 to V2, we can see more left side of the object but see less of the right side. Seeing less
causes no problems, but seeing more ruins the illusion. Because the impostor did not hold
the pixels of the left side of the object. To prevent using impostor from this situation, the

author suggested that if curans > ciscreen, then the impostor should be re-generated.
Bi=B’=B, seen from V¥,

B#B’+B; seen from V;

Figure 2.7 Error angle ourans due to translation (Figure references from [3].)

Figure 2.8 from [3] shows the third situation. When the camera gets too closer to
an object, it causes the pixelation problem. To avoid using impostor from this situation, the

author suggested that if asize > aiscreen, then the impostor should be re-generated.
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Olgjza Vs

Figure 2.8 Error angle asize due to move-in. (Figure references from [3].)

This paper gives situations that the impostor needs to be re-generated. We take all
the observations of this paper, but we observe an extra situation that needs to be detected
and we also propose different methods to detect the impostor errors. Considering that an
object rotates like the earth, the rotation would mess up the pixels in the object. Since this
situation might not happen in the benchmark that this paper uses, this paper does not need
to consider that. But, in the GLBenchmark, there are times that objects rotate. So, we
propose a method in chapter 3 to detect this situation. Moreover, because we have the
information (extreme values and indices of the object) that is not acquirable in the software
level, we can detect the impostor error by other ways. The methods will be described in

chapter 3 as well.
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2.3.2 The use of Impostors in Interactive 3D Graphics System

The motivation of this paper is to use impostors to speed up the 3D interactive
rendering. The processes of creating and using impostors are similar to the code shown in
section 2.2.3.1 and 2.2.3.2. This paper references the paper presented in 2.3.1 a lot. In this
paper, it provides similar but easier tests to detect the changes of an object between frames
and it also mentions the thresholds of the impostor errors. “In our implementation we
decided to generate new imposters when the angle had changed more than 5% (18 degrees)
in vertical or horizontal orientation.” mentioned by paper [4]. And they also mentioned:
“In our implementation we simple chose to show the imposter when the distance to the

object from the camera exceted a fixed number.”

Since this paper only show the impostor when the object is farther than a fixed
distance, it might misses some opportunities to get the advantages of the impostors. The
reason of their impostors only can display distant impostors is they create a fixed size of
impostor. The player would notice the pixelation, as the object is close to the player. So, in
order to avoid the pixelation problem, they only re-use the impostors when the object is

distant.

In our method, we do not have this constraint, because we hold the width and height
of the object. They help us to create a fit size of impostor for the object, so that we can use
the impostor as the object is close to the player. But, we do need to avoid the pixelation

problem when the player gets closer and closer to the object.
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2.3.3 A GPU hardware-based method for automatic occlusion

detection and optimization for objects and subobjects

This paper [5] proposes an automated hardware optimization. Game developers
figure out ways to speed up the 3D rendering. One of the common methods is occlusion
detection. Considering that there are some objects in the scene are fully occluded by other
objects. Since the players cannot see these objects, we do not need to draw them at all. The
problem is how to know an object is fully occluded and we do not need to draw it. The
answer is bounding box which only has 12 triangles and totally wraps the object. The idea
is since it is easy enough to draw a bounding box and the bounding box wraps the object,
we can utilize the bounding box of the object to do the occlusion test. If the bounding box
is fully occluded, then the object is fully occluded, too. Moreover, they propose a method

to create subobjects to increase the opportunities of full occlusion of an object.

The paper proposes both software and hardware modifications to make the
occlusion detection automated. And the existing games do not need to be modified to
acquire benefits from using their method. For us, we also propose both software and
hardware modifications to make the existing software method automatically be supported

by the hardware and the game needs to do no changes to get benefits from out method.
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2.4 The issues of textures

2.4.1 The limitation of the memory space in the embedded

system

Figure 2.9 from [6] shows the size of memory space of each GPUs. In the picture,
we can see that the memory space in embedded system is really constrain, so we do

propose a compression method to reduce the size of IBTs.

Core (CU) Speed |Cores (CU) / Registers / Const / Shared /
Threads (SP) Memory / SpeEd L2+13+L4 cache

GeForce 8800 GTS (GT80) 1188MHz 12C/ 96SP 640MB GDDR3 800MHz 320-bit 8k / 64kB / 16kB

0L Y EL R TR Y 24C / 1925P 896MB GDDR3 1GHz 448-bit 16k / 64KB / 16kB

(GT200)

nVidia GeForce 555M (Fermi) BHENNIRH 3C / 1445P 1.5GB DDR3 1.8GHz 192-bit 32k / 64kB / 48kB / 384kB
] 980MHz / )

nVidia GeForce 660 TI (Kepler) [ 7C /5P 2GB DDRS 6GHz 192-bit 64k / 64KB / 48KB / 384kB

AMD A6-3650 APU (Llano) / 512MB DDR3 1.33GHz 128-bit

Radeon HD 6530D e 205 (shared out of 8GB) W5/ CIB) ABICAE

AMD Radeon HD 6850 (Barts) PEEIVIne: 12C / 960SP 1GB GDDRS 4GHz 256-bit 16k / 64KB / 32kB / 256kB

E ’ Intel i7-3xxxM APU (Ivy Bridge) S0z " 512MB DDR3 1.33GHz 128-bit
(Inte,l / GT2 HD 4000 1050MHz ae /e (shared out of 8GB) Ul CEB /S8 AL
intel‘, Intel i7-400xM APU (Haswell) / [S0VizFa3 40C / 40SP* 512MB DDR3 1.6GHz 128-bit 16k / 64kB / 64kB / 2MB +
( »  FELELDEYL 800MHz (shared out of 8GB) 128MB eDRAM

Figure 2.9 The memory size of different types of GPUs. (Figure references from [6].)
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2.4.2 The 565 texture format

565 file format [7] is one of the texture format. It takes 5 bits to present red and
blue, but 6 bits to present green. We have transformed an 888 file format which uses 8 bits
to present red, green and blue to a 565 file format. It is hard to distinguish the differences
between those two file formats. But, if we further try 454, then the differences become
noticeable. Because the memory space is quite restricted in embedded system, we use this

format to store the impostor.

