

Verification of Hydrometeor Classification with Dual-Polarisation Radar

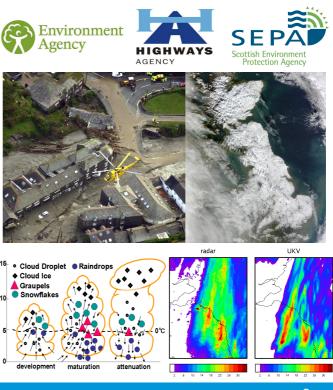
Ben Pickering

Supervisors

Dr. Ryan Neely III, Dawn Harrison (Met Office), Prof. Alan Blyth

National Centre for Atmospheric Science

UNIVERSITY OF LEEDS

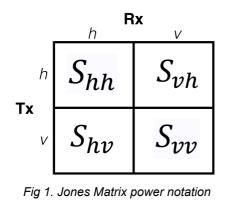

1

Met Office

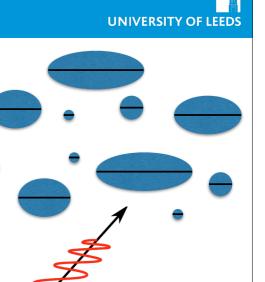
ben.pickering@ncas.ac.uk | 🎾 @wx_radar

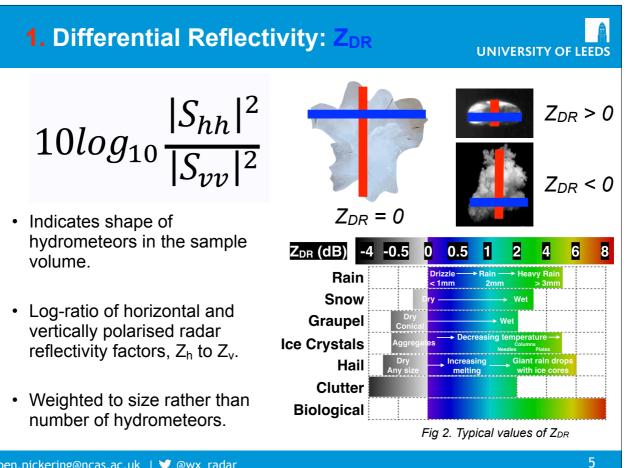
Why is Radar-Derived Hydrometeor Classification Important?

- More accurate surface precipitation quantification for snow, hail.
- The snow/rain boundary can be seen by forecasters near real-time.
- Flood forecast modelling (Environment Agency, SEPA).
- Atmospheric hydrometeor information can be assimilated into NWP models.
- Indicates interior cloud microphysical processes for additional research improved NWP parameterisations.
- Radar has excellent temporal (5 minute) and 3D spatial resolution (<1km, 5 tilts).


Single-Polarisation Radar

- · Horizontally polarised beam.
- One output: Radar reflectivity factor [z] which is the sum of all hydrometeor diameters to the sixth power.
- Weighted to the size of the hydrometeors rather than the number concentration.
- However, lots of small liquid droplets can have the same reflectivity as a few large drops.
- For QPE, Z—R relationship assumes all liquid hydrometeors.


ben.pickering@ncas.ac.uk | У @wx_radar


Dual-Polarisation Radar

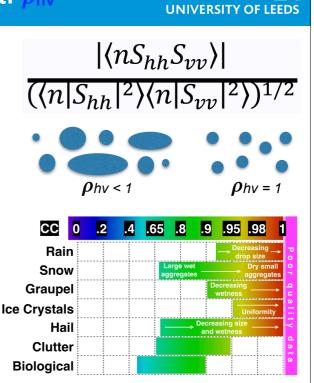
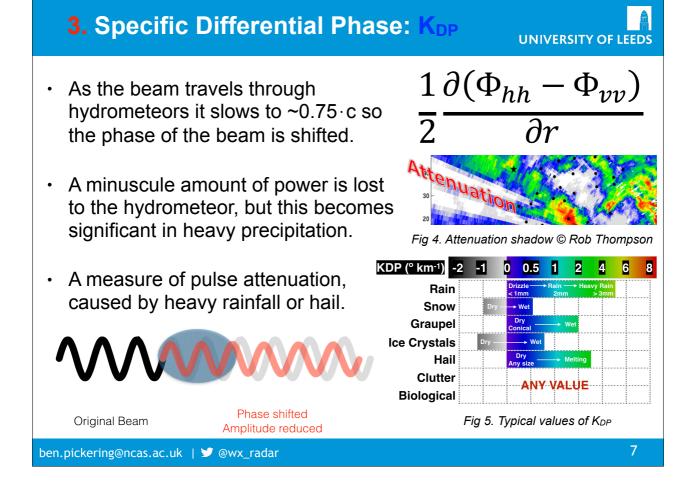
- Radar backscatter cross-sections are different for each polarisation.
- Several additional variables are derived from the Jones scattering Matrix

