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A FOUNDATION OF CLASS FIELD THEORY
APPLYING PROPERTIES OF SPATIAL FIGURES

TOMIO KUBOTA

This article is prepared as notes of the general address given by the author
at the 1991 Annual Meeting of the Mathematical Society of Japan held at Keio
Gijuku University and also is an expository explanation of the author’s paper
Geometry of numbers and class field theory, Japanese J. Math. 13 (1987), 235-
275.

1. THE MAIN POINT OF CLASS FIELD THEORY

We begin with a brief explanation of class field theory. Class field theory is
concentrated in an assertion called Artin’s reciprocity law. There are various
forms of Artin’s reciprocity law, but we use here the shortest form.

Denote by F an algebraic number field of finite degree, by K an abelian
extension of F of finite degree, by G(K/F) the Galois group of K/F , and
furthermore by o, o, the rings of integers of K, F respectively. Then, for
every prime ideal p of F (of o), there exists an element ¢ = (EPE) , called the

Frobenius automorphism of G(K/F). It is defined by the condition o’ = a™?
(modp), Np being the norm (o, : p) of p. The Frobenius automorphism is
determined uniquely except for a finite number of special prime ideals. Take
next an arbitrary integral ideal a of F with the decomposition a = p,p,---p,
into prime factors. The factors may contain the same ideals. Then (faﬁ) =
(55) 2 4 (—1%5) is an element of G(K/F), called the Artin symbol of a, which
is determined uniquely unless a is divisible by a finite number of special prime
ideals.

Assertion A (Artin’s reciprocity law). There exists an ideal m of F* determined
by K/F such that (%TF) — 1 holds for the principal ideal («) generated by
an integer « of F, whenever a satisfies the congruence o =1 (modm) and
is totally positive, i.e., the image of a by every embedding of F into R is

positive.

This assertion shows the most essential part of Artin’s reciprocity law.
Namely, if « is screened by a congruence condition and a sign condition, then
the Artin symbol of (a) is 1 (if no embedding of F into R exists, then every
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a # 0 is totally positive, sO the sign condition falls off). Once this assertion ;
been verified, all theorems of class field theory can be deduced smoothly :
straightforwardly. Thus we may say that class field theory is Concentrate::
Assertion A. g

2. ARTIN’S RECIPROCITY LAW FOR SPECIAL EXTENSIONS

Let us consider Artin’s reciprocity law where K/F is a special extension, If:,‘
K/F is a cyclotomic extension, i.e., is obtained by adjoining a root of unity 1
then Artin’s reciprocity law becomes a very simple fact and, as is found in man; :
textbooks of number theory, can be proved easily and directly. :

Next, we consider another typical abelian extension called a Kummer exten- f
sion, which is of the form K = F (/@) provided that F contains the group .
u, of the nth roots of unity. It may be assumed that o is an integer, a € oo r
and K/F is a cyclic extension. In this case the Artin symbol is related to the
symbol (%),l , called the power residue symbol, through the equality

w=(5). 5 o= (%)

Since the Artin symbol ( %) is an element of the Galois group G(K/F), it
maps {/a onto an element of K that differs from {/a only by a factorin g, .
The factor turns out to be the power residue symbol (%)" of amod f. Artin’s
reciprocity law is, therefore, expressed in the following different form:

Assertion K (The reciprocity law of the power residue symbol). There exists an "
ideal m(a) of F, determined by a € o, , such that (a/f), = 1 holds whenever
B € o, satisfies the congruence B =1 (modm(a)) and is totally positive. ’

The symbol (a/f), in this assertion is the power residue symbol (3),- ‘
Throughout the sequel, power residue symbols will always be written as (a/B),-

Assertion K is a special case of Artin’s reciprocity law restricted to the Kum-
mer extension. But, unlike the case restricted to a cyclotomic field, it cannot
be proved easily. Until the present time, the special case of the reciprocity law
for the Kummer extension could be deduced only by means of all results, or
practically all essential arguments, of class field theory. 1

By the way, the reciprocity law of the power residue symbol in the form of
Assertion K is “asymmetric”. In fact, the reciprocity law of the power residue
symbol is often written as an equality roughly between (a/f), and (B/@)n-
If such a form is called “symmetric”, the above assertion that the value of the
symbol becomes 1 under a sufficiently strong screening of S should be called
asymmetric, since the latter contains no symmetry. But, there is no essential
difference between the two.

