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Abstract
The application of a light-speed separation time-dilation factor to velocity, acceleration, and Doppler 
shift.

With respect to the concepts outlined in [1], we shall consider the application of the derivation of the 
time-dilation factor.
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v2 '=
v2

T
⋅t
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v '=v⋅(
c−v

c
)

We define a new ratio t', t '=
v '
v

(For T=1 ) Or the equivalent
t
T

, or t for T=1 . And 

therefore,
v '
t '

=v . Considering: v '=v⋅(
c−v

c
) On the right side is the ratio, of the net light speed

(c−v) relative to e
2
's speed v , to, the real absolute light-speed with e

2
 still, c (or in other words,

mailto:d.ivanov@alumni.ubc.ca


in e
1
's POV, e

1
 being still). For c=1 and v=0.5 , v '=0.5⋅(

1−0.5
1

)=0.25 and t '=
0.25
0.5

=0.5 . 

And
c
t '

−v=
1

0.5
−0.5=1.5 , which states that, if velocity v=0.5 , and the mover's length is 

compressed by t '=0.5 then, then the new, now faster, speed, with the compressed size, of light, is
2c , and if the speed of the mover in this new space weren't compressed, the separation of light 

ahead, the gain, is 1.5c . v ' is then the world-apparent resulting speed, scaled to accommodate 
light to give a separation of c . And v by itself is the under-the-hood (to e

1
's POV), true, hidden 

variable of speed. Likwise,
c
t '

−v⋅T '=
1

0.5
−0.5⋅2=1=c and

c
t '

−
v
t '

=c . The component of 

velocity v in the same direction as the component of light of c , must be used to make sense of the 

directionality of time dilation. From the previous equations,
v '
v

=1−
v
c

follows.
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Using −cos(∠(vT , cT ))⋅2⋅vT⋅cT +(vT )
2
+(c T )

2
=(c t)2 , if we take the case where the velocity 

direction of e
2
 is aligned with the shooting of a flashlight, cos(0º)=

adjacent
hypotenuse

=1 , and c=1 ,

v=0.5 , and T=1 , then (−1)⋅2⋅0.5⋅1+0.25+1=(c t)2
=0.25 and t=0.5 . The angle between 

the velocity in the perspective of e
1
, of e

2
's velocity, and the angle that e

2
 shoots the light at, in it's own 

reference frame (still frame of view), as is the angle that e
2
 shoots its flashlight at and the opposite 

direction that it observes e
1
 move relative to e

2
's frame, is the angle ∠(vT , cT ) . If the angle is a right

angle, then the equation reduces to the classical equation, however, the component of vT is T (that 
is, the right-angle would be between vT and ct , while the cosine equations measure the angle 
between vT and cT ). And with that, we can apply t ' to velocity and acceleration. 
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The component of light and velocity on the x axis, is an angle of 90 degrees for the classical train 
example. The angle of 90 would have to be for the vT and ct sides. We can decompose these and 
compare components somehow, in other cases.
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For c=5 and v=2 , v '=2⋅(
5−2

5
)=

6
5

. Remember that
c
t '

−
v
t '

=c and therefore

5

(
3
5
)

−
2

(
3
5
)

=
25
3

−
10
3

=5 . And using the cosine equation outlined in [1]: −1⋅2⋅2⋅5+4+25=25⋅t 2

and √(
(25+4−20)

25
)=t=√ 9

25
=

3
5

. We can also see, c−v=c⋅t ' and c−v⋅t '=c⋅t '+
v2

c
.

fig7
The classical application with a right-angle triangle, using the original equation, is:

(c t)2
+(v T )

2
=(cT )

2 and t=√(c T )
2
−(vT )

2
=√1−0.25≈0.866 , but

5−2
0.866

≈3.46≠5 . As for the

t=√−cos (0º )⋅2⋅vT⋅cT+(vT )
2
+(cT )

2
=√(29−20)

25
=

3
5
=T⋅

c−v
c

, for ∠(vT ,cT )=0º , it means 

that the original equation does not provide the necessary value to give c=5 separation with v=2 . 

