J.F. Meyer

Abstraction:

By way of challenging Archimedes' basic underlying assumptions, this paper falsifies any \& all assumed numerical integrity(s) in
\& of the hitherto endorsed approximation of π as 3.14159...
This paper further hypothesizes the unsolved status of the Riemann Hypothesis "problem" to be owing to
a numerically deficient circle constant following a discovery of a ' Blunder of Millennia '.

Admittedly, since at least the time of Archimedes, mathematicians have been iteratively \& exhaustively approximating the circumference of a circle by way of use of polygons (of everincreasing sides n):

Figure 1.
...all while/as assuming such a comparison was \& is ever a valid one in the first place.
Specifically, mathematicians have long assumed if \& as these polygons' sides ever-approach " infinity ", their perimeters practically describe a circumference of a circle to any desired degree(s) of precision \& with no loss of numerical fidelity whatsoever.

Has this assumption ever been questioned by mathematicians? If not, why not? For should it be false: Archimedes' method would result in a mere ongoing belief the numeric approximation \& decimation 3.14159265358979 ...etc. if even carried out to trillions of decimal places... is inerrantly describing a one-and-only curvature constant as it observes a constant radius of precisely $0.5000 \ldots$..etc. with $0.000 \ldots$..etc. margin of error. This, instead of it otherwise describing two relatively unlike polygons' mere approximation of one (\& whose fidelity both begins \& ends with the very same lack of fidelity Archimedes himself began with.)

Importantly, as a matter of principle: if such comparison(s) of a polygon(s) to a circle happens to be false one(s)... it would so follow that any/all upper- and lower-bounds calculated using them (incl. Archimedes') would likewise be... false ones.

As it happens, according to the recent use of an inverse square to precisely calculate pi, Archimedes' approach (\& all subsequent polygonal folly following it) fundamentally underlies what can only be described as an ongoing "Blunder of Millennia . Unlike Archimedes' approach, this approach solves for pi with exactitude (\& is herein, to follow.)

First, instead of beginning with Archimedes' initial assumption, we begin with an even more basic one: human beings (incl. Archimedes) are fallible \& tend to err. It is therefore necessary (should that be the case here) to suspend (if even temporarily, though entirely) any \& all hitherto taken-to-be-true notions concerning pi as a consequence of Archimedes' approach.

Specifically, these notions include (though are by no means limited to):
i. the circumference of a circle whose radius is 0.5000 ... is (approx.) 3.14159...
ii. the numerical value of pi is (therefore) approximately 3.14159..., and
iii. pi is "transcendental" as was "proven" by von Lindemann et. al. in 1882.

These "proven" notions could otherwise be proven false should it ever be the case any real circumference of any real circle is verifiably not 3.14159 ... If so, it would follow this number could not possibly be pi. And, if that is so, it would follow Lindemann et. al. did not really prove pi is transcendental, but rather only proved the approximated decimation of $3.14159 \ldots$ is, and this part of the result could remain undisputed. But, if pi were another number entirely, such as an algebraic ratio expressible in an exact form(s)... in that case, pi would not be transcendental.

It is important to be conscious of any (\& ideally all) conditions under which an assumption(s), belief(s) and/or conclusion(s) hitherto-taken-to-be 'true ' by any corpus of consensus can actually be proven to be 'false ' for: the recognition of a false basic underlying assumption(s) is (as) a catalytic spark preceding any \& all possible explosion(s) of scientific discovery \& progress.

We begin our own process of discovery by questioning Archimedes' use of polygons, asking: "...on what foundation (if any) did Archimedes assume by iteratively \& exhaustively increasing inscribed \& circumscribed polygons' sides, their perimeters should reconcile the circumference of a circle without loss of numerical fidelity? Moreover, concerning a calculation of pi: is there not a better way(s)?"

We continue by allowing the possibility Archimedes made a mistake(s) owing to one or more of his assumptions, so we reject Archimedes' approach entirely \& try a new one by both inscribing \& circumscribing a circle of known radius with a perfect square(s) and comparing them on a foundation of four common right angles. In doing so, unlike Archimedes' approach, this approach satisfies the condition of a like-for-like comparison: both circle and square commonly observe one anothers' four commonly contained right angles viz.

\therefore the ratio of a squared unit side/diagonal is EQUAL to a RECIPROCAL of the diagonal of the unit (itself).