If the basic field F is the rational number field Q, and n = 2, then ﬂfe -
power residue symbol is the classic quadratic residue symbol (%) . The quadrati€ -
residue symbol has a direct definition. For instance, if b = p is an odd prime,
it is defined by (4) =a”""? (modp), (2) = 1, for a € Z which is prime
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to p. The power residue symbol (a/f) in the general case can be defined
directly and similarly. The above equality containing both the Artin symbol

and the power residue symbol is fundamental but is not a definition of the
power residue symbol.

3. QUESTIONS ON THE CONSTRUCTION
OF CLASS FIELD THEORY

As was already described, Artin’s reciprocity law is simple, clear, and beau-
tiful both in its original form and in the specialization to the power residue
symbol. But, if one reads its proof—which amounts to learning the whole class

field theory—various questions arise. Let us discuss some of these questionable
points.

1. On the structure of the theory. Every abelian extension is obtained as a
subfield of a cyclotomic extension followed by a Kummer extension. The reci-
procity law for a cyclotomic extension is, as mentioned in §2, easily proved.
Therefore, a straightforward proof of the general reciprocity would be obtained
if one could prove the reciprocity of the Kummer extension by some method
based on the special situation and then use both special results together to get
the general case. Why, instead of such a plain way, the general case must first
be constructed in order to obtain a Kummer case is also mentioned in §2.

2. On the methodology. Also, as mentioned in §2, the notion of the power
residue symbol (a/f), is constructed within the basic field F, and so its reci-
procity is also an assertion concerning solely the field F . Why, however, does its
proof require the structure of extension fields including very precise behaviors
of ideal groups, unit groups, etc., under the operation of the Galois group?

3. On the classical theory of quadratic residue symbols. The quadratic residues
of rational integers have historically been treated in various ways. Some are
elementary, and some apply figures. But, their theoretical meanings are not all
made clear by class field theory.

4. Gauss sums and Jacobi sums. It was Eisenstein who first published the proof
of the reciprocity laws of the cubic and biquadratic power residue symbols
in Q(v/=3) and Q(v/—1), respectively. In his proof, he used the so-called
Gauss sums and Jacobi sums. These sums are very interesting quantities in
number theory and have many applications. But in class field theory, they have
disappeared.

S. On Gauss’s theory of biquadratic residues. After having proved the quadratic
reciprocity law in the rational number field, Gauss first tried in vain to build
up the theory of biquadratic residues within the rational number field. But he
finally found, to his great pleasure, that the biquadratic reciprocity law holds
Completely in the same form as the quadratic reciprocity law in Q whenever
Gauss’s integers a+bi (a, b €Z) are introduced. This fact is the first discovery
of the principle that the nth power residues can be treated smoothly only when
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the basic field contains the nth roots of unity, as is quite common knowledge 4
present. But in class field theory, it is no longer an important condition whether

or not the basic field contains the nth roots of unity. Why is this so?

6. Complex multiplication. The reason why Artin’s reciprocity law for the cy-
clotomic extension is casy to get is that the extension is obtained concretely by
the values of the exponential function. If a good function is found, which in g
similar way generates general abelian extensions, then Artin’s reciprocity law in
the general case should have a nice proof. In fact, such a situation is realized by
means of elliptic functions when the basic field is imaginary quadratic. But the
path in this direction is t00 hard to trace up to the goal and class field theory

does not shed any light there.

7. On automorphic functions. Hecke showed that the quadratic reciprocity law
in an arbitrary number field is a consequence of the transformation formula of
a theta function. Although a partly related fact can already be found in Gauss’s
work, it is very remarkable that the quadratic reciprocity law in the general case
can be proved without any connection with field extensions. Why should an
automorphic function like a theta function appear in the investigation of the
power residue, while no automorphic function appears in class field theory?

