

國立中山大學資訊工程學系

碩士論文

Department of Computer Science and Engineering

National Sun Yat-sen University

Master Thesis

自動產生與使用人形看板來加速物件繪製之方法

A Method for Automatically Creating and Using billboards to

Increase the Speed of Object Rendering

研究生：林君勵

 Chin-Li Lin

指導教授：Dr. Steve.W.Haga

中華民國 103年 12月

 December 2014

i

摘要

雖然圖形處理器的繪圖速度已有長足的進步，在及時繪圖與互動繪圖

的應用上還是有不足的地方，對於嵌入式的繪圖處理器而言，更是一大挑戰。

在繪圖速度的限制下，程式設計師們無不想方設法地減少繪圖時的運算量，

impostor 的使用就是一個例子，impostor 是一個軟體的機制，物件首先被

繪入貼圖中，往後便利用此貼圖來造成繪製原物件的效果，impostor的確大

量地減少了計算量。

在這篇論文中，我們看到 impostor的顯著效果，也看到了其背後繁複

的實作細節，於是我們提出一套硬體的機制，目地是要讓遊戲設計者得到

impostor帶來的效能提升，卻不用實作繁複的程式細節，另外，由於我們在

硬體上實作，我們可以得到在軟體上無從得知的有用資訊，這使得我們在記

憶體的使用上更有效率，也使得此方法可以減少更多的計算量，最後，本篇

論文可使整體指令的計算量減少 10%以上。

關鍵字: 繪圖晶片，硬體加速，impostor，billboard。

ii

Abstract

Although the rendering speed of modern GPUs is dramatically improved, it is still not fast

enough for some applications such as real time rendering and 3D interactive rendering. Many game

developers figure out many methods to reduce the computations of GPUs. One of them is impostor.

The impostor method first draw the object into a texture and then apply the texture on a quad or

two triangles to generate the illusion of the object. Since the two triangles replace the thousands of

triangles, we can reduce a lot of computations.

In this paper, we try to acquire all the benefits of impostor but hide the complex

implementation details. Therefore, we propose a hardware mechanism to implement the impostor

inside the hardware. With this, game developers do not need to worry about the implementations,

because the hardware apply the method automatically. Moreover, since we implement the impostor

in the hardware level, we can get some useful data which cannot see in the software. The data help

us to apply the impostor technique and use the memory space more efficiently. After all, we can

reduce more than 10% number of instructions of the whole GPU system.

Keywords: GPU, hardware, impostor, billboard.

iii

Contents

1. Introduction ... 1

2. Previous Work ... 7

2.1 Billboarding .. 7

2.2 Impostors ... 8

2.2.1 What is impostor .. 8

2.2.2 The motivation of using impostors ... 9

2.2.3 The software implementations of impostors ... 9

2.2.3.1 Creating an impostor for an object ... 10

2.2.3.2 Applying an impostor on two triangles ... 12

2.3 Existing software approaches to using impostors ... 15

2.3.1 Dynamically Generated Impostors ... 15

2.3.2 The use of Impostors in Interactive 3D Graphics System ... 18

2.3.3 A GPU hardware-based method for automatic occlusion .. 19

2.4 The issues of textures .. 20

2.4.1 The limitation of the memory space in the embedded system 20

2.4.2 The 565 texture format .. 21

2.4.3 Run-length encoding .. 21

3. Methodology ... 22

3.1 The state machine and ROM code .. 24

3.1.1 Phase 1 – the analysis phase .. 25

3.1.2 Phase 2 – the creation phase ... 30

3.1.3 Phase 3 – the usage phase ... 34

3.1.4 Phase 4 – the idle phase ... 36

4. Experiment Setup .. 37

4.1 The original number of instructions for GPUs to render the benchmark 37

4.2 The number of instructions for GPUs to render the benchmark .. 40

5. Results ... 45

5.1 Performance comparison .. 45

5.2 GLBenchmark .. 51

6. Conclusion ... 54

7. Reference... 55

iv

Lists of figures

Figure 2.4 Codes to render the object billboard. .. 11

Figure 2.5 Codes to render the impostor on a quad or two triangles. ... 14

Figure 2.6 Pixel and texel viewing angles. (Figure references from [3].) 15

Figure 2.7 Error angle trans due to translation (Figure references from [3].) 16

Figure 2.8 Error angle size due to move-in. (Figure references from [3].) 17

Figure 2.9 The memory size of different types of GPUs. (Figure references from [6].) 20

Figure 2.10 How run-length encoding ... 21

Figure 3.1 This figure shows the state machine .. 23

Figure 3.2 This figure shows the state machine .. 24

Figure 3.3 The pseudo code to give each object ... 27

Figure 3.4 In this pseudo code, we have several .. 28

Figure 3.5 The post process at the end of the rom code for an object... 29

Figure 3.6 The pseudo code to detect the rotation error. .. 32

Figure 3.7 The pseudo code to detect the delta error. ... 33

Figure 5.1 This figure shows that in the case of given. ... 46

Figure 5.2 ... 47

Figure 5.3 ... 48

Figure 5.4 ... 49

Figure 5.5 ... 50

Figure 5.6 ... 51

Figure 5.7 ... 51

Figure 5.8 ... 53

Figure 5.9 ... 53

1

A Method for Automatically

 Creating and Using Impostors to Increase

the Speed of Object Rendering
Author: Chin-Li Lin

Advisor: Dr. Steve.W.Haga

National Sun Yat-Sen University

1. Introduction

Handhold devices are now very widely used, such as smartphone and pad. These

products are small, light, short battery life and lacking for computing power. Most of the

time people run video games on these devices. Since it requires lots of graphic processing

when running a game, many modern handhold devices have graphics processing unit

(GPU). Although modern GPUs improve the performance of rendering scenes dramatically,

it is still not enough for running fancy games, especially on embedded systems. In many

games, in order to make the scenes look fancy, game developers elaborate many delicate

but complicated objects that have enormous number of polygons. Games rely on real time

rendering. That means if it cannot keep a high frame rate (at least 20 frames per second)

rendering, the users will be disturbed by the gaps between two frames and are probably not

willing to play this game anymore. There are also other applications suffer from limited

computing power such as interactive 3D graphics system. Under the premise that the

limited computing power of embedded system and high frame rate requirement, not only

game developers but also researchers propose methods to speed up the scene rendering.

2

In the real world, a life-sized cardboard cut-out of a politicians are commonly seen

in governments. It provides the illusion that the person is there, but the really thing there is

the cardboard cut-out of the person. In the same way, in a game, cardboard cut-out is a

common technique called impostor used to speed up the rendering process. An imposters

is made by an objects is rendered into a texture and of course, the actually object is not

rectangular so that the areas which beyond the outline of the object should be transparent.

We got an impostor now, we then need to apply the impostor on a quad or two triangles.

