

1

How To Patch The Xerox Phaser
3100MFP So That It Doesn’t Ask For A

Smart Card On Every Toner Change

First, I have to note that this tutorial requires some knowledge in electronics (mainly soldering)
and that it’s not a software patch. Therefore, it’s not exactly aimed at your every day user. If
you’re handy with a soldering iron, yes, this tutorial is for you .

Also, I have to note that this hardware patch fools the printer into thinking that it’s always got
the same toner inside and that it’s always 100% full. So, if the printer starts printing with a
poorer print quality, then the toner’s probably empty and you need to replace it. Also, as
mentioned in the title, this patch doesn’t require you to insert a smart card after you replace the
toner (the toner’s always at 100%, thus, you don’t need to reset it), so you can use cheaper
compatible toners that don’t come with a smart card .

Now, let’s get started. There are some prerequsites that you’ll require in order to apply this
patch to the printer.

• A soldering iron. Preferably one with a small tip since you’ll need it to remove one SMD

chip on the mainboard. An SMD rework station would also be nice, but it’s not necessary at
all, everything can be done with a simple soldering iron . I’ve also included a few clips that
shows how to unsolder SMD components with a simple soldering iron, so even though special
tools can be a plus, they aren’t necessary.

• An EEPROM programmer. If you have an “advanced” one (like Willem EPROM Programmer
or the MiniPRO TL866 one), they will do the job nicely. But, if you don’t own any EEPROM
programmer, look for the CH341A Programmer on AliExpress or eBay. They are dirt cheap
and do the job really well (image below).

2

I also suggest you get a bundle with an SMD clip, as in the second image (the programmer
with the black PCB). If not, you’ll have to do a second job soldering the chip to the
programmer, but if you don’t plan on using the programmer in the future, that’s fine as well.

I’ve also included one of the applications for Windows that can be used with this type of
programmer, as well as the Windows drivers for the programmer. Connect the programmer
to the PC/laptop and load the drivers for the programmer via Device Manager. Use the
programmer in EPP mode (there’s a jumper that sets the programmer to work either in serial
or parallel/EPP mode, it’s probably marked as P/S) and load the drivers for the programmer
while in EPP mode (there are different drivers for parallel and serial mode operation). If
you’re on Linux, I believe modern kernels (anything above Linux kernel 5.x) should include
the drivers for this programmer by default. You can use an application like flashrom in Linux
to program EEPROMs (or many other MCUs that have EEPROMs in them). Flashrom should be
in your distro’s default repository (I know Ubuntu has it, as well as Arch, Fedora, Suse and
Void).

OK, now that we’re set up, we can begin. Open up the right cover of the printer (image below).
I’ve also included a video that covers the complete disassembly of a Xerox Laser 3100MFP, so if
you don’t know how, just watch the video.

3

Now, open up the metal covers and locate these two chips.

Both of them are EPROM (EEPROM) chips. The one in the yellow circle holds the data about how
much toner is left in the cartridge. The one in the blue circle holds data about previously used
cartridges (or at least I think so). So, what we need to do is “freeze” both of them (no new data
gets written on both of them). But, before we freeze them, we need to “fill” the toner cartridge
“full”, meaning we have to write data on the chip in the yellow circle (24C16) that “tells” the
MCU that the toner’s full. In order to do this, we need to desolder the chip and write the data on
it, then solder it back. I already mentioned that I’ve included some clips that depict how you can
desolder SMD components with just a simple soldering iron, so if you’re not familiar with
soldering or desoldering SMD components, take a look at the clips and practice on something (an
old motherboard would do just fine ). After we’ve desoldered the chip, we have to connect it to
the programmer in order to write the data on it that “tells” the MCU/CPU that the toner is full. I’ll
be using the CH341A Programmer hardware with the Ch341Programmer application.

4

A general overview of the programmer’s user interface window is given in the images above.

First, we need to select the chip that we’ve got connected to the programmer, so that the
programmer knows how to read/write data from/to the chip. The Detect Chip button can do this

5

automatically, but in case it doesn’t detect our chip, hit the chip selector button till the button
reads EEPROM 24 XX. From the menu below the chip selector button select 24C16 (this is the
EEPROM chip we’ve got loaded in the programmer).

Next, we need to save the data from the chip, in case something goes wrong or just doesn’t
work. So, we hit the Read Data From Chip button so that the data that’s located in the chip
can be read to the application’s buffer. After the programmer finishes reading the data (there’s a
progress window), we’ll save the buffer data to file using the Save Buffer Data To File button.
A window will pop up asking where to save the file. The location and name don’t matter as long
as you know where you saved them and the filename under which the data is saved. I usually
use backup.bin for the filename.