4, CHANGE OF VIEW POINT

Through various opportunities, the author learned that the questions dis-
cussed in §3 had also been asked by some other mathematicians, although not
completely in the same form. A common opinion of those mathematicians
seemed to be that an important fact in number theory is still hidden and, after
a splendid discovery, all questions will be answered correctly to erase all discon-
tent. This is certainly a reasonable comment. The author, too, believed this an'd
endeavored for a rather long time to find a hidden truth, mainly in the analytic
direction, concerning automorphic functions as well as special functions. But,
the conclusion that the author finally attained was totally unexpected, namely,
that Assertion K, stated as the reciprocity law of the power residue symbol in §2,
was a plain fact. More precisely, the reciprocity law of the power residue Symb_OI
merely says that the lattice points in a space are arranged under a certain speclal
rule, and Assertion K is, perhaps with some exaggeration, evident almost at @
glance as soon as lattice points and other figures in a space are observed fff’m
a slightly new angle that has not been noticed before. Accordingly, Assertion
K is proved without any help of Kummer extensions. Of course, there remains
the question: why do the power residues have connections with Kummer 63
tensions, complex multiplication, automorphic functions, etc.? A short an:c,wef
to this question would be that a fundamental fact can support many things:
Many relationships—for instance, one between automorphic functions a“d_me
reciprocity law—can furnish sources of new research. Such research possmly
yields as a by-product a new proof of the reciprocity itself. But, at any rate;
a proof of a simple assertion based upon incomparably deep facts would n0
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be of utmost importance. In the followin

‘ | & sections, we shall explain how the
reciprocity law of the power residue symb

ol can be seen as evident at a glance.

5. Cycrotromic CRYSTALLOGRAPHIC GROUP

We denote by F an algebraic number field of finite degree, assume F O
u, (the group of the nth roots of unity), put F ®q R=V (& RN), and
regard 1* as a topological vector space, that is, V is a linear space without
metric, and n is an arbitrary natural number. The space V' is also the infinite
component of the adele ring of F, and N is the absolute degree of F. The
mapping z — £z, (£ € u,, z € V), which is (so to speak) the rotation by ¢,
operates on 1 as well as the translation z — z 4 4 (a € o)), by an integer
a. The group I' generated by these two kinds of linear transformations will
be called the cyclotomic crystallographic group. In general a crystallographic
group 1s a transformation group of a vector space whose fundamental domain
is a polyhedron. This is in fact the case for our group I'. Furthermore, as
an important fact in our investigation, a fundamental domain of I' is given by
parallelotopes. Here, a parallelotope means a direct product of segments as a set
and is a higher-dimensional generalization of a parallelogram. But, in general, it
is not possible to obtain a fundamental domain of I' by a single parallelotope;
a finite number of parallelotopes are needed.

From now on, until the end of the present article, every figure will be drawn as
if £ =Q(v-3). In this case, we may understand that V' = C . But. everything
we state in the sequel is valid in the general case. First we explain how to
construct a fundamental domain of I” as a parallelotope. In Figure 1 (see p.
6), the dotted lines show a f undamental domain of the group consisting of only
translations by integers, i.e., a period parallelogram used in the theory of elliptic
functions. This parallelogram is not clearly divided into three parallelotopes
which are mapped on each other under the operation of the roots of unity. So
We proceed in a different way and consider a right hexagon surrounded by six
right middle lines of 0 and six nearest integers. This hexagon is divided into
three parallelograms each of which forms a fundamental domain of the finite
group of rotations induced by the roots of unity acting on the hexagon. Thus
We get a fundamental domain P = I'\\. This technique works in the general
¢ase. The fundamental domain P together with the so-called Gauss'’s lemma
gives a link between the power residue symbol and figures. Take an arbitrary
L€P, and let (a/ B), be the power residue symbol in our investigation. Then,
SInce P is a fundamental domain of the cyclotomic crystallographic group I,
! can be mapped by I' on a point ¢ € P. In other words, af is equal to
the point obtained from ¢ first by multiplying by an element &(w, 1) of W,
and then operating a translation given by the elements of o, . Therefore, we
May write of = gla, 1) (modl). UsingI now a terminology in the theory
of abeljan varieties, call an element of f o, a f-division point. Then, the
Point corresponding to a f-division point 7 is again a B-division point and
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FIGURE 2, CRYSTAL STRUCTURE
Gauss’s Lemma holds in the following form:

Gauss’s Lemma. (o/f), = [],e(c, 1). (The product ranges over p-division
points (#0) in P.)