After that, object may appear to be in the three dimensions, but in fact actually is in the two

dimensional rendering on a quad. There are some situations lead the illusion be ruined,

firstly, when the camera gets too close to the impostor of an object, it causes a pixelation

problem. Secondly, when either the object rotates or the camera changes its orientation, the

quad which the imposter was applied on become thinner and pixels of the imposter are

messed up. Thirdly, when panning the camera, some objects get more and more pixels.

That means it is going to show pixels that we did not hold. Fourthly, when strafing the

camera, the third situation is shown again. Moreover, the player is going to see the side of

the object which the impostor did not hold.

Now, we know how people create illusions. On some game development web sides

[2] [3], we can clearly see the steps we need to follow to generate imposters and apply it

on a quad. Here are steps to follow: (a) to generate imposters, we need to introduce a

technique called frame buffer object (FBO). This technique allows us to set up a new

rendering target which is a texture instead of frame buffer for an object who wants to

generate an imposter. To use FBO, game developers should search the API calls and call

them correctly. (b) To prevent using imposter from previous situations (pixelation, rotation,

3

panning and strafing), game developers and researchers propose some tests to detect those

situations. These tests are described in [3]. (c) To apply imposter texture on a quad or two

triangles, there are a series of API functions to call. In addition, it requires game developers

figure out where to put the imposters and because the imposter has transparent areas, game

developers need to be careful when applying the imposters. (d) To generate and using

imposters on the fly for multiple objects, the game developers must create a data structure

to manage each imposter for each object. (e) To avoid memory waste, game developers

need to allocate and free the memory space carefully.

In actually games, it is common to have objects that sometimes do not change or

change slightly from frame to frame, for example, the game player may walk down the hall

and objects get closer but then he stops walking and objects stop changing. So, there will

be times when the objects are not changing or slightly changing. In addition, the player

may sometimes straight spin (turn his view or turn around). In this case, even though the

objects move, the actual pixels that are drawn may not change much. In other cases, the

objects may change but not very quickly, for instance, if he is walking down the hall slowly,

objects are coming closer but slowly. That is why game developers may acquire a

significant improvement in rendering scenes as long as they follow all above steps and do

them correctly.

It seems game developers have already been familiar with imposter technique, but

there are still some problems and inefficiency of this method. First of all, even though this

method has been used for many years, game developers still need to study a bunch of API

functions for generating and using imposters. Second of all, it is not easy to figure out and

fix the bugs in the series of API function calls, because it usually gives you wired scenes

4

when you do not do it right. Third of all, in the software level, it is impossible to know the

width and height values of the imposter texture so game developers may just guesstimate

a number. To ensure to allocate an enough space for an imposter, game developers cannot

give a tight number. So, there should be some wasteful spaces been created. Last but not

least, in terms of pixelated test, since game developers do not have ability to know the

width of imposters, they need to calculate angles instead of only comparing current width

with last one for detecting the pixelation.

In this thesis, we propose a hardware method to automatically generate imposters,

detect the imposter errors and apply the imposter on a quad or two triangles. We take all

the advantages of the software level method such as generating and using imposters on the

fly, detecting impostor errors to avoid using impostors from those situations, and acquiring

a significant improvement on scene rendering. Moreover, the game developers do not need

to micro manage the impostor technique but take all the benefits from the technique. The

whole details and implementations are hidden by the hardware. That saves game

developers a lot of time to survey the API functions and write and debug their program to

make the technique work. Since we implement the imposter technique in the hardware

level, we can get the useful information that game developers cannot acquire to save some

memory spaces and do more efficient imposter error testing. Besides, the memory spaces

in embedded system are very constrained, so we not only adopt RGB565 image format but

also do a run-length encoding based image compression to shrink the size of the impostor

texture. In addition, the game developers probably could not be doing imposters on the

times that the object we discovered, because we detect for all objects on the scene while

game developers only pick the objects they notice.

5

This thesis proposes several hardware modifications to make the impostors

technique automated and they are based on an existing hardware. The existing hardware is

developed by a collaborative group at our university. The group is dedicated to developing

a fully 3D graphics system for embedded system that includes the API, GPU hardware and

benchmarks. It gives us an entire view of a 3D system and we focus on GPU hardware

especially. In the hardware point of view, to increase the flexibility in rendering an image,

many modern graphics cards have two shaders, vertex shader and pixel shader. The vertex

shader is in charge of putting an object on the right place, while the pixel shader is

responsible for coloring an object. Reasonably, our GPU has two shaders but the stable

version of our GPU is a single core vertex shader and single core pixel shader while modern

GPUs have at most eight cores. The advantage is it is easier for us to explain the

modifications we propose for hardware based on the relatively simple GPU. But it must be

mentioned that this method should not be only worked for this specific hardware, it can

actually apply to any modern GPUs. This method is now not implemented in a real

embedded system GPU, but the collaborative project gives us an opportunity to implement

the method in it in the future.

There are some situations that the impostor should not be used. For example, two

objects interact each other and other special effects. Imaging that when we handshake with

others, the two hands interact each other. Because the impostor is a piece of paper, it only

holds one depth value. Therefore, when objects are overlapping, the scene would be mess

up. To solve this problem, we create an extended API function for game developers to turn

on the impostor mechanism of an object. If game developers notice an object is not a good

candidate to use the impostor, they just do not turn on the technique for an object.

6

To measure the expected benefits we can get from this method, we use real world

benchmark called GLBenchmark. This benchmark is a popular benchmark to test the

performance of the embedded system. There are advantages to choose this benchmark:

firstly, this benchmark has many kinds of camera motions, for instance, directly go straight,

rotate, spin and strafe. It allows us to test whether our impostor testing is operative or not.

Secondly, there are many objects in the scene. It gives us opportunities to see could our

method really catch the period of time to create the impostor textures and using these

impostor textures. Thirdly, because it is a real world benchmark, that makes our method

more robust.

The remainder of this thesis will mention several related works. Since GPUs are

not powerful in early years, many game developers and researchers were trying to figure

out some methods to speed up rendering scenes. Then we will describe the details of our

method such as the how to make the impostor technique automated, how to detect the

impostor errors and how to deal with multiple objects at same time. After that, comes the

rules we follow to measure the expected benefits we could acquire and the result of how

many expected benefits that we could get from this method.

7

2. Previous Work

2.1 Billboarding

The definition of the billboarding technique is describe in [1] as “Orienting a

textured polygon based on the view direction is called billboarding, and the polygon is

called a billboard”. The two common kinds of billboard are screen-aligned billboard and

world-oriented billboard. Figure 2.1 (from [1]) shows the major different of these two

billboards.

There are few ways to generate a billboard such as a picture of an actual object, a

pre-rendered image that was done offline, an artist-drawn object, and so on. And the

billboarding technique allows us to apply a billboards on a quad.

Figure 2.1 A top view of the two billboard alignment techniques. The five billboards face

differently, depending on the method. (Figure references from [1].)

