HANDWRITTEN
 NOTES

OF

(INDUSTRIAL ENGINEERING)

BY

Industrial Engineering
(1) Introduction \& Break even Analysis
$\xrightarrow{(2)}$ Inventory ${ }^{*}{ }^{*}$
$\xrightarrow{(3)}$ Sequencing $\checkmark N$ Job m I mk, $2 \mathrm{~m} / \mathrm{c}, \mathrm{n} \mathrm{m} / \mathrm{c}$
$\xrightarrow{4}$ PERT-CPM ${ }^{*}$,
$\xrightarrow{(5)}$ Forecasting $* *$
$\xrightarrow{(6)}$ Line Balancing
\rightarrow Queuing V
$\xrightarrow{(8)}$ Work Study
(9) SQC not ingate \rightarrow Quality Control
(10) Linear programming (graphical, Simplese) ** (Tramsportation, Assignment)
(11) MRP \& $V E$ (Value engineering)

Production:
It is the step by step value addition process of Converting One form of material into another form to increase the letility of the product for the user."

Production System:-
It is an organized process of Converting raw material into final Product lilith a feed back loop

Adjustment needed

Monitor output

Productivity:-

$$
\text { Productivity }=\frac{\text { Output }}{\text { Input }}
$$

It is a Quantitative ratio blu what we produced and what We use as resources to produce them.
Every organisation always want to increase productivity by applying new techniques and methods.

Industrial Engineer:-
Industrial Engineer is Concerned with design, installation and improvement of production system.
Its objective is to eliminate unproductive operations from the Production system in order to increase productivity.

Production Manager:
Production Manager is Concerned With planning, Controlling. and directing, \& day to day working of the production system. Its Objective is to produce "goods \& Services" of right Quality and Quantity at predetermined time and cost.
i) Cost in Production:

1) Prime or Direct Cost $=[$ Direct Material + Direct Labour
+Direct Expenses]
2) Factory overhead

Factory Expenses

$$
=\left[\begin{array}{rl}
\text { Indirect Material }+ & \text { Indirect Labour } \\
& + \text { Indirect Expenses }
\end{array}\right]
$$

Indirect Materials \rightarrow Cutting fluid, Lubricants, Creese, Cotton, fete 1 Stationary items etc.

Indirect Labowe \rightarrow Watchmen, Supervisor, higher Officers etc.

$$
t
$$

Indirect Expenses \rightarrow Rent, Land, Telephone bills, facility development Electricity bills etc: canteen,
3) Factory Cost:-

Factory Cost $=$ Prime Cost + Factory overhead
4) Total Cost :-

Total Cost $=$ Factory Cost + Marketting, Advertisment, Transportation etc.
5) Selling Cost:-

Selling cost $=$ Total cost + Profit

Break Even Analysis (BEA)
i) Total Cost
ii) Selling Cost
iii) Volume of Production

It is a important tool in the hand of Production Manager to analyse the potential profit and loss possible in the future.
i) Total Cost:

It indicates the expenditive make in order to produce Certain number of units and it consist of fired and variable cost.

a) Fixed Cost:
\rightarrow These Cost remains fire or Constant, irruspectio of volume of Production.
\rightarrow It include Cost of m / c, Salary of Watchmen, higher officers Rent of brilding, Advertisement Cost, Set up cost, Insurance cost interest of loan taken etc.
b) Variable Cost $(V=v \cdot x)$

\rightarrow This Cost increases directly and propotionally lith the volume of Production.
\rightarrow It includes Direct Material, Direct Labour, and running Cost.
Semi Variole Cost \rightarrow Some part fired then Variable

$F \rightarrow$ Fixed Cost in Rupees $\left[R_{s_{0}}\right]$
$x \rightarrow$ No of unit produced in order to arm Profit of $\left[P_{R_{S}}\right]$
$v \rightarrow$ Variable cost per unit [Rso/unit]
$V \rightarrow$ Total Variable Cost in Rupees [Rs]

$$
[V=v \cdot x]
$$

Sos $S \rightarrow$ Selling Cost Per unit [Rso/unit]
$S \rightarrow$ Total Sale or Revenue
Revenue \rightarrow reteven After

$$
S=\beta x
$$

Total Cost:-
Total Cost $=F+v \cdot x$
total cost $=$ Fired Cost + Variable cost

Total Sales or Revenue: $S=s x$

\rightarrow It indicates the recturen Obtained by selling of Quantity produced.
\rightarrow It is directly propotional to the volume of production.

Break Even Chart:-

Break Even point:-
\rightarrow It is the volume of production, where total cost equal to total sale \& an organization neither earn profit nor suffer from loss.
\rightarrow It is Also known as (No pwit-No loss point).

$$
\begin{aligned}
& \text { Total Sale }=\text { Total cost }+ \text { Profit } \quad S=F+V+P \\
& \text { Total Sale }=S=\text { se } \\
& \text { Total Cost }=F+V=F+v x \\
& \text { Profit }=P \\
& S=F+V+P \text { or } \quad V=S x \\
& V=v x \\
& S x=F+V x+P \\
& (S-V)=F+P \\
& x=\frac{F+P}{S-V} \frac{P S}{Q} \text { unit unit }
\end{aligned}
$$

At BEP; $P=0$

$$
x=\frac{F}{s-v} \text { unit }
$$

Terms Related to Break Even point
i) Angle of Incidence (θ):-

It is the angle at which, total sale line cuts the total cost line, Larger this angle (θ) better the Working Conditions lille.
ie) Contribution Margin: (CM) \rightarrow Marginal Profit or Gran Margin
$C M=$ Total Sale - Total Variable cost
Changes in
Profit

$$
\begin{gathered}
C M=S-V=(S-V) x \\
\text { Contribution }=(S-V)
\end{gathered}
$$

$$
\begin{aligned}
& S=\Delta x \\
& V=v x
\end{aligned}
$$

$$
V=5 \text { Ps unit }
$$

$$
8=8 \text { Brexit }
$$

$$
S=F+V+P
$$

(CM) $\rightarrow S-V=F+P$

$$
C M=F+P T=(S-V) \times \uparrow
$$

\rightarrow Change in Profit
Lenis α Profit
Pdjact Profit or net profit

$$
P=C M-F
$$

\longrightarrow Marginal Profit or
Gross Margin
iii) Rrofit volume Graph:--

at $x=0 \quad P=-F$
at BEP; $\quad x_{B E P}=\frac{F}{(\delta-v)}$
iv) Profit volume Ratio:- (P / V) Ratio
$\left[\begin{array}{c}1 \text { Company diff } \\ \text { Product. }\end{array}\right]$
\rightarrow It is the term use to represent profitability related to Sales and it is used mainly when Me deal in mutt product.
\rightarrow This Ratio Always remains Constant for a particular product.

$$
(P / V)_{\text {Ratio }}=\frac{C M}{S}=\frac{S-v}{S}=\frac{s-v}{s}
$$

$$
(P / v)_{\text {Ratio }}=\frac{T^{\text {fined }}}{S \uparrow}=\frac{s-v}{s}
$$

\rightarrow Constant

$$
\frac{F+P_{1}}{S_{1}}=\frac{F+P_{2}}{S_{2}}
$$

$$
(P / V)_{\text {Ratio }}=\frac{\Delta P}{\Delta S}
$$

$$
\begin{array}{cccc}
\text { e.g. } & 0.22 & 0.18 & 0.31 \\
& & \text { tot } & t \\
& \text { to } \uparrow
\end{array}
$$

Note:
If there is option of increasing the sale, highest (P / V) Ratio should be Prefreed and if there is option of decreasing the sale lowest (P/V)Ratio should be prefreed.
v) Margin of Safety: (MoS)

It is the difference blew output at full Capacity, Compared to output at Break even point.

$$
\begin{aligned}
(M O S)_{\text {Sale }} & =(\text { Sale })_{x}-(\text { Sale })_{B E P} \\
(M O S)_{\text {Sale }} & \left.=S_{x}-S_{B E P}\right] \\
(M O S)_{\text {Sale }} & =s x-s x_{B E P} \\
& =s\left[x-\frac{F}{(s-v)}\right] \\
(M O S)_{\text {Sale }} & =s \cdot\left[\frac{(S-v)_{x}-F}{s-v}\right] \\
(M O S)_{\text {Sole }} & =\frac{\cdot P}{\frac{s-v}{s}} \\
(M O S)_{\text {Sale }} & =\frac{P}{(P l /)_{\text {Ratio }}}
\end{aligned}
$$

\% Wise Margin of Safety:-

$$
(M O S) \%=\left[\frac{S_{x}-S_{B E P}}{S_{x}}\right] \times 100
$$

$\mathbb{N} \rightarrow$ Change in Break even point when;
i)

$$
\begin{aligned}
& F \uparrow \quad x_{B E P} \uparrow \\
& \Downarrow \\
& x_{B E P}=\frac{F}{S-v}
\end{aligned}
$$

ie) $\longrightarrow x_{B E P} \uparrow$
iii)

$$
\delta \uparrow \longrightarrow x_{B E P} \downarrow
$$

On) A product Can be produced by 4 Process as given below in order to produce 100 unit.
Which process should be prefreed?

$$
T \cdot C=F+v x
$$

Qr) A company requires a product for which they have there options
I- Purchase at the rate of Rs $10 /$ w nit
II- Produced by semi - Auto m / c

$$
F=3400 \nRightarrow . \quad v=\text { Rsob/unit }
$$

III - Produced by fully Auto-mlc

$$
F=\text { Rs } 20200 \quad v=\text { Rs } 3 / \text { unit }
$$

find the decision Rule?

An) Actual Sales is Rs. 30000 . Be Sales Rs. 15000 and fired Cost is R. 6000 . Find the profit then Actual Sales?

Sorn)

$$
\begin{aligned}
& S_{x}=30000 \mathrm{~A}_{3} \\
& S_{B E P}=15000 \text { Rs. } \\
& F=6000 \mathrm{~A} . \\
& (P / N)_{\text {Ratio }}=\frac{F+P}{S} \\
& \frac{F+P_{B E P}^{0}}{S_{B E P}}=\frac{F+P_{x}}{S_{x}} \\
& \frac{6000}{15000}=\frac{6000+P_{x}}{\frac{30000}{2}} \\
& P_{x}=6000 R_{0} \text { Amt. }
\end{aligned}
$$

Inveritoy
Inventory Can be termed as stock on hand at a girm Point of time, which may be have for the purpose of later use ore sale.
\rightarrow It has an economic valve and it may include, Raw material lelork in process inventory, semi finished or Subassembly, and final product.
\longrightarrow In Inventory Control, our aim is to manage inventory in such a manner, that day to day lelorking rumens smoothly but at the minimum of the cost.

Inventory Cost:-

i) Purchase Cost:-

It is the Cost of Purchasing inventory item and it depends ip on Quantity or bulk purchased.
$P \cdot C=$ No of units x cost Per unit
ii) Ordering or Setup cost:-
A) Ordering Cost:-

When the inventory is purchased for outride, the cost Associated with bringing inventory within the production system is termed as ordering cost.
It includes, Cost of tender, processing cost, paper ulork, Commeinecatin inspection Cost, transportation Cost etc.
e.g Maruti \rightarrow Tyre \rightarrow Not Masufucture TyRe. So order of tyre is Placed. Tender are Published \rightarrow Quatations Mach inspection tram \rightarrow Communication \rightarrow order Tramper cost
B) Setup cost:
\rightarrow When the inventory items are produced internally, the cost associated with bringing shut dorm production system again into starting position is termed as set upcost.
\rightarrow It includes maintenance cost, Schedule chart, prepration cost Cost associated with bringing raw material, arrangement of Worker, tools, equipment etc.
e.g Maruti \rightarrow nut bold
\downarrow 3 month bland oft \rightarrow After 3 Month plant shut \rightarrow in blew Mainterue, bill, rent, labour are included in Set up Cost

Ordering Cost $=$ No. of order x cost per Order

Setup Cost $=$ No. Of Set rep \times Cost per Setup
iii Holding or Carrying Cost:-
\longrightarrow It is the Cost associated with storing, Keeping, \& maintaining inventory within the production system.
\rightarrow It include storage cost, handelling cost, damage \& depreciation Cost, insurance cost, interest of loans etc.
\rightarrow This cost depends exp on the Quantity and period for which inventory is stored.
Inventory Cost io give by;

iv) Shortage or Stockout Cost:-
\longrightarrow Shortage simply means shortage absence of inventory \& the loss associated with not serving the customer is termed as shortage or stockout cost.
\longrightarrow It include Potential profit loss, fast tramportation cost \& discount etc.