Figure 3.
In/at the unit square, an admittedly coined (though otherwise practically important) numerical agreement(s) is established: a Unitary Length / Area Numerical Equivalency (ULANE) permitting two offset dimensions $\mathrm{r}=1 / 2$ and $1 / 2=\mathrm{s}^{2}$ to be simultaneously numerically equivalent. Accordingly: the length of the radius is numerially equivalent to the area of the square inscribed therein. This important numerical agreement between two sequentially offset dimensions was/is overlooked by Archimedes' approach entirely. The equivalency implies the numerical integrity of the radius is bound to a real geometric area of a real geometric square the circle geometrically circumscribes \& thus areal truncation(s) of the square cause linear truncation(s) of the radius (and/or vice versa.)

We otherwise observe an ordinary unit square whose perimeter is $4(2 r)=8 r$ units and whose area is $(2 r)^{2}=4 r^{2}=1$ units squared while/as unitarily observing $r=1 / 2$ as the radius of the circle inscribed therein (with the area of the circle relatively $a=\pi r^{2}=\pi / 4$ units squared.) We find the circle circumscribing square $\mathrm{s}^{2}=1 / 2$ whose area is precisely half that of the larger unit square.

What we are looking for is a better way(s) to calculate the area and/or circumference of the circle without a priori assumption(s), belief(s) and/or conclusion(s) the number 3.14159... (as arrived at by Archimedean approximation methodologies) is numerically correct up-to any \& all decimal places exhaustively generated by way of them.

The scientific method (incl. any \& all practical applications of it) is not engineered to prove any theory true with any absolutely certainty, but rather conversely: it is meant to falsify any \& all theories unsupported by observed phenomena. We therefore proceed with a motive of real science: to explore \& discover new possibilities; a new way(s) of looking at things; a new way(s) to calculate without the many headaches \& traumas induced by trigonometry, calculus, endless iteration(s), approximation(s) and/or invocation(s) of "infinity" etc. We progress by incessantly \& unreservedly challenging basic underlying assumptions, beliefs \& conclusions.

Recall the radius of the concerned circle is $r=1 / 2$ units \& find its area $a=\pi / 4$ units squared to be contained by a relative circumference $4 a=\pi$ unit length. These units are strictly numerical: they primarily precede any \& all real-world units of measure, as example(s): 1 unit may be one inch, one yard, one light-second etc. The underlying numerical ratios themselves imply any \& all circles are accordingly self-referential: circumferential length 4a units surrounds area a units squared viz.

Figure 4.

Instead of inscribing \& circumscribing the circle with polygons and risking a blunder of an unlike comparison(s), here we have a circular squared area a contained by a relative circumferential length of 4 a. Unlike the polygonal approach, the circumference of the circle precisely contains $\mathrm{a}=\pi \mathrm{r}^{2}=\pi / 4$ units squared (with units and units squared being sequentially offset.)

If not immediately obvious: a quadrant symmetry between an axially coincident concentric circle \& square naturally occurs \& this, too, is catastrophically overlooked by Archimedes' approach. This symmetry happens to be an important one as it can \& should be used to calculate the only possible numerical value of (a) permitting such a self-referential relation in the first place.

Given the $r=1 / 2$ circle, if we also surround it with another squared area equal to $4 a=\pi$ units squared (thus constructing π 's annulus), we can then use an inverse square operation on the width of π 's annulus to calculate the only possible (a) permitting it to simultaneously be:
i. a circular squared area a in units squared, while/as
ii. relatively contained by length 4a in units, while/as
iii. surrounded by an annulus of area 4a units squared, while/as
iv. unitarily observing a radial length r of precisely $1 / 2=0.5000 \ldots$

We may recall the area equation of an annulus $\pi\left(R^{2}-r^{2}\right)$ wherein R is the ' major ' of two radii (hence majora) and r is the other ' minor ' (hence minora). While/as we do not yet have a numerical value for π, we do know it must be $4 a=\pi$ while/as observing $r=1 / 2$ \& we know the latter is the minora of the annulus:

$$
\begin{gathered}
4 \mathrm{a}\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)=4 \mathrm{a} \\
4 \mathrm{a}\left(\mathrm{R}^{2}-(1 / 2)^{2}\right)=4 \mathrm{a}
\end{gathered}
$$

To surround the $r=1 / 2$ circle with an annulus containing 4a units squared, a second circle must uniformly expand from the first until capuring this 4a between the two circles viz.