8

2.2 Impostors

2.2.1 What is impostor

The definition of impostor is also described in [1] as “An impostor is a billboard

that is created on the fly by rendering a complex object from the current viewpoint into an

image texture, which is mapped onto the billboard. Figure 2.2 from [1] shows how is an

impostor created. An impostor is actually the image of the object that is sent to the frame

buffer. The two parts in that image are opaque part and transparent part. The pixels been

touched by the object are opaque, otherwise are transparent. Impostors are created at the

run-time and billboarded onto a quad or two triangles to create illusion of the real object.

Recording that figure 2.1 shows two kinds of billboards. The impostor is belong to the

viewport-oriented billboard because the impostor must distort like the object does.

Figure 2.2 At the left, an impostor is created of the object viewed from the side by the

viewing frustum. The view direction is toward the center, c, of the object, and an image is

rendered and used as an impostor texture. This is shown on the right, where the texture is

applied to a quadrilateral. The center of the impostor is equal to the center of the object, and

the normal (emanating from the center) points directly toward the viewpoint. (Figure

references from [1].)

9

2.2.2 The motivation of using impostors

Although the performance of modern GPUs are dramatically increased, it is still a

challenge to keep the frame rate (at least twenty frames per second) because the objects in

the game and the effects of these objects or the environment are much more complex. In

order to speed up the rendering, the game developers do many tricks. The impostor

technique is one of the tricks. In a 3D scene, everything is an approximation of the real

object. Not only because the objects are rendering into a 2D screen, but also the 3D models

are the approximations in their own. An impostor is an approximation of an object. It has

only two triangles (6 vertices) while an object usually has thousands of vertices. So, the

motivation of using the impostor technique is to use two triangles to replace thousands of

triangles to speed up the rendering and still remain the quality of the scene.

2.2.3 The software implementations of impostors

Normally, in 3D rendering, a finished rendering pixel is sent to frame buffer to be

displayed on the screen. In order to use impostor technique, we must create an impostor

for the object. This section shows how game developers create an impostor and then how

to apply the impostor on a quad or two triangles. Moreover, we also mention that how to

apply this technique to multiple objects in last paragraph in the last paragraph.

10

2.2.3.1 Creating an impostor for an object

 Figure 2.3 shows the code that we reference the frame buffer object (FBO) in

openGL tutorial on the Internet [2] and implement it ourselves. Although the tutorial on

the Internet provides the code for game developers, nonetheless, it is not just easily copying

it and pasting it into our code and there are details to take care: firstly, both a new frame

buffer and a new depth buffer need to be created. Of course, we must remember to create

the new frame buffer, because we are trying to use it. But someone might forget to create

the new depth buffer. A black quad would be displayed as the depth buffer was not created.

Secondly, to indicate a texture to be the new frame buffer and the other texture to be the

depth buffer, we have to change the current binding frame buffer and texture and then turn

them back. Making sure to switch correctly, otherwise the scene would be messed up.

Thirdly, the parameters should be given properly.

 Now, we have two textures, one is used as frame buffer and the other is used as

depth buffer. Then we have to draw the object into the texture to get the impostor. Figure

2.4 shows how to draw an object into the texture. After that, we would have the impostor

of an object.

11

Figure 2.3 Codes to create a new rendering target.

Figure 2.4 Codes to render the object into the new rendering target which is the impostor

billboard.

12

2.2.3.2 Applying an impostor on two triangles

Figure 2.5 shows the code that we reference the texturing in openGL tutorial on the

Internet and implement it ourselves. Although the website provides the source code to

apply the impostor on a quad, it is still not easy to do it right. To achieve this, we need to

follow several steps: first, writing shader codes to tell GPUs how to render the impostor.

Fortunately, because the impostor must be transformed like the object and the model view

projection matrix has been set for the object, we just use it for vertex shader. For fragment

shader, it is also easy, since we just try to apply a texture on the quad. Second, we have to

indicate the texture coordinate. If we do not do it right, then we might see a black quad on

the screen. Third, sending the six vertices of the quad to GPUs. If we do not do it correctly,

then we might even not see the quad be displayed on the screen. Fourth, here comes a series

of API functions to compile the shader code and link them to tell GPUs what the current

program it is. If there are bugs in the series of code, then it might crashes the system. So,

making sure to call every functions right. Fifth, because some pixels in the impostor are

transparent, remembering to not update the depth buffer and color buffer as the pixel is

transparent. Otherwise, the transparent pixels would blend with the pixels that has already

been drawn. That is not what we want, because we want to only draw the opaque part of

the texture to the screen.

13

14

Figure 2.5 Codes to render the impostor on a quad or two triangles.

15

2.3 Existing software approaches to using impostors

2.3.1 Dynamically Generated Impostors

This paper [3] describes some situations to re-generate the impostor of an object.

The impostors are expected to be re-used as much as possible. If we over re-use the

impostors to replace the object, then the game player might notice the fakes. And there are

some situations described in [3] can ruin the illusions. They includes (1) when the

resolution of texels (pixels in a texture) are lower than pixels on a screen, (2) when the

camera translates and (3) when the camera gets to closer to impostors. The methods to

detect these situations are also describe in [3].

Figure 2.6 from [3] shows the first situation. The paper describes that if tex > screen,

then the texels in the texture could be distinguished by viewer. That causes the pixelation

problem and it means the impostor need to be regenerated. In addition, the paper also

describes that the distant impostor could still be re-used even though the test is failed. That

is because the viewer may not notice the low resolution when the impostor is far from the

camera.

Figure 2.6 Pixel and texel viewing angles. (Figure references from [3].)

16

Figure 2.7 from [3] shows the second situation. When the camera translates from

V1 to V2, we can see more left side of the object but see less of the right side. Seeing less

causes no problems, but seeing more ruins the illusion. Because the impostor did not hold

the pixels of the left side of the object. To prevent using impostor from this situation, the

author suggested that if trans > screen, then the impostor should be re-generated.

Figure 2.8 from [3] shows the third situation. When the camera gets too closer to

an object, it causes the pixelation problem. To avoid using impostor from this situation, the

author suggested that if size > screen, then the impostor should be re-generated.

Figure 2.7 Error angle trans due to translation (Figure references from [3].)

17

 This paper gives situations that the impostor needs to be re-generated. We take all

the observations of this paper, but we observe an extra situation that needs to be detected

and we also propose different methods to detect the impostor errors. Considering that an

object rotates like the earth, the rotation would mess up the pixels in the object. Since this

situation might not happen in the benchmark that this paper uses, this paper does not need

to consider that. But, in the GLBenchmark, there are times that objects rotate. So, we

propose a method in chapter 3 to detect this situation. Moreover, because we have the

information (extreme values and indices of the object) that is not acquirable in the software

level, we can detect the impostor error by other ways. The methods will be described in

chapter 3 as well.

Figure 2.8 Error angle size due to move-in. (Figure references from [3].)

18

2.3.2 The use of Impostors in Interactive 3D Graphics System

The motivation of this paper is to use impostors to speed up the 3D interactive

rendering. The processes of creating and using impostors are similar to the code shown in

section 2.2.3.1 and 2.2.3.2. This paper references the paper presented in 2.3.1 a lot. In this

paper, it provides similar but easier tests to detect the changes of an object between frames

and it also mentions the thresholds of the impostor errors. “In our implementation we

decided to generate new imposters when the angle had changed more than 5% (18 degrees)

in vertical or horizontal orientation.” mentioned by paper [4]. And they also mentioned:

“In our implementation we simple chose to show the imposter when the distance to the

object from the camera exceted a fixed number.”

