
Copyright © 2017 Erick Engelke

The following is from the upcoming 2
nd Edition of Enterprise Delphi Databases.

Sharding and De-Normalization for Speed and Freedom

Usually databases should be normalized, which generally means
storing different but related pieces of information in different logical
tables called relations.

For example, a Person table might express your userid, name,
phone number, etc. A relation would express a different fact which
might relate you to a department, a shared office building, etc.

Un-normalized databases are ones that have not been normalized
yet, usually due to inexperience.

De-normalizing is different from un-normalized tables, it is a more
advanced strategy of optimizing performance of frequent read opera-
tions at the expense of less frequent operations. This is accomplished
by partially and purposefully abandoning the normalized model:
adding redundant copies or grouping data differently.

We will discuss several common examples.

Storing Meta-Information

A common use is to store meta-information, such as the count of
sub-entities under some form of umbrella. Consider a school board
system with tables about schools.

It is probably handy to know the student count at each school in
everyday operations. Since some students take courses at multiple
different schools (night classes, or enrichment programs), the model

4 erick engelke

looks like:

And that quantity can be calculated with :

SELECT COUNT(*)
FROM

s c h o o l _ e n r o l l
NATURAL JOIN school

WHERE schoolname = ’PCVS ’ ;

Now suppose the web page displays the schools and their enroll-
ments 500 times per hour. That’s a lot of database querying.

It would be more efficient to add a studentCOUNT integer to the
schools

and just display:

SELECT
studentCOUNT

FROM
s c h o o l _ e n r o l l

WHERE
schoolname = ’PCVS ’

Then whenever we add a new student, something we do every few
days, we update schoolCOUNT to have the correct new count.

This significantly reduces the number disk requests for a very
common read operation, and comes only at some slight expense
when we add, delete or change enrollment.

sharding and de-normalization for speed and freedom 5

Storing One-To-Many Relations

Suppose your school board mobile application will display each
student’s timetable at every class change. Each student can take up to
8 courses, and you have 1,000 students at each of 50 schools. That’s
50,000 queries per inter-class gap occurring about 8 times per day.

Each user’s query is something like this for student 2301 at period
1:

SELECT
courseNAME

FROM
student
NATURAL JOIN c o u r s e _ e n r o l l
NATURAL JOIN schoolcourse

WHERE
studentID = 2301

and coursePERIOD = 1

What if you cached an array of courseIDs[1..8] in the student
record, your database would not have to rescan all those tables;

So we would only have to query:

SELECT
s tudentcourses

WHERE
studentID = 2301

6 erick engelke

And select the first element out of the array, where the array
has:COURSE.

This reduced disk reading comes at expense when students add or
drop courses, usually two actions per school semester.

mORMot easily handles dynamic arrays, and that’s one way to do
it, but I like the sharding alternative.

TSQLstudent = c l a s s (TSQLRecord)
Private

Fstudentcourses : v a r i a n t ;
Published

Studentcourses : v a r i a n t read Fstudentcourses
write Fstudentcourses ;

End ;

/ / s e t your c o u r s e s
Student . s tudentcourses := _ObjFast ($ [$ ’ course1 ’ ,

’ENG233$] $, ’ course2 ’ , ’ SCI203 ’ , . . . $] $) ;

// get period 1

coursename := JSONGet (student . s tudentcourses ,
’ course ’ + I n t T o S t r (1)) ;

This will speed up performance incredibly over the normalized
version as fewer disk accesses are needed.

In a more realistic model, the school board will likely offer the
same course at multiple schools and some students will be cross-
enrolled at other schools for certain courses like remedial math, ex-
tended languages, etc.

Now to show the course for period 1 for student 234

SELECT
schoolname , couseName

FROM
student stu
JOIN c o u r s e _ e n r o l l ce
JOIN c o u r s e _ a v a i l a b l e ca
JOIN course c
JOIN school s ON stu . studentID = ce . studentID ,

ce . school_course_ID = ce . school_course_ID ,
ca . courseID = ce . courseID ,
s . schoolID = ca . school

WHERE
studentID = 234 AND period = 1 ;

And how many times per second will this query be done?

sharding and de-normalization for speed and freedom 7

Sharding can greatly relieve the database if we store an array of
schoolName : courseName in the student record.

Student . s tudentcourses = _ObjFast ($ [$ ’ course1 ’ , ’PCVS : ENG233$] $,
’ course2 ’ , ’ Eastwood : SCI203 ’ ,\ l d o t s $] $) ;

Now we can just read the student record for studentID = 234 and
grab the first element of the studentCourses array.

Sharding to denormalize adds extra write operations. For this
example it means we have to update the student record every time
we add or delete a course for the student.

Even though we have denormalized the table, other purposes
the normalized full structure be kept intact as though we had not
denormalized.

For example, suppose we realize we could eliminate the course_enroll
table in this example because we have the data repeated in the stu-
dentCourses array. But then if we wanted to create a class list, we
would have to iterate through every single student in the database to
find those enrolled in the course at a particular school.

Also note, sharding in this implementation will not speed up unre-
lated queries like displaying a class list. To accomplish fast class lists
that we would have to add an array of students to course_available.

8 erick engelke

Storing Linked Lists

There are many situations where you wish to set ordering of data,
but then you typically have to maintain an index of all the row en-
tries. That slows down when you need to insert or delete an element.
If your list is very large, and additions or deletions are frequent, your
performance is lost just trying to maintain list order.

A standard computer science solution is to use linked list. And we
can do that with mORMot.

TSQLobject = c l a s s (TSQLRecord)
Private

Fprev , Fnext : TID ; Published
prev : TID read Fprev write Fprev ; next : TID read Fnext write FNext ;

End ;

sharding and de-normalization for speed and freedom 9

Sparse or Unexpected Fields

Sometimes you could use a gazillion rarely used fields, but you will
rarely search on them, or maybe you cannot anticipate all of them at
design time.

For example, an asset management database may solve all your
problems, but suddenly someone asks you to store whether the mon-
itor is dual-voltage capable. Do you rewrite all your access screens
and update the database schema for every request like this?

Sharding can be your salvation in these situations. Since it uses
variants, it can store any imaginable field name and value or values if
you want an array.

Sharding has very small additional cost to performance or space
unless you wish to interpret the data. The BLOB format is an efficient
use of space and there is very little processing involved managing
it. When you create, read, update or delete the sharded data there
is a small CPU penalty compared to other fields, but it is orders of
magnitude smaller than separate disk accesses typically required for
normalized tables.

On ORM in mORMot

If you choose to use the ORM in mORMot (and avoid SQL entirely),
think of your system as an object repository and totally de-normalize
your database.

For example, here is how we could re-envision the multiple stu-
dents attending multiple schools to attend classes based on common
course names.

Most developers are surprised to see that one table might contain
a list of, say, 1,500 students. But an array of 1,500 TIDS is just a single
efficient 12 kB BLOB. In modern systems that is a small amount of
memory.

Final Thoughts

mORMot supports normalized joined tables through its SQL inter-
face, it also supports limited normalized tables.

mORMot’s ORM recommends de-normalized objects arrays and
sharding rather than pure relational tables. The performance is often
optimized by reducing disk reads.

10 erick engelke

	Sharding and De-Normalization for Speed and Freedom