2.4.3 Run-length encoding

Run-length encoding [8] is a simple and fast encoding technique. The compression
ratio of this encoding method depends on the variety of the image. An image is composed
of a lot of pixels and each pixel is composed of colors of red, green and blue. If we open
an image file such as a bitmap file as a texture file, then there are values in it. In RGB565
texture format, the range of red and blue is from 0 to 31 and the range of green is from 0
to 63. Figure 2.10 shows how the run-length encoding works. The repeating characters

(aaaa) is called a run. After encoding, the run becomes two bytes, run count and run value.

aaaaabbbbbbbzzdww => 5a7b2z1d2w

Figure 2.10 How run-length encoding compresses the data. The input is a character string
and the run-length encoding reduce the redundancy and create a number to present the
repeat times.

According to section 2.4.1, we get really a limited size of cache to use so we need
an image compression technique to compress the texture. There are reasons for us to pick

this encoding method, firstly, it is quick to execute. This is important for us to encoding
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and decoding an image, because we need to pay the cost each time we use the impostor. If
we take a long time to compress and de-compress the impostors, then we get a few
improvements from our method. Secondly, since there is only one object in the impostor
and a part of the pixels are transparent, these properties of the impostors let the run-length

encoding method gives us better compression ratio.

3. Methodology

The impostor technique has been used to increase the speed of object rendering and
the game developers acquire really huge improvement from it, however, the process of
making it works is complicated and time-wasteful. Therefore, we propose an automatic
impostor technique to get all the improvements from the software technique but hide the
complex implementations and the painful debugging processes. To achieve the automation,
we propose several hardware modifications. The major changes are shown in figure 3.1
and figure 3.2. These two figures need to be read together, since they cooperate with each
other to manage the impostor technique for each object. In the following paragraphs, we
will first describe the whole idea of these two figures and further explain the details

individually.
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!nosp

IBB_create

BB_create
sctr

! ovf(ctr)
inc ctr

1 LG && ! sat(sctr)

— ROM
= HW
API|

LG
inc sctr

Figure 3.1 This figure shows the state machine to achieve creating and using impostors on
the fly. It also shows how we can automatically manage the impostor technique. A view of
four spheres, with a wide field of view. The upper left is a billboard texture of a sphere,
using view plane alignment. The upper right billboard is viewpoint oriented. The lower row
shows two real spheres.
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find extreme
record v1, vertices(i.e.,
v2, v3(for the vertices
later use in " I':_ that
. rotation
g i small? correspond
billboard tomin x, y, z;
to frame max x, y, z
buffer) and their
| values)
N v
discard draw the| | discard discard draw the
this billboard| | triangles | |triangles abject
triangle to frame of of the to frame
i buffer ||billboard object buffer

[ | | |

end

Figure 3.2 This figure shows the state machine to achieve creating and using impostors on
the fly. It also shows how we can automatically manage the impostor technique.

3.1 The state machine and ROM code

There are four basic actions in the existing impostor technique: creating impostor,
impostor error testing and using impostor. Once game developers try to apply the technique
to an object, firstly, they need to call a series of API functions to create an impostor. Before
using the impostor, impostor error testing should be performed to see whether the impostor
can be used or not. If the testing passes, then game developers have to decide where to put

the impostor and apply the impostor on a quad or two triangles. We basically follow these
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actions to design our state machine and the ROM code, but we also provide some changes

to make this technique more efficient. And here comes the whole ideas:
3.1.1 Phase 1 — the analysis phase

This phase is not included in software technique, but there are reasons to involve
this phase. First of all, the memory space is so limited in embedded system. So, in order to
create a fit size of memory space for an object to cache its impostor, we create this phase
to get the extreme values. Second, the existing method does an angle testing to detect the
pixelation problem. It may not be an efficient way to detect, because it has a heavy
computation to get the angle. For us, since we hold the extreme values, we can directly
compare the current width of the object with the width of the impostor to see whether the

pixelation problem happens or not.

The state machine begins with phase 1. There are three actions in phase 1: (1)
identifying an object (2) gathering the extreme values and indices (3) store the results to

the memory and transit to next phase.

Figure 3.3 shows the pseudo code to identify an object at the beginning of an object.
The purpose of the action 1 is to manage multi-objects. So, when the first triangle of an
object comes to ROM code, we give it a hash key. This hash key is generated by merging
object id and the sum of elements of model matrix. We put the sum of elements of model
matrix into the key, because we observed that some objects are drawn many times such as
the pillars in the benchmark. The sum of elements of model matrix is a sort of secondary
key to help us to distinguish those multi-drawn objects. After giving the hash key to an

object, we allocate a size of 24 32-bits memory space for an object. Some information is
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put in this memory space include current phase, saturated counter, the pointer that point to
the head of the space to store the impostor, the pointer that point to the head of the bit
vector, the extreme values and their indices and the width and height of the impostor. Then

we finish the action 1.

In action 2, we are going to gather the extreme values and their indices. After the
processes of vertex shader, the triangles of an object go into the ROM code to perform the
culling, clipping and rasterizing triangle by triangle. Figure 3.4 represents the pseudo code
that we add to find the extreme values and the indices of them. In the pseudo code, we
follow the rules of the assembly code specification of the collaborative project. Since
almost every GPUs has its own assembly code specification, it is impossible for us to
provide the codes for each GPU. So we will just explain the concept of finding the extreme
values. The idea is all of the triangles in an object go into ROM code triangle by triangle.
Each time a triangle comes, we find the temporary minimum and maximum values and
their indices of it and then compare the temporary one with the final one until all triangles
walk through the ROM code. Beside, we also need to find the x and y values of the

minimum and maximum z.

Actually, we could propose a dedicated piece of hardware to gather the extreme
values and indices of them but it may not worth to create a dedicated hardware only for

finding extreme values purpose and it is just a little change to the ROM code.