Since this paper only show the impostor when the object is farther than a fixed

distance, it might misses some opportunities to get the advantages of the impostors. The

reason of their impostors only can display distant impostors is they create a fixed size of

impostor. The player would notice the pixelation, as the object is close to the player. So, in

order to avoid the pixelation problem, they only re-use the impostors when the object is

distant.

In our method, we do not have this constraint, because we hold the width and height

of the object. They help us to create a fit size of impostor for the object, so that we can use

the impostor as the object is close to the player. But, we do need to avoid the pixelation

problem when the player gets closer and closer to the object.

19

2.3.3 A GPU hardware-based method for automatic occlusion

detection and optimization for objects and subobjects

This paper [5] proposes an automated hardware optimization. Game developers

figure out ways to speed up the 3D rendering. One of the common methods is occlusion

detection. Considering that there are some objects in the scene are fully occluded by other

objects. Since the players cannot see these objects, we do not need to draw them at all. The

problem is how to know an object is fully occluded and we do not need to draw it. The

answer is bounding box which only has 12 triangles and totally wraps the object. The idea

is since it is easy enough to draw a bounding box and the bounding box wraps the object,

we can utilize the bounding box of the object to do the occlusion test. If the bounding box

is fully occluded, then the object is fully occluded, too. Moreover, they propose a method

to create subobjects to increase the opportunities of full occlusion of an object.

The paper proposes both software and hardware modifications to make the

occlusion detection automated. And the existing games do not need to be modified to

acquire benefits from using their method. For us, we also propose both software and

hardware modifications to make the existing software method automatically be supported

by the hardware and the game needs to do no changes to get benefits from out method.

20

2.4 The issues of textures

2.4.1 The limitation of the memory space in the embedded

system

Figure 2.9 from [6] shows the size of memory space of each GPUs. In the picture,

we can see that the memory space in embedded system is really constrain, so we do

propose a compression method to reduce the size of IBTs.

Figure 2.9 The memory size of different types of GPUs. (Figure references from [6].)

21

2.4.2 The 565 texture format

 565 file format [7] is one of the texture format. It takes 5 bits to present red and

blue, but 6 bits to present green. We have transformed an 888 file format which uses 8 bits

to present red, green and blue to a 565 file format. It is hard to distinguish the differences

between those two file formats. But, if we further try 454, then the differences become

noticeable. Because the memory space is quite restricted in embedded system, we use this

format to store the impostor.

2.4.3 Run-length encoding

 Run-length encoding [8] is a simple and fast encoding technique. The compression

ratio of this encoding method depends on the variety of the image. An image is composed

of a lot of pixels and each pixel is composed of colors of red, green and blue. If we open

an image file such as a bitmap file as a texture file, then there are values in it. In RGB565

texture format, the range of red and blue is from 0 to 31 and the range of green is from 0

to 63. Figure 2.10 shows how the run-length encoding works. The repeating characters

(aaaa) is called a run. After encoding, the run becomes two bytes, run count and run value.

According to section 2.4.1, we get really a limited size of cache to use so we need

an image compression technique to compress the texture. There are reasons for us to pick

this encoding method, firstly, it is quick to execute. This is important for us to encoding

Figure 2.10 How run-length encoding compresses the data. The input is a character string

and the run-length encoding reduce the redundancy and create a number to present the

repeat times.

22

and decoding an image, because we need to pay the cost each time we use the impostor. If

we take a long time to compress and de-compress the impostors, then we get a few

improvements from our method. Secondly, since there is only one object in the impostor

and a part of the pixels are transparent, these properties of the impostors let the run-length

encoding method gives us better compression ratio.

3. Methodology

The impostor technique has been used to increase the speed of object rendering and

the game developers acquire really huge improvement from it, however, the process of

making it works is complicated and time-wasteful. Therefore, we propose an automatic

impostor technique to get all the improvements from the software technique but hide the

complex implementations and the painful debugging processes. To achieve the automation,

we propose several hardware modifications. The major changes are shown in figure 3.1

and figure 3.2. These two figures need to be read together, since they cooperate with each

other to manage the impostor technique for each object. In the following paragraphs, we

will first describe the whole idea of these two figures and further explain the details

individually.

23

Figure 3.1 This figure shows the state machine to achieve creating and using impostors on

the fly. It also shows how we can automatically manage the impostor technique. A view of

four spheres, with a wide field of view. The upper left is a billboard texture of a sphere,

using view plane alignment. The upper right billboard is viewpoint oriented. The lower row

shows two real spheres.

24

3.1 The state machine and ROM code

There are four basic actions in the existing impostor technique: creating impostor,

impostor error testing and using impostor. Once game developers try to apply the technique

to an object, firstly, they need to call a series of API functions to create an impostor. Before

using the impostor, impostor error testing should be performed to see whether the impostor

can be used or not. If the testing passes, then game developers have to decide where to put

the impostor and apply the impostor on a quad or two triangles. We basically follow these

Figure 3.2 This figure shows the state machine to achieve creating and using impostors on

the fly. It also shows how we can automatically manage the impostor technique.

25

actions to design our state machine and the ROM code, but we also provide some changes

to make this technique more efficient. And here comes the whole ideas:

3.1.1 Phase 1 – the analysis phase

This phase is not included in software technique, but there are reasons to involve

this phase. First of all, the memory space is so limited in embedded system. So, in order to

create a fit size of memory space for an object to cache its impostor, we create this phase

to get the extreme values. Second, the existing method does an angle testing to detect the

pixelation problem. It may not be an efficient way to detect, because it has a heavy

computation to get the angle. For us, since we hold the extreme values, we can directly

compare the current width of the object with the width of the impostor to see whether the

pixelation problem happens or not.

The state machine begins with phase 1. There are three actions in phase 1: (1)

identifying an object (2) gathering the extreme values and indices (3) store the results to

the memory and transit to next phase.

Figure 3.3 shows the pseudo code to identify an object at the beginning of an object.

The purpose of the action 1 is to manage multi-objects. So, when the first triangle of an

object comes to ROM code, we give it a hash key. This hash key is generated by merging

object id and the sum of elements of model matrix. We put the sum of elements of model

matrix into the key, because we observed that some objects are drawn many times such as

the pillars in the benchmark. The sum of elements of model matrix is a sort of secondary

key to help us to distinguish those multi-drawn objects. After giving the hash key to an

object, we allocate a size of 24 32-bits memory space for an object. Some information is

26

put in this memory space include current phase, saturated counter, the pointer that point to

the head of the space to store the impostor, the pointer that point to the head of the bit

vector, the extreme values and their indices and the width and height of the impostor. Then

we finish the action 1.