It’s also preferable to completely erase the chip afterwards. We’ll use the Erase Chip button for
this. After we hit the button, a progress window will appear indicating the progress of the
operation. When the operation is over, just close the window.

Now, we’ll load the data to buffer that “tells” the MCU/CPU of the printer that the toner cartridge
is full. The file that we need to load is Xerox Phaser 3100MFP (EEPROM 24C16, 100%
Toner Level).bin (you can find the file in the Dumps.7z archive). The content of the buffer
data will change when we load this file in the application. Next, we need to write this data to the
chip. We use the Write Chip button for this. A progress window will pop up indicating when the
operation is over. It’s also preferable to verify that the data in the chip an exact binary replica of
the data in the buffer. We’ll use the Verify Chip Data With Window Data for this. If the
application reports that the data on the chip is identical to the data in the buffer, that means that
the write operation completed successfully. Just close the pop up window with the progress bar,
that’s it .

Next, we need to do some soldering work . Remove the 24C16 EEPROM from the programmer
(desolder it, or if you were using clips, remove the chip from the clip) and solder it back on the
main board of the printer. But, we’ll also add a resistor that prevents new data being written to
the chip, so that the MCU/CPU “thinks” that the toner is always full. This hack basically freezes
the chip, the toner is always at 100% . The value of the resistor is 1K and it’s added between
pins 7 and 8 of the chip, as depicted in the images below.

6

I used a 910Ω resistor, I didn’t have a 1K one at my disposal, LOL . The value is close enough
though and the value is not really crucial, 1K, 1.1K, 1.2K, 910Ω, doesn’t really matter as long as
the value is close to 1K as possible . The power rating of the resistor should be 0.25W. A
higher value can be used, but not a lower one (haven’t tested this with a 0.125W resistor… my
guess is, it should work fine as well, but just in case, keep the power rating of the resistor to
0.25W).

Next, we need to patch the other EEPROM, the 93C46 one. As noted previously this patch will
lock down the memory of the 93C46, freezing it in time, thus every time the data about the
toner’s level and the unique toner’s ID is read from the 24C16, this will be a “new toner” for the
MCU, which basically means that we can reload the same toner over and over again (fill it
manually if you’d like doesn’t matter, LOL ) and the toner will always be a “brand new one” for
the MCU/CPU of the printer. Neat, huh .

The next few images depict what needs to be soldered/desoldered/patched on the 93C46
EEPROM in order to freeze it in time (no new data gets written on it).

7

8

Basically, we just need to short circuit pins 8 and 5 of the IC and cut off pin 4 from the main
board, that’s it . You can cut pin 4 using small cutting pliers or anything that comes at hand.
Just be careful not to damage the IC’s package . If you’ve got a hot air soldering station at
your disposal, you can desolder the IC, raise the 4th leg and solder it back again without
soldering the 4th leg on the board. Makes no difference how you do it, as long as pin 4 is not
touching the board .

I also forgot to mention that this hack works on any firmware version of the printer. I read
online about patched versions of the firmware, but you have to downgrade the firmware via FTP
(older versions were patched, newer versions of the firmware weren’t, so you downgrade the
printer to a lower firmware version). This does work, but the downside is that you have to have
a Phaser 3100MFP with a NIC (network card). My version of the 3100MFP didn’t have a NIC, so I
couldn’t downgrade the firmware via FTP, and for some reason, the firmware upgrade tools
included in the Xerox Companion Suite didn’t let me downgrade the firmware version in the
printer, even though (as far as I know) there are no firmware downgrade restrictions in this MFP
device . My guess is, it was the OS that blocked the firmware downgrade process (the Xerox
Companion Suite is old and built back in the Windows XP/Vista/7 days and was meant to run on
Windows 7 max, from what I read, while I installed it and ran it on Windows 10). Maybe I
should’ve tried downgrading from a VM (virtual machine), but, oh well, things worked out even
better this way, since this hack works on any firmware version .

Comments or suggestions, write me at 0x4e4f@gmail.com or on Reddit (u/PCChipsM922U).

Download links for the full archive:

https://cloud.mail.ru/public/uFAz/tvcKgSvAV
https://drive.google.com/file/d/1_p_pi48ZiH5uIwqO96dc0xn_ebhoJXuZ
https://mega.nz/file/XsVVlRIJ#ptpU9R8cKOaSLhPhxK9nVkF7ReagDK6c1gqZ42hVZV8