Whether we add velocity (
c+v

c
), or subtract (

c−v
c

), depends on whether velocity and the 

direction of light are positive or negative.
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v '=v⋅
c−v

c
=2⋅

1−2
1

=−2 t '=
v '
v

=
−2

2
=−1

v '
t '

=v
c
t '

−
v
t '

=c

If we consider the case where v=2c , the dilation is such that velocity is negative. For c=1 and

↓ v '=↓ v⋅
↑ c+↑ v

↑ c
=6=↓ v⋅

−↑ c−↑ v
−↑ c

, ↓ t ' =−3 ,
↓ v '
↓ t '

=↓ v , and ↓ v=−2 . For t '=−1 ,

a y ' =a y⋅t '=−ay . We define the subsequent x2 '=x1 '+v⋅t ' and ↓ a y '=t '⋅↓ a y . We define

v '=∆ x ' and
v '
v

=
∆ x '
∆ x

.

fig9

We can further apply this to the red- and blue-shift phenomena.

1
3
⋅c=( f⋅

1
c
)⋅λ f =

1
t

3⋅c= f⋅(λ⋅3) λ=D f ⋅λ=c

fig10

(c+v)= f⋅λ+v T '⋅(c+v )=T '⋅( f⋅λ+v)

↑ λ '=↑ λ⋅
c−↑ v

c
In the simple case with no time-dilation of velocity.

↑ λ ' '=↑ λ⋅
c−↑ v '

c
In the case where time-dilation comes into effect.



↑T '⋅( f⋅λ+↓ v )=c λ=

c
↑T '

−↓ v

f

↑T '=
c

c−↑ v
≠−(

c
c−↓ v

) ↑ v '=↑ v⋅
c−∣↑ v∣

c
≠−(↓ v⋅

c−↓ v
c

)≠↑ v⋅
c−↑ v

c

↑ f ' '=
↑ f

1+
↓ v '
c

↑ λ ' '=↑ λ⋅(1+
↓ v '
c

)

( f ⋅3)⋅( λ
1
3
)=c c+v= f ⋅λ+v t '⋅(c+v)=t '⋅( f⋅λ+v)

↓ f ⋅↓ λ+↑ v
↓ t '

=c
↑ c⋅(

↑ c−↑ v '
↑ c

)

↑ f
=↑ λ ' ' (For ↑(v ' )>0 )

↑ f ' '=
↑ f

(
↓ (v ' )+↑ c

↑ c
)

=
↑ f

(1−
(c⋅↑ t '− f ⋅λ⋅↑ t ' 2

)

c
)

This can be checked as, given λ=1 or λ=0.5 , T '=
1
12

for both cases, so the equations give the 

same Doppler effect with respect to the wavelength.

We shall consider two electrons e
2
 and e

1
, with e

2
 moving toward or away from e

1
 and emitting a light 

ray towards e
1
.
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There is a degree of redundancy in that we can either use an angle of 180 ° , or an angle of 0 ° and 
a negative v , to the same end.



fig12

For a time-dilation factor t '<1 , it means that e
2
 is younger.

1
↑ t '

+
↓ v

↑ t '⋅↑ c
=1

1
↑ t '

−1=
↑ v

↑ t '⋅↑ c
(With appropriate bounds for v )

↑T '⋅( f⋅λ+↓ v )=c ↑ T '⋅(c+↓ v )=c ↑T '⋅c+↑T '⋅↓ v=c

↑T '+
↑T '⋅↓ v

c
=1 ↑ T '−1=

−↑ T '⋅↓ v
c

=
−↓ V '

c
↓ V '
↓ v

−1=
−↓V '

c
 (For ↓ v<0 ) 

↑T '⋅↑ v=
↑T
↑ t

⋅↑ v=↑ V ' (For ↑ v>0 ) 

For all observers, the speed of light will be observed to be c , the absolute speed will not exceed c ,
but the observed speed can exceed c in another POV. 

We measure c or rather the time-dilation factor t ' both behind and in front of the direction of 
movement v .