Figure 3.5 shows the pseudo code of the processes at the end of an object. At the
end of the phase 1, we need to post process the data which be gathered from action 2. First,
we need to re-identify the object, because we do not lock the registers which hold the hash
key. Second, since we are in phase 1, we are going to transit to either phase 2 or phase 4.
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(See figure 3.1.) The decision is made by whether there is no enough memory spaces are
available. If the situation occurs, we go to phase 4, otherwise go to phase 2. If we go to
phase 4, then we initialize the counter and done, otherwise, we should subtract minimum
x from maximum X to get the width of the object, subtract minimum y from maximumy to
get the height of the object and store the width, height, phase, the indices of extreme values

to the memory.

ANDI R2, SR, 1 # whether to use BB method LD R4, O(R3.y) # R4 the struct top

BEQ R2, R1.x, .Lculling ANDI R5.x, R4.x, 00000003 # the phase

LD R2, Mm1 BEQ R5.x, R1.x, Ph2

LD R3, Mm2 ANDI R5.x, R4.x, 10000000 (2/28)

ADD R2,R2,R3 BEQ R5.x, RO.x, Ph3

LD R3 Mm3 Pha4:

ADD R2, R2,R3 SUBI R4.w, R4.w, 1#In Ph4, R4.w = CTR, so decrement
LD R3 Mm4 BEQ R4.z, RO.x, waitmore # Has the timer run out?
ADD R2,R2,R3 waitnomore:

ADD R2.xy, R2.xy, R2.zw ANDI SR, SR, FFFFFFF9# THIS frame we'll do Ph 1
ADD R2.x, R2.x, R2.y # R2.x ModelMatrix checksum BNE R2.z, RO.x, itszw # clear out the BB struct

SHR R2.y,R2.x, 14 #R2y 18bit mantissa free(R3.y) # It's the top half so R3.y points to the struct

XOR R2.z, R2.y, R2.x # mantissa XOR exponent MVI R3.y, 0 # NULL* means free (We're in Ph 1, but we
ANDI R2.z, R2.z, 0003FFFF IMP LL # won’t know about Bbing until the obj ends)
LD R2.w, objlD itszw:

SHL R2.w, R2.w, 18 # objID now prepped for OR free(R3.w) # It’sthe bottom half so R3.y points to the struct
OR R2.x, R2.w, R2.x # R2.x <- key MVI R3.w, 0 # NULL* means free

SHR R2y,R2.x, 16 LL:

XOR R2.z, R2y,R2.x ST R3, HashBase #(R2.w) # hash entry now updated
SHR R2.w, R2.z, 8 IMP Leulling

XOR R2.z, R2.z, R2.w # The 4 bytes are now 1 waitmore:

ANDI R2.z, R2.z, 255 # R2.z hash ORI SR, SR, 00000006 # indicate Phase 4

SHL R2.w, R2.z,4 # because hash SR(11-4) IMP

ANDI SR, SR, FFFFFOOF # wipe the hash .LcullingPh1:

OR SR, SR, R2.w # update hash in SR MVI R3.wwww, 0

ANDI R2.w, R2.z, 127 # R2.w hash addres malloc(4*32bits, R3.y)

ANDI R2.z, R2.7, 128 # R2.7 use top or bot IMP

LD R3, HashBase #(R2.w) # read hash entry LeullingPh2:

BNE R2.z, RO.X, L # These 2 lines put the MVI R3.wwww, 1

MV R3.xy, R3.zw # correct half into R3.xy IMP

L: .LcullingPh3:

BEQ R3.y, RO.x, Ph1# NULL* means entry free MVI R3.wwww, 2

Figure 3.3 The pseudo code to give each object an individual identification. This code is
used the instruction set of the collaborated project.
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MAXF
CMOV
MINF
CMOV
ADD
MAXF
CMOV
MINF
CMOV
ADD
MAXF
CMOV
MINF
CMOV
ADD
MAXF
CMOV
MINF
CMOV
BNES
MVR

BNES
MVR

BNES
MVR

BNES
MVR

BNES
MVR

BNES
MVR

R50.1111, R22.xyzw, R21.xyzw, <4>
R58.7777, R3.xxxx, <4>

R49.1111, R22.xyzw, R21.xyzw, <4>
R57.2777, R3.xxxx, <4>

R3.1000, R3.xxxx, R3.yyyy, <4>
R50.1111, R21.xyzw, R22.xyzw, <4>
R58.7777, R3.xxxx, <4>

R49.1111, R21.xyzw, R22.xyzw, <4>
R57.2777, R3.xxxx, <4>

R3.1000, R3.xxxx, R3.yyyy, <4>
R50.1111, R50.xyzw, R23.xyzw, <4>
R58.7777, R3.Xxxxx, <4>

R49.1111, R49.xyzw, R23.xyzw, <4>
R57.2777, R3.xxxx, <4>

R3.1000, R3.xxxx, R3.yyyy, <4>
R4.1111, R4.xyzw, R50.xyzw, <4>
R7.7777, R58.xyzw, <4>

R5.1111, R5.xyzw, R49.xyzw, <4>
R8.?7?7?7, R57.xyzw, <4>

R21.zz7z, R5.zz7z, .Lv21dontupdXYofminz, <4

R6.1100, R21.xyxy, <4>

.Lv21dontupdXYofminz:
R22.zz7z, R5.zz2z, .Lv22dontupdXYofminz, <4>

R6.1100, R22.xyxy, <4

.Lv22dontupdXYofminz:
R23.zz7z, R5.z77z, .Lv23dontupdXYofminz, <4

R6.1100, R23.xyxy, <4>

.Lv23dontupdXYofminz:
R21.zz7z, R4.zzzz, .Lv21dontupdXYofmaxz, <4>

R6.0011, R21.xyxy, <4>

.Lv21dontupdXYofminz:
R22.z77z, R4.zz77z, .Lv22dontupdXYofmaxz, <4>

R6.0011, R22.xyxy, <4

.Lv22dontupdXYofminz:
R23.z7zz, R4.7772, .Lv23dontupdXYofmaxz, <4>

R6.0011, R23.xyxy, <4>

.Lv23dontupdXYofminz:

Figure 3.4 In this pseudo code, we have several assumptions: (1) the positions of three
vertices of a triangle are put into register 21, 22 and 23. (2) The x component of register 3
holds the index counter and it is initialized only at the beginning of an object. (3) The
register 49 and 50 hold the temporary minimum and maximum values while the register 5
and 4 hold the final minimum and maximum values. (4) The register 57 and 58 hold the
temporary minimum and maximum indices while the register 8 and 7 hold the final
minimum and maximum indices. (5) The x and y components of register 6 hold the x and y
values of minimum z while the z and w components of register 6 hold the x and y values of

maximum z.
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ANDI R5.w, SR.%, 6 // R5.w = (ph-1)<<1
MVIR5.z, 6
BEQ R5.z, R5.w, Done//Ph 4, nothing to do
SHR R2.z, SR, 4 ;// R2.z(7-0) « hash
ANDI R2.w, R2.z, 127
ANDI R2.z, R2.z, 128
LD R3, HashBase#(R2.w)//R3«hashEntry pair
BEQ R5.w, RO.x, Phl
MV R5.x, R3.y
BNE R2.z, RO.x, structAddressObtained
MV R5.x, R3.w
structAddressQObtained:
LD R4 (R5.x) // Ré«billboard struct
ANDI SHR R5.w, R5.w, 1
BNE R5.w, R1.x, Ph2
Ph3://phases 4,1,& 2 all branched away, so its 3
ANDI R2.x, SR.x, 8 // R2.x«<"next state”, as
/l decided by the per-triangle DFA. A “0" for the “next
/! state” does not mean “00” (which might imply phase
/1 1 for the next state.) Instead, next state is just 1 bit.
I/ So a“0" means only failure. And failure means that
i/ the next state will be either state 1 or state 4,
/! depending on stuff.
BEQ R2.x, RO.x, Fail
ADDI R4.x, R4.x, 20000000 (2"29) //sctr++
ANDI R5.w, R4.x, EO000000// overflow?
BNE R5.w, RO.x, StoreAndDone // not sat
ORI R4.x, R4.x, EO000000/ /correct for overflow
JMP StoreAndDone
Fail:
ADDI R5.w, R4.x, 20000000 //(2"29)optional
ANDI R5.w, R5.w, EO000000// Saturate?
BNE R5.w, R0O.x, PhX4 // Transition from 3 to 4
Ph31: // Transition from phase 3 to phase 1
free(R5.y) //Billboard rejected, so struct dead
BNE R2.z, RO.x, itszw
MVI R3.y, 0 // NULL* means free
JMP LL
itszw:
MVI R3.w, O // NULL* means free
LL:ST R3, HashBase(R2.w)//update hash entry
I (but leaving the hash for the other BB alone)
JMP Done
PhX4:
free(RS.y) //Billboard rejected, so struct dead

LD R4.x, timestamp // upper 7 bits dontcare
ORI R4.X, R4.x, 18000000/ (228+2"27)=ph 4

MOVIR4.y, 0 // indicates a 0-size BB
MVIR4.w, 127 [/ setctr
R5.x = malloc(RO.x) // create 4-word stub

MakeHashEntryStoreR3R4quit:
BNE R2.z, RO.x, L
MV R3.z, R2.x // save key (sometimes wasteful)
MVI R3.w, R5.x // save ptr to stub struct
JMP StoreR3R4thenDone
L: MV R3.x, R2.x // save key
MVI R3.y, R5.x // save ptr to stub struct
Store R3R4thenDone:
ST R3, HashBase#(R2.w) // save ptr to struct
StoreAndDone:
ST R4, (R5.x) // update the struct top
Done: ..

Ph2: // 1 can only have come from Ph 1

ANDI R2.x, SR.x, 8; // “next state”

BEQ R2.x, RO.x, PhX4 // fail?

ANDI R4.x, R4.x, 07FFFFFF //Ph2=01->
Ph3=10

ORI R4.x, R4.x, 10000000 // sctr=0, ph=3

JMP StoreAndDone
Phi:

ANDI R2.x, SR.x, 8; /! “next state”

BEQ R2.x, RO.x, PhX4
Ph12:

ORI R4.x, R4.x, 07FFFFFF

ANDI R4.x, R4.x, 08000000 (2/28) //Ph2

SUB R10.x, X.x, x.X

SUB R10.y, Y.y, vy

ADDI R10.xy, R10.xy, 2// R10.xy<«BBdims

SHLR10.z, R10w, 16

ADD R4.y, R10.x, R10.z

MUL R10.w, R10.x, R10.y //dims pack in struct

R4.zw = malloc(R10.w) // create BB space

MV Xy, Yy /I Xxy < XY

MV X.z, X.X [/ Xxyz <« XY¥x

MV X.w, vy /1 Xxyzw « XYxy

SUB R5.x, R4.z, 7 // malloc makes extra 7

MOVI R6.xyzw, -1 // Initialize all the

MOVI Z.w, -1 // mins and maxes

MOVI z.w, -1 // to empty

ST Z, 1(R5.x) // then update them

ST z, 2(R5.x) // in the struct

ST X, 3(R5.x)

ST R6, 4(R5.x)

JMP MakeHashEntryStoreR3R4quit;

Figure 3.5 The post process at the end of the rom code for an object.
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3.1.2 Phase 2 — the creation phase

This is the second phase of the four called creation phase. The existing method has
the similar function of this phase, because we must create the impostor for an object before
we can use it. But, in our method, we do not create the impostor except the object passes
the impostor error testing. The reason is because the memory space is so limited in
embedded system, we must use it in an efficient way. That is why we test before to avoid
creating the impostor for those objects have a strong probability to fail the test on next
phase which is usage phase.

In this phase, we have to do 4 actions include (1) identifying the object (2) testing
the impostor error (3) creating the impostor and bit-vector probably (4) updating the
information of the object and transiting to the next phase. The action 1 of this phase and
action 1 of phase 1 are the same.