We call e(a, 1) the sign of ¢ € P. Every f-division point has a sign that is
uniquely determined, and their product is equal to (/F), . Figure 2 1s prepared
in order 1o explain the meaning of the sign more intuitively. The black dols‘
represent integers, and the fundamental domain P is mapped by an element of
I" onto a parallelogram whose one vertex is an integer so that the whole ;\la\!}t‘
is divided according to a certain crystal structure. The images of P face in
general in different directions from the original £, and the difference is caused
by rotations by roots of unity. In particular, the sign ¢(a, 1) of ¢ is that l\\f)‘
of unity that shows how much the parallelogram containing a¢f is rotated m
comparison with the original P,

For cach f-division point 1 (# 0) in P, the sign &(a., 1) is determined and
itis one of the finite elements of 4, . Therefore, if' it is verified that the number
of ¢ with one and the same ¢(a, 1) is a multiple of # ., then (a/f), becomes
evident,
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6. DEFORMATION OF PARALLELOTOPES

Unfortunately, the good situation, as mentioned at the end of the preceding
section, does not appear as long as a naive fundamental domain like the paral-
lelotope P in Figures 1 and 2 is being used. But, there are many possibilities
to make up fundamental domains. So, we try somehow to deform P to obtain
a good distribution of S-division points.

For the sake of simplicity, we consider for a moment a double period group
operating on a plane and assume that its period parallelogram is the figure on
the left-hand side of Figure 3. If the figure is deformed into the domain assigned
- with I on the right-hand side of Figure 3, the result is a domain with one part
convex and the other corresponding part concave. Then, the new figure is still
a fundamental domain. Or, if one side of the original parallelogram is replaced
by a zigzag line as II on the right-hand side of Figure 3, then there still remains a
fundamental domain. In this case, it should be noted that a minor parallelogram
in II that looks reversed should be regarded as a negative domain. Furthermore,
as in III on the right-hand side of Figure 3, a fundamental domain can also be
constructed by replacing two sides of the original parallelogram by zigzag lines.

In general, a parallelogram is spanned by two segments (vectors) starting from
- acommon point. Namely, the parallelogram is the totality of the sums of two
points each taken from one of the two sides. In this sense, a parallelogram is
considered as a direct sum of two segments. In the same sense, the figures in
L, II, and III on the right-hand side of Figure 3 can be considered to be direct
sums of two curves or zigzag lines obtained by deforming the two sides of the
original parallelogram. What we are going to do is to deform a fundamental
domain P, given as a sum of parallelotopes, of the cyclotomic crystallographic
group acting on the vector space ¥ into a sum of minor parallelotopes with
+ and — signs just as two cases II and III of Figure 3 are mixed. To do this,
we first replace all those sides of P with zigzag lines that span P, that is, that
start from the origin of ¥, and then take their direct sums.

-0
S
VR,

FIGURE 3. DEFORMATION OF PARALLELOTOPES
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To perform such a deformation nicely, the whole process should be divigeq
into two steps. Assuming that (a/f), is the power residue symbol in questjqy
the first deformation is in connection with «. The straight segment in | 0%
Figure 4 stands for a side of P starting from the left end, which is the origjy
of V. This segment is deformed into a zigzag line, as shown in II of Figure 4
whose vertices are all a-division points. Namely, the zigzag line turns only ai
an a-division point. Here, a-division points should not be passed arbitrarily,
The original segment is first deformed into a rather rough zigzag line as shown
by the dotted lines in I of Figure 4, and then each side of the rough zigzag
line is refined in accordance with the decomposition 1 = (1 — p + 1 — p?),

