

Aliovalent co-doping and annealing effect on photoluminescence and scintillation properties of Lu₃Al₅O₁₂: Ce³⁺ epitaxial films

M. Rathaiah, M. Kucera

Charles University, Faculty of Mathematics and Physics, Prague

Z. Lucenicova, A. Beitlerova, R. Kucerkova, L. Havlak, M. Nikl Institute of Physics AS CR, Cukrovarnicka 10, Prague

13th April, 2018, ASCIMAT Workshop, Prague

- Motivation Ce³⁺ doped Lu₃Al₅O₁₂ garnets Aliovalent co-doping and annealing effect
- Experimental section
- Results & Discussion
 - Absorption
 - PL Excitation & Emission
 - PL Decay
 - Radioluminescence
 - Alpha Decay
- Conclusions

Motivation

- Scintillation materials have thundering applications in the field of high-energy physics, medical imaging, geological exploration, homeland security *etc*.
- Ce³⁺ doped garnets are good scintillators due to their less point defects and traps, large band gap, high chemical and thermal stability, high density, broad transmission range.
- The aliovalent co-dopants (Mg²⁺, Ca²⁺ etc.) could alter the point defect structure, reduces the rise and decay times, and suppresses the charge carrier trapping on defect sites. The Si⁴⁺ co-doping would give interesting results.
- Annealing the Mg²⁺/Ca²⁺ rich Ce³⁺ doped garnets in reducing atmosphere at higher temperatures would give exciting results.
- The liquid phase epitaxy is a unique technique for the growth of high quality single crystalline films with minimal concentration of the vacancy- and antisiterelated defects.

Experimental work

- Growth technique: Liquid phase epitaxy (LPE)
- Used fluxes: BaO B₂O₃ BaF₂
- Growth temperature: ~1030 °C
- ➢ Growth rate: ∼0.12 µm/min
- Composition» Ce_{0.02}Lu_{2.98}Al₅O₁₂:X [X=Mg(0-7000 ppm), Ca (0-6000 ppm), Ca+Si)
- Thickness of grown films: 30-12 μm

Absorption: Specord 250, range: 190-1100 nm

Excitation & Emission: Horiba JY Fluoromax 3

Radioluminescence: Custom made spectrofluorometer 5000M,

Horiba Jobin Yvon using an X-ray tube (10 kV, 50 mA)

PL Decay: Spectrofluorometer 5000M, nanoLED, Hamamatsu R7207-01 and Tektronix TDS3052C digital Phosphor Oscilloscope

Alpha decay: Source-²⁴¹Am, 5 mV

Annealing: 1100 °C, 10 hrs, reducing atmosphere Ar: 5%H₂

Results & Discussion

Absorption

Excitation & Emission

Radioluminescence

Alpha decay

Conclusions

- Aliovalent (Mg²⁺, Ca²⁺, Si⁴⁺) co-doped Lu₃Al₅O₁₂: Ce³⁺ epitaxial films have been prepared by liquid phase epitaxy technique.
- The absorption results indicate that at high Mg²⁺ or Ca²⁺ co-doping, all the Ce³⁺ ions tend to convert into Ce⁴⁺ ions due to change of valence. Upon adding Si⁴⁺ ions into the highly Ca²⁺ co-doped Lu₃Al₅O₁₂: Ce³⁺ films, the Ce³⁺ ions have been re-established due to charge compensation.
- Intense visible emission is observed from low Mg²⁺ or Ca²⁺ co-doped Lu₃Al₅O₁₂: Ce³⁺ films, excited at 445 nm. At high Ca²⁺ co-doping, the emission gets quenched, but Si⁴⁺ addition could regenerate the visible emission.
- At low Mg²⁺ or Ca²⁺ content, the decay curves are found slightly nonexponential with mean decay time around 55 ns.
- After annealing the highly Ca²⁺ co-doped Lu₃Al₅O₁₂: Ce³⁺ films at 1100 °C in reducing atmosphere, part of the Ce⁴⁺ ions were converted into Ce³⁺ ions.