Which uniform width w

Figure 5.
What we do not yet know is the radial length of the other: the majora R , to contain 4 a between it \& the minora. We therefore substitute in the knowns and calculate the unknown.

> Given:
> $4 \mathrm{a}\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$
> obs. $\mathrm{r}=1 / 2$

Equate to 4a:

$$
4 a\left(R^{2}-r^{2}\right)=4 a
$$

Substitute r with the known (1/2):

$$
4 \mathrm{a}\left(\mathrm{R}^{2}-(1 / 2)^{2}\right)=4 \mathrm{a}
$$

Solve for the unknown (R) :

$$
\begin{gathered}
\left(R^{2}-(1 / 2)^{2}\right)=4 a / 4 a=1 \\
R^{2}-1 / 4=1 \\
R^{2}=(1+1 / 4)=5 / 4 \\
R=\sqrt{ }(1+1 / 4) \\
R=\sqrt{ } 5 / 2
\end{gathered}
$$

Verify:

$$
\begin{gathered}
4 a\left((\sqrt{ } 5 / 2)^{2}-(1 / 2)^{2}\right)=4 a \\
4 a(5 / 4-1 / 4)=4 a \\
\therefore 4 a=4 a
\end{gathered}
$$

\therefore an annulus'
majora $R=\sqrt{5} / 2$ \& minora $r=1 / 2$ contains an area of precisely $\pi=4$ a units squared whose radii sum to the (so-called) 'golden ratio ' phi (thus disc. a geometric relationship between phi and pi.)

Archimedes' approach catastrophically overlooks an extremely important geometric relationship between the so-called golden ratio phi and pi. Suffice it to say: there is an entire landscape of scientifically unexplored terrain concerning such a communion of constants.

The circle equations of the Major and Minor radii circles $R=\sqrt{5} / 2$ and $r=1 / 2$ are resp.:

$$
\begin{aligned}
& \text { Majora }=x^{2}+y^{2}=5 / 4 \\
& \text { Minora }=x^{2}+y^{2}=1 / 4 \\
& \therefore \text { Majora- Minora }=1
\end{aligned}
$$

Each circle equation is numerically equal to the square of R and r resp. The difference between them is predictably equal to a difference of sequential squares whose principle (p) contains both the concerned minora \& majora lengths:

$$
\begin{gathered}
p=(r \pm R) \\
p=(1 / 2 \pm \sqrt{5} / 2) \\
\text { obs. } p^{2}-p=1.000 \ldots
\end{gathered}
$$

We plot these two circles concentrically to compare their relative areas:

$$
\begin{array}{cc}
\begin{array}{c}
\text { Concentric } \\
\text { Circles: }
\end{array} & \begin{array}{c}
\text { minora } \\
\mathrm{x}^{2}+\mathrm{y}^{2}=\frac{1}{4} \quad \& \quad \frac{5}{4}=\mathrm{x}^{2}+\mathrm{y}^{2} \\
\text { Radial }
\end{array} \\
\begin{array}{c}
\text { Roots: }
\end{array} & \quad \mathrm{r}=1 / 2+\sqrt{5} / 2=R \\
\text { Rajora } \\
\text { R } 1818033987498948482 \ldots
\end{array}
$$

Figure 6.
If one begins with an $R=\sqrt{5} / 2$ circle of area (5a) and removes a circular squared area (a) from its center $(5 a-a)$, one is left with a squared area exactly equal to $\pi=(4 a)$ albeit in the form of an annulus. Significantly, the area of this π annulus is equivalent to the area of an ordinary unit circle as described by $\pi r^{2}=\pi=4$ a obs. $r=1.000 \ldots$

We are now equipped to answer an important question viz.

Figure 7.
As we've discovered, the reciprocal of the so-called golden ratio is the only uniform width satisfying pi's annulus. Given the surface area of a sphere is $4 \pi \mathrm{r}^{2}$, the presence of the so-called golden ratio phi within pi is nothing short of extremely significant (for implying 3D information is collapsable down to 2D and/or conversely 2D information is expandable up to 3D by way of.)