In this method, we propose three kinds of impostor error tests include pixelation,
rotation and delta. Before testing the errors, we make use of the indices of the extreme
values to guesstimate the extreme values of this phase. The advantages of this are it allows
us to create the impostor that never been used. And it reduces the whole actions that been
used to gather the extreme values. The drawback is the guess could be wrong when the
extreme points are different between two frames. But, it is acceptable, because the changes
between two frames are slight enough to make this guess. To do this, we need the API to
send us the points who hold the indices. In phase 1, we stored the indices in a specific
location of memory so that the API can reference those indices and send us those points
before starting to send the vertices of the object. After getting those points, we are going

to describe all those tests.
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First of all, the pixelation test, this error occurs when the player gets too closer to
the object. We must avoid this, otherwise the player will complain the quality of the scene.
To achieve this test, we wrote a pseudo code. The testing is simple, it just subtract the
current width from the width from phase 1. If the difference is bigger or smaller than the
threshold, then it fails the test. We suggest a conservative threshold 3. This number is
decided after comparing lots of results of experiments. But, this is just our suggestions, it
can be changed by someone who is willing to implement this method into hardware.

Second of all, the rotation test, imagining a ball with a side black and the other side
white. When the ball rotates, the pixels on the ball are messed up by the rotation. Since we
hold the x, y and z values of minimum and maximum z form last frame and we guesstimate
those values by utilizing the indices for current phase, we can compute the angle between
those two vectors. Figure 3.6 shows the idea. First, subtracting the maximum z from
minimum z to get the two vectors. Second, translating one of the vector to let the two
vectors have the same origin. Third, computing the length of each side of a triangle. Fourth,
using cosine theorem to get the angle. In this method, we suggest a threshold 1. That means
if the angle is bigger than the threshold, then it fails the test. Of course, this number is

decided by our experiment, and can be changed by the developer.

31



SUB Roffset, Rmax22, Rmale
SUB RnewPoint, RminZZ, Rof'fset
SUB RB—A, RminZl, Rmale
sUB RnewPoint-A, R
SUB RnewPoint—B, RnewPoint,
MUL Rtmpl, RB—A, RB—A
MUL R R
MUL Rtmp3, RnewPoint—B, RnewPoint—B
ADD Rtmpl.lDOO, R Rtmpl.ww
ADD Rtmpl.lDOO, Rtmpl.xxxx, Rtmpl.zzzz
ADD RtmpZ.lDOO, R tmp2.yyyy

ADD RtmpZ.lDOO, R tmp2.zzzz
ADD Rtmp3.1000, R

ADD RtmpS.lDOO, R

ADD I:{tm p3.1000, RtmpB.xxxx,

SUB Rcz—az.l()OD, Rtmp3.xx>o<, Rtmpl.xxxx
SuUB Rcz—az—bz.IOOO, SUBR_2_2 R

JO0K., | Emp 200
RSQ R1,ra, Rtmpl.x
RSQ Rl,fb, Rtmp2.x
RSQ Ry/ap, Raya, Rupp
RSQR,ps Re2.a2.52 Ryjap

R
R

newPoint, ""maxZ1

minZ1

R

tmp2, "MnewPoint-A, T*‘newPoint-A

tmpl.xxxx,

tmp2.xxxx,
tmp2.0o00
tmp3.acoog TMtmp3lyyyy

tmp3.xxx, 'tmp3.zz72

O 0 X0 X0 0

tmp3.zzzz

Figure 3.6 The pseudo code to detect the rotation error.

Third of all, the delta test. Imagining that a person is looking at the nib of a pen.
Once the pen is rotating a little, the person observe the huge change. But, if the person goes
to the side of the pen and the pen rotates the same way, the person may not notice that.
Rotation test can caught this error out with a very small threshold, but taking a too small
threshold eliminates the lots of opportunities of using impostors. So, this test allows us to

catch the first situation that be mentioned earlier. Figure 3.7 shows the idea.
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SUBR

SUB RxZ—xS, Rlast_max){.xxxx, Rlast_minz.xxxx
SBGTVF Ryg1. Ryp.xs, Sidel

MUL Rpyecs, R R

x5-x1, RIast_minZ.xxxx, Rlast_min}{.xxxx

®2-XD.XXXX, | ‘CUr_minZ.zzzz

DIV RDx'cS[zS, RDx'cS.xxxx, Rlast_minz.zzzz
sidel:

SUB Ra5—a1, Rcur_minZ.xxxx,
SUB Re.x—[aS—al], R R

AX, XXX,
ABS RAx—(aS—al]

R

cur_minX.xxxx

aS-al.xxxx

Figure 3.7 The pseudo code to detect the delta error.

If the object passed all the three tests, we are going to create an impostor for the
object. First, because we have the width and height of the impostor, we can create a fit size
of memory space for the impostor. As we mentioned before, the memory space is so limited
in embedded system. It is important to minimize the wasteful spaces. The software
impostor technique cannot achieve this, since it does not have the size information. Second,
whenever a pixel has been generated, it then goes to frame buffer. In our method, the pixel
is not only sent to frame buffer but also sent to the memory space reserved for the impostor.
The advantage to create impostor inside the hardware is there is only one rendering for an
object and send the pixel to two target memory spaces. To create the impostor inside the
software, the game developers have to render the same object twice. One of the rendering
target is frame buffer and the other is frame buffer object. Though the impostors are re-
created only when the object fails the tests, it is still an overhead to pay.

In order to save memory spaces, we create a bit-vector for the impostor. Each bit

on the bit-vector corresponds to a pixel on the impostor. And the bits are initialized to 0. If
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a pixel was touched, then the corresponding bit is set to 1. Later, in the phase 3, if the bit
says 0, then the transparent values of the pixel on the impostor is set to 0. That means pixels
beyond the object are transparent.

After all above actions, the remainder works are updating the information and
transiting to next phase. Since the extreme values could change, we need to update the
values stored in the memory. We are now in phase 2, and we are going to go to either phase
3 or phase 4. If the object passed all impostor tests, then we go to phase 3, otherwise we
go to phase 4. If we are go to phase 4, then we initialize the counter and done, otherwise,
we should subtract minimum x from maximum X to get the width of the object, subtract
minimum y from maximum y to get the height of the object and store the width, height and

phase to the memory.