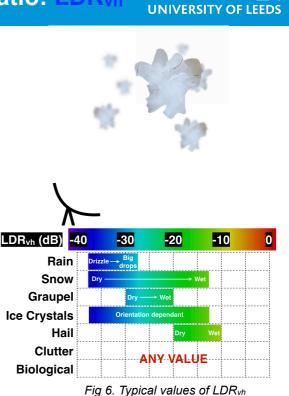
- 1. Differential Reflectivity: ZDR
- 2. Correlation Coefficient: ρ_{hv}
- 3. Specific Differential Phase: K_{DP}
- 4. Linear Depolarisation Ratio: LDRvh

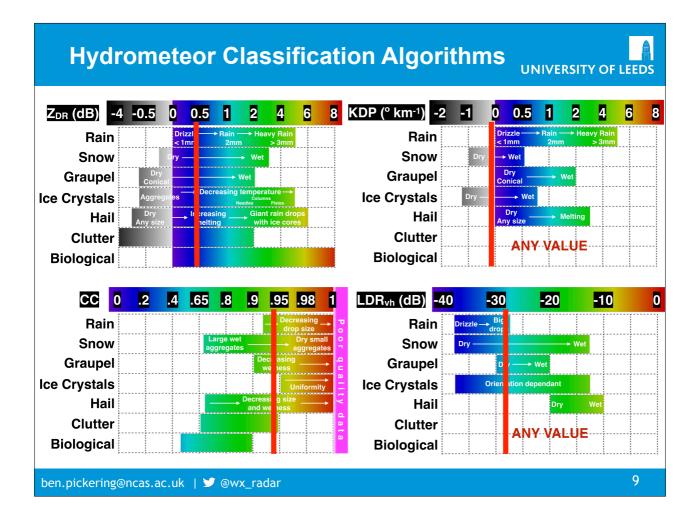
ben.pickering@ncas.ac.uk | 💆 @wx_radar

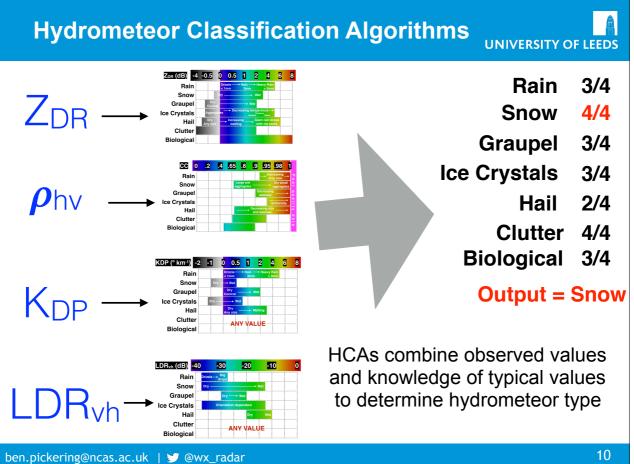
2. Correlation Coefficient: $\rho_{\rm hv}$

- The amount radar pulses differ from one another within one ray.
- Indicates the uniformity of the scattering properties of the target *i.e.* the diversity of hydrometeor shapes.
- Equivalent to *r-value* in statistics.
- Mainly used to show non-٠ hydrometeor objects like birds, insects or ground clutter which can therefore be removed from the raw data. Melting ice distinct.