The question was/is important because four discrete circumferential lengths each $\mathrm{a}=\pi / 4$ units are radially squared outwards, thus allowing $4 a=\pi$ unit length and unit squared area to both be plotted and observed simultaneously.

Unlike Archimedes' polygonal approach, here we've inscribed and circumscribed the circle with squared areas for the purpose of reversing 4a units squared back down to 4 a units. With each of four lengths $\pi / 4$ uniformly squared outwards summarily capturing an area of $\pi=4$ a units squared, we not only practically circumvent Archimedes' initial assumption(s) entirely, we do so while/as diligently observing \& preserving geometric integrity.

By equating four uniform widths of π 's annulus to four arithmetic squares of length a:

$$
\begin{gathered}
4(\sqrt{ } w)^{2}=4 w=4 a^{2} \\
\therefore w=a^{2} \therefore \sqrt{ } W=a
\end{gathered}
$$

we thereby take the root of the width of π 's annulus using an inverse square such to pose \& answer one final crucial question viz.

For which a does its own square equal the reciprocal of the golden ratio?

Use an INVERSE SQUARE:

in EXACT FORM(S).

Figure 8.

If:
$(\mathrm{r}+\mathrm{r} \sqrt{ } 5)=\mathrm{p}$
for principle p
and $(-r+r \sqrt{5} / 2)=1 / p$
while/as both obs. $r=1 / 2$,
then simply:

$$
\begin{aligned}
\mathrm{a}^{2} & =1 / \mathrm{p} \\
\mathbf{p} & =\mathbf{1} / \mathbf{a}^{2}
\end{aligned}
$$

satisfying an inverse square \therefore

$$
\begin{aligned}
a^{2} & =1 / p=(\pi / 4)^{2} \\
a & =1 / V p=\pi / 4 \\
\therefore 4 a & =4 / \sqrt{ }==\pi
\end{aligned}
$$

inverse square : 3.144605511029693144...
ARCHIMEDES
dif APPROXIMATION : 3.141592653589793238 ...
'Blunder of Millennia': 0.003012857439899905 ...

Figure 9.

$$
\begin{aligned}
& \therefore \pi=8 r a=\sqrt{ }(8 \sqrt{ } 5-8) \\
& \text { obs. } r=1 / 2=0.5000 \ldots \\
& \text { for: } a=\sqrt{ } p / p \\
& \text { obs. } p=(r+r \sqrt{ } 5) \\
& \therefore \pi=4(\sqrt{ } p / p)=4 / \sqrt{ } p
\end{aligned}
$$

\& is a root of polynomial:

$$
x^{4}+16 x^{2}-256
$$

$\therefore \pi$ is not transcendental (!)

Archimedes' over 2000-year-old "approximation" method \& result for pi can be falsified by comparing the square of its own quarter $(\approx \pi / 4)^{2}$ to the pi annulus' actual geometric width of $w=(-1 / 2+\sqrt{ } 5 / 2)$:

A Radial Square of (Approx.) Pi's Quarter
 Falsification of $\pi=3.14159$... Method:

Given the pi annulus' observable width $\mathrm{w}=(-1 / 2+\sqrt{5} / 2) \approx 0.618 \ldots$ equate $w=(0.7853981633974483 . . . \text { etc. })^{2}$ and compare the latter to the former:

$$
\begin{gathered}
w \approx 0.61685027 . . . \neq \mathrm{w} \\
\mathrm{w} \approx 0.61803398 . . . \neq w
\end{gathered}
$$

$\therefore \pi \neq 3.14159$... for failing to satisfy the π annulus' uniform width of $(-1 / 2+\sqrt{ } 5 / 2)$.
Further, we should predictably expect to find (\& rather immediately) some enigmatic unsolved problem at the very root of mathematics concerning circle geometry. As it so happens, we do: in/as the notoriously unsolved status of the Riemann Hypothesis so-called "problem".

In 1859, Bernhard Riemann hypothesized the real part of all " non-trivial " zeros of his (importantly: π-dependent) zeta function is $1 / 2=0.5000 \ldots$ The "problem" is: neither he nor anyone else since could conclusively prove it. Why not? What was/is the impasse? In the same way it is sometimes more effective to address a question with another question, in this case: it is perhaps more effective to address Riemann's unproven hypothesis with another hypothesis (albeit one tacitly informative of the real underlying "problem".)