According to the linear Hubble's law: z=
( λobserved− λemitted )

λemitted

. Therefore: z=
( λ⋅t ' ' −λ)

λ
, where

t ' '=t ' (v ' )=
c−v '

c
.

v '=v⋅(
c−v

c
)

fig13

fig14

For v<0 and c>0 , the case is that v '=v⋅(
c+v

c
) and 

v '
v

=t ' <1 .



And we can say that ↑ T '⋅( f⋅λ+↓ v)=c .

fig15

We must understand how to use the time-dilated velocity v ' . If it is not v ' that is displacing 
position x in terms of global time, then what is the purpose of v ' ?

We can, at this point, deduce four general patterns:

1. light speed will be observed to be c
2. the hidden variable speed (to the stationary e

1
's POV, observing the moving e

2
) can exceed c

3. the time-dilated, effectual speed never exceeds c
4. to the observed-to-be-moving electron e

2
, c is constant

Furthermore, we can say that:

f⋅λ−v
t '

=c t '⋅c= f ⋅λ−v λ=
(t '⋅c+v )

f
f =

(t '⋅c+v )

λ
v= f⋅λ−t '⋅c

f ' =
f

1−
v
c

λ '= λ⋅(1−
v
c
)

This is the result of blue-shift, i.e., where v>0 and the direction being measured is such that c>0
and v<c or else then the case is that v '<0 and it becomes red-shift. Alternatively, we may look at 
it as f ' =− f for v=2 c , however this is only correct in one direction.

f ' =
f

1−
f⋅λ−t '⋅c

c

λ '= λ⋅(1−
f ⋅λ−t '⋅c

c
)= λ⋅(1−

f ⋅λ
c

+t ')= λ⋅t '

For the galaxy GN-z11, being observed to be moving away at super-luminal speeds, the red-shift away 
from the direction of motion is (we could just as well measure it as blue-shift in the direction of motion 
with reversed arrows):

z=11=
λ ' '− λ

λ
=

λ⋅t ' ' −λ
λ

t ' '=12 v '=−(t ' '⋅c−c)=−(12c−c)=c−12c=−11c



fig16

c−v
t '

=c
1
t '

−
1
t '

⋅
v
c
=1

1
t '

−1=
1
t '

⋅
v
c

1
t '

−1=
v2

v '⋅c
v
v '

−1=
v2

v '⋅c
1−

v '
v

=
v
c

We will observe two time-dilation factors in any axis, where one direction may result in positive time 
increase (older), or a negative (younger).

fig17

1−t ' =
v
c

With all of this, we must consider the sign of c , v , and the relation to f , whether it grows or 
decreases, with the direction of the receiver. 

1
t '
⋅( f⋅λ−v )=c t '⋅c= f ⋅λ−v f ⋅λ=t '⋅c+v λ=

t '⋅c+v
f

f =
t '⋅c+v

λ
v= f⋅λ− t '⋅c

For the case where v<0 (red-shift) and v>0 measures velocity away:

f ' = f ⋅(1+
v
c
) λ '=

λ

1+
v
c

f ' = f ⋅(1+
f⋅λ−t '⋅c

c
) λ '=

λ

1+
f ⋅λ−t '⋅c

c

=
λ

1+
f⋅λ
c

−t '

In the Michelson-Morley experiment, it does not indicate that length contraction is equivalent to time-
dilaiton, however, in this formulation, they may appear to be equivalent.

fig18

fig19



We may state the relation as a matter of proper, global time and the coordinate times T and t or as 
the proper, global time τ and the gamma-factor γ , now expressed in these terms as t ' .

fig20

fig21

Where γ<1 , for length-contraction of the coordinate y , y ' = y⋅γ . According to the original:
c⋅τ=√(c⋅τ⋅γ )2

+(v⋅τ )2 . It is as though extra space appears (in front) as it is traversed. 

fig22

The spaces expand, so, from the outside, keeping the spaces constant, it is as if the mover is 
compressed.

fig23

fig24

We shall refer to L as the separation of space between two objects. In the case of v=11 , the naive 
application of γ would indicate that L increases to −12 in front and 12 behind, offsetting the 
net center of balance back by a factor of 12 .