Shortage cost $=$ No. of unit x shortage cost Per unit short
e. 9 Fr. Production Plant \rightarrow Let inventory is zero or Stork ont Production stop
in Retail \rightarrow Sell stop du to stock ont
in Both the cases \rightarrow losses occur Profited zero

Now let Showroom of Mercidem Benz.
if owner have profit of 5 lat by sold in, one car
but hedidnot take risk to hold eniotuc be 3 invintay cat is high, then rent, of that. to coot ty.

Offers \rightarrow giom

Truentory classification:-
i) Transit or pipe lime Inventory:-

Inventory Cannot provide service while in tramportation, and such inventory is Called transit or pipe line inventory.
ii) Buffer or Safety stock:-

$$
\begin{aligned}
& d^{\prime}=15 \text { unit } / \text { day }>d=10 \text { unit/day }>d^{\prime \prime}=6 \text { unit per day } \\
& L T^{\prime}=9 \text { day }>L T=6 \text { day }>L T^{\prime \prime}=4 \text { day } \\
& \quad \mid T \rightarrow \text { lead time }
\end{aligned}
$$

LT \rightarrow lead time

POL $=60$ unit
11 Order place करने है iftalland आने का tome

Reorder lead
\rightarrow It is minionum amount of inurrtorey kept through out the year and is used only during adverse condition to prevent streckout.
It is held for procting against the fluctuation in the demand rate and the lead time.
\rightarrow It is never required under normal working condition and used only during Adverse Condition to prevent stock out

* Lead time (LT):-
\rightarrow It is the time gap blu Placing an order \& inventory on hand. So that it can be used or consume.
iii)

Seasonal Inventory :-
The demand for these items changes with Seasonal variation.
iv) Anticipation Inventory:- (Demand Changes with Some Reason) Petrol, cotton \rightarrow infected by t in got tax (by invirtuy Analyses)* policy
These inventory items are build ep to meet Anticipated demand in futever like. Big selling forecast, government policy change Price hike, Strike, Shut down etc.

Characteristics of Inventory Model :-
i) Dependent and independent demand Inventory items:-

Dependent

Material Requirent planning
i) Dependent:-

The demand for these items is directly realated or linked to demand of any other item, esevally of a higher level of which it becomes a part.
ie) Independent:
The demand for these items is not directly related or link ed to any other items. It is difficult to Compete and is projected with the help of forecasting.
ii Inventory Review Systems:-

Review System

Q-System
or
Fired order system or
Reorder level System or
Two bin System

$$
d=10 / d a y
$$

$$
L T=5 . d a y
$$

$$
\text { ROLe }=\text { socurit }
$$

$Q=500$ unit/order.

stock (ROC)
P-system or
Fired Period System or Periodic Review System Quality/Persiable item
Combination
SS system

$$
\xrightarrow{\sim \text { Psystem wort }}
$$

$$
d=500 \text { unit } \text { nest } 15 \text { day }
$$

no indication of end of stock
\rightarrow Fixed order System:-
\rightarrow In this sestem, as inerentery decreases to reorder level of fresh order for fired Quantity is placed at that point.
\rightarrow In this system size of order is fixed but the time of order is variable
\rightarrow Fixed Period System:-
\rightarrow In the system, inventory level is reuriwed after a fired period of time and a fresh order for variable Quantity is placed at that point.
\rightarrow In this system, size of order is variable, but the time of placing order is fixed.
iii) Deterministic \& Probabilistic Inerntory Model:-
a) Deterministic Inventory Model: Demand \& LT fixed
\rightarrow In these model, demand rate and Lead time remains fired and constant and therefore we need not to carry safety stock
b) Probabilistic Inventory Model: Demand \& LT Not fixed
\rightarrow These Models represents the real celorld Condition, where, there is uncutainity of demand rate and lead time.
\rightarrow In these Models ole need to Carray Safety stock, to prevent stock out during adverse Condition.

Marti \rightarrow Tyre
Production Plant \rightarrow Manufacturing

Notations for Inventory Model:
\rightarrow Annual or yearly demand of inventory $\rightarrow \Delta$ (esitit/ear)
Q \rightarrow Quantity to be orderdled at each order Point $\rightarrow Q$ (Unit/order)
$N \rightarrow$ No. of order Placed in a year $\rightarrow N$ (order/year)

$$
N=\frac{D}{Q} \text { ordey/year }
$$

if $D=54000$ unit/ year
$Q=9000$ unit/-order

$$
N=\frac{D}{Q}=\frac{54000}{9000}=9 .
$$

$T \rightarrow$ Time length of one inventory cycle or time gop b/w two Successive order.

$$
\begin{aligned}
& T=[\text { year/order }] \\
& T=\frac{1}{N} \quad T \cdot N=1
\end{aligned}
$$

$N=4$ orderlyear
$T=3$ month $/$ year
$T=\frac{3 \times 4}{4}$ month/order
$T=\frac{1}{4} g_{r} / o r d e r$
$C \rightarrow$ Cost of Purchasing one unit of Inventory. [Rso/unit]
$C_{0} \rightarrow$ Cost of Placing one order. C_{0}-[Rso/order]
$C_{n} \rightarrow$ Cost of Holding one unition inventory for one
Complete year. $C_{h} \rightarrow$ [Rso/unit/yeare

Deterministic Model

1) Economic order Quantity $[E O Q]$
or
Harris -Wilson
or
Infinite Rate of Replenishment

$i) \rightarrow \quad Q_{x}=T_{x} \cdot d$
ii) $\rightarrow \quad Q=T \cdot d$
$i i i) \rightarrow \quad$ POL $=(L \cdot T) d$

$$
\text { iv) } \rightarrow d=\frac{Q}{T}=\frac{Q_{x}}{T_{x}}=\frac{R O L}{L \cdot T}
$$

Total cost $€$ Total Annual Cost):- (TAC) or (TC)
TC Or TAC

$$
\begin{aligned}
& \text { Tनिal cost/ = Purchasing cost }+ \text { Ordering cost }+ \text { Holding cost } \\
& \text { total Annual } \\
& \text { (} P . C \text {) } \\
& \text { (} 0 . \mathrm{C} \text {) } \\
& \text { (} \mathrm{H} \cdot \mathrm{C} \text {) } \\
& \text { cost } \\
& \text { Purchasing cost }=D \cdot C \\
& \text { Ordering Cost }=N \cdot C_{0} \Rightarrow O \cdot C=\frac{D}{Q} \cdot C_{0}
\end{aligned}
$$

Holding Cost for Period:

$$
\begin{aligned}
& T=\frac{Q}{2} \cdot C_{n} \cdot T \\
& 23,20,15,10,5,0 \quad Q_{\text {Aug }}=\frac{50}{5}=10 \text { unit } \\
& C_{n}=R_{s} 2 / \text { unit/day } \\
& H \cdot C=10 \times \mathrm{ch} \times \text { no.orday } \\
& =10 \times 2 \times 5 \\
& H \cdot \mathrm{C}=100 \mathrm{~B} \\
& \text { these Main } \\
& Q_{\text {Aug }}=\frac{20+0}{2}=10 \\
& H \cdot C=R_{s .100}
\end{aligned}
$$

Annual Holding Cost $=\frac{D}{2} \times C_{n} T \cdot N \rightarrow i$
(AFC)

$$
A \cdot H \cdot C=\frac{Q}{2} \cdot C_{h}
$$

Total Anneal Cost:

Total Variable cost $=O \cdot C+H C$
or
Total Inventory cost

$$
T I C=\frac{D}{Q} \cdot C_{0}+\frac{Q}{2} C_{n}
$$

$T A C=T I C+D \cdot C \rightarrow$ Purchasing cost

Order Size Q
\rightarrow The ordering Qleantity $\left[Q^{*}\right]$ at which holding cost become equal to ordering cost and the total inventory cost is minimum is Known as Economic order Quantity [EOQ]

At EOQ

$$
\begin{aligned}
& \text { Ordering Cost }=\text { Holding Cost } \\
& \sqrt{\frac{D}{Q^{*}} C_{0}=\frac{Q^{*}}{2} \cdot C_{h}} \quad \quad Q^{*}=\sqrt{\frac{2 D C_{0}}{C_{h}}}
\end{aligned}
$$

Total inventory Cost;

$$
T I C=\frac{D}{Q^{*}} \cdot C_{0}+\frac{Q^{*}}{2} \cdot C_{h}
$$

but as

$$
\begin{aligned}
& \text { Sutas } \frac{D}{Q^{*}} C_{0}=\frac{Q^{*}}{2} \cdot C_{n} \\
& T I C^{*}=F \frac{Q^{*}}{2} \cdot C_{n} \Rightarrow T I C=Q^{*} \cdot C_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{TIC}(Q)=\frac{D}{Q} C_{0}+\frac{Q}{2} \cdot C_{n} \quad \begin{array}{l}
\text { for EOQ } \\
\text { or } \\
\text { Nor EOQ }
\end{array}
\end{aligned}
$$

$T I C \rightarrow \min @ E O Q$
for TIC to be minimum:

$$
\begin{aligned}
\frac{d(T I C)}{d Q} & =0 \\
\frac{C_{h}}{2}-\frac{D}{Q^{* 2}} \cdot C_{0} & =0
\end{aligned}
$$

Again deffantiating above

$$
\begin{gathered}
O-\frac{(-2) D \cdot C_{0}}{Q^{x^{3}}} \\
\frac{+2 D \cdot C_{0}}{Q^{*^{3}}}
\end{gathered}
$$

$$
Q^{*}=\sqrt{\frac{2 D C_{0}}{C_{h}}}
$$

Model Sensitivity (M.S)

$$
\theta r
$$

Robustness

It is the term used to represent, sensitivity of inventory model for different order size compared to EOQ.

Model Semsitirity is Given by;

$$
\begin{array}{r}
M \cdot S=\frac{\operatorname{TIC}(Q)}{\operatorname{TIC}\left(Q^{*}\right)} \\
\operatorname{TIC}\left(Q^{*}\right)=\frac{D}{Q^{*}} \cdot C_{0}+\frac{Q^{*}}{2} \cdot C_{h}
\end{array}
$$

but, as;

$$
\begin{array}{r}
\frac{D}{Q^{*}} \cdot C_{0}=\frac{Q^{*}}{2} \cdot C_{h} \\
T I C\left(Q^{*}\right)=2 \cdot \frac{D}{Q^{*}} \cdot C_{0} \tag{a}
\end{array}
$$

Now let

$$
Q=K Q^{*}
$$

$$
\begin{align*}
& \operatorname{TIC}(Q)=\frac{D}{K Q^{*}} \cdot C_{0}+K \frac{Q^{*}}{2} \cdot C_{h} \\
& \operatorname{TIC}(Q)=\frac{D}{Q^{*}} \cdot C_{0}\left[\frac{1}{K}+K\right] \tag{b}
\end{align*}
$$

Putting value of $a_{1} \& b$ in (1)

$$
\begin{gathered}
* * \\
* * * \\
\hline
\end{gathered}
$$

$M \cdot S=\frac{1}{2}\left[\frac{1}{K}+K\right]$ Objective
$\longrightarrow M \cdot S \geqslant 1$ and is equal.
to 1, when $K=1$ ie $Q=Q^{*}$
examples

1) 50% more than EOQ.

$$
a_{0}=k=1
$$

$$
\begin{aligned}
& K=1.5 \\
& M \cdot S=\frac{1}{2}\left[\frac{1}{1.5}+1.5\right]=1.0833
\end{aligned}
$$

2) 50% less than $E O Q$.

$$
\begin{gathered}
K=0.5 \\
M \cdot S=\frac{1}{2}\left[\frac{1}{0.5}+0.5\right]=1.25
\end{gathered}
$$

EOQ curve originally behaving like this

1) When Holding cost is given in terms of interest or $\%$ it always corrospond to unit price of inventory and the interest rate should be always yearly.

$$
\begin{gathered}
C_{h}=\sum_{\text {Yearly }}^{i} \% \text { of } C \\
C=R s .50 / \text { unit } \\
i \%= \\
\quad 105 \% / \text { month } \\
\quad \downarrow 12 \\
i \%=18 \% / \text { year } \\
C_{h}=0.18 \times 50=9 R_{s o} / \text { unit } / \text { year }
\end{gathered}
$$

An) Total Inventory cost at the order size of 400 units. \& 900 units are Equal. Then determine $E O Q$. ie Q^{*}

Sot)

$$
\begin{gathered}
\operatorname{TIC}(Q)=\frac{D}{Q} C_{0}+\frac{Q}{2} C_{h} \\
T I C(400)=T I C(900) \\
\frac{D}{400} \cdot C_{0}+\frac{400}{2} C_{n}=\frac{D}{900} C_{0}+\frac{900}{2} \cdot C_{n} \\
D \cdot C_{0}\left[\frac{1}{400}-\frac{1}{900}\right]=C_{n}(450-200) \\
\Rightarrow \frac{D \cdot C_{0} \times 500}{400 \times 900}=C_{n} \times 250 \\
\frac{2 D C_{0}}{C_{n}}=400 \times 900 \\
Q^{*}=\sqrt{\frac{2 D C_{0}}{C_{n}}}=\sqrt{400 \times 900} \\
Q^{*}=600
\end{gathered}
$$

if $\operatorname{TIC}\left(Q_{1}\right)=\operatorname{TIC}\left(Q_{2}\right)$
then

$$
Q^{*}=\sqrt{Q_{1} \cdot Q_{2}}
$$

On) Determine EOQ Value lethen annual demand is Worth Rs. 5000 , ordering cost is 2% of Order value \& Holding cost is 10\% of unit price.

