Factorisation of Lyndon words

Theorem (Lyndon)

A word $w \in A^+$ is a Lyndon word if and only if $w \in A$ or there exists two Lyndon words u and v such that w = uv and $u \prec v$.

In general, this factorisation is not unique since, for example, w = aabac has two such factorisations:

w = (a)(abac) and w = (aab)(ac).

However, there is a unique factorisation of a given Lyndon word as a product uv of two Lyndon words u, v with $u \prec v$, called the standard factorisation.

Theorem (Chen-Fox-Lyndon 1958)

If w = uv is a Lyndon word with v its lexicographically smallest proper suffix, then u and v are also Lyndon words and $u \prec v$.

So the standard factorisation of a Lyndon word w = uv is obtained by choosing v to be the lexicographically least proper suffix of w, which also happens to be the longest proper suffix of w that is Lyndon.

Example: w = aabac has standard factorisation w = (a)(abac).

An Application in Algebra

- In algebraic settings, Lyndon words give rise to commutators using standard factorisation iteratively.
- For example, the Lyndon word *aababb* with standard factorisation (a)(ababb) gives rise to the commutator [a, [[a, b], [[a, b], b]]].
- These commutators can be viewed either as elements of the free group with $[x, y] = xyx^{-1}y^{-1}$, or as elements of the free Lie algebra with [x, y] = xy yx.

In either case, Lyndon words give rise to a basis of some algebra.

• For specific details, see [C. Reutenauer, *Free Lie Algebras*, 1993] and [M. Lothaire, *Combinatorics on words*, 1983].

Generation of Lyndon Words

Duval's Algorithm: Generates the Lyndon words over \mathcal{A} of length at most n $(n \geq 2)$.

If w is one of the words in the list of Lyndon words up to length n (not equal to $\max(\mathcal{A})$), then the next Lyndon word after w can be found by the following steps:

- 1 Repeat the letters from w to form a new word x of length exactly n, where the *i*-th letter of x is the same as the letter at position $i \pmod{|w|}$ in w.
- 2 If the last letter of x is max(A) for the given order on A, remove it, producing a shorter word, and take this to be the new x.
- 3 If the last letter of x is max(A), then repeat Step 2. Otherwise, replace the last letter of x by its successor in the sorted ordering of the alphabet A.

Note: Since, in general, the factorisation of a Lyndon word as a product uv of two Lyndon words u, v with $u \prec v$ is not unique, Duval's algorithm may produce the same Lyndon word more than once.

Amy Glen (MU, Perth)

Duval's Algorithm in Action

Let's use the algorithm to generate all the Lyndon words up to length 4 over the alphabet $\{a,b\}$ with $a\prec b.$

We begin with the Lyndon words of length 1: a and b. List: $\mathcal{L} = \{a, b, \ldots\}$

Lyndon words of length at most 2:

$$\begin{array}{c} a \longrightarrow aa \longrightarrow \boxed{ab} \\ b \longrightarrow bb \longrightarrow b \longrightarrow \end{array}$$

Updated List: $\mathcal{L} = \{a, b, ab, \ldots\}$

Lyndon words of length at most 3:

$$\begin{bmatrix} a \\ \longrightarrow aaa \\ ab \\ \longrightarrow aba \\ \longrightarrow abb \\ \end{bmatrix}$$

Updated List: $\mathcal{L} = \{a, b, ab, aab, abb, \ldots\}$

Duval's Algorithm in Action ...

Lyndon words of length at most 4:

)

Updated List: $\mathcal{L} = \{a, b, ab, aab, abb, aaab, aabb, abbb, \ldots\}$

And on it goes ...