Factorisation of Lyndon words

Theorem (Lyndon)

A word $w \in \mathcal{A}^{+}$is a Lyndon word if and only if $w \in \mathcal{A}$ or there exists two Lyndon words u and v such that $w=u v$ and $u \prec v$.

In general, this factorisation is not unique since, for example, $w=a a b a c$ has two such factorisations:

$$
w=(a)(a b a c) \quad \text { and } \quad w=(a a b)(a c)
$$

However, there is a unique factorisation of a given Lyndon word as a product $u v$ of two Lyndon words u, v with $u \prec v$, called the standard factorisation.

Theorem (Chen-Fox-Lyndon 1958)

If $w=u v$ is a Lyndon word with v its lexicographically smallest proper suffix, then u and v are also Lyndon words and $u \prec v$.

So the standard factorisation of a Lyndon word $w=u v$ is obtained by choosing v to be the lexicographically least proper suffix of w, which also happens to be the longest proper suffix of w that is Lyndon.
Example: $w=a a b a c$ has standard factorisation $w=(a)(a b a c)$.

An Application in Algebra

- In algebraic settings, Lyndon words give rise to commutators using standard factorisation iteratively.
- For example, the Lyndon word $a a b a b b$ with standard factorisation $(a)(a b a b b)$ gives rise to the commutator $[a,[[a, b],[[a, b], b]]]$.
- These commutators can be viewed either as elements of the free group with $[x, y]=x y x^{-1} y^{-1}$, or as elements of the free Lie algebra with $[x, y]=x y-y x$.

In either case, Lyndon words give rise to a basis of some algebra.

- For specific details, see [C. Reutenauer, Free Lie Algebras, 1993] and [M. Lothaire, Combinatorics on words, 1983].

Generation of Lyndon Words

Duval's Algorithm: Generates the Lyndon words over \mathcal{A} of length at most n ($n \geq 2$).

If w is one of the words in the list of Lyndon words up to length n (not equal to $\max (\mathcal{A})$), then the next Lyndon word after w can be found by the following steps:

1 Repeat the letters from w to form a new word x of length exactly n, where the i-th letter of x is the same as the letter at position $i(\bmod |w|)$ in w.

2 If the last letter of x is $\max (\mathcal{A})$ for the given order on \mathcal{A}, remove it, producing a shorter word, and take this to be the new x.

3 If the last letter of x is $\max (\mathcal{A})$, then repeat Step 2. Otherwise, replace the last letter of x by its successor in the sorted ordering of the alphabet \mathcal{A}.

Note: Since, in general, the factorisation of a Lyndon word as a product $u v$ of two Lyndon words u, v with $u \prec v$ is not unique, Duval's algorithm may produce the same Lyndon word more than once.

Duval's Algorithm in Action

Let's use the algorithm to generate all the Lyndon words up to length 4 over the alphabet $\{a, b\}$ with $a \prec b$.

We begin with the Lyndon words of length 1: a and b. List: $\mathcal{L}=\{a, b, \ldots\}$
Lyndon words of length at most 2:

$$
\begin{aligned}
& a \rightarrow \longrightarrow a a \longrightarrow a b \\
& b \longrightarrow b b \longrightarrow b \longrightarrow=
\end{aligned}
$$

Updated List: $\mathcal{L}=\{a, b, a b, \ldots\}$
Lyndon words of length at most 3:

$$
\begin{array}{r}
a-a a a \longrightarrow a a b \\
a b \longrightarrow a b a \longrightarrow a b b \\
\hline a b
\end{array}
$$

Updated List: $\mathcal{L}=\{a, b, a b, a a b, a b b, \ldots\}$

Duval's Algorithm in Action . . .

Lyndon words of length at most 4:

$$
\begin{aligned}
a & \longrightarrow a a a a
\end{aligned}>a a a b
$$

Updated List: $\mathcal{L}=\{a, b, a b, a a b, a b b, a a a b, a a b b, a b b b, \ldots\}$

And on it goes ...