In action 2, we are going to gather the extreme values and their indices. After the

processes of vertex shader, the triangles of an object go into the ROM code to perform the

culling, clipping and rasterizing triangle by triangle. Figure 3.4 represents the pseudo code

that we add to find the extreme values and the indices of them. In the pseudo code, we

follow the rules of the assembly code specification of the collaborative project. Since

almost every GPUs has its own assembly code specification, it is impossible for us to

provide the codes for each GPU. So we will just explain the concept of finding the extreme

values. The idea is all of the triangles in an object go into ROM code triangle by triangle.

Each time a triangle comes, we find the temporary minimum and maximum values and

their indices of it and then compare the temporary one with the final one until all triangles

walk through the ROM code. Beside, we also need to find the x and y values of the

minimum and maximum z.

Actually, we could propose a dedicated piece of hardware to gather the extreme

values and indices of them but it may not worth to create a dedicated hardware only for

finding extreme values purpose and it is just a little change to the ROM code.

Figure 3.5 shows the pseudo code of the processes at the end of an object. At the

end of the phase 1, we need to post process the data which be gathered from action 2. First,

we need to re-identify the object, because we do not lock the registers which hold the hash

key. Second, since we are in phase 1, we are going to transit to either phase 2 or phase 4.

27

(See figure 3.1.) The decision is made by whether there is no enough memory spaces are

available. If the situation occurs, we go to phase 4, otherwise go to phase 2. If we go to

phase 4, then we initialize the counter and done, otherwise, we should subtract minimum

x from maximum x to get the width of the object, subtract minimum y from maximum y to

get the height of the object and store the width, height, phase, the indices of extreme values

to the memory.

Figure 3.3 The pseudo code to give each object an individual identification. This code is

used the instruction set of the collaborated project.

28

Figure 3.4 In this pseudo code, we have several assumptions: (1) the positions of three

vertices of a triangle are put into register 21, 22 and 23. (2) The x component of register 3

holds the index counter and it is initialized only at the beginning of an object. (3) The

register 49 and 50 hold the temporary minimum and maximum values while the register 5

and 4 hold the final minimum and maximum values. (4) The register 57 and 58 hold the

temporary minimum and maximum indices while the register 8 and 7 hold the final

minimum and maximum indices. (5) The x and y components of register 6 hold the x and y

values of minimum z while the z and w components of register 6 hold the x and y values of

maximum z.

29

Figure 3.5 The post process at the end of the rom code for an object.

30

3.1.2 Phase 2 – the creation phase

This is the second phase of the four called creation phase. The existing method has

the similar function of this phase, because we must create the impostor for an object before

we can use it. But, in our method, we do not create the impostor except the object passes

the impostor error testing. The reason is because the memory space is so limited in

embedded system, we must use it in an efficient way. That is why we test before to avoid

creating the impostor for those objects have a strong probability to fail the test on next

phase which is usage phase.

In this phase, we have to do 4 actions include (1) identifying the object (2) testing

the impostor error (3) creating the impostor and bit-vector probably (4) updating the

information of the object and transiting to the next phase. The action 1 of this phase and

action 1 of phase 1 are the same.

In this method, we propose three kinds of impostor error tests include pixelation,

rotation and delta. Before testing the errors, we make use of the indices of the extreme

values to guesstimate the extreme values of this phase. The advantages of this are it allows

us to create the impostor that never been used. And it reduces the whole actions that been

used to gather the extreme values. The drawback is the guess could be wrong when the

extreme points are different between two frames. But, it is acceptable, because the changes

between two frames are slight enough to make this guess. To do this, we need the API to

send us the points who hold the indices. In phase 1, we stored the indices in a specific

location of memory so that the API can reference those indices and send us those points

before starting to send the vertices of the object. After getting those points, we are going

to describe all those tests.

31

First of all, the pixelation test, this error occurs when the player gets too closer to

the object. We must avoid this, otherwise the player will complain the quality of the scene.

To achieve this test, we wrote a pseudo code. The testing is simple, it just subtract the

current width from the width from phase 1. If the difference is bigger or smaller than the

threshold, then it fails the test. We suggest a conservative threshold 3. This number is

decided after comparing lots of results of experiments. But, this is just our suggestions, it

can be changed by someone who is willing to implement this method into hardware.

Second of all, the rotation test, imagining a ball with a side black and the other side

white. When the ball rotates, the pixels on the ball are messed up by the rotation. Since we

hold the x, y and z values of minimum and maximum z form last frame and we guesstimate

those values by utilizing the indices for current phase, we can compute the angle between

those two vectors. Figure 3.6 shows the idea. First, subtracting the maximum z from

minimum z to get the two vectors. Second, translating one of the vector to let the two

vectors have the same origin. Third, computing the length of each side of a triangle. Fourth,

using cosine theorem to get the angle. In this method, we suggest a threshold 1. That means

if the angle is bigger than the threshold, then it fails the test. Of course, this number is

decided by our experiment, and can be changed by the developer.

32

 Third of all, the delta test. Imagining that a person is looking at the nib of a pen.

Once the pen is rotating a little, the person observe the huge change. But, if the person goes

to the side of the pen and the pen rotates the same way, the person may not notice that.

Rotation test can caught this error out with a very small threshold, but taking a too small

threshold eliminates the lots of opportunities of using impostors. So, this test allows us to

catch the first situation that be mentioned earlier. Figure 3.7 shows the idea.

Figure 3.6 The pseudo code to detect the rotation error.

33

If the object passed all the three tests, we are going to create an impostor for the

object. First, because we have the width and height of the impostor, we can create a fit size

of memory space for the impostor. As we mentioned before, the memory space is so limited

in embedded system. It is important to minimize the wasteful spaces. The software

impostor technique cannot achieve this, since it does not have the size information. Second,

whenever a pixel has been generated, it then goes to frame buffer. In our method, the pixel

is not only sent to frame buffer but also sent to the memory space reserved for the impostor.

The advantage to create impostor inside the hardware is there is only one rendering for an

object and send the pixel to two target memory spaces. To create the impostor inside the

software, the game developers have to render the same object twice. One of the rendering

target is frame buffer and the other is frame buffer object. Though the impostors are re-

created only when the object fails the tests, it is still an overhead to pay.

In order to save memory spaces, we create a bit-vector for the impostor. Each bit

on the bit-vector corresponds to a pixel on the impostor. And the bits are initialized to 0. If

Figure 3.7 The pseudo code to detect the delta error.

34

a pixel was touched, then the corresponding bit is set to 1. Later, in the phase 3, if the bit

says 0, then the transparent values of the pixel on the impostor is set to 0. That means pixels

beyond the object are transparent.

After all above actions, the remainder works are updating the information and

transiting to next phase. Since the extreme values could change, we need to update the

values stored in the memory. We are now in phase 2, and we are going to go to either phase

3 or phase 4. If the object passed all impostor tests, then we go to phase 3, otherwise we

go to phase 4. If we are go to phase 4, then we initialize the counter and done, otherwise,

we should subtract minimum x from maximum x to get the width of the object, subtract

minimum y from maximum y to get the height of the object and store the width, height and

phase to the memory.