( p2 +p+1=0), of 1, if the situation is as special as drawn there. In the general
case, too, the deformation is performed in a similar way based on a simple
number-theoretical identity. After this first step concerning «, the resulting
zigzag line is smooth in a certain sense and passes «-division points which are
its vertices, while the starting point and the end point are unchanged. Next,
we turn to the deformation with respect to f. To do this, we put =1+
and multiply the zigzag line in II of Figure 4 by f,/8. Since S is screened
by the condition to be congruent to 1 modulo a sufficiently large integer, S,
is divisible by a sufficiently large integer. On the other hand, f,/f may be
assumed to be sufficiently close to 1, because S may be multiplied by an nth
power of an integer. Therefore, the figure after the multiplication by £,/f is
not much different from the original, but it cannot fill the room between the
original starting point and the end point. To fill the remaining small rooms,
we consider a vector which is obtained from the straight segment in I of Figure
4 by multiplying by 1/(28) and joining two copies of the vector to the above
figure both at the starting point and at the end. This completes the deformation

with respect to . Taking the direct sum of the sides starting from 0 of P, all

after having been deformed into the form as III of Figure 4, we get the desired

fundamental domain. The domain, in its most simplified form, is shown on the

left-hand side of Figure 5. Dotted lines indicate the original parallelotope, and

its sides starting from the origin 0 of the vector space V after the deformation

are two thick zigzag lines. Most of the minor parallelotopes are positive, but

reversed ones are negative domains. Besides, a minor parallelotope indicated

by dotted lines means that a positive and a negative parallelotope occur at the

same time and cancel each other. Furthermore, the whole figure itself does

not have any particular symmetry. Therefore, it is a coincidence that a dotted

line showing the original parallelotope looks like passing a vertex of a minor

parallelotope, and it is quite natural that the dotted lines and parallelotopes are

in irregular position.

Such a fundamental domain after a deformation has the property that, rough-
ly speaking, every minor parallelotope contains f-division points with a com-
mon sign which line up in the direction of each side and are placed in number
equal to multiples of n. Thus, (a/8), =1 is obvious, and the reciprocity law
of the power residue symbol in the form of Assertion K is proved.
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FIGURE 5

This completes the explanation of the most important fundamental principle
contained in the present article. Looking back, we will see that no difficult notion
is needed for the purpose of proving the reciprocity law of the power residue
symbol—no extension field at all. The structure theory of algebraic number
fields is not necessary either. Most basic theorems in the structure theory of
algebraic number fields such as Dirichlet’s unit theorem or the finiteness of
the class number are unnecessary, and units play no role at all. Moreover,
even ideals need not be really used, since the power residue symbol itself is
defined directly by means of Gauss’s Lemma concerning only integers. What
we really need are only naive and intuitional properties of lattice points and
other figures in a space, and all notions used in the arguments are only those
that already existed at the time of Euler. A regrettable difficulty is that the usual
contemporary mathematical notation makes unclear and strange the figures and
manipulations that are too elementary and primitive. The greatest concern to
be addressed now is to develop suitable notation so that easy concepts may be
CXpressed simply.
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7. SUPPLEMENTARY REMARKS ON CRUCIAL POINTS

Whereas the main idea used in proving the reciprocity law of the
residue symbol is, in its outline, as simple as described in §6, there are sgswer
important details in the actual, rigorous proof that should be treated Careﬁf“
Let us here discuss such concerns and fill the gaps in the preceding descripyj Y.
1. If a fundamental domain I'\}" of the cyclotomic crystallographic groqu;;
has been constructed by means of deformed parallelotopes as in Figure 5 .
the reciprocity law (a/f), becomes clear almost at a glance as explained in §6l’
Here, however, the investigation of the boundary is somewhat incomplete. As;
far as the volume of the fundamental domain or the integration of a function
over the fundamental domain is concerne

d, the boundary is not substantig]
But, for our purposes, a representative set of A-division points that are noy
mapped to each other by I must be given rigorously, so it must be made clear

which point should be taken when two points on the boundary are mapped to
each other by the operation of I'. To settle this point satisfactorily, we use
elementary ideas in classical combinatorial topology. Among others, the notion
of the degree of the mapping is most useful.