So (n)

$$
\begin{aligned}
& D=5000 \quad C=50000 \\
& O \cdot C\left(C_{0}\right)=2 \% \text { ondervalue }=Q^{*} C=2 \\
& H \cdot C\left(C_{h}\right)=10 \% \text { of unitprid } .
\end{aligned}
$$

Ordering cost $=0.2 \times Q^{*} \cdot \mathrm{C}$

$$
\begin{aligned}
& H \cdot C=0.1 C \\
& Q^{*}=\sqrt{\frac{2 D C_{0}}{C_{h}}} \\
& Q^{*}=\sqrt{2 \times\left(\frac{50000}{C}\right) \frac{0.02 Q^{*} \cdot \ell}{0.1 \times k}} \\
& \left(Q^{*}\right)^{2}=\frac{100000 \times 0.02 Q^{*}}{C \times 0.1}=Q^{2^{2}}=\frac{20000 Q^{*}}{C} \\
& Q^{*} \cdot C=R_{s o}{ }^{\prime} 20000
\end{aligned}
$$

(Pr) In a Production System

$$
\begin{aligned}
& D=18000 \text { unit } / \text { yer } \\
& C=\text { Rs } 8 / \text { unit } \\
& C_{0}=R s .240 / \text { order } \\
& C_{n}=12 \% \text { of } C
\end{aligned}
$$

Lead time $(L T)=10$ days
300 working days per year
then determine?

1) Q^{*}
2) $N^{*} \rightarrow$ No. of Order Placed in year
3) T^{*}
4) $T I C^{*}$
5) $R O L$
6) No. of days of Stack at Reorder point
7) Amount of Saving with EOQ against earlier Practice of 4 order in a year.
8) Increase in total cost Associated lilith ordering cost.
a) 25% more than $E O Q$
(b) 40% less than EOQ.

Sols)

$$
\begin{aligned}
& \text { ore than } E O Q \\
& \begin{array}{c}
Q^{*}=\sqrt{\frac{2 D C_{0}}{C_{n}}}=\sqrt{\frac{2 \times 1800 \times 200}{17280}}=\sqrt{\frac{2 \times 18000 \times 240}{0.96}} \\
Q=3000 \text { cenet/order }
\end{array}
\end{aligned}
$$

(2) $N^{*}=\frac{D}{Q^{*}}=6$ order/unet
(3) $T^{*}=\frac{1}{N^{*}}=\frac{1}{6}$ year/order $=\frac{1}{6} \times 300$

$$
T^{*}=50 \text { day/order }
$$

$$
\text { (4) } \begin{aligned}
T I C^{*} & =\sqrt{2 D C_{0} C_{h}} \\
& =2880
\end{aligned}
$$

(5)

$$
\begin{aligned}
(R O L) & =L T \times d \\
d & =\frac{D}{\text { Working cost }} \\
d & =\frac{18000}{300}=60 \text { unit/day } \\
\text { ROL } & =10 \times 60=600 \text { unit }
\end{aligned}
$$

(6) Lead time $(L T)=10$ days
(7) $N=4$ order/year

$$
\begin{aligned}
Q & =\frac{18000}{4}=4500 \text { unit/order } \\
T I C & =N \cdot C_{0}+\frac{Q}{2} \cdot C_{H} \\
& =4 \times 240+\frac{4500}{2} \times(0.96) \\
T I C & =P_{S} 3120 \\
\text { Sacing } & =3120-2880 \\
& =P_{5} .240
\end{aligned}
$$

(8)(a). (c) 25% more than $E O Q$

$$
Q=1.25 Q^{*}=3750 \text { unit } / \text { year }
$$

8(b) @ 40% less than EOQ

$$
\begin{aligned}
& K=0.6 \\
& \begin{array}{l}
K=0.6=\frac{1}{2}\left(\frac{1}{0.6}+0.6\right]=1.13=\frac{T I C(Q)}{2880} \Rightarrow T I C=3264 \mathrm{~A} . \\
M
\end{array} \\
& \text { Therease }=\text { Po. } 384 \% \uparrow
\end{aligned}
$$

$\frac{\text { ii) }}{\text { EOQ lelith Price Break }}$ or
Quantity Discount

deterministie
inerntory Model

$$
\begin{aligned}
& T C=\Delta C+\frac{D}{Q} C_{0}+\frac{Q}{2} C_{n} \\
& \Delta=20000 \text { unithear } \\
& C=e_{310} \text { lunit } \\
& \text { if } Q \geqslant 1000 \text {. } C \text { Rs } 9 / \text { unit } \\
& \text { if } Q \geqslant 200 \quad C \quad B \quad 8.5 / \text { init }
\end{aligned}
$$

In Some Conditions, discount is offered on enitprice of inventory for large Quantity purchase. These discount take the form of price break. As discount is always offered on unit Price of inventory. So in order to determine the best order Size, We need to consider purchasing cost along leith ordering \& holding cost.
i) In these problems first we Compute, feasible $E O Q$
ii) then

Total cost is computed at @ EOQ
iii) and
the next higher order size having price break.
Whencuer the total cost comes out to be minimum guvs the best order Size.
Qi) In a Production System, Annual dem and is 8000 unit ordering cost is R. 1800 and holding cost is 10% of unit price of inventory. Items can be purchased in a lot as girm below. Determine the Best order Size.
(iES2008)

| Lot Size
 $1-999$ \longrightarrow
 $1000-1499$ \longrightarrow
 $1500-1999$ $\longrightarrow 200$
 2000 -Above $\longrightarrow 190$ |
| :--- | :--- | :--- |

Sold) We know that

$$
\begin{gathered}
\text { EOQ ie CQ }=\sqrt{\frac{2 C_{0} D}{C_{h}}} \\
C_{h}=10 \% \text { of } C
\end{gathered}
$$

Starting from the lowest price and searching feasible EOQ.

$$
\begin{aligned}
C & =R_{\text {s. }} \text { 185/wnit } \\
Q^{*} & =\sqrt{\frac{2 \times 8000 \times 1800}{(185 \times 0.1)}} \\
Q^{*} & =1247.7 \text { unit/ordere }
\end{aligned}
$$

It is not feasible as $C=$ Ps. 185 is for $Q \geqslant 2000$

Proceeding to nest,

$$
\begin{aligned}
& Q^{*}=\sqrt{\frac{2 \times 8000 \times 1800}{190 \times 0.1}} \\
& Q^{*}=1231.17 \text { unit /order. }
\end{aligned}
$$

Again not feasible

$$
\begin{aligned}
& C=R_{s} \cdot 200 / \text { unit } \\
& Q^{*}=\sqrt{\frac{2 \times 8000 \times 1800}{200 \times 0.1}}
\end{aligned}
$$

$Q^{*}=1200$ unit/order
gt is feasible as for $C=$ Rs. $200 \Delta D$ must be blur 1000 to 1499 .

Nor we compute total cost at feasible $E O Q$

$$
\text { ie } \quad Q^{*}=1200
$$

and the nest higher price break point of

$$
\begin{aligned}
& Q=1500 \quad \& Q=2000 \\
& T_{C}(Q)=D \cdot C+\frac{D}{Q} C_{0}+\frac{Q}{2} \cdot C_{h} \\
& T C(1200)=8000 \times 200+\frac{8000}{1200} \times 1800+\frac{1200}{2} \times(200 \times 0.1) \\
& T C @(1200)=R_{0} .1624000
\end{aligned}
$$

$$
\begin{aligned}
& T_{C} @(1200)=S_{0} 1624000 \\
& T_{C}(1500)=8000 \times 190+\frac{8000}{1500} \times 1800+\frac{1500}{2} \times(190 \times 0.1) \\
& T \quad 900 \times 105 . \times 0.1)
\end{aligned}
$$

$$
\begin{aligned}
& T_{c} @(1500)=1543850 \mathrm{P} . \\
& K_{c}=(2000)=8000+185+\frac{8000}{2000} \times 1.800+\frac{2000}{2} \times(185 . \times 0.1)
\end{aligned}
$$

$$
T_{c} @(1500)=1543850 \mathrm{P} .
$$

$$
\begin{aligned}
& 2000=1000 R_{c} 1505700
\end{aligned}
$$

total Cost ir min@ 2000 , so order is best to place.

$$
\begin{aligned}
& \text { total Costio min@ } 2000, \frac{1800}{2}(190 \times 0.1) \\
& \begin{aligned}
T_{c}(1800) & =8000 \times 190+\frac{8000}{1800} \times 1800+\frac{1000}{} \\
& =1520000+8000+1
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& T_{c}(1800)=1545100 \\
& 2400=1508200
\end{aligned}
$$

Q_{n}

$$
D=2000 \text { unit/yr. }
$$

$$
\begin{aligned}
& C=P_{s} .1 \text { unit } \\
& C_{0}=B_{s} \cdot 10 / \text { order } \\
& C_{h}=B 0.16 \text { unid/\&r }
\end{aligned}
$$

On) find Q^{*}, TIC
On) if $Q=100,5 \%$ discount on C if $Q=20007 \%$ discount on C Determine best order size?
iii)

Production Model
or
Build up Model
our Production
\rightarrow Setupcost included

$$
\begin{gathered}
Q=t_{p} \cdot p \\
t_{p}=\frac{Q}{p} \\
Q_{m}=t_{p}(p-d) \\
Q_{m}=Q\left(\frac{p-d}{p}\right) \\
Q_{m} \ll Q
\end{gathered}
$$

Total inventory coat;

$$
\begin{aligned}
& T I C=\text { Setupcost }+ \text { Holding cost } \\
& T I C=S \cdot C+H \cdot C
\end{aligned}
$$

Setup Cost $=$ NO. Of Set up $\times \operatorname{Cost} /$ setup \rightarrow e.g.

$$
D=48000 \text { unit/lyar }
$$

$$
S \cdot C=\frac{D}{Q} \cdot C_{0}
$$

$$
Q=6000 \text { unit / year }
$$

$$
\frac{D}{Q}=\operatorname{Setup}
$$

Holding Coot:

$$
H \cdot C=Q_{\text {fRog }} \times C_{n}
$$

$\rightarrow Q_{\text {Pug }}$ by triangle using/Asseming rectangle as both Δ have Same Base.

$$
\begin{aligned}
& \Delta \text { Arica }=\Delta_{\text {area. }} \\
& Q_{\text {Avo g }} \times T=\frac{1}{2} \times T \times Q_{m} \\
& Q_{\text {Avg }}=\frac{Q_{m}}{2} \\
& Q_{\text {Avg }}=\frac{\theta}{2}\left(\frac{p-d}{p}\right)
\end{aligned}
$$

$$
H \cdot C=\frac{Q}{2} C_{n}\left(\frac{p-d}{p}\right)
$$

$$
T I C=\frac{D}{Q} C_{0}+\frac{Q}{2} C_{n}\left(\frac{P-d}{P}\right)
$$

total Inventory Cost
Variable ems equ" is Q

For TIC, to be minimum, differentiate above vel. Yo to Q.
ide; de

$$
\frac{d(T I C)}{d(Q)}=0
$$

$$
\frac{C_{n}}{2} \cdot\left[\frac{p-d}{p}\right]-\frac{D}{Q^{*^{2}}} \cdot C_{0}=0
$$

$$
Q^{*}=\sqrt{\frac{2 D C_{0}}{C_{h}}\left(\frac{p}{p-d}\right)}
$$

Production factor

$$
=>1
$$

AtEOQ;
$S \cdot C=H \cdot C \rightarrow$ total Inventory cost min at ** this Point.