3.1.3 Phase 3 — the usage phase

This is the third phase of the four called usage phase. In the last phase, we created
an impostor for an object. Now, we are trying to use it to reduce the complex computations
of the original rendering. Here are actions to achieve this phase include (1) identifying the
object, (2) test the impostor errors, (3) using impostor or drawing object, and (4) updating
information of the object and transiting to next phase.

The first two actions are as same as the last phase. Recording the API sent two
triangles for us to perform the impostor error tests and assuming the object passes the tests.
Before going the action 3, we must stop the rendering process of the vertex shader, because
we are going to draw the impostor instead of the object. There are ways to achieve this and

our method is writing a special bit to 1 in the memory when we decide to use the impostor.

34



Before dealing with the next triangle, the vertex shader should check this bit. Now, we are
in action 3 and we are going to use the impostor. Recording that we discard the first two
triangles which are the two test purpose triangles, because the two triangles cannot be
displayed on the screen. But, in this phase, once we figure out to use the impostor, we
utilize these two triangles to be the quad or two triangles. To utilize these two triangles,
first, we need to put them to the right place. The coordinates of the left-top, left-bottom,
right top and right bottom of the quad are (minimum X, minimum y, minimum z),
(minimum X, maximum y, minimum z), (maximum X, minimum y, minimum z),
(maximum x, maximum y, minimum z). We interpolate the original coordinate of the two
triangles to the above vales. Second, setting the texture coordinates up. Third, setting the
impostor as a texture. Then, the hardware follows the normal processes to render the
impostor instead of the object. After all above actions, we will see the illusion of the object
to be displayed on the screen.

In the action 4, we can look at the state machine and find that there are three ways
to go from phase 3. If the object failed the tests, then we check the saturated counter of the
object. If the saturated counter is not saturated, then the object goes to phase 4, otherwise
it goes to phase 1. The saturated counter holds the number of times that the impostor has
been used. Once an object fails the tests and the saturated counter is not saturated, we think
that this object is not a good candidate and we stop trying to use impostor to replace it. But,
if the saturated counter does saturate, then we consider to give it chance to keep trying. If
the object passes the test, then, of course, it is a good choice to apply this method and we
keep trying to use impostor. If the object passed the test, then we add one to the saturated

counter, stay in phase 3 and updating the extreme values. If the object failed the tests, then
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we reset the saturated counter to 0. And if the saturated counter is not saturated, then we

need to initialize the counter and go to phase 4.

3.1.4 Phase 4 — the idle phase

This is the last phase of the four called idle phase. Because, objects who come to
this phase are not good candidates to apply the impostor method, we stop trying to use the
impostor on these objects. So, in this phase, we render the object in the original way and
increase the counter. The object goes to phase 1 to re-try to use the impostor when the
counter is bigger than a threshold. This threshold can be decided by the developer.

Otherwise, the object keeps staying in phase 4.
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4. Experiment Setup

4.1 The original number of instructions for GPUs to

render the benchmark

In the model, we count the number of instructions should be executed by GPUs
with and without applying our method. There are three major parts of processes in the
original system: first of all, vertex shader, the job of the vertex shader is to place the object
on the right screen position. To achieve this, all triangles of the objects need to pass though
vertex shader triangle by triangle, and each coordinate of the three vertices of a triangle is
transformed by vertex shader. Whereas vertex shader have to transform all the vertices, the
total number of instructions that vertex shader have to deal with an object is:

instrOfVS(i) = #vs_instructions(i) * #vertices(i)

The above equation has two #s: number of instructions and number of vertices. We
have all the objects in the GLBenchmark to count the number of objects and the number
of vertices of each object. We also have all the shader language source code in the
GLBenchmark and the compiler which can compile these code into assembly code. And,
we compile all those shader language code and count the number of instructions that vertex
shader has to deal with.

Second of all, the rom code, rom code is in charge of many things such as back face
culling, clipping, rasterizing, early z testing, early alpha testing and varying processing.

For back face culling, the number of instructions is:
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instrOfBFC(i) = 37 = #triangles(i)

The rom code of the collaborated project takes 37 instructions to perform the back
face culling. Each triangle of an object have to pass through these 37 instructions. And the
number of triangles is the number of the vertices divide by 3.

For clipping, the number of instructions is:
instrOfClip(i, f) = 62 * #unCullTriangles(i, f)

The rom code of the collaborated project takes 62 instructions to perform the
clipping. Because the culling has gotten rid of parts of the triangles, only the triangles that
pass the culling test on the given frame would pass through these 62 instructions.

For rasterizing, the number of instructions is:
instrOfRR(j, f) = 84 * #pixels(i, f)

The rom code of the collaborated project takes 84 instructions to perform the
rasterizing. Rasterizer is responsible for generating the pixels so the number of instructions
to perform the rasterizing have to multiple by the number of pixels of an object on a given
frame. To get the number of pixels, we only draw the object we want to count triangle by
triangle and count the number of pixels of each triangle.

For early z testing, the number of instructions is:
instrOfZT(i, f) = 2 * #pixels(i, f)

Because the rom code of the collaborated project does not perform the early z
testing, we guesstimate the number of instructions to perform it by ourselves. We guess 2
instructions to achieve this, because it only loads the last z value and compares it with the
new z value. Pixels that have been generated by the rasterizer have to pass through this test.
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For early alpha testing, the number of instructions is:
instrOfAT(j, f) = 2 * #unOccludedPixels(i, f)

The rom code of the collaborated project does not perform the alpha testing either,
again, we guesstimate the number of instructions to perform it by ourselves. We guess 2
instructions to achieve this, because it only loads the last alpha value and compares it with
the new alpha value. Pixels that have been generated by the rasterizer but not been occluded
have to pass through this test. To acquire the number of un-occluded pixels, we also draw
the object triangle by triangle. But, this time, we also draw the other objects to allow them
to occlude the object we want to count.

For varying processing, the number of instructions is:

TlofVP(i) = 16 * #verying (i)

The rom code of the collaborated project takes 16 instructions to process the
varying, and this number need to be multiplied by the number of varying.