On the left-hand side of Figure 5, there is the fundamental domain mentioned
before. Suppose that the two thick zigzag lines are pressed into straight segments
in such a way that their starting and end points are unchanged and that the image
of every segment in a zigzag line has a common length. Assume furthermore,
the mapping determined as above is linear on each segment in the zigzag lines.
Then, the mapping is uniquely determined and one-to-one; it is a PL-map (a
piecewise linear map). We denote its inverse map by . At this stage, f
1s defined merely on two segments which appeared as a result of the pressing
operation. But, these two segments are two sides of the parallelogram building
up the domain on the right-hand side of Figure 5, one at the bottom and the
other on the left, while the sums of two points each taken from one of the two
segments form the parallelogram. Hence, f is additively extended to a PL-map
from one domain to another and is also extended to a PL-map from the spa(fe
V" to itself, because both domains are fundamental domains of the C.\'Clo.loml(i:‘
crystallographic group. But, / is not one-to-one. On the right-hamd~ sxdeq
Figure 5, f" degenerates on a shadowed minor parallelotope, and its lmageels
constant along a direction in the shadow. Incidentally, a p'.ll‘allclotol““ mark
with in the same figure shows that its image by / is reversed. The 1mage °e

{ of a parallelotope without sign 1s a positive domain. A minor P“‘“"thoge
that is exceptionally marked with + shows that its image is cancelled be:he
image of the minor parallelotope marked with — . which lies l‘ighl-uDW“rd Oto pe
former one. The situation of the degeneration of / on a minor pamllc‘l(}m
can be described casily by using simple number-theoretical data. Rt‘m(""‘d ies
1 all minor parallelotopes on which /' degenerates, and stick the boun :‘“ of
of the remaining parallelotopes in such a way that two points with @ c011]11 a
image by / get together. Then, there arises a complex 7, which we sha
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a guide complex. As shown by the diagram

{ induces a mapping f from 7 to V. The guide complex is similar to
the complex used in combinatorial topology. A difference between the two
is that the former is made from parallelotopes stuck together and not from
simplexes. Anyway, 7" is a complex on which the local degree of mapping of
[ is everywhere defined, and the cyclotomic crystallographic group I' operates
on 7" as well. In addition, since f is homotopic to the identity map, the
global degree of mapping of f is 1. On the other hand, the sign of the image
by f of a minor parallelotope on which f does not degenerate in Figure 5
is nothing else than the local degree of mapping of f at an inner point of
the minor parallelotope. Furthermore, the local degree of mapping of f is
constant not only in an open parallelotope of the highest dimension but in all
open parallelotopes of lower dimensions and on points that are produced by
taking boundaries successively from minor parallelotopes of higher dimensions.
Now we construct a fundamental domain I'\7" rigorously by means of open
parallelotopes, including lower-dimensional ones, and points. After that, we
take the set of all images of f of members of the above I'\7?" and, based
on the fact that the local degree of mapping of f is well defined along each
member of I'\7", define the sign of the image of a member of I'\Z" to be
the local degree of mapping of f along the member. Maybe weight is a better
expression than sign. The finite set of weighted parallelotopes thus obtained is
a rigorous fundamental domain I'\ V', because of the fact that the sum of local
degrees of mapping of f at inverse images of a point is equal to the global
degree of mapping of /. Whenever this fundamental domain is applied, the
idea of the proof stated in §6 is completely justified.