On) A Company uses 12000 units of Component x in a year. Component x is made in 30 Batches of 400 units on a m/c that makes 8 units per hour. The Company operates for $2000 \mathrm{hr} /$ year and its cost Rs. 60 to set up the mic.

$$
C_{h}=R_{\Delta} 10 \text { unit/year }
$$

find out Wether the existing production plan is optimum and if not, Suggest a new plan.
Find the Amount of Sawing Possible with the new plan. Also determine production Cycle time, max. inventory hel \& Cycletime, corresponding to optimum Condition.

Soon

$$
\begin{aligned}
& D=12000 \text { unit/year } \\
& 2000 \mathrm{hr} / \text { year }
\end{aligned}
$$

$$
\begin{aligned}
C_{0}=S \cdot C & =P_{s} \cdot 60 \\
\underline{C} & =R_{s} \cdot 10 \text { unit/year } \\
p & =\text { sunit } / \mathrm{hr} \\
\underline{d} & =\frac{12000}{2000}=6 \text { unit } / \mathrm{hro}
\end{aligned}
$$

1) $Q^{*}=758.94$ unit/yece Set up

$$
N^{*}=\frac{D}{Q^{*}}=\frac{12000}{758.94}=15^{\circ} 81 \text { Setup/year }
$$

a) $N=16$
$Q=750$
b) $N=15$

Allay round off Componding to no. of Setup (N)
(a) (a) $\quad N=16$

$$
Q=750
$$

$$
\begin{aligned}
T I C & =N \cdot C_{0}+\frac{Q}{2} C_{n}\left(\frac{p-d}{p}\right) \\
& =16 \cdot 60+\frac{750}{2} \cdot 10 \cdot \frac{2}{8} \\
T I C & =R_{8} \cdot 189705
\end{aligned}
$$

(ab)

$$
\begin{aligned}
& N=15 \quad Q=800 \\
& T I C=15 \times 60+\frac{800}{2} \times 10 \times \frac{2}{8} \\
& T I C=R_{s} 1990
\end{aligned}
$$

Best order Size, is; $N=16_{+}$and
batches Q $=750$ unit/set up
current Policy;

$$
\begin{aligned}
& N=30 \quad Q=400 \\
& T I C=30 \times 60+\frac{400}{2} \times 10 \times \frac{2}{8} \\
& T I C=\text { Roo } 2300 \\
& \text { Saving }=402.5 \text { Rs }
\end{aligned}
$$

Now Production Cycle time; ts

$$
\begin{gathered}
t_{p}=\frac{Q}{P} \\
t_{P}=\frac{Q}{P}=\frac{750}{8}=93.75 \mathrm{hr} / \text { seer }
\end{gathered}
$$

Maximum inventory Level; C_{m} - is

$$
Q_{m}=Q\left(\frac{p-d}{p}\right)=187.5 \text { unit/ } / \text { setup }
$$

Cycle time;

$$
T=\frac{Q}{d}=\frac{750}{6}=125 \mathrm{hr} / \mathrm{seter}
$$

Shortage Model

or

Stork out Model

or
Back Order Model

\rightarrow This model is similar to, first model EOQ, the only difference that -Shortages are allowed.
\rightarrow Planned shortage or backorder is the Condition when customer Places an order and find that inventory is out of stock, then he calait for nest shipment to make his order fulfill.

Notations:
$S \rightarrow$ No. of units short/Backordered:
$C_{b} \rightarrow$ Backorder or Shortage Cost per unit back ordered/yeare

$$
C_{b}=R_{s} / \text { unit/yeare (Absence of Inventory Per year) }
$$

Total Inventory cost;

$$
T I C=O \cdot C+H \cdot C+\text { Shortage cost }(S \cdot \dot{c})
$$

$$
O \cdot C=\frac{D}{Q} \cdot C_{0}
$$

$$
H \cdot C=\frac{(Q-S)^{2}}{2 Q} C_{h}
$$

$$
S C=\frac{\cdot S^{2}}{2 Q} \cdot C_{b}
$$

Holding cost $(H \cdot C)$ for Period T;

$$
\begin{aligned}
& (H \cdot C)=\left(\frac{Q-S}{2}\right) t_{1} \cdot C_{h} \\
& (Q-S)=t_{1} \cdot d \quad=d=\frac{Q-S}{t_{1}} \\
& Q=T \cdot d \\
& \frac{t_{1}}{T}=\frac{Q-S}{Q}=\frac{Q}{T} \\
& \frac{Q-S}{t_{1}}=\frac{Q}{T} \quad \frac{Q-S}{Q}=\frac{t_{1}}{T} \\
& t_{1}=\left(\frac{Q-S}{Q}\right) T
\end{aligned}
$$

$$
\begin{aligned}
& H \cdot C=\left(\frac{Q-S}{2}\right)\left(\frac{Q-S}{Q}\right) \cdot T \cdot C_{h} \\
& H \cdot C=\frac{(Q-S)^{2}}{2 Q} \cdot C_{h} T
\end{aligned}
$$

Annual $\mathrm{H} \cdot \mathrm{C}$;

$$
\text { Annual } H \cdot C=\frac{(Q-S)^{2}}{2 Q} \cdot C_{n} T \cdot N \rightarrow \pm \text { year }
$$

Shortage Cost for Period T;

$$
\begin{aligned}
& S \cdot C=\frac{S}{2} \cdot t_{2} \cdot C_{b} \\
& S=t_{2} \cdot d \\
& Q=T \cdot d \\
& \frac{t_{2}}{T}=\frac{S}{Q} \quad t_{2}=\left(\frac{S}{Q}\right) T
\end{aligned}
$$

Shortage Cost $=(S \cdot C)=\frac{S}{2}\left(\frac{S}{Q}\right) T \cdot C_{b}$

$$
S \cdot C=\frac{S^{2}}{2 Q} \cdot C_{b} \cdot T
$$

Annual shortage cost;

$$
A \cdot S \cdot C=\frac{S^{2}}{2 Q} \cdot C \cdot T \cdot N \rightarrow \text { for } \pm \text { year }
$$

Total inventory Cost (TIC):-

$$
T I C=\frac{D}{Q} C_{0}+\frac{(Q-S)^{2}}{2 Q} C_{h}+\frac{S^{2}}{2 Q} \cdot C_{b}
$$

for I model EOQ

$$
C_{b} \rightarrow \infty
$$

$$
\sqrt{1+\frac{c_{h}}{c_{b}} \rightarrow \infty}
$$

at EOQ;

At EOQ;

Ordering cost $=$ Holding cast + Shortage cost

$$
O \cdot C=H \cdot C+S \cdot C
$$

Best order size;

Optimum number of units Backorder or Short;

$$
\begin{aligned}
& \left(Q^{*}-S^{*}\right) C_{h}=S^{*} \times C_{b} \\
& \frac{Q^{*}-S^{*}}{S^{*}}=\frac{C_{b}}{C_{h}}
\end{aligned}
$$

adding 1 both side;

$$
\begin{gathered}
\frac{Q^{*}}{S^{*}}=\frac{C_{b}+C_{h}}{C_{h}} \\
S^{*}=Q^{*}\left(\frac{C_{h}}{C_{b}+C_{n}}\right)
\end{gathered}
$$

Maximum Inventory Level;

$$
M^{*}=Q^{*}-S^{*}
$$

$$
M^{*}=Q^{*} \frac{C_{b}}{C_{b}+C_{h}}
$$

On) A Dealer Supplies following information;

$$
\begin{aligned}
\text { Annual demand } & =10000 \text { units } \\
\text { Ordering cost } & =\text { Rs } 10 / \text { order }
\end{aligned}
$$

Inventory caring cot $=20 \%$ of C er

$$
\text { Unit price } \quad=R_{S} 20 / \text { unit }
$$

The deabris considering Possibility of backordexing $\&$ he had eslembestimated that the annual cost of backordering per units lelill be 25% of unit price. then Determine;

1) Optimum number of units. He should buy.
2) Quantity to be backordered.
3) Max. inventory Level.
4) Would you recommend to allow backordering, if so, the anneal cost" Saving by adopting the policy of Backordering.
sols)

$$
\begin{aligned}
& D=10000 \text { net } \\
& C_{h}=4 \\
& C_{b}=5 \text { Poflunct } \\
& C=B_{50} 20 / \text { unit } \\
& C_{0}=\text { Pto } 10 / \text { order } \\
& c_{h}=\beta_{5} 4
\end{aligned}
$$

1) $Q^{*}=300$ unet/ order
(2) $S^{*}=133$
(3) $M^{*}=167$
2) (9) Wleth out Backordering

$$
T I C^{*}=\sqrt{2 D C_{0} C_{r}}=\beta_{0} 894.98
$$

(b) Leleth Backorder

$$
\begin{aligned}
& T I C^{*}=\sqrt{2 D C_{0} C_{n}} \cdot \sqrt{\frac{C_{b}}{C_{b}+C_{n}}}=R_{0} 666.67 \\
& \text { Saving }=\text { Rso }^{2} 227.76
\end{aligned}
$$

Probabilistic Model
Lead time \& Demand changes thavrto Kept Safety Stork

Time

Factors encouraging higher Safety Stock :-

1) When the demand rate and lead time variations are more, and fluctuating.
2) When the inventory Holding cost is less is not of more Concern.
3) When the loss due to absence of inventory ie shortage cost is very high.
4) When the number of orders in a yeare are more.
5) To Provide better Customer Satisfaction.

Reorder Level (ROL)

$$
\begin{aligned}
& (\text { ROL })=\text { Average Demand during Lead time }(L T)+\text { Safety stock } \\
& \text { ROL }=\text { ADDLT +SS }
\end{aligned}
$$

$$
A D D L T=L T X d
$$

$$
\text { ROL }=L T \times d+S S
$$

$$
C_{\text {Aug }}=\frac{Q}{2}+S S
$$

Probabilistic Model
i) Demand Profit Model
for Perishable items 2 time Bounded 8
(demand uncutain)
\rightarrow In this Model, dem and is uncertain and decision is based on' single order ie reordering is not Permitted.
\rightarrow This model is applied for perishable item, like vegetables, fruits, flowers etc. Or for those items lehich becomes outdated very fast
$D \rightarrow$ Demand
$S \rightarrow$ Supply
$P \rightarrow$ Probit/unit
. $l \rightarrow$ loss/unit

1) if $D>S$
$p \rightarrow$ Potential profit or Loss) unit.

$$
\begin{aligned}
& D>S \\
& \Rightarrow \quad(D-S) \cdot P \rightarrow \text { Potential los. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for not meeting the der } \\
& S_{p} \rightarrow \text { Selling }[\text { price/unit }] \text {. }
\end{aligned}
$$

2) if $S>D$

$$
\Rightarrow\left(S-D^{\prime}\right) \cdot l
$$

where p;

$$
\begin{aligned}
& p=S_{p}-C+C_{b} \\
& l=C-C_{s}+C_{h}
\end{aligned}
$$

$C \rightarrow$ Purchasing cost/unit.
$C_{b} \rightarrow$ backorder or shortage cost or good will loss.
$\ell \rightarrow$ unsealed item lors/unit.
$C_{S} \rightarrow$ Salvage or Scrap value/unit.
$c_{n} \rightarrow$ holding cost/unit.

In this model, in order to maximise our profet, we select the ordering quantity "S" in such a manner

Such that;

$$
P(s-1)<\frac{p}{p+l} \leqslant P(s)
$$

Where,
$P(S-1) \rightarrow$ Cumulative probability of the demand for (s-1) unit.
$P(S) \rightarrow$ Comomulative probability of the demand for (S) unit

$$
\text { if } \frac{p}{p+l}=0.47
$$

if, $\quad S_{p}=0, C=0, C_{S}=0$
The thing which is
then,

$$
P(s-1)<\frac{C_{b}}{C_{b}+C_{m}} \leqslant P(s)
$$ is taken as zero

$$
\begin{aligned}
& p=S P^{0}-C^{0}+C_{b} \\
& l=Z^{0}-C_{B}^{0}+C_{n}
\end{aligned}
$$

On) A shopkeeper purchase a seasonal product at the beggining of seasm and Cannot reorder. The item Cost is Rs. 40 and Sell it at As. 75 each. For any item that Cannot meet on demand He had estimated the goodwill bors of Roo 20. Any item unsold Lelill have a salvage value of Rs 25 and Holding cost during the Period is 25% of Purchasing cost. find the optimum stock to maximize the profit.

$$
\frac{p}{p+l}=\frac{55}{20}=0.6875
$$

On) find the shortest cost range when the holding cost is A. 3 \& demand \& Probability distribution is asgivm below with Optimum stock level of 7 unit

ii) Service Level Model --
\rightarrow This model is preferred, lecher the different cost factor involve with inventory are not known adyactly.
\rightarrow It is based up on probability theory. And the amount of safety stock is kept according to the level of service, Management Wants to achieve.