If we try to apply the forward gamma:



c−13
c

=−12
c−(−13)

c
=14

c−11
c

=−10
c−(−11)

c
=12 ↑ v '=↑ v⋅−12 ↑ a '=↑ a⋅−12

It would be interesting to apply this transformation of acceleration (and velocity) to the loop example 
given earlier in [2] to give a continuous path. Could it be that another transformation of a ' =−12
leads to v '=+12 (i.e., an acceleration ∣a∣>c causing another reversal of the sign of velocity)?

fig25

For the example above: −cos(180 °)⋅2⋅(−11)+121+1=(c⋅t ')2 . With the angle 180 ° but velocity
v=−11 , −22+122=t ' 2 t '=10 , the angle 180 ° and negative velocity therefore cancel out, 

to give the forward gamma. However, the gamma must be t '=−10 as in the previous example, so 
the simpler equation must be used, or else the sign of the square root adjusted to match the forward 
equation solution.

fig26

With −cos(0°)⋅2⋅(11)+121+1=(c⋅t ' )2 the result is still t '=10 . Different linear Hubble law
∣z∣ values of observed red-shift on different sides of the moving electron may give the same general
∣v∣ . At a ' and v ' at the back-side increase with increasing ∣v∣ toward an attractive object (i.e.,

with v>c giving t '<0 and thus a negative v and a , as would be the cae for GN-z11), but 
because the distance to the gravitational attractor is decreasing, even that doesn't help slow it down.

↑ x '=↑ x⋅(−10) ↓ x '=↓ x⋅12 Δ (↑ x ' , ↓ x ' )=2 So, even though the new ↑ x is negative, there 
is still room between ↑ x and ↓ x for chemical activities and a domain of interaction. At most, a 
force ↑ F=1 and ↓ F=1 still give Δ (↑ F ) '=2 net force separation, because a ↑ F=1 is
(↑ F ) '=−10 and ↓ F=1 is (↑ F ) '=−12 .

fig27

In the case of an electron being attracted to a proton or an electron e
1
 and a moving electron e

2
:

↑ F=1 gives Δ(↑ F ) '=−10 , ↑ F=0 gives Δ (↑ F ) '=0 , and ↓ F=1 gives Δ (↑ F ) '=−12
.
To the still e

1
's POV, it appears that e

2
 still moves at v absolute, and only a ' changes. And still,



↑ a free>↓ a ' , that is, the free acceleration effect outlined in [1], on the current velocity, is stronger 
than the backward acceleration due to gravitation and the net shifted center of balance, so GN-z11 
continues accelerating. Perhaps the galaxy rotation curves of extra velocity can be explained by free 
acceleration.

Perhaps v ' is the apparent velocity to both e
1
 and e

2
?

fig28

Then v '=v⋅(
c−v

c
)=(−10)⋅(

c−(−10)

c
)=−110 , and, given a universal age of 13.82×109 y , it 

would indicate that GN-z11 is at a distance of

110⋅299,792,458
m
s
⋅60

s
min

⋅60
min
hour

⋅24
hour
day

⋅365
day

y
⋅13.82×109 y=1.43×1025 km=1.52×1012 ly .

Does it make sense that the spacing in front contracts by a factor
1
γ

, leading to ↑ a '=↑ a⋅γ , adding

to velocity, giving ↑ v , which is then again increased by factor γ , giving Δx=K⋅γ2 ? When e
2
 

slows down, moves out of contracted space (is relaxed back to normal shape), the acceleration and 

velocity should relax back too. So
γ2

γ1

must be used, in v2=v1⋅
γ2

γ1

. The previous velocity is adjusted

during the velocity change and acceleration. At the v=c point,
c−v

c
=0=γ1 , and

γ2

γ1

=
γ2

0
=∞ , 

therefore. The sequence of transformations is v '=v⋅γ1 , v2=v+a , and then v2 '=(
v1

γ1

)⋅γ2 .