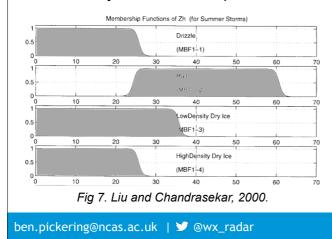

Fig 3. Typical values of ρ_{hv}




4. Linear Depolarisation Ratio: LDRvh

$$10 \log_{10} \frac{|S_{vh}|^2}{|S_{hh}|^2}$$

- Ratio of the cross-polar to co-polar backscattered signal powers. The cross-polar is transmitted in the horizontal and received in the vertical polarisation.
- Shows how much energy has switched to the other polarisation.
- Indicates slanted, tumbling (hail) or wobbling (large droplets) objects.



HCA Literature

- Have mainly been designed for American S-band radar (Park et al. 2009) or mobile X-band (Pazmany et al. 2013). UK network is C-band.
- Commonly combine dual-pol variables with other data such as sample height, reflectivity, and <u>NWP temperature</u>.

Notable Papers

2000: Liu and Chandrasekar, fuzzy logic with neural learning i.e. selfcorrection. Verified: 4 instrumented aircraft flights.

2009: *Park et al.*, USA S-band wavelength scheme (implemented 2011-2013). *Verified: human analysis of MCS & crowdsourced reports of a winter storm.*

2013: *Al-Sakka et al.*, MeteoFrance fuzzy logic scheme combining multiple wavelength radars. *Verified: several human-judged cases.*

11

Project Questions Q1: What is the best method to evaluate the skill of hydrometeor classification and surface precipitation type products? Q2: What is the uncertainty of current surface type products, using single-pol radar and NWP? Q3: How much does dual-polarisation radar reduce the uncertainty in hydrometeor classification? Q4: What is the impact of having improved skill in hydrometeor classification?

The Importance of Uncertainty Quantification

- Forecasters can estimate the probabilistic risk to customers from damaging precipitation such as hail.
- Uncertainty can be carried forward into QPE to give a range or probabilistic value.
- Subsequent research using radar hydrometeor data with error values will be more rigorous.
- Allows hydrometeor data to be used as initial conditions in ensemble forecasts.

ben.pickering@ncas.ac.uk | 🎔 @wx_radar

UK Met Office C-Band Radar Network

- 15 Met Office owned radars, 3 non-MO radars.
- 5 minute scans at 5 elevation tilts (+ 1 tilt LDR).
 All scans combined onto 1 km² cartesian grid of surface rainfall rate (QPE). C-Band (5.6 GHz)
- Incremental upgrade to DP began in 2012.
 Scheduled to complete November 2017.
 2 radars left and in progress. 5 years total.

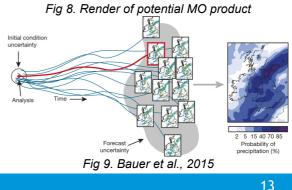
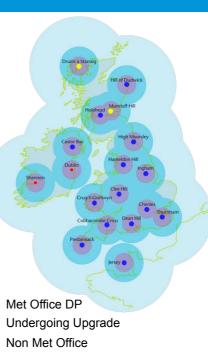



Fig 11. Clee Hill (DP).



Big Drops

Graupel

29%

UNIVERSITY OF LEEDS

Fig 12. Met Office radar network status as of June 2017. Circles indicate resolution.

UNIVERSITY OF LEEDS

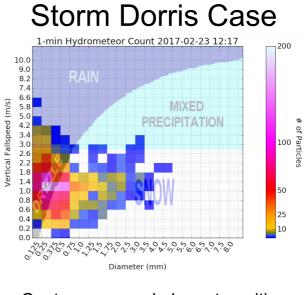
Verification Data UNIVERSITY OF LEEDS In-situ Inferred (at the surface) (at beam-height) 1. FAAM aircraft 1. Met Office surface station reports (SYNOP) 2. Crowdsourced: BBC 2. Tethered Balloon Weather Watchers Expensive and dangerous 3 UAV Expensive Illegal to fly above 120m i.e. will not reach radar beam-height 3. DiVeN... 15 ben.pickering@ncas.ac.uk | У @wx_radar