Third of all, fragment shader, the job of fragment shader is to decide the color of a
pixel. To achieve this, all pixels that pass the early z test and the early alpha test of an
objects (we call them shaded pixels, because they all need to pass through fragment shader.)
need to pass though fragment shader pixel by pixel. So, the total instructions to perform is:

instrOfFS(i, f) = #fs_instructions(i) * #shadedPixels(i, f)

We can add all the numbers up to get the number of instructions that GPUs take to

render an object on a given frame. That is:

instrOfObj(i, f) = instrOfVS(i) + instrOfBFC(i) + instrOfClip(i, f) +
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instrOfRR(j, f) + instrOfZT(i, f) + instrOfAT(j, f) +
TIofVP(i) + instrOfFS(, f)
To calculate the total number of instructions that GPUs need to execute, we need

to apply the above equation to all the objects and all the frames. That is:

i=#obj f=#frame

z Z instrOfObj(i, f)
i=1 f=1

4.2 The number of instructions for GPUs to render the

benchmark after applying our method

In our method, the state machine (See figure 3.1) has several variations such as no
idle stage, idle 1 cycle, idle 2 cycle, and so on. Moreover, the impostor error are different,
too. Though they are different forms, they are very similar. We are not going to create
models for each case, it would be redundant. Instead, we will describe the state machine
which has idle state and calculate the number of instructions that each state takes. For other
cases, we can simply get rid of the idle state or take away some of the tests. Here comes
the number of instructions that each state takes:

In the first stage, the analysis phase, the vertex shader do the same things so no
changes on the number of instructions. Then the object goes into rom code, we first need
to take 33 instructions to identify an object and we only pay this cost at the beginning of
an object. In addition, we take instructions to find the extreme values and their indices.

That is:
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instrOfFEV(i, f) = 15 * #unBackFaceAndunClippedTriangles(i, f)

We add 34 instructions into the rom code of the collaborated project to find the
extreme values and their indices. The 15 needs to be multiplied by number of triangles that
are not back face and not been clipped, in other words, these triangles are on the screen and
face to viewers. At the end of an object in the rom code, if the object fails one of the tests,
then we do not need to store the information of the object since we are not going to use
these values. But we do need to transit to the next phase. In this case, we add 2 instructions
to transit the state. On the other hand, we take 8 instructions to store the information of the
object into memory and transit the phase. For fragment shader, there is no changes on the
number of instructions.

We can add all the cost up to get the total cost of the analysis phase. That is:

instrOfPh1(i, f) = instrOfVS(i) + 33 + instrOfBFC(i) + instrOfClip(i, f) +

instrOfFEV(i, f) + instrOfRR(j, f) + instrOfZT(j, f) +

TIofVP(i) + instrOfAT(i, f) + 2078 + instrOfFS(j, f)

In the second stage, the creation phase, the vertex shader has to transform 6 more

vertices which hold the extreme indices. It takes:

instrOfVSExtra(i) = 6 * #vs_instructions(i)

Then in the rom code, it takes 36 instructions to identify the object. And we spend
56 instructions to do the pixelation, rotation and delta test. If the object passes all the tests,
then we are going to create an impostor for this object. Because the cost of writing a

generated pixel to a texture is hidden by the writing a generated pixel to the frame buffer,
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we do not need to count the cost of this. At last of the rom code, it takes 8 instructions to
store the information and transit the phase. The fragment shader has nothing different to
do, so the number of instructions is not changed. The number of instructions of this way is:

instrOfPh2TP(i, f) = instrOfVSExtra(i) + instrOfVS(i) + 36 + instrOfBFC(i) +

instrOfClip(i, f) + instrOfRR(, f) +
instrOfZT(j, f) + instrOfAT(i,f) + 8 + TIofVP(i) +

instrOfFS(i, f)

On the other hand, if one of the test was failed then we draw the object originally.
The cost is same as above equation except it does not need to store the information. So, the
cost is:

instrOfPh2TF(i, f) = instrOfPh2TP(i,f) — 6

In the third state, the usage phase, the vertex also has to transform 6 extra vertices.
And we also take 56 instructions to detect the impostor errors. If the object passes all the
tests, then we are going to use the impostor. In this case, we stop the process of the vertex
shader, and we have to count the number of instructions that has been executed by the
vertex shader. We assume that vertex shader and rom code have the same speed and there
are more than 50 instructions in average in vertex shader code. So, we just assume during
the process of the impostor error tests, there are two vertices has been transformed by vertex
shader. Therefore, the number of instructions that vertex shader needs to deal with is:

instrOfVSWithImp (i) = #vs_instructions(i) * 2

For rom code, it takes 36 instructions to identify the object. Since we are going to
apply the impostor on a quad or two triangles, there is no need to do the back face culling.

But we have to take 6 instructions to interpolate the position values of the first two triangles
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from extreme values to the position of the impostor. Moreover, instead of the original
number of varying, we only need to process the position and texture varying. So, the
number of instructions to process the varying is:

TIofVPWithImp(i) = 16 * 2

At last of the rom code, we take 8 instructions to store the information and transit
the phase. For fragment shader, because we use the impostor to replace the object, we take
10 instructions for each pixels to apply the impostor on a quad. In addition, instead of the
number of the shaded pixels of an object, we deal with the number of shaded instructions
of the impostor. So, the number of instructions of fragment shader is:

instrOfFSWithImp(i, f) = 10 * #shadedPixelsOfImp(i, f)

So the total number of instructions that have to deal with in this case is:

instrOfPh3TP(i, f) = instrOfVSExtra(i) + instrOfVSWithImp(i) + 36

instrOfClip(i, f) + instrOfRR(j, f) +
instrOfZT(i, f) + instrOfAT(i, f) + 8 + 32+

instrOfFSWithImp(j, f)

On the other hand, if one of the test was failed then we draw the object originally.