fig29

With γ=
1
2

, the spacing D=1 increases to D '=2=
1
γ

, therefore the effect on acceleration across

D , a (D)=
G⋅M

D2
, is a (

D
γ

)−a (D) or
a(

D
γ

)

a (D)
. If we consider v=1 , then in this case

v '=1=v⋅γ . Then v '−v=v⋅γ−v and
v '
v

=
v⋅γ
v

=γ for v '=γ⋅v . v2=v1⋅γ 2=(v0⋅γ1)⋅γ2 , then,

perhaps. For velocity as a function of the distance, v
D

( D)=
v0

D
, and the time to traverse a distance as 

a function of the distance and velocity, τ=
D
v

( D)=
D
v0

, we may compute
D
v

(
D
γ

)−
D
v

( D) , and 



have

D
v

(
D
γ

)

D
v

(D)

=

D
v0⋅γ

D
v0

=
1
γ

.  How much would a ' : a compare with D '=
D
γ

?  Because

(
G⋅M

(
D2

γ2 )

)

(
G⋅M

D2 )

=γ 2 , it follows that a ' =a⋅γ 2 . In the end, for mechanics, we only care about v2 ' from

v2 , not v1 ' , so v2=v1⋅γ+a ' , and v1 ' can be further discarded. The “ v ” is a hidden 
variable, or the true, absolute value.

From the gamma-factor points γ1=
1
2

to γ2=
1
4

, it means that velocity turns from v2=
1
2

v1 to

v2=v1

γ 2

γ1

+a ' , being the result of a speed-up in the front. Length of spacing along the x-axis, Lx , 

increases, while the size of the object in front along the x-axis, sx , decreases. From a speed-up up to

c , the time-dilation factor goes from γ1=
1
2

to γ2=0 , and the velocity to v2=
0

(
1
2
)

v1+a ' , so

v2=a ' . Slowing down from c , to
c
2

, the spacing Lx decreases, while sx increases, 

according to v2=

(
1
2
)

0
v1+a '=∞+a ' . In v2=v1+a ' , the gamma is γ1=

c−v1

c
, while v2 leads 

to γ2=
c−v2

c
, giving v2 '=v1

γ2

γ1

+a ' , so it makes more sense to write it as v2 '=v2

γ2

γ1

+a ' now. 

Getting the gamma
γ2

γ1

from a ' : a gives a2 ' : a1 '=γ 2 , if we have only the a2 ' and a1 ' to 

work with, and √ a2 '
a1 '

=γ=
γ2

γ1

. When D changes by
1
γ

, the previous v changes by the new γ

, and acceleration a ' automatically depends on
D

γ previous

or
D

γnew

. So, after x+v is used to 

obtain the new x , is v adjusted by γnew then, for the next iteration? So the sequence would be

γnew of previous=γ1=
c−v1

c
and then v2=v1 , or v2 '=v2

γ2

γ1

. When v changes, γ changes, but

v only changes with a . So the previous a must be added to v . v2=v1+a1 , where the 

previous gamma is perhaps γ0=
c−v0

c
=1 , set to unity before any movement takes place. This then 

leads to the gamma γ2=
c−v2

c
, leading to v2 '=v2

γ2

γ1

, leading to x '=x+v2 ' , where

a2=a(
D
γ2

) . All the v2 , a2 , and x2 depend on
D
γ1

. Or, we might have x '=x+v2 and

v1=v2 ' , leading to a cycle.



Or, we may just store the absolute value v to get v2 ' , i.e., v2=v1+a1 , a1=a (
D
γ1

) , γ1=1 ,

a (
D
γ1

)=
G⋅M⋅γ1

2

D2 , and we know that v2=
v2 '

γ 2

≠∞ for γ2=0 , so v3=v2 '
γ3

γ2

=v 2γ 3 .

v2=v2 '
γ1

γ2

for γ2=0 and v2≠∞ , so we will arrange the sequence as v3=v2 '+a3 , and

v3 '=v3

γ3

γ2

. 