2. When we explained in §6 that the reciprocity law is recognized as an evident
fact, we used the expression, “fB-division points with a common sign which
are lined up in the direction of each side and are placed in number equal to
multiples of n”. Since this is rather coarse, a supplement should be given here.
Among the sides of parallelotopes in the deformed fundamental domain in the
left-hand side of Figure 5, there are long and short ones. The short ones come
from short vectors joined to longer zigzag lines as in IIT of Figure 4. Precisely
speaking, the word “each side” in the above quotation means only a long side.
So, for instance, our logic does not hold for the parallelotope which has 0 as a
vertex and has no long sides. Since, on the other hand, B-division points with
a common sign ordered in the direction of a long side are counted by dividing
the side into n equal parts, there can occur irregular B-division points in the
neighborhood of ends of short segments. But, such irregularity is not of a very
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bad nature. As a matter of fact, it is proved that, if f is screened satisfactori|
by congruence and sign conditions and if the absolute value of f is sufficient|
large, then (a/B), depends only on the argument of £, or, in general (,,);
the tuple of arguments of images of # by all embeddings of F into (7’ In
addition, it is proved that (a/B), islocally constant in the space of such lu.plcs
except for a nowhere dense set. This result and the fact that every tuple has zu;
arbitrarily close approximation by the argument tuple of the nth power of an
integer entail (a/B), = 1. In this way, the proof contains a qualitative change,
3. Another technica! point concerns the intersection of the deformed funda-
mental domain and the parallelotopes which have been placed in the original
crystal structure. Figure 2 shows that infinitely many images of P by the cy-
clotomic crystallographic group I' cover the vector space. Provided that P ig
deformed into the figure as on the left-hand side of Figure 5, one may ask if
the domain after the deformation intersects one of 6P (6 €', 0 #1). Asa
matter of fact, our proof does not work well if the deformed domain intersects
that o P that does not touch P along a side. But, fortunately, we can conclude
that, after multiplying a by the nth power of an integer if necessary, the in-
tersection of the closures of the deformed domain and o P coincides with the
intersection of closures of P and ¢ P, provided that P and P do not touch
along a side. Accordingly, the intersection in question is either one point or
empty, and this separation theorem saves the proof. Intuitively, this theorem
is quite probable and actually easily proved in many concrete cases, but its gen-
eral proof is presently not in a very elegant form. The technical difficulty as
mentioned at the end of §6 here attains its peak. To improve the situation, a

notation that conveniently expresses zigzag lines in a space is desired most of
all.

8. EPILOGUE

1. A few words on the symmetric reciprocity law of the power residue sym-
bol. What we call symmetric reciprocity in the present article is the well-known
formula

(/) (Ble)," = 1 (_pﬁ) ‘

plnp,

The symbol on the right-hand side is called the norm residue symbol, bl_lt_ltS
definition will not be given here. The product ranges over prime ideals diV‘ldll"lg
n and infinite places. Whenever the reciprocity law called asymmetric in §2
is proved, the above symmetric reciprocity can be deduced without dlmcultY-
On the contrary, the symmetric reciprocity does not include the reciprom.ty for
a general Kummer extension, for both a and £ must be prime to n n 12:
symmetric reciprocity. But, the symmetric reciprocity is more precise than 1)
asymmetric reciprocity in the sense that it yields thg equahty.betwecn (af fcnq
and (B/a), when is screened slightly. Thus, there 1s some difference betw
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the two. In view of the Kummer extension, however, the asymmetric reciprocity
is stronger.

2. Since the present article is entitled 4 foundation of class field theory, state-
ments on the construction of class field theory cannot be avoided. As in 1 of §2,
one can ask whether or not the reciprocity law for a general abelian extension,
i.e., Assertion A, is a direct consequence of the reciprocity law for a Kummer
extension, 1.e., Assertion K, combined with the reciprocity law for a cyclotomic
extension. This kind of problem has never been investigated carefully, but the
answer can be given in a fairly routine way. The answer is “yes” if K/F is of an
odd degree. In this case, Assertion A is obtained almost as a union of Assertion
K and the reciprocity for a cyclotomic extension. There are various ways to see
this. To give an outline of an example, assume, without loss of generality, that
K/F is a cyclic extension of degree ¢, a power of an odd prime, and denote
by ¢ a primitive gth root of unity so that K({)/F({) gives rise to a Kummer
extension. Then, by twisting this Kummer extension slightly, we can construct
another Kummer extension K*/F({) such that the equality (K—'@Q) =1 for

an ideal a of F, regarded as an ideal of F({), implies (gai) = 1. This
means that Assertion A holds for K/F . The field K* can be constructed from
K({)/F({) by a simple mechanical operation but is no longer abelian over F .
If ¢ is a power of 2, a field like K™ can also be constructed. But, in this case, {
must be a root of unity whose order is a higher power of 2 than g . Moreover,
the construction of K™ is not quite simple either but requires a more powerful
device. As such a device, we may take the local-global principle which says
that the quadratic form ax® + ,By2 =1 (a, p € F) has a global solution in
F whenever it has a solution everywhere locally in F . This principle is also
called Hasse’s principle and is the same as the norm theorem for a relatively
quadratic extension. As long as the degree of K/F is even, a similar device is
needed regardless of which way we might continue.