Service Level is girm by;

$$
\text { Service Level }=\left[\frac{\text { No. of unit Supplied lelith out delay }}{\text { Total no. of units demanded }}\right]_{L T}
$$

$S \rightarrow 0$ tu 1
$S \rightarrow 0$ to 100%
95% Service Level is the Standard Valve, and it means that 95% of the customer demand on an average is fulfilled during Lead time and only 5% of the customers order on an average io. Rejected due to stock out during head time.

When the demand during lead time may be Approximated by a normal distribution with Certain average $[\bar{x}$ or $U]$ and Standard deviation (σ)
and Reorder lee is giom by,

$$
\text { ROL }=\bar{x}+z \cdot \sigma
$$

$Z \cdot \sigma=$ Safety stock
$\bar{X}=$ Average demand during Lead time

$$
\bar{X}=\angle T \cdot d
$$

$O=$ Standard deration for the demand variation during lead time
$Z=$ Standard normal variante, whose valve depends
epson service level required

Z	Service Level (\%)
0.84	80%
1.28	90%
1.645	95%
2.33	99%

Let $D=20$ unit/ day $\angle T=10$ day
$\bar{x}=D \times L . T$
$\bar{x}=200$ units

O Variation in demand.
$\mid \sigma \uparrow \rightarrow S S \uparrow$

$$
\begin{aligned}
& x_{1}, x_{2}, x_{3} \\
& \bar{x}=\frac{x_{1}+x_{2}+x_{3}}{3} \\
& \sigma=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\left(x_{3}-\bar{x}\right)^{2}}{3}} \\
& \quad \frac{100}{20} \quad H=60 \quad \begin{array}{l}
\frac{60}{60} \\
\frac{80}{40} \quad H=60 \quad
\end{array} \quad H=60 \\
& 50 \quad H=60
\end{aligned}
$$

Safety Stork \&

$$
S S=\begin{gathered}
\underset{\downarrow}{1.645} \\
1.6 O \\
\hline
\end{gathered}
$$

One Cycle consist of 2 Parts,

$$
\begin{aligned}
& 1 \text { haAf }=\sigma_{1} \\
& 2^{\text {nd }} \text { half }=\sigma_{2}
\end{aligned}
$$

then σ for Complete Cycle

$$
\begin{aligned}
& \sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2} \\
& \sigma=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}
\end{aligned}
$$

(On) Average lelebley demand is of 800 unit and Uleabley standard deviation is of 100 unit.
Holding Cost is Rs. 0.2 per unit per leet i.e Rs. $0.2 /$ unit/wak and unit price in inventory is R. 40 . Lead time is of 4 week, then for 95% Servia level, determine
i) Safety Stock
ii) Reorder Level
iii) Annual cost of (maistaing)

Soln)
$d=800$ unit/week
$\sigma=100$ unit/wak
$L T=4$ week
As LT is of LWleck and o io geiven
into whely
So, Converting σ corrosponding to lead time

$$
\begin{aligned}
& \sigma^{2}=\sigma_{1}^{2}+\sigma^{2}+\sigma^{2}+\sigma^{2} \\
& \sigma^{2}=4 \sigma^{2} \\
& \sigma=2 \sigma
\end{aligned}
$$

$$
\sigma=2 \times 100=200 \text { usmit }
$$

Safety stuck $=z \cdot \sigma^{1}$

$$
\begin{aligned}
& S S=1.645 \times 200 \\
& S S=329 \text { units }
\end{aligned}
$$

(2) Reorder luvel
(3) Armual cot of maintauning

Inventory Control and Classefication :-

1) $A B C$ Controd:

Always Better Controt
usage $\%$
Items \%
$A-50-60 \%$
10-20\%
B $-30-40 \%$
$30-40 \%$
$C-10-20 \%$
50-60\%

Item	Item $\%$	Demand
1	10%	200
2	10%	70
3	10%	300
4	1	1
5	1	1
6	1	1
7	1	1
8	1	1
9	1	
10	1	

unit Priec usagivabe

200

Go

500
loso

1) $A B C-C o n t r o t:-(D \cdot C)$ (usage) Shows Part of units in Annual berdgel
\rightarrow In $A B C$ Control, inventory items are classified into A, B, C, Categories, depending upon their elsage value.
\rightarrow For A Category items \rightarrow inventory is Kept almost nil. Frequent Review is Done.
\rightarrow For C category items \rightarrow Large amount of inventory is kepto

- Reviews after a long period.
\rightarrow Moot preferred
(Pareto Law 80-20 Law)

2) VED, vital, Essential, Deriable :-

Inventory items are classified on the basis of importance of inventory item for the production system.
3) HML High, Medium, Low:- (\vec{C}) (Rs-/unet)

Inventories are classified on the basis of eenit price of inventory items.
4) SDE \rightarrow Scare, Difficult, Easy \rightarrow Availability

Inventories are classified, on the basis of availability of inventory item. egg (Thermal Power plant)

Sequencing
In Sequencing, our aim is to find a order in which different jobs are to be processed on different machines So that the idle time is minimized \& utitization is optimised.

It is essential for smoict flow of material. and effective elitization of manpower \& machine.

Rules or Assumptions in Sequencing:

1) If Nothing is mentioned, the processing order for machine remains fixed or constant.
2) One job on one machine at a time.
3) Once a job is started, it must be fully completed.
4) Time tater by the job, from one machine to another is negligible.
5) Terespective of order, the processing time for the job remains Constant.
N - Job on one Machine:-

Terms:

1) Job How time:-

It is the time from some starting point untill that particular e job is Completed
2) Make Span Time (MST):

It is the time from when processing begin. on the first gob in the sit until the last job is Completed.
13) Tardinen or Lateness:

It is the count of time by which a job is delayed beyond its dee date.
4) Average no. of Jobs in System:-

It is the term use to represent, average no. of jobs present all the time within the system, untill one set of job is Completed.
\rightarrow It is the Ratio of total job flow time over make span time

Sequencing Rules for N-Jobs on Machines:
Lowest is preferred.

1) Shortest Processing Time (SPT):-

In this rule, jobs are processed in increasing order of their processing time ie min. time first \& max. time at last.

ii) Earliest Due date :- $[E D D]$

In this Rule jobs ares sequenced in increasing order of their due date

iii) Critical Ratio Rule ($C R)$:

$$
\text { Critical Ratio }(C R)=\frac{\text { Due Date }}{\text { Processing Time }}
$$

Jo bs are sequenced in increasing order of Critical Ratio.
iv) Slack Time Remaining Rule (STR) i

Slack time $=$ Due date - Processing Time

In) Set of jobs are to be processed on a single m / c, obtained a Sequence using SPT \& EDD Rult. Also determine make spantione, job flow therme for each job. Average job flow time per job,
Average tardiness per job , Average number of jobs in system \& no. of tardi jobs.

Job
Processing Time
SP

(3) $\mathrm{A} \quad 8$
(5) F
(4) G
(7) H

Duedate EDD 71 -(4)

Job
P. T

DD
Job tow time

$$
\begin{align*}
& D-6-59-0+6=6 \\
& 0 \\
& A-8-71 \quad 6+8=14 \\
& C-10-82 \longrightarrow 14+10224 \tag{0}\\
& G-12-91<24+12236-0 \\
& \text { F }-14-42 \longrightarrow 86+14=50 \text { 8 } \\
& \text { B - } 15-64 \longrightarrow 1 \\
& \begin{array}{cccc}
H & -17 & -76 & 65+17=82 \\
\hline 101 \\
t & 82+192101 & 6 \\
& \text { EJFT=378 } & \\
& M S T=101
\end{array}
\end{align*}
$$

Pressing time
11
Make span time
2) $D-6, A-14, C-24, G=36$
(4) Average job fino tome=

$$
\text { ie }=
$$

ST
(8) Average job Slow time $=$ $\frac{\text { Total Job Show time }}{\text { No. O Job }}=\frac{378}{8}=47.25$
(4) Average Tardiness Per Job

$$
\text { Average Tardiness }\left.\right|_{\text {Job }}=\frac{\text { Total tardiness }}{\text { No. of job }}=\frac{28}{8}=3.5
$$

(5) Average no, of job in System:-

$$
\begin{gathered}
\text { Average no. of job in system }=\frac{\text { Total job How time }}{\begin{array}{c}
\text { Pressing time } \\
\text { (Make Span time) }
\end{array}}=\frac{378}{1.1}=3.74
\end{gathered}
$$

(Make Span time)
(6) 1 Mo of Cardin job $=4$,

Job	PT	DD
F	14	42
D	6	59
B	15	64
A	8	71
H	17	76
C	10	82
E	19	88
G	12	91
	$\varepsilon=101$	

Job Jlow time
Tardines
$0+14=14$
$14+6=20$
$20+15=35$
$35+8=43$
$43+17=60$
$60+10=70$.
$70+19=80$
$89+122101$

$$
\sum 432
$$

(1) $M S T=101$
(2) $F=14, D-20, B-35, A-83, H-60, C-70, E=84 G-101$
(3) $\frac{432}{8}=54$ Average job flow teme
(4) Aucrage Tar dinen $=\frac{\text { Total Tardenen }}{\text { N0.O1 job }}=\frac{11}{8}=1.375$
(5) Avrage no of job in system $=$

$$
\frac{432}{101}=4 \cdot 277
$$

(6) No. of Retardi job (2) 2 jobs

Qn). Four job are to be processed on a Singlemle as per data giom below
i) lesing EDD reule, find the no. Of jobs delayed
ii) using SPTRule, find the total tardinus

SPT (2)

EDD
(1)
(4)

$$
\begin{align*}
& -4 \tag{3}\\
& -(3)
\end{align*}
$$

Job	P.T.	$D D$	Jobsenotime	Retarda
3	2	19	$0+2=2$	0
1	4	6	$4+2=6$	0
2	7	9	$6+7=13$	4
4	8	17	$13+8=21$	4
	22 21 $(M . S T)$			

(M.ST)

Job	$P . T$	$D D$
1	4	6
2	7	9
4	8	17
3	2	19
	$\sum 21$	

Job Jlen teme

$$
0+4=4
$$

$$
4+7=13
$$

$13+8=21$
4

$$
21+2=24
$$

5

$$
\Sigma=62
$$

N-Jubs on tewo m / c

N-Job on two mic Problems;
are solved by Johnsonis Rule. Inly Applicable for 2 M LC and the stops involved are,

1) Find out the min. in $A i$ and $B i$.
2) If the min. is for Particular job on mic (A) then perform that Job at the Start.
3) If the mino is for the particular job m / c (B) then perform that job in the last.
4) Strike off the fob which is a signed so that it Can't be considered again.
5) Continue the similar marmer until all job are assigned.

On) find the optimum sequence for the following set of job to be processed on the machine. Also find the expect time, idle time for each machine and their \% elitigation.
Also prepare Grantt. Chart for both the machine

$$
\begin{aligned}
& C B D \quad E A F \\
& C-B-D-E-A F \text { Sequences }
\end{aligned}
$$

Idle time $=$ MST - lebrking time
Mic Ioletime \rightarrow 3 $6-35=1 \mathrm{~min}$
m / CI idle time $\rightarrow 6-28=8 \mathrm{~min}$

$$
\% \text { elitizalio }=\frac{\text { Working time }}{\text { MST }} \times 100
$$

$m / C I=\frac{35}{36} \times 100 \% \quad$ Job tho time for $B=$ (16)

$$
m / c \pi=\frac{28}{36} \times 100 \%
$$

F \quad chato wing

On) find the Optimum sequence for the following set of job, also find make span time (MST) and idle time for each mk.