A "Blunder of Millennia"

Hypothesis
The unsolved status of the Riemann Hypothesis problem is owing to an unrecognized inexactitude in \& of the hitherto endorsed numerical approximation of the circle constant:
$\pi \approx 3.141592653589793238 \ldots$ etc.
According to the use of an inverse square, $\pi \neq 3.14159 . .$.
but rather $\pi=\sqrt{ }(8 \sqrt{ } 5-8)$ with exactitude
whose approximation is rather:
$\pi \approx 3.144605511029693144 \ldots$ etc.
while/as strictly observing a unitary length / area numerical equivalency

$$
\mathrm{r}=1 / 2=\mathrm{s}^{2}
$$

If true, in hindsight: the real "problem" would have begun in the very same unsolvable state it is in now, for the real root would be owing to a hitherto unrecognized inexactitude in \& of the circle constant pi itself. If so, clearly: prior to the construction of his analysis, Bernhard Riemann would have failed to rigorously verify (or in this case: falsify) the geometric integrity of 3.14159... before ever allowing it into his zeta function. Riemann would have assumed the number is without blemish \& so would have carried on with it accordingly. From Archimedes, to Riemann, to present: all would have commonly operated on a single unrecognized false basic underlying assumption (of a species one would have hoped to have realized before one expired.)

As for what the real culprit would be: a mere matter of principle - under no circumstance can any one prove anything ' true ' so long as one begins with a false assumption(s). For example, such a question as "...for which s does $\zeta(s)=0$? " naively assumes there are no circumstances under which there are none. One such circumstance would be: the very integrity of the ζ function itself is upset due to a deficient circle constant (the integrity of which the function primarily relies on.) In such a case, above all else: one must first-and-foremost fix the circle constant (at which point the real underlying "problem" would certainly cease to exist.)

The real lesson in waiting would be: since at least the time of Archimedes over 2000 years ago, the mere possibility of this problem ever arising would have ceased to exist the moment any one single mathematican(s), scientist(s), physicist(s) etc. invested the necessary time \& energy to scrupulously check their answer(s) for the circle constant by comparing them to an actual inverse square-based ' reality ' (such to satisfy the ' real 'part in \& of the ' real element '.)

Ultimately, in the end (or rather: since the beginning) our commonly suffered \& prevailing ' crisis in science ' would immediately be clarified by only one corollary equality predicting only one culprit categorical ignorance of only one universal constancy of one itself(!) For if:

$$
\begin{aligned}
& \mathrm{p}=(\mathrm{r}+\mathrm{r} \sqrt{ } 5) \\
& \text { while/as } \\
& 1 / p=(-r+r \sqrt{ } 5) \\
& \text { obs. } r=1 / 2=0.5000 \text {... } \\
& \text { and if: } \\
& \pi \neq 3.14159 \text {... } \\
& \text { but rather: } \\
& \pi=\sqrt{ }(8 \sqrt{ } 5-8) \\
& \text { (with exactitude) } \\
& \text { ~3.1446055... } \\
& \text { it follows: } \\
& \mathrm{r}=1 / 2=\mathrm{s}^{2} \\
& 4 \mathrm{r}=2=4 \mathrm{~s}^{2} \\
& 4 \mathrm{w}=4 / \mathrm{p}=4 \mathrm{a}^{2} \\
& \mathrm{w}=1 / \mathrm{p}=\mathrm{a}^{2} \\
& \mathrm{~V} w=1 / \mathrm{Vp}=\mathrm{a} \\
& \therefore 4 \sqrt{ } w=4 / \sqrt{ } p=4 a=\pi \\
& \therefore \quad p=16 / \pi^{2} \\
& \therefore \pi^{2}=16 / p \\
& \therefore 16=\mathrm{p} \pi^{2} \\
& \therefore 1=\mathrm{p}(\pi / 4)^{2} \\
& \text { one } \\
& \text { is a product of a golden ratio \& square of pi's quarter } \\
& \text { (albeit admittedly: only a precise pi's quarter.) } \\
& \text { Finally, should the preceding one be } \\
& \text { the one-and-only unitarily correct one, } \\
& \text { concerning it: } \\
& \text { res ipsa loquitur }
\end{aligned}
$$