The cost is:

instrOfPh3TF(i, f) = instrOfVSExtra(i) + instrOfVS(i) + 36 + instrOfBFC(i) +

instrOfClip(i, f) + instrOfRR(j, f) +
instrOfZT(j, f) + instrOfAT(i,f) + 2 + TIofVP(i) +

instrOfFS(j, f)

43



In the fourth state, the idle phase, we almost do the same thing with the original
rendering except we have to take 36 instructions to identify the object, take 1 instruction
to increase the counter, take 1 instruction to store the counter back to the memory and take
2 instructions to transit the phase when the counter exceed a threshold. So, the number of

instructions of phase 4 is:

instrOfPh4(i, f) = instrOfVS(i) + 36 + instrOfBFC(i) +
instrOfClip(i, f) + instrOfRR(j, f) +
instrOfZT(j, f) + instrOfAT(i, f) + TIofVP(i) +

1+ 1+ 20r0 + instrOfFS(i, )
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5. Results

5.1 Performance comparison

Throughout this paper, we want to define a thing called No Noticeable Error
threshold (NNEth), and by inspection, we determine the NNEth for most objects is 6 and
3, but for taller objects, it is actually 4 and 0.1. The 6 and 4 are for pixelation test. That
means if the width of an object changes too fast, then it fails the test. And the 3 and 0.1 are

for rotation test, it means if an object rotates too much, then it fails the test.

In figure 5.1, there are three lines, the red line is no compression. That means we
can avoid the overhead of compression, but that also means fewer objects get billboarding.
The purple line and blue lines need to be read together. The purple line presents that we do
perform the compression, but we ignore the overhead, whereas the blue line adds the
compression overhead into the measurement. So, the blue line is always on the above. And

the more objects get billboarding, the more compression overhead we need to pay.

Figure 5.1 shows that when the memory space is very restricted, the one that do not
perform compression takes more instructions than the one do perform compression. The
reason is that because the memory space is so restricted, only few objects get billboarding.
Even though we do not need to pay the compression overhead, we still need to pay more
instructions to render the objects. But, when more memory spaces are allowed, the lines
get cross each other. Because now though we do not perform compression, there are
enough memory to create the IBTs and since we do not perform the compression, we do

not need to pay the compression overhead.
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Figure 5.1 This figure shows that in the case of given different
allowed memory size, how many instructions are reduced.

Figure 5.2 shows the improvements of our method. For all objects, by given more
than 1.5M memory space, we get more than 10% improvement totally. That means we can
reduce 10% number of instructions from the whole rendering process. Moreover, if we
only measurement the improvement of those chosen objects, we get more than 25%
improvement. From the result, it shows the more objects get involved, the more
improvement we can get. Some reasons prevents objects getting billboarding. For example,
an object is moving from the dark room to bright room, then the light effect of two frames
on the object are changed. That prevents the object getting billboarding, even though the

object did not fail the impostor errors.
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Figure 5.2

Figure 5.3 shows how does the idle cycles effect the results. When an objects often
fails the test, it may not be a good candidate to keep trying to get billboarding. So, we stop
trying for a period of time. We think that once an object failed the impostor error tests, it
might fail the tests for a period of time, so the idle cycles might improve the performance.
The result does proof this surmise, when the memory space is really constraint. But, the
surmise goes wrong when more memory space are given. The reason is the idle prevent
trying to create IBTs for those objects cannot use IBTs. It allows other objects to get IBTSs.
But, when the memory space gets bigger, the idle stage reduces the times of using IBTs. It
leads the more idles, the less improvements. In this thesis, the users can modify this value
themselves to get the maximum improvement.

The values of the impostor error thresholds are proposed by this paper could be
modified. We try many values for these three thresholds, and we find that these values give

us an unnoticeable scene. If we enlarge the values, we get better performance but poorer
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quality of the scene. On the other hand, if we shrink the values, we get almost the original

quality of the original scene but very few improvements.

For the case of chosen objects with 0.5M memory space and no For the case of chosen objects with 1.5M memory space and no
compression. The per of reducing of instructions in the compression. The percentage of reducing of instructions in the
different allowed errors. different allowed errors.
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Figure 5.3

Figure 5.4 shows how many memory spaces we need at each frame. The memory
space is really restricted in embedded GPUs. So, we create a compression method to reduce
the size of IBTs. Although it takes instructions to perform the compression, it is still worth
to compress. With the compression, we can have more IBTs in the memory. It increase the

opportunities for objects to get billboarding.
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With no noticeable error threshold.
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Figure 5.4
Figure 5.5 shows that the more objects are in phase3 the more improvement we
can get. Because when an object is in phase3, that means it keeps using the IBTs. And the

cost of rendering IBTSs is cheaper than the cost of rendering objects. So, if the more

objects stay in phase3, the more cost of rendering gets reduced.
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5.2 GLBenchmark

Figure 5.6

Figure 5.7
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Figure 5.6 shows the result of using the impostor method to replace the original
object. The green boxes in Figure 5.6 are the impostors of objects. And figure 5.7 shows
the original scene. It is hard to distinguish the differences between these two pictures. That

is why game developers use the impostor method to reduce the complex 3D rendering.

If we over re-use the impostor, we would see the poor quality scenes like figure 5.8.
Comparing figure 5.8 with the original picture figure 5.9. It is so easy to observe the

differences. Because of the too large threshold, the impostors is over re-used.

The camera is moving in and rotating around the room. It causes two impostor
errors, pixelation and rotation errors. There are two snakes in the figure 5.9. We can see
the pixelation error on the left one and the rotation error on the right one. Since we do not
want to let the player notice the differences, we propose three impostor errors and the

methods to detect the errors.
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Figure 5.8

Figure 5.9
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6. Conclusion

In this paper, we try to let game developers acquire all the benefits of the impostor
mechanism and prevent the complicated implementation details. After the whole paper, we
think it is possible to be done and it is worth to do, because the game developers only need
to turn on the technique for objects and get the benefits. Though we do not really implement
this method on the hardware, we do simulate the method in the software and we reduce

more than 10% number of instructions.

In the future, we think that it is possible to implement this method on the hardware
to get the whole benefits from software based impostor mechanism but do not need to

worry about the complex details.
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