$I_{0 b}$	McI	MkICI
A	3	7
B	6	9
C	5	8
D	10	5
E	7	4
F	9	10
G	8	4
H	6	9
I	5	12
	$E 59$	68

(1) m / c (I) id $\operatorname{dim}=$

$$
71-59=12 \mathrm{~min}
$$

mic II $71-68=3 \mathrm{~min}$

Job
$M K_{\text {II }}$

MST $=76$
In out idritame:

N - Job on 3 mlc			
$\frac{\mathrm{m} / \mathrm{c}}{2}$	\boxed{A}	\boxed{B}	\boxed{C}
1	A_{i}	Bi	Ci
2			
3			
4			
\vdots			
N			
N			

Condition
(1) most min $A i \geqslant \operatorname{Most} \operatorname{Max} \cdot B_{i} C$
(2). Most min $\mathrm{C}_{i} \geqslant$ Mast Max, Bi_{i}

$$
\begin{aligned}
& X_{i}=A_{i}+B i \\
& Y_{i}=B i+C i
\end{aligned}
$$

Nov e
Apply Jotun Rule to find sequence.

PERT-CPM
Project:-
It is a group or combination of inter-related activities that must be executed in curtain fix e order before the entire task is Completed.

Activities are inter related in a logical sequence in the sense that some activity can only be started when all the actiortios earlier to it are completed.

Event:-
Event denotes the point of time or the accomplishment occuring at a moment. and is normally used to denote the starting and the end point of an activity.
It neither Consume any time nor lesouras for its Completion.

Activity:
It is a recognizable part of a project, Which Consume time \& Resources for its Completion it may involve Physical or mental Work.
When all the activities are executed then only project gets. Completed

Network Diagram:-
It is the graphical representation of a logical sequence in which different activities are intreellated to each other by oo While Completing a project.

Rules for Network Construction:-

1) An activity can only be started, when all activities earlier to it are completed.
2) No two or more acturties may have the same head 8 tail events

NOT POssible X

$$
\begin{align*}
& A \rightarrow 1 \rightarrow 2 \tag{3}\\
& B \rightarrow 1-2 \\
& C \rightarrow 1-2
\end{align*}
$$

* In above condition, to represent the same logic, we need to use dummy activity. Represent by dotted line.

Dummy Acturity:
An activity, which is used to show the logic, dependency or relalationhip of one activity over the other, but doco't consume any time or resources for its Completion is termed as dummy activity.

It is Represented by dotted line arrow.

3) The Length and direction of arrow is incidative only time flow from lett to right on the network diagram.
4) Dummy Activity should only be used, when it is very necessary but there is no restriction on the number of dummy activity used.
5) There should be no looking and Dangling on the network diagram

Looping

Dangelling:
When activity other than the final activity, does't have any Sucessire activity then situation is Called as Dangeling. Such activity should be connected to the last event of the network diagram.

Types of Network Diagram:
i) Event or NODE (EON). O or Activity on Arrow (A or A)

Event or NODE

2) Activity on NODE: 5

NoT used in PERT \& PPM Used in Line Balancing

Activity on Node, diagram, does't require dummy activity and it is considered to be simple and easy, irrespective of these aderantages, Event on Node diagram is more popular in PERT \& CPM.
On) Draw the Network diagram for the following set of activities

Activities	Precedence
A	-
B	-
C	A
D	B
E	A
F	B
G	$C D$
H	G, F
I	E
I	H, I
K	J

Fulkerson's Rule: \rightarrow [For Numbering of Events]
(1) Which has no incomming
(2) then neglect outgoing from above \& Mark them NO.
(3) then neglect all outgoing from above and then makk.

Qr) Draw the Neturalk diagram to the following Conditions.
i) $A \& D$ start at some time
ii) F follows A
iii) follows A but proceeds $L \rightarrow K A \notin$ ter A but K before l
iv) G follows D but precis J
v) G follows F but preecieds H
vi) M follows H but preeceeds L
ViI) I and L terminate at the same time

$$
\begin{aligned}
& J A- \\
& \checkmark D- \\
& \checkmark F-A \\
& +G-A-L \\
& G-D-J \\
& G-F-H \\
& M-H-L \\
& J-L
\end{aligned}
$$

Soth

Difference b/w PERT \& CPM:-

PERT

1) Programe (Project) Evolution \& Review Technique. (PERT)
i) It is Event oriented.
ii) It is Associated with Probabilistic Activities.
iii) It is based upon three (3) time estimate to Complete an Aetierity.
iv) It is used where time required to Complete various activities is not certain.
v) It usually closest consider e cost analysis.
Application
vi) It io used Mainly for Research and duelop meet project.

CM
2) Critical Path Method (CPM)
if) It it Activity oriented.
ii) Associated With Deterministic Acturties.
iii) Based upon single time to Complete an activity.
iv) used for Repetitive job, where one as prior experience of H andelling Similar project.
v) It gives importance to cost analysis. \& Crashing is done to minimize the cost of CPM Project Application
vi) used mainly for construction Project

PERT
It is used for uncertain project and is based on three time estimate to Complete con activity.

These are:-

1) Optimistic time (t_{0} or a)
2) Pessimistic time (t_{p} or b)
3) Most libaly time ($t m$ or)
4) Optimistic time $[$ to or $a]$:

It denotes the minimum time required to complete an activity when everything goes according to the plan. Atleast 5 day is
2) Pessimistic time (t_{p} or b):-

It denotes the maximum time required to Complete an activity, when everything goes against the plan. May 5 day
3) Most likely time $\left(t_{m}\right.$ or m):-

It is the time required to Complete an activity, lethen escecuted eider normal Lelorking Conditions.

The fundamental assumption in PERT is, the three time estimate form the end point of the distribution curve \& activity is assumed to follourd β-Distribution.

It is also assumed, that the probability of Completing an activity ie -e time $a, \& b$ ar equal., and the probabibilly of Completing activity ie e m time, is 4 times of a, b

Average or expected time to Complete an activity is giro by;

$$
H \text { or } t_{E}=\left[\frac{a+4 m+b}{6}\right]=\frac{t_{0}+4 t_{m}+t_{p}}{6}
$$

Standard deviation " σ "

$$
\sigma=\left[\frac{b-a}{6}\right]=\left[\frac{t_{p}-t_{0}}{6}\right]
$$

Variance:-

$$
\sigma^{2}=\left(\frac{b-a}{6}\right)^{2}=\left(\frac{t_{p}-t_{0}}{6}\right)^{2} \quad \text { [enncertainity] }
$$

NOTE:

1) Variance give the measure of encurtainity of Activity Completion.
\rightarrow Higher the value of variencl, larger the uncutainity will be. Variencr \propto encertainity
Critical Path :
\rightarrow It is the max. time Consuming path, from the first event to last event in a network diagram.
\rightarrow The time taken along critical path is termed as expected Project Completion time ice t_{E} :
\rightarrow The activities along the critical path are termed as critical activities \& thy are represented by double line Arrow.

Probability of Completing Project Within Schedule.
Time :-
\rightarrow If T_{E}, is expected project Completion time, σ
$\rightarrow \sigma$ is standard deviation along critical path, them probability of Completing project within the schedule time T_{s} is give by;

Where,
$z=$ is standard normal variant.

Probability $\%$

$$
P(T s)=\frac{\text { Area } A B S}{\text { Area } A B C}
$$

$$
\begin{aligned}
& \\
& T_{S}=T_{E}+\sigma Z \\
& Z=\frac{T_{s}-T_{\epsilon}}{\sigma}
\end{aligned}
$$

$\sigma=\sqrt{\text { Sum of varience along Witical Path }}$

$$
\begin{aligned}
& \sigma=\sqrt{\sigma_{1}^{2}+\sigma_{3}^{2}+\sigma_{5}^{2}+\sigma_{6}^{2}+\sigma_{8}^{2}} \\
& \text { Oriticial Path:- } \left.\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}\right) \sigma_{6} \sigma_{7} \sigma_{8}
\end{aligned}
$$

Om) For the following set of activities, draw the network diagram and determine;
i) Critical Path \& expected project Completion time.
ii) Determine the Probability of Completing the project in 50 days.
iii) If a, company makes an agrument to complete the project in 50 days, Failing which, they would pay rupees 10000 l per day as fine. Find the probability, that the fine may bepaid but not exceeding 50000 B .

	Time clays					$t \in=\frac{a+4 m+b}{6}$
Actuity	Precedence	a	m	b	$\frac{(b-a)}{6}$	
A	-	4	6	8	6	0.66 v
B	A	5	7	15	8	1.66
C	A	4	8	12	8	1.33
D	B	15	20	25	20	1.66
E	B	10	18	26	18	2.66
F	C	8	9	16	40	1.33
G	E	4	8	12	8	1.33
H	D, F	1	2	3	2	0.33
I	$G H$	6	7	8	7	0.33
					$\sum t \in=87$	

\Longrightarrow Critical Path

$$
\begin{aligned}
& 1-2-3-6-7-8=47 \\
& 1-2-4-5-7-8=33 \\
& 1-2-3-5-7=
\end{aligned}
$$

1) Critical Path;

$$
\begin{gathered}
A-B-E-G-I \\
T E=47 \text { days }
\end{gathered}
$$

2) $T_{S}=50$ days, $T_{E}=47$ days

$$
\sigma=3.48 \text { days }
$$

$$
\sigma=\sqrt{(0.66)^{2}+(1.66)^{2}+(2.66)^{2}+(1.33)^{2}+(0.33)^{2}}
$$

3)

$$
\begin{gathered}
Z=\frac{T_{S}-T_{\epsilon}}{\sigma}=\frac{3}{3.48} \\
Z=0.8608 \\
\$ \text { Probability } \\
80.45
\end{gathered}
$$

(1) More top 2 time

Select SD (1)

$$
\begin{aligned}
& \text { Shift }+3 \\
& \text { direct }\binom{P}{1}
\end{aligned}
$$

$$
\begin{aligned}
& z_{1}=\frac{55-47}{3.496}=2.288 \xrightarrow{\text { Prob }} 98.89 \% \\
& z_{2}=\frac{50-47}{3.496}=0.8581 \xrightarrow{\text { Prob }} \begin{array}{l}
\frac{80.45 \%}{18.44 \%} \\
\text { Chance 01 Completion }
\end{array}
\end{aligned}
$$

Critical Path:-
The procedure of finding critical path is similar. Both in PERT \& CM.

It Consist of two phases;

1) Forward Pass Computation
2) Backward Pars Computation
3) Forward Pass Computation:

In this vel compete, the time by which, evert is expected to be Completed at the earliest.
$t_{E}{ }^{i j}$

$$
\begin{equation*}
E_{j}=\text { Maximum of all }\left[E_{i}+t_{E} i j\right] \tag{j}
\end{equation*}
$$

Where,
$E_{i} \rightarrow$ Earliest expected time for events.
$E_{j} \rightarrow$ Earliest expected time for event j.
$t_{E}{ }^{i j} \rightarrow$ Expected time for activity if

ii) Back Ward Pass Computation:

In this we compute the time by which an evirtmust be completed at the latest

$$
L_{i}=\text { Minimum of }\left[L_{j}-t_{E}^{i g}\right]
$$

Where
$L_{i} \rightarrow$ is the Latest allowable time for event (l) "
$L_{j} \rightarrow$ Latest allowable time for event (g).
$t_{E}{ }^{i j} \rightarrow$ Expected time for activity is.

| event Latest time
 6 -55
 5 -43
 4 $-\min [38,35] \underline{35}$
 3 $-\min [31,20] \stackrel{20}{=}$
 2 -28
 1 $-\min (12,0,15) 0$ |
| :---: | :---: |

OUtgoing event mon

For any activity to be critical, the following (3) Conditions must be satisfy:-
i) Head event slack $=0$

$$
\left[L_{j}-E_{j}\right]=0
$$

ii) Tail event slack $=0 \quad\left[L_{i}-E_{i}\right]=0$
iii) There to

$$
\left(L_{j}-L_{i}\right)=\left(E_{j}-E_{i}\right)=t_{E}^{i j}
$$

Critical Path is termed as critical, bis, if any activity on this path is delayed by curtain amount of time, the Whole project is delayed by the same amount of time."

On) For the network diagram shown below, find the Critical path \& expected project completion time.