Where we have the unknown v2 '=v2

γ2

γ1

for γ1=0 , we have the known v2=v2 '
γ1

γ2

, which we 

store, and therefore we skip v1=v2

γ 2

γ1

. v2=v1+a1 , and for γ1=0 and v1 ' =0 , v2=a1 . Then

v2 '=a1

γ2

γ1

, so v2 '=0 because a (
D
γ1

)=
G⋅M⋅γ2

D2 =0 .

 lim x →0
0
x
=0 lim x →0

x
0
=∞ lim x →0

x
x
=1 lim x →0

1−x
x−1

=1

How do we make sense of v2 '=a1

γ2

γ1

=0
γ2

0
=C γ2 m / s ?

For ↑ F=1 , ↓ F=1 , ↑ γ=−10 , and ↓ γ=12 , ↑ F ' =−100 , ↓ F ' =144 , and
↑ F net '=Δ(↑ F )' =−44 , giving a range of [−100,−144 ] , without free acceleration.

If a⋅00=01 , then necessarily
01

00

=a , if we have the same occurrence of variables to produce 00

and 01 . So, v0 '=v0

γ0

γ−1

=v0

00

γ−1

=01 , where γ0=00 , giving

v1 '=v1

γ1

γ0

=(v0 '+a0)
γ1

γ0

=(01+0)
γ1

00

=(
v0

γ−1

+0)γ1=v0

γ1

γ−1

. And a0=a(
D
γ0

)=
G⋅M⋅γ0

2

D2 =02 , and

a−1=a (
0

γ−1

)=
G⋅M⋅γ−1

2

D2 , so if we were to obtain a0 from a−1 , a0=a−1

γ0
2

γ−1
2=02=a−1

00
2

γ−1
2 .

v1 '=v1

γ1

γ0

=(v0 '+a0)
γ1

γ0

=(01+02)
γ1

00

=(v0

00

γ−1

+a−1

00
2

γ−1
2 )

γ1

00

=(
v0

γ−1

+a−1

00

γ−1
2 )γ1=(

v0

γ−1

+03)γ1=(
v0

γ−1

)γ1

, where v0=v−1 '+a−1 , gives v1 '=v0

γ1

γ−1

. As we measure x in lim x →0 ¿ , and v → c and 

therefore ↑ v ' →0 and ↑ a ' →0 , then must it always be that ∣x '∣<c ? Then what of cases where

x≠0 just before the transition to v=c , or v>c , and free acceleration? Rather, v1 '=v0

γ1

γ−1

is 

the case after slowing down from c , but that is ↓ v , and what is the continuous curve for x
position and v ?



For electrons e
2
 and e

3
, x2− x3=

x2 ' −x3 '

γ
, i.e., the separation between them in the new, dilated frame

of reference, must be the same as in the previous. And x2,2=x2,1+v2 and x2 '=x2 γ , where
γ2=γ ( x2) is a function of x2 . But to e

2
, x2 '−x3 '=( x2−x3)γ2 , the separation appears the same 

under the gamma, which means that, a2 '=a2 γ2
2 . But if there is length-contraction, then the forces 

must be unaffected, so a2 '=a2 , and there must not appear to be any changes with respect to the rest 
of the world, then, with no transformation, but, for e

1
 and e

2
, if a2 ' does not change then what is 

length contraction, or then it must only appear after the movement is contracted. So does e
2
 decrease 

acceleration a2 ' after the γ2 velocity change, or not? Or does that only change future changes to
a2 ' ? If they are co-moving they will gradually contract and expand together, and differences only 

appear when there is a difference in v , if e
2
 and e

3
 are co-accelerating, and one is in front of the 

other, through a uniform acceleration field. Is it necessary to store all connection distances, to simulate 
the physics? Then what is light propagation in absolute terms, if they have no acceleration force change
between each other? Then what does distance matter? Or else, it does, and then they will have a 
difference in v , like e

1
 and e

2
. Will the rate of change of a2 ' change by γ2

2 with respect to time?

In a black hole singularity, where γ=√1−
2⋅G⋅M

r⋅c2 becomes complex, the new γ=
c−vescape

c
can be 

used, without resulting in complex terms. The transformation then is v '=vγ and a ' =a γ2 .
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