3.1.3 Phase 3 – the usage phase

This is the third phase of the four called usage phase. In the last phase, we created

an impostor for an object. Now, we are trying to use it to reduce the complex computations

of the original rendering. Here are actions to achieve this phase include (1) identifying the

object, (2) test the impostor errors, (3) using impostor or drawing object, and (4) updating

information of the object and transiting to next phase.

The first two actions are as same as the last phase. Recording the API sent two

triangles for us to perform the impostor error tests and assuming the object passes the tests.

Before going the action 3, we must stop the rendering process of the vertex shader, because

we are going to draw the impostor instead of the object. There are ways to achieve this and

our method is writing a special bit to 1 in the memory when we decide to use the impostor.

35

Before dealing with the next triangle, the vertex shader should check this bit. Now, we are

in action 3 and we are going to use the impostor. Recording that we discard the first two

triangles which are the two test purpose triangles, because the two triangles cannot be

displayed on the screen. But, in this phase, once we figure out to use the impostor, we

utilize these two triangles to be the quad or two triangles. To utilize these two triangles,

first, we need to put them to the right place. The coordinates of the left-top, left-bottom,

right top and right bottom of the quad are (minimum x, minimum y, minimum z),

(minimum x, maximum y, minimum z), (maximum x, minimum y, minimum z),

(maximum x, maximum y, minimum z). We interpolate the original coordinate of the two

triangles to the above vales. Second, setting the texture coordinates up. Third, setting the

impostor as a texture. Then, the hardware follows the normal processes to render the

impostor instead of the object. After all above actions, we will see the illusion of the object

to be displayed on the screen.

In the action 4, we can look at the state machine and find that there are three ways

to go from phase 3. If the object failed the tests, then we check the saturated counter of the

object. If the saturated counter is not saturated, then the object goes to phase 4, otherwise

it goes to phase 1. The saturated counter holds the number of times that the impostor has

been used. Once an object fails the tests and the saturated counter is not saturated, we think

that this object is not a good candidate and we stop trying to use impostor to replace it. But,

if the saturated counter does saturate, then we consider to give it chance to keep trying. If

the object passes the test, then, of course, it is a good choice to apply this method and we

keep trying to use impostor. If the object passed the test, then we add one to the saturated

counter, stay in phase 3 and updating the extreme values. If the object failed the tests, then

36

we reset the saturated counter to 0. And if the saturated counter is not saturated, then we

need to initialize the counter and go to phase 4.

3.1.4 Phase 4 – the idle phase

This is the last phase of the four called idle phase. Because, objects who come to

this phase are not good candidates to apply the impostor method, we stop trying to use the

impostor on these objects. So, in this phase, we render the object in the original way and

increase the counter. The object goes to phase 1 to re-try to use the impostor when the

counter is bigger than a threshold. This threshold can be decided by the developer.

Otherwise, the object keeps staying in phase 4.

37

4. Experiment Setup

4.1 The original number of instructions for GPUs to

render the benchmark

In the model, we count the number of instructions should be executed by GPUs

with and without applying our method. There are three major parts of processes in the

original system: first of all, vertex shader, the job of the vertex shader is to place the object

on the right screen position. To achieve this, all triangles of the objects need to pass though

vertex shader triangle by triangle, and each coordinate of the three vertices of a triangle is

transformed by vertex shader. Whereas vertex shader have to transform all the vertices, the

total number of instructions that vertex shader have to deal with an object is:

instrOfVS(i) = #𝑣𝑠_𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝑖) ∗ #𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑖)

 The above equation has two #s: number of instructions and number of vertices. We

have all the objects in the GLBenchmark to count the number of objects and the number

of vertices of each object. We also have all the shader language source code in the

GLBenchmark and the compiler which can compile these code into assembly code. And,

we compile all those shader language code and count the number of instructions that vertex

shader has to deal with.

Second of all, the rom code, rom code is in charge of many things such as back face

culling, clipping, rasterizing, early z testing, early alpha testing and varying processing.

For back face culling, the number of instructions is:

38

instrOfBFC(i) = 37 ∗ #𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠(𝑖)

The rom code of the collaborated project takes 37 instructions to perform the back

face culling. Each triangle of an object have to pass through these 37 instructions. And the

number of triangles is the number of the vertices divide by 3.

For clipping, the number of instructions is:

instrOfClip(i, f) = 62 ∗ #𝑢𝑛𝐶𝑢𝑙𝑙𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 𝑓)

The rom code of the collaborated project takes 62 instructions to perform the

clipping. Because the culling has gotten rid of parts of the triangles, only the triangles that

pass the culling test on the given frame would pass through these 62 instructions.

For rasterizing, the number of instructions is:

instrOfRR(i, f) = 84 ∗ #𝑝𝑖𝑥𝑒𝑙𝑠(𝑖, 𝑓)

The rom code of the collaborated project takes 84 instructions to perform the

rasterizing. Rasterizer is responsible for generating the pixels so the number of instructions

to perform the rasterizing have to multiple by the number of pixels of an object on a given

frame. To get the number of pixels, we only draw the object we want to count triangle by

triangle and count the number of pixels of each triangle.

For early z testing, the number of instructions is:

instrOfZT(i, f) = 2 ∗ #𝑝𝑖𝑥𝑒𝑙𝑠(𝑖, 𝑓)

Because the rom code of the collaborated project does not perform the early z

testing, we guesstimate the number of instructions to perform it by ourselves. We guess 2

instructions to achieve this, because it only loads the last z value and compares it with the

new z value. Pixels that have been generated by the rasterizer have to pass through this test.

39

For early alpha testing, the number of instructions is:

instrOfAT(i, f) = 2 ∗ #𝑢𝑛𝑂𝑐𝑐𝑙𝑢𝑑𝑒𝑑𝑃𝑖𝑥𝑒𝑙𝑠(𝑖, 𝑓)

The rom code of the collaborated project does not perform the alpha testing either,

again, we guesstimate the number of instructions to perform it by ourselves. We guess 2

instructions to achieve this, because it only loads the last alpha value and compares it with

the new alpha value. Pixels that have been generated by the rasterizer but not been occluded

have to pass through this test. To acquire the number of un-occluded pixels, we also draw

the object triangle by triangle. But, this time, we also draw the other objects to allow them

to occlude the object we want to count.

For varying processing, the number of instructions is:

𝑇𝐼𝑜𝑓𝑉𝑃(𝑖) = 16 ∗ #𝑣𝑒𝑟𝑦𝑖𝑛𝑔(𝑖)

The rom code of the collaborated project takes 16 instructions to process the

varying, and this number need to be multiplied by the number of varying.