$E_{1}=0$
$E_{2}=8$
$E_{3}=9$
$E_{y}=(12,10,12) \quad 12$
$E_{5}=[17,17] \quad 17$
$E_{6}=16$
$E_{7}=(18,16,21)$ pk
$E_{8} 222$
$E_{9}=24$
EMo

1) $1-2,5-8-10$
2) $1-2-4-5-8-10$
3) $1-2-4-6-9-10$
4) $1-3-6-9-10$
5) $1-3-4-6-9-10$
6) $1-3-4-5-8-10$

$$
Z=\frac{T_{S}-T_{E}}{\sigma} \text { same }
$$

NoTE:
In case of PERT, if there are more than one critical Path then on or der to determine probability, we seled the Path having max. Standard deviation i.e(σ)

Slack \& Float :-
EiचEST
$E_{j} \approx E F T$

$L_{i} \approx L S T$

$$
L_{S} \approx \angle F T
$$

$$
\begin{aligned}
& E_{i}+t_{E}^{\dot{i j}}=E_{j} \\
& E S T+t_{E}^{i j}=E F T
\end{aligned}
$$

The terms like Earliest Expected time, Latest allowable time and slack corropond to cunt in PERT.
while the terms like. Earliest start time, Equlist finish time, Latest start time, Latest finish time and float corruponds to actiritios in "CPM".

Slack \rightarrow cunt
Float \rightarrow Activities

1) Slack or Event Float:-

Slack denotes the amount of time by which the particular event Can be delayed without delaying delaying the project Schedule.
2) Foot Event:
i) Total Float (TF)
ii) Free Float
iii) Independent Float
i) Total Float (TF):

\rightarrow It denotes the amount of time by which, an activity canbe delayed, without delaying the project Schedule.
\rightarrow If total float value is
i) +ie \rightarrow Resounds are surplus \& Camb allocated for otheractivitis.
ii) $-V e \rightarrow$ Resources are not sufficient and activity Got may Got complete on time.
iii) $0 \rightarrow$ Resources are first Sufficient to Complete activity on time.
ie) Free Float (FF):-
\rightarrow It is that part of total Float, which can be used lutithout affecting the float of successive ar Succuding activity.
$\rightarrow 9+$ is extra time by which, an activity cam be delayed, so that the succeeding activity can be started at their EST i.e carlist start time.

$$
F F=T F-\text { Head Event Slack }
$$

iii) Independent Float (IF) :-
\rightarrow It is the Amount of time, which Can be used wlithout affecting either the head or tail events.

IF $=F F$ - Tail Event Slack

$$
T F \geqslant F F \geq I F \quad \text { Always }
$$

Qi) For the Network diagram shown below, find the Critical Pitch and $t \in$ ie expected project Completion time, Draw a table Showing the details of each Activity along with total \& Free; \& Independent Float.
$L_{5}=14$
$L_{2}=10 \quad E_{5}=5,13$

$$
\begin{array}{ll}
E_{1}=0 & L_{1}=0 \\
E_{2}=2 & L_{2}=11 \\
E_{3}=7 & L_{3}=7 \\
E_{4}=8 & L_{4}=11 \\
E_{5}=13 & L_{5}=14 \\
E_{6}=17 & L_{6}=17 \\
E_{7}=15 & L_{7}=16 \\
E_{8}=22 & L_{8}=22
\end{array}
$$

For Activity (any) i-I

$$
\begin{aligned}
& T F=L_{j}-\left(E_{i}+t_{E}^{i j j}\right) \\
& f r n^{i n}=14-(2+3)=9
\end{aligned}
$$

For Free float;

$$
\begin{gathered}
F F=T F-\text { Head Event Slack } \\
= \\
F F=\left(E_{j}\right)-\left[E_{i}^{\prime}+t_{E i d}\right) \text { direct Method } \\
\text { from Network } \\
\text { for } D=13-(2+3)
\end{gathered}
$$

For Total Float
IF $=F F$ - Tail event Slack
at $=8-9=-1^{*} \xrightarrow{(0)} \longrightarrow$ Both for ines and

For activity $i-j$

$$
I F=E_{j}-\left[L_{i}+t E^{i j}\right]
$$

cot D

$$
\begin{gathered}
=13-(11+3)=-1^{*}(0) \\
E S T=E F T-T_{E} \\
L S T=L F T-T_{E}
\end{gathered}
$$

Total Flout = $\angle S T-E S T$
Freeflot = TF -HES - neal dull
Indiperbent flout = FF-TES Taildill.

Crashing or time-Cost Model :-
CRASHING
or
Time - cost
\rightarrow It is an extension of Critical Path Method, that Consider a Compromise b/w the time and the cost required, to Complete a project.
Total Cost of Any Project Consist of direct \& indirect cost involve in its Completion.
i) Direct Cost
ii) Indirect cost
i) Direct Cost:
\rightarrow It is the cost directly involve in the execution of an activity.
\rightarrow It include direct material. direct labour, cost of m / c, equipmentete.

CN_{N}

Activity Duration
\rightarrow Crash time is the minimum Activity duration, to Whichan Activity can be compressed by increasing the Resovirces $\&$ hence by increasing the direct Cost, the slope of the lime, gives amount of increase in the direct cost per unit time for Crashing an activity. $C_{C} \rightarrow \operatorname{costat}$ Crash Pt.

Cost time $: \frac{\Delta C}{\Delta T}=\frac{C_{C}-C_{N}}{T_{N}-T_{C}}$ slope

Example

Normal

10 days Rs 8000

$$
\Delta C=\frac{1.6000}{4 \text { day }}=1500 / \text { day }
$$

ii) Indirect Cost :

It is the cost notdirectly involved in execution of Project, but is Compulsory for the safe and timely Completion of the project.
i-) Fixed Indirect cost
ii) Variable Indent cost

The Objective of crashing an network, is to determine optimum project duration Corresponding to minimum cost of Projects, and the steps involved are;
i) In the critical path, select the Critical activity haing minimum Cost Slope.
(ii) Reduce the duration of this activity by one, time unit.
iii) Revise the Neturack diagram by adjusting the time and the cost of crashed activity.
Again find critical path, Project duration \& total cost of Project.
IV) If the optimum project duration is obtained then stop, then otherwise Repeats the stops from I (i).

An) Draw the network Diagram and crash the network to Optimum project duration corruponding to minimum cost of Project. It is Given that the indirect cost is Rs. 900 perday.

$$
\begin{aligned}
T E & =12 \text { days } \\
T C & =D C+I D C \\
D C & =B \cdot 6600 \\
I D C & =12 \times 900=10800 \\
T C & =17400
\end{aligned}
$$

Now, crashing min. of cost of activity along Critical Path. It is activity $(2-4)$, and Crashing it by ter days \& Revised Network diagram \& Cost of Project is as giom below.

$$
\begin{aligned}
& T_{E}=10 \text { days } \\
& T_{C}=D C+I D C \\
& D_{C}=R_{s} \cdot 6600+800(400 \times 2) \\
& I_{D C}=10 \times 900=8_{0} .9000 \\
& T_{C}=16400 B_{0} \quad \text { cncra }
\end{aligned}
$$

$$
\text { Critical Path }=10 \times \text { Cost. }
$$

oncrasting (2-4)
Now the Network has three critical Path \& nov e Crashing an one activity, Project duration cost change, so le le need to Crash, atteast two activities simultaneously, which gives thee options. out of thess we select an option for which the ε of cost slope $\alpha / \Delta t$ is minimum.

1) $1-2$ \& $1-4 \longrightarrow 500+600=1100$
2) $2-5$ \& $4-5 \longrightarrow 300+700=1000 \sqrt{ }$ Here crashing done by I day
3) $1-2 \& 4-5 \longrightarrow 500+700=1200$

$$
T_{c}=16500 \quad \text { Here cost increast. So }
$$ we have to stop.

so

$$
\begin{aligned}
& T_{0}=10 \text { days } \\
& C_{0}=P_{s .} 16400
\end{aligned}
$$

Objective

$$
\begin{aligned}
& \frac{1^{s+} \text { crash }}{D C \uparrow R_{s o} 800} \\
& \frac{I D C+R_{5} 1800}{T C+R_{5} 1000}
\end{aligned}
$$

and Crash

$$
D C \uparrow R_{0} 1000
$$

$$
I D C+B \cdot 900
$$

$$
T C \uparrow R_{50} 100
$$

$$
\begin{aligned}
& T_{E}=O \text { days } \\
& T C=D C+I D C, \quad \text { iss crashing } \\
& T C=6600+(400 \times 2)+1000) 2^{\text {nd }} \text { crashing } \\
& T_{C}=8400 \\
& I D C=9 \times 900=R \circ 8100
\end{aligned}
$$

Fore Casting
Forecasting can be termed as prediction of future r sales and Demand of a particular product.
It is the Projection Based usm past data and the part of human judgement. The Survival of any organization depends up on How lelell they can project, the demand in future.

Need / Benifits of Fore casting:
i) It helps in determining, the volume of production \& Production rate.
ii) It forms the basis for, production budget, labour budget, material budget etc.
iii) It is essential for product design \& development.
iv) $9+$ suggest the need for plant espanaim.
v) It helps in establishing price policy.
vi) It helps in deciding the extent of marketing, Advertising \& distribution required.

Types of Demand Variation:-
i) Trend Variation $(T): \rightarrow$ Causal Nuthor
\rightarrow It shows the long term, elpward or downward movernent in the demand pattern of Particular product.

ii) Seasmal Variation (S):

It shows a short term, regular variations repented after a shoer period of time may be leakey or daily.

iii) Cyclic variation (c):

It shows the long term, leave like demand Variation, normally for more than a year.

iv) Irregular Variation (I):-

These variation's are Caused, due to unusual Circcimstankes, ehich are not reflective, of normal behaviswe.
like, govt. Policy change, Price hike, strike, shut down etc.

These are not Consider lender For canst.

Chang in gout Policy, excendemand

Type of Fore Cast

Fore Cast

Qualitative or Subjective
Qleantitative or

\rightarrow Opinion Survey
\rightarrow Market trial

Long. (2-5 year)
Short (1-3year)
Mid (3-12 month, 2years)
\rightarrow Judgemental Fore casting:
\rightarrow This Method is based up on art of human judgement ie how level a human being can predict, the demand of Product in future.
\rightarrow This Method Dost require past data or Sales figure.
i) Opinion Survey:

In this method, opinions are Collected from the Customer, retailer, \& distributor, regarding the demand pattern of Product. These information are used while tore casting.
ii) Market trial :- (Applied for Low cost material)
\rightarrow This is method is applicable for new product 8 in that case, Product is introduce blu limited population in the form of fec sample.
\rightarrow The response from the limited population is used to project the demand of from bigger population.
\rightarrow If is Applied for low cost Consumable.
examples: Toothpaste, chocolate, cold drink, cosmetics item etc.
iii) Market Research:-
\rightarrow In this method, the work or Surely is assignened to an external marketing agencies and the purpose of research is to collet information, regarding the demand of a product.
\rightarrow The details about various factor, which influences the demand like Customer income, customer Occupation, location. Quantity Quality etc. are related to get the forecast.
iv) Delphi Technique:-
\rightarrow In this Method a pannel of Experts ave asked Sequences Question, in which the respond one Question iolesed to produce nest Question.
$\rightarrow 9+$ is stop by step procedure, in which the information available to some expert is made available to other and final forecast is obtained, by the common opinim of all the experts.

Quantitative Forecasting :-
i) Time Series:-
\rightarrow In this Method, Past data are arranged in Chronological order as dependent variable and time as independent Variable.
\rightarrow Based upon these past data, le need to project the demand in future.

Year	2008	2007	20010
Demand	210	360	310

i) Past average Method :-

In this Method, fore caste is give by Average or mean of the actual demand data, for the previous period
ii) Simple moving Average or Rolling average: mean of last three

$$
1^{\text {st }} \text { fore cast }=(n+1)^{n+1} \text { Period }
$$

$$
\begin{gathered}
n=3 \\
x^{\text {st }} \text { fore cast }=4^{\text {Mu }}
\end{gathered}
$$

\rightarrow This method used passed data \& calculate rolling average for constant perind-Fresh average in Computed at the end of coach period by adding the actual demand data for the most recent period \& deleting the data for older period.

In this method, as data changes from Period to period then it is termed as moving average method.
iii) Leleighted moving Average (INMA):-

$$
\begin{array}{r}
\text { SMA }=(n=4)=F, 2012=\frac{330+360+310+240}{4} \\
\text { SMA }(01=4), F_{2012}=0.25 \times 330+0.25 \times 360+0.25 \times 310+ \\
0.25 \times 240
\end{array}
$$

but Now for,
Weighted moving average,

$$
\text { WA }(n=4), F_{2012}=0.4 \times \frac{(330)}{T_{200}}+0.3 \times 260+0.3 \times 310+0.3 \times(240
$$

\rightarrow This method gives eenequal Weight to each demand data; in such amanner, that summissim of all lelieghts always equal to one.
\rightarrow The most recent data is give the hightest leleight and the Uleight assigned to oldest data will be the least.