DiVeN: Overview UNIVERSITY OF LEEDS Network of 14 laser disdrometers measuring diameter and fall speed of every hydrometeor. Empirical relationships imply hydrometeor type: Rain, Snow, Graupel, Hail, Mix Site 01, 1-min Hydrometeor Count 2017-03-07 23:36 200 10.0 GRAUPEL HAIL 9.0 8.2 6.0 5.8 5.0 4.2 Vertical Fallspeed (m/s) MIXED PRECIPITATION of Particles 100 3.0 2.0 1.8 50 25 10 Diameter (mm) Fig 14. DiVeN locations - Chilbolton has 2 devices. Fig 13. Sample plot from a disdrometer 16 ben.pickering@ncas.ac.uk | 🎔 @wx_radar

DiVeN: Install & Open Data

- 2,300 miles in 24 days
- Twin setup @ Chilbolton
- Opportunistic Storm Dorris measurements of snow in Scottish Uplands

ben.pickering@ncas.ac.uk | У @wx_radar

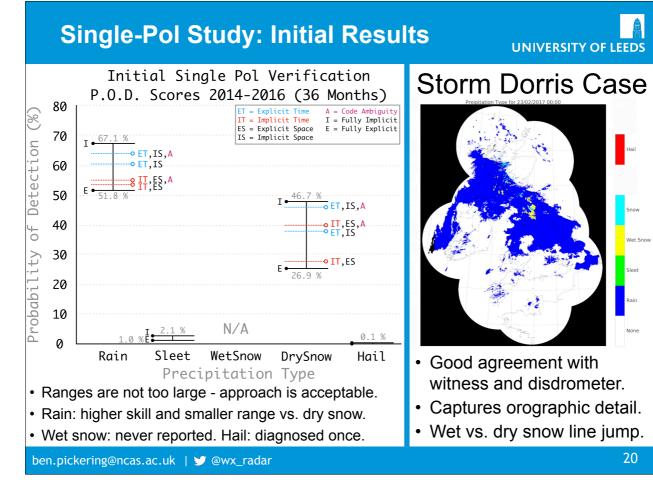


- NRT (5 min) data on NCAS website.
 - sci.ncas.ac.uk/diven

17

DiVeN: Validation Twin Setup @ Chilbolton Chilbolton differences in hydrometeor count Feb-Apr 100000 10.0 9.0 8.2 7.4 6.6 Vertical Fallspeed (m/s 5.8 5.0 4.2 ⁵ of Particles 3.4 3.0 2.6 2.2 1.8 1.4 50000 20000 0.8 0.6 10000 04 2000 Diameter (mm) • 7 million hydrometeors measured. 10% difference in total count. Oddly low difference in first two columns. Future work: time series. ben.pickering@ncas.ac.uk | 🎔 @wx_radar

UNIVERSITY OF LEEDS



- Captures several phase transitions.
- Rain vaguely follows Gunn-Kinzer.
- Drizzle remains at all times.

Single-Pol Study: Overview & Method

Uses the surface rain rate and model 0°c wet-bulb isotherm from NWP model. Accounts for orography.			
5 classes broadly defined. Used by MO forecasters			Snow fraction > 0.6 Yes & Snow RR > Rc
Ran since 2013 so > 3 years of data is archived			D. Freezing level below Yes Sleet
	Explicit	Implicit	Freezing level < 500m Yes Wet Snow
Spatial	1 pixel 1 km x 1 km	9 pixels 3 km x 3 km	RR > Rc
Temporal	1 scan xx:00 only	5 scans xx:00 ± 10 mins	Rain
SYNOP Code	Only one precip type mentioned	Allow Ambiguity 93: 'Thunderstorm in past hour, slight snow (or rain & snow, or	Strict and lenient approaches reveal the <i>range</i> of accuracy.
Ambiguity	160: 'RAIN'	hail)' Would be a bit if radar said	So the "true" accuracy must exist between those extremes
ben.pickering@ncas.ac.uk 🎔 @wx_radar			19

UNIVERSITY OF LEEDS

Future Work (Year 2)

- Methods used in single-pol verification can be applied to dual-pol verification. Cartesian grid to polar grid.
- Attempt to get crowdsourced data and perform accuracy analysis on it.
- Sift through FAAM data for compatibility with DP upgrade: is flight data in range of a DP radar? Were HC instruments working at the time?
- Assist with the collection and analysis of FAAM data on PICASSO field campaign this winter.
- Submit 2 papers this year: DiVeN & Single-pol verification.

ben.pickering@ncas.ac.uk | 🎔 @wx_radar

21