Third of all, fragment shader, the job of fragment shader is to decide the color of a

pixel. To achieve this, all pixels that pass the early z test and the early alpha test of an

objects (we call them shaded pixels, because they all need to pass through fragment shader.)

need to pass though fragment shader pixel by pixel. So, the total instructions to perform is:

instrOfFS(i, f) = #𝑓𝑠_𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝑖) ∗ #𝑠ℎ𝑎𝑑𝑒𝑑𝑃𝑖𝑥𝑒𝑙𝑠(𝑖, 𝑓)

We can add all the numbers up to get the number of instructions that GPUs take to

render an object on a given frame. That is:

instrOfObj(i, f) = instrOfVS(i) + instrOfBFC(i) + instrOfClip(i, f) +

40

 instrOfRR(i, f) + instrOfZT(i, f) + instrOfAT(i, f) +

 𝑇𝐼𝑜𝑓𝑉𝑃(𝑖) + instrOfFS(i, f)

 To calculate the total number of instructions that GPUs need to execute, we need

to apply the above equation to all the objects and all the frames. That is:

∑

𝑖=#𝑜𝑏𝑗

𝑖=1

∑ instrOfObj(i, f)

𝑓=#𝑓𝑟𝑎𝑚𝑒

𝑓=1

4.2 The number of instructions for GPUs to render the

benchmark after applying our method

 In our method, the state machine (See figure 3.1) has several variations such as no

idle stage, idle 1 cycle, idle 2 cycle, and so on. Moreover, the impostor error are different,

too. Though they are different forms, they are very similar. We are not going to create

models for each case, it would be redundant. Instead, we will describe the state machine

which has idle state and calculate the number of instructions that each state takes. For other

cases, we can simply get rid of the idle state or take away some of the tests. Here comes

the number of instructions that each state takes:

 In the first stage, the analysis phase, the vertex shader do the same things so no

changes on the number of instructions. Then the object goes into rom code, we first need

to take 33 instructions to identify an object and we only pay this cost at the beginning of

an object. In addition, we take instructions to find the extreme values and their indices.

That is:

41

instrOfFEV(i, f) = 15 ∗ #𝑢𝑛𝐵𝑎𝑐𝑘𝐹𝑎𝑐𝑒𝐴𝑛𝑑𝑢𝑛𝐶𝑙𝑖𝑝𝑝𝑒𝑑𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠(𝑖, 𝑓)

 We add 34 instructions into the rom code of the collaborated project to find the

extreme values and their indices. The 15 needs to be multiplied by number of triangles that

are not back face and not been clipped, in other words, these triangles are on the screen and

face to viewers. At the end of an object in the rom code, if the object fails one of the tests,

then we do not need to store the information of the object since we are not going to use

these values. But we do need to transit to the next phase. In this case, we add 2 instructions

to transit the state. On the other hand, we take 8 instructions to store the information of the

object into memory and transit the phase. For fragment shader, there is no changes on the

number of instructions.

 We can add all the cost up to get the total cost of the analysis phase. That is:

instrOfPh1(i, f) = instrOfVS(i) + 33 + instrOfBFC(i) + instrOfClip(i, f) +

 instrOfFEV(i, f) + instrOfRR(i, f) + instrOfZT(i, f) +

 𝑇𝐼𝑜𝑓𝑉𝑃(𝑖) + instrOfAT(i, f) + 2𝑜𝑟8 + instrOfFS(i, f)

In the second stage, the creation phase, the vertex shader has to transform 6 more

vertices which hold the extreme indices. It takes:

instrOfVSExtra(i) = 6 ∗ #𝑣𝑠_𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝑖)

 Then in the rom code, it takes 36 instructions to identify the object. And we spend

56 instructions to do the pixelation, rotation and delta test. If the object passes all the tests,

then we are going to create an impostor for this object. Because the cost of writing a

generated pixel to a texture is hidden by the writing a generated pixel to the frame buffer,

42

we do not need to count the cost of this. At last of the rom code, it takes 8 instructions to

store the information and transit the phase. The fragment shader has nothing different to

do, so the number of instructions is not changed. The number of instructions of this way is:

instrOfPh2TP(i, f) = instrOfVSExtra(i) + instrOfVS(i) + 36 + instrOfBFC(i) +

 instrOfClip(i, f) + instrOfRR(i, f) +

 instrOfZT(i, f) + instrOfAT(i, f) + 8 + 𝑇𝐼𝑜𝑓𝑉𝑃(𝑖) +

 instrOfFS(i, f)

On the other hand, if one of the test was failed then we draw the object originally.

The cost is same as above equation except it does not need to store the information. So, the

cost is:

instrOfPh2TF(i, f) = instrOfPh2TP(i, f) − 6

In the third state, the usage phase, the vertex also has to transform 6 extra vertices.

And we also take 56 instructions to detect the impostor errors. If the object passes all the

tests, then we are going to use the impostor. In this case, we stop the process of the vertex

shader, and we have to count the number of instructions that has been executed by the

vertex shader. We assume that vertex shader and rom code have the same speed and there

are more than 50 instructions in average in vertex shader code. So, we just assume during

the process of the impostor error tests, there are two vertices has been transformed by vertex

shader. Therefore, the number of instructions that vertex shader needs to deal with is:

instrOfVSWithImp(i) = #𝑣𝑠_𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝑖) ∗ 2

For rom code, it takes 36 instructions to identify the object. Since we are going to

apply the impostor on a quad or two triangles, there is no need to do the back face culling.

But we have to take 6 instructions to interpolate the position values of the first two triangles

43

from extreme values to the position of the impostor. Moreover, instead of the original

number of varying, we only need to process the position and texture varying. So, the

number of instructions to process the varying is:

𝑇𝐼𝑜𝑓𝑉𝑃𝑊𝑖𝑡ℎ𝐼𝑚𝑝(𝑖) = 16 ∗ 2

At last of the rom code, we take 8 instructions to store the information and transit

the phase. For fragment shader, because we use the impostor to replace the object, we take

10 instructions for each pixels to apply the impostor on a quad. In addition, instead of the

number of the shaded pixels of an object, we deal with the number of shaded instructions

of the impostor. So, the number of instructions of fragment shader is:

instrOfFSWithImp(i, f) = 10 ∗ #𝑠ℎ𝑎𝑑𝑒𝑑𝑃𝑖𝑥𝑒𝑙𝑠𝑂𝑓𝐼𝑚𝑝(𝑖, 𝑓)

So the total number of instructions that have to deal with in this case is:

instrOfPh3TP(i, f) = instrOfVSExtra(i) + instrOfVSWithImp(i) + 36

 instrOfClip(i, f) + instrOfRR(i, f) +

 instrOfZT(i, f) + instrOfAT(i, f) + 8 + 32+

 instrOfFSWithImp(i, f)

On the other hand, if one of the test was failed then we draw the object originally.