Hasse’s principle is important in the equivalence theory of quadratic forms,
and it was one of the fundamental theorems in the most difficult, quadratic
case in Furtwingler’s theory which includes a proof of the reciprocity law of
the power residue symbol with a prime degree. It is interesting that such an
essential assertion indicates the difference between the real reciprocity law for
a general abelian extension and a mere union of the reciprocities for Kummer
and cyclotomic extensions. From this point of view, we may understand that
the contemporary, widely-known construction of class field theory is a too trou-
blesome way to prove the first step of the general norm theorem. The proof
of the local-global principle for ax® + By2 = 1 must be independent of field
extensions, because it is an assertion purely within the basic field. Although
several proofs of the principle without field extension seem to be known, it is
likely that there are still many things to do. In the rational case, the principle
is proved very transparently by means of Minkowski’s lattice point theorem, as
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mlg%lt have been rather difficult to find in spite of its simplicity but is almost
obvious once thought of. So, let us assume the reciprocity law of the power
residue symb_Ol to be an easy fact. Then, Gauss’s contribution is still significant
pecause of his lemma as well as the discovery that gave a foundation of the
theory (5 of §3). But, the post-Gauss development should be given a whole new
evaluation from the viewpoint that the proof of the reciprocity law of the power
residue symbol was the original and proper aim. The real weight of this article is
not on a foundation of class field theory but on the point that a substantial part
of the knowledge of number theory after Gauss was not absolutely necessary in
order to prove the reciprocity law of the power residue symbol, which was a
particularly important problem in number theory.

In old times, it was rather natural to treat power residues without applying
field extensions. Such investigations are, however, mainly related to quadratic
residues and are not well generalized even in the case where some of them con-
cern higher residues. As stated above in connection with Gauss’s posthumous
manuscript, the idea explained in 2 of §7 enables a simple hint to be applicable
to general cases and is one of the characteristic features of the present article.
Because of its presence, that proof of the quadratic reciprocity concerning ra-
tional integers which is obtained by the method in this article does not coincide
with any one of the proofs given by Gauss.

4. Literature. There are very few references that are closely related to this
article. So, it is hard to provide a bibliography in the usual style. On the other
hand, a significant number of papers must be listed if all the works on power
residues and on class field theory are regarded as related to this article. For
these reasons, we add here some short topics on the literature but not a list.
The paper in which Gauss introduced complex integers and founded the
theory of biquadratic residues is Theoria residuorum biquadraticorum, 1, 1I,
Complete works, Vol. 2. Regarding Eisenstein’s papers in which he proved the
cubic and biquadratic reciprocity, as well as papers of Kummer, Furtwingler,

etc., concerning the subsequent development of the theory, a list is given in

Hasse’s Bericht. The posthumous manuscript of Gauss concerning biquadratic

residues is Zur Theorie der biquadratischen Reste, Complete works, Vol. 2. Apart
from it, Habichs, Math. Ann. 139 (1960) is one paper in which power residues
with a higher degree than 2 is treated geometrically. A proof of Hgsse S.pl'ln(.:lple
which applies Minkowski’s lattice point theorem as referred to in 2 is written

in Cassels, Rational quadratic forms, Academic Press, 1978. _ ,
In the above paper with a Latin title, Gauss said, Not much remains desirable

in the theory of quadratic residues.” But, as mentioned at the end of 3, the ideas
explained in this article are, even though restricted to the ca§e of quadratic
residues concerning rational integers, not completely included in the frame of

Gauss’s research.



16 TOMIO KUBOTA

REFERENCE

*1. Richard Hill, Ein geometrischer Beweis eines Reziprozitdtsgetzes, Mathematica Go
sis, Schriftenreihe des Sonderforsschungsbereichs Geometrie und Analysis 31 (1993)

Translated by T, KV

DEPARTMENT OF MATHEMATICS, NAGOYA UNIVERSITY, FurO-CHO, CHIKUSA-KU, N,

JaraN

*Added in Proof.