Method to find Weight;
sum of Digit method;

$$
\eta=\text { no. of period of WMA }
$$

$i)$ find the sum of n-natural number,

$$
\sum n=\frac{n \cdot(n+1)}{2}
$$

2) Arrange them in decreasing order of Weight as:

$$
\frac{n}{\sum n} ; \frac{n-1}{\sum n}, \frac{n-2}{\sum n} \cdots \cdots \frac{1}{\sum n}
$$

$$
\begin{aligned}
& n=4 \quad \sum n=10 \\
& \quad \frac{4}{10}, \frac{3}{10}, \frac{2}{10}, \frac{1}{10}
\end{aligned}
$$

$n=5 \quad \sum n=15$.

$$
\frac{5}{15} \frac{4}{15}, \frac{3}{15}, \frac{2}{15}, \frac{1}{15}
$$

On) For the given data, generate the forecast freach of the time period using Simple moving average for $n=3$ periods and weighted moving average for $n=4$ periods. Also find the forecast for $9^{\mathrm{mm}}, 10^{\mathrm{mm}}, 11^{\mathrm{kt}}$ Period

$$
\begin{aligned}
& n=9 \\
& n=10 \\
& n=11
\end{aligned}
$$

$1-340$
$2-460$
$3-520$
4
5
6
7
8
9
10
11

v) Exponential Smoothing Process i. A
\rightarrow This method requires only the current demand $\&$ fore catted value for the Current period to gives nest forecast.
This method is a modified form of Weighted moving average, which give weight to all the previous data, but the eights assigned are exp exponentially decreasing order:
The most recent data io girm the heighest Weight 2 Weight assigned to older data clecreses exponentially

General form of exponential smoothing:-

$$
F_{t}=\alpha D_{t-1}+\alpha(1-\alpha) D_{t-2}+\alpha(1-\alpha)^{2} D_{t-3}+\alpha(1-\alpha)^{3} D_{t-4}^{+\ldots}
$$

α. must lie b/w O to 1 very fast decreasing

$$
\begin{align*}
& F_{t}=\alpha D_{t-1}+(1-\alpha)\left[\alpha D_{t-2}+\alpha(1-\alpha)_{\Delta t-3}+\alpha(1-\alpha)^{2} D_{t-1}\right. \\
& +\cdots-\infty] \\
& F_{t}=\alpha D_{t-1}+(1-\alpha) F_{t-1}-(1) \tag{1}
\end{align*}
$$

OR

$$
\begin{equation*}
F_{t}=F_{t-1}+\alpha\left(D_{t-1}-F_{t-1}\right) \tag{2}
\end{equation*}
$$

Error:-

$$
\begin{aligned}
E_{r r o r}= & e_{i}=\Delta i=D i-F_{i} \\
& F_{t}=F_{t-1}+\alpha e_{t-1}
\end{aligned}
$$

celhere,
$\alpha \rightarrow$ is 1 Crown as Smoothing Constant and it is equivalent to n period of moving Average and is give by

Smoothing
Constant

$$
\alpha=\frac{2}{n+1}
$$

α for probuten in Plants

$$
\alpha=0.1-0.2
$$

Data are more \qquad using exponentially Smoothing but less data \qquad

NOTE:
if for the initial period, forecasting valve is not given then,
i) take the actual demand for the first period, equal to Forecast ire $T_{1}=F_{1}$ and proceed.
ii take the Average of the actual demand data, as the forecast for the first period and proceed
(An) The Sale of care in a show room in 4 Consenatur month $70,68,82,95$ respectively with Smarting Constant of 0.4 . Find the forkast for the nest month.

Motreth	Sale
1	70
2	68
3	82
4	95
Di	

Month	Sale	F_{i}	C_{i}
1	70	70	0
2	68	70	-2
3	82	69.2	12.8
4	95	74.32	20.68
$82.59 \approx 83$ unit			

$$
\begin{aligned}
& \text { Month }=4 \\
= & \alpha+(1-\alpha)+\alpha(1-\alpha)^{2}+\alpha(1-\alpha)^{3} \\
= & 0.4\left(1+0.6+0.6^{2}+0.6^{3}\right) \\
= & 0.8704
\end{aligned}
$$

Responsiveness or Stability:-

$$
\text { Time } \longrightarrow
$$

Responsive:-
Responsiveness indicates that the forecast have fluctuating or Surisging Pattern it is profied for new product \& for that no. of Period is Kept small.

Stability:
\rightarrow Stability means that. If re cast pattern is flat, sonnet, or as less fluctuation.
\rightarrow Itispreferoed for old existing product \& for that no. of Period should be large.

As $\alpha=\frac{2}{n+1}$

$$
F_{t}=F_{t-1}+\alpha\left(D_{t-1}-F_{t-1}\right)
$$

ND if
$N=0, n \rightarrow \infty \quad$ (limit of Stability)

$$
F_{t}=F_{t-1}
$$

(2) if $\alpha=1$ \& $n \rightarrow 1$ (limit of Responsiveness)

$$
F_{t}=D_{t-1}
$$

(Actual dersand is now for cast here)
(IPair going average)

Objective

Forecast Error:-

$$
e_{i}=D_{i} \not F_{i}
$$

When error is studied for long duration, it becomes helpful to find a particular pattern or trend, which may regulate our future production. The most commonly used method to find forecast error are;

1) Mean Absolute deviation:

$$
M A D=\frac{\sum_{i=1}^{n}\left|D_{i}-F_{i}\right|}{n}
$$

* Example

SO	Di_{i}	Fi_{i}	C_{i}
1	160	150	+10
2	150	180	-30
3	180	160	+20
Eeizo			

$\sum_{e i=0}$
It indicates the overage magnitude of error, in every period lelithout Considering Sign
$M \cdot A D=\frac{\varepsilon_{e_{i}}}{\text { total } N_{0}}$.

$$
M A D=\frac{60}{3}=20
$$

2) Mean Forecast Error (MFE) or (Bios support dir tell
\rightarrow It measures the forecast error, with regard to direction and shows any tendency of over or under fore cast.
$\rightarrow+v e$ bias indicate under estimated forecasting.
\rightarrow-ve bias indicate over estimated forecasting
Running Sum Fore cast Error:-

$$
\begin{aligned}
& \text { RSFE }=\sum_{i=1}^{n}\left(D_{i}-F_{i}\right) \\
& \text { Bias }=\frac{\text { RSFE }}{n}
\end{aligned}
$$

(3) Mean Square Error (MSE):-

$$
M S E=\frac{\sum_{i=1}^{n}\left(D_{i}-F_{i}\right)^{2}}{n}
$$

O. \rightarrow standard deviation of for c cast error

$$
\sigma=\sqrt{M S E}
$$

Mean Square error is used to Compute standard duration for forecast error, which is utilized to plot control chart for forecast error...
4) Mean Absolute Percentage Error (MAPE):-

$$
\text { MAPE }=\frac{\sum_{i=1}^{n}\left|\frac{D_{i}-F_{i}}{D_{i}} \times 100\right|}{\eta}
$$

\rightarrow If is the average of $\%$ error Compare to actual demand. \rightarrow It is used to put error in prospective, bes, there is difference blu 50 out of 100 and 50 out 1000 .

v) Tracking System (TS):-

$$
\frac{T S=\frac{R S F E}{M A D}}{ \pm 4 \text { or } \pm 5}
$$

\rightarrow It tells how wheel the forecast is predicting the actual value. The value of o would be idle.
\rightarrow But ± 4 or ± 5 is acaptable range.
Qi) The demand for lusiary car has been shown below. the expert forecasted sate of 100 car for the month of march The smoothing constant 0.15 . Find the forecast for the month of August. Also find MAD, MSE, MAPE \& Bias

$$
F_{t}=F_{t-1}+\alpha e_{t-1}
$$

Month	Demand	Forecast	error	e_{i}
March	150	100	$50+$	
April	200	127.5	92.5	
May	100	121.375	-21.375	
June	450	118.168	-68.168	
July	150	107.54	42.06	
Aug		114.25	$\sum_{e i}=95.01$	

$$
\sum(e i)=274.6 \sum e_{i}=17928.45 \mathrm{~S}
$$

1)

$$
\begin{aligned}
& \frac{\frac{e i}{d i} \times 100}{D_{i}} \\
& \\
& \\
& \sum\left|\frac{e_{i}}{D_{i}} \times 100\right|=265.34 \\
& \hline
\end{aligned}
$$

1) MAD: $\frac{\sum\left|e_{i}\right|}{n}=54.8$
2) MSE: $\frac{\Sigma e_{i}^{2}}{n}=3585.6$
3) MAPE: $\frac{\sum\left|\frac{e_{i}}{D_{i}} \times 100\right|}{\eta} \leqslant 5.06$
(4) Bias $\therefore \quad \frac{\sum C_{i}}{n}=19.0$

Causal or Econometric Method:-

In, this method. Forecaster bill try to establish cause \& effect relatision relation bow demand of products any other - Variable. The demand is dependent.

The objective is to establish a relation such that Changes in one variable becomes useful for the predication for other.
i) Co-relation Analysis:-

- Degree of Closeness

$$
r=+1 \text { to }-1
$$

blew two Variable

$\frac{x z y}{}$	
$x=+0.61$	$x=-0.48$
$x=\uparrow 100$	$x \uparrow 100$
$y=\uparrow 61$.	$y+48$

\rightarrow It indicates the degree of closeness blu two and its values ranges from +1 to -1 .
\rightarrow It is an indicator of extant to which. Knowledge of one Variable becomes useful tor the prediction of other.
\rightarrow The correlation cofficient blu two variable x \& y is girm by

$$
r=\frac{\sum(x-\bar{x}) \cdot(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2} \cdot \sum(y-\bar{y})^{2}}}
$$

Where
$\bar{x} \& \bar{y}$ are average value of eridependent $x \& y$

$$
h^{\prime}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2} \sum(y-\bar{y})^{2}}}
$$

Very imp (C)
Linear Regression Analysis:-

\rightarrow It is the mattematical Technique of obtaining line of best fit blu the dependent variable lelhich is usually, demand of product and any other variable on which demand is dependents
\rightarrow In Regression Analysis, The relationship blu sone independent Variable x \& dependent variable y is geom by a straight line.

$$
\begin{equation*}
y=a+b x \tag{1}
\end{equation*}
$$

Where a is intercept on y asides.
and b is slope of line.
$n=$ no. of Perivels of Data
Taking Σ both side of $\operatorname{equ}^{n}(\pm)$

$$
\begin{equation*}
\Sigma y=a \cdot n+b \Sigma x \tag{2}
\end{equation*}
$$

Now multiply equn (1) by x
次

$$
x \cdot y=a \cdot x+b x^{2}
$$

Taking \sum on both side

$$
\begin{equation*}
\sum x \cdot y=a \cdot \sum x+b \sum x^{2} \tag{3}
\end{equation*}
$$

eqn"(3) multiply by n on both side \& Subtract to $\times x$

$$
\begin{aligned}
& e q u^{n}(2) \times \sum x \\
& n \cdot \sum x \cdot y=a \cdot n \Sigma x+b \cdot n \sum x^{2} \\
& \sum x \cdot \Sigma y=a \cdot n \sum x+b\left(\sum x\right)^{2} \\
& n \cdot \sum x \cdot y-\sum x \cdot \sum y=b\left[n \sum x^{2}-\left(\sum x\right)^{2}\right]
\end{aligned}
$$

$$
b=\frac{n \Sigma x \cdot y-\Sigma x \Sigma y}{n \Sigma x^{2}-(\Sigma x)^{2}}
$$

from $e_{\text {qu }^{n}(2)}$

$$
a=\frac{\sum y-b \cdot \Sigma x}{\eta}
$$

Least Square Method:-

When the independent variable x is uniform or Linear as it such a form that it can be modified to make $\sum x=0$ then the calculation become very simple and the method is Called least square Method.

$$
\sum x=0
$$

$$
\begin{array}{r}
b=\frac{\sum x \cdot y}{\sum x^{2}} \\
a=\frac{\sum y}{n}
\end{array}
$$

Year	Demand	x
2007		-2
2008		-1
2009	\cdots	0
2010		+1
2011		
2012		

ii) $n=$ even

Un) A Car manufacturer has recently held road side care exhibition for new model of Car. The no. of Salesman employed at each eschibition and the no. of Care Booked, it is as girm below. font linear vergression equn

Sestimate the number of Car Booked if 10 Salesman are employed in an exhibition.

No. of Salesman
No. of Car booked

$$
\begin{aligned}
& x-\text { erdeperdent