The cost is:

instrOfPh3TF(i, f) = instrOfVSExtra(i) + instrOfVS(i) + 36 + instrOfBFC(i) +

 instrOfClip(i, f) + instrOfRR(i, f) +

 instrOfZT(i, f) + instrOfAT(i, f) + 2 + 𝑇𝐼𝑜𝑓𝑉𝑃(𝑖) +

 instrOfFS(i, f)

44

In the fourth state, the idle phase, we almost do the same thing with the original

rendering except we have to take 36 instructions to identify the object, take 1 instruction

to increase the counter, take 1 instruction to store the counter back to the memory and take

2 instructions to transit the phase when the counter exceed a threshold. So, the number of

instructions of phase 4 is:

instrOfPh4(i, f) = instrOfVS(i) + 36 + instrOfBFC(i) +

 instrOfClip(i, f) + instrOfRR(i, f) +

 instrOfZT(i, f) + instrOfAT(i, f) + 𝑇𝐼𝑜𝑓𝑉𝑃(𝑖) +

 1 + 1 + 2or0 + instrOfFS(i, f)

45

5. Results

5.1 Performance comparison

 Throughout this paper, we want to define a thing called No Noticeable Error

threshold (NNEth), and by inspection, we determine the NNEth for most objects is 6 and

3, but for taller objects, it is actually 4 and 0.1. The 6 and 4 are for pixelation test. That

means if the width of an object changes too fast, then it fails the test. And the 3 and 0.1 are

for rotation test, it means if an object rotates too much, then it fails the test.

 In figure 5.1, there are three lines, the red line is no compression. That means we

can avoid the overhead of compression, but that also means fewer objects get billboarding.

The purple line and blue lines need to be read together. The purple line presents that we do

perform the compression, but we ignore the overhead, whereas the blue line adds the

compression overhead into the measurement. So, the blue line is always on the above. And

the more objects get billboarding, the more compression overhead we need to pay.

 Figure 5.1 shows that when the memory space is very restricted, the one that do not

perform compression takes more instructions than the one do perform compression. The

reason is that because the memory space is so restricted, only few objects get billboarding.

Even though we do not need to pay the compression overhead, we still need to pay more

instructions to render the objects. But, when more memory spaces are allowed, the lines

get cross each other. Because now though we do not perform compression, there are

enough memory to create the IBTs and since we do not perform the compression, we do

not need to pay the compression overhead.

46

Figure 5.2 shows the improvements of our method. For all objects, by given more

than 1.5M memory space, we get more than 10% improvement totally. That means we can

reduce 10% number of instructions from the whole rendering process. Moreover, if we

only measurement the improvement of those chosen objects, we get more than 25%

improvement. From the result, it shows the more objects get involved, the more

improvement we can get. Some reasons prevents objects getting billboarding. For example,

an object is moving from the dark room to bright room, then the light effect of two frames

on the object are changed. That prevents the object getting billboarding, even though the

object did not fail the impostor errors.

Figure 5.1 This figure shows that in the case of given different

allowed memory size, how many instructions are reduced.

47

Figure 5.3 shows how does the idle cycles effect the results. When an objects often

fails the test, it may not be a good candidate to keep trying to get billboarding. So, we stop

trying for a period of time. We think that once an object failed the impostor error tests, it

might fail the tests for a period of time, so the idle cycles might improve the performance.

The result does proof this surmise, when the memory space is really constraint. But, the

surmise goes wrong when more memory space are given. The reason is the idle prevent

trying to create IBTs for those objects cannot use IBTs. It allows other objects to get IBTs.

But, when the memory space gets bigger, the idle stage reduces the times of using IBTs. It

leads the more idles, the less improvements. In this thesis, the users can modify this value

themselves to get the maximum improvement.

The values of the impostor error thresholds are proposed by this paper could be

modified. We try many values for these three thresholds, and we find that these values give

us an unnoticeable scene. If we enlarge the values, we get better performance but poorer

Figure 5.2

48

quality of the scene. On the other hand, if we shrink the values, we get almost the original

quality of the original scene but very few improvements.

 Figure 5.4 shows how many memory spaces we need at each frame. The memory

space is really restricted in embedded GPUs. So, we create a compression method to reduce

the size of IBTs. Although it takes instructions to perform the compression, it is still worth

to compress. With the compression, we can have more IBTs in the memory. It increase the

opportunities for objects to get billboarding.

Figure 5.3

49

 Figure 5.5 shows that the more objects are in phase3 the more improvement we

can get. Because when an object is in phase3, that means it keeps using the IBTs. And the

cost of rendering IBTs is cheaper than the cost of rendering objects. So, if the more

objects stay in phase3, the more cost of rendering gets reduced.

Figure 5.4

50

Figure 5.5

51

5.2 GLBenchmark

Figure 5.6

Figure 5.7

52

 Figure 5.6 shows the result of using the impostor method to replace the original

object. The green boxes in Figure 5.6 are the impostors of objects. And figure 5.7 shows

the original scene. It is hard to distinguish the differences between these two pictures. That

is why game developers use the impostor method to reduce the complex 3D rendering.

 If we over re-use the impostor, we would see the poor quality scenes like figure 5.8.

Comparing figure 5.8 with the original picture figure 5.9. It is so easy to observe the

differences. Because of the too large threshold, the impostors is over re-used.

The camera is moving in and rotating around the room. It causes two impostor

errors, pixelation and rotation errors. There are two snakes in the figure 5.9. We can see

the pixelation error on the left one and the rotation error on the right one. Since we do not

want to let the player notice the differences, we propose three impostor errors and the

methods to detect the errors.

53

Figure 5.8

Figure 5.9

54

6. Conclusion

 In this paper, we try to let game developers acquire all the benefits of the impostor

mechanism and prevent the complicated implementation details. After the whole paper, we

think it is possible to be done and it is worth to do, because the game developers only need

to turn on the technique for objects and get the benefits. Though we do not really implement

this method on the hardware, we do simulate the method in the software and we reduce

more than 10% number of instructions.

 In the future, we think that it is possible to implement this method on the hardware

to get the whole benefits from software based impostor mechanism but do not need to

worry about the complex details.

55

7. Reference

[1] Tomas Akenine-M ̈oller, Eric Haines, Naty Hoffman. Real-Time

Rendering(Third Edition)

[2] Frame buffers https://www.open.gl/framebuffers

[3] Billboarding http://www.lighthouse3d.com/opengl/billboarding/

[4] Schaufler, Gernot, “Dynamically Generated Impostors,” GI Workshop on

“Modeling—Virtual Worlds—Distributed Graphics, D.W. Fellner, ed., Infix

Verlag,

[5] Kenneth Rohde Christiansen∗, “The use of Imposters in Interactive 3D Graphics

Systems” Department of Mathematics and Computing Science Rijksuniversiteit

Groningen Blauwborgje 3 NL-9747 AC Groningen

[6] Sheng-Chang Chang, “A GPU hardware-based method for automatic occlusion

detection and optimization for objects and subobjects” Department of Computer

Science and Engineering National Sun Yat-sen University Master Thesis

[7] GPUs memory latency http://www.sisoftware.net/?d=qa&f=gpu_mem_latency

[8] RGB565 format

http://www.theimagingsource.com/en_US/support/documentation/icimagingcontr

ol-class/PixelformatRGB565.htm

[9] Run-length encoding http://www.fileformat.info/mirror/egff/ch09_03.htm

[10] GLBenchmark http://gfxbench.com/result.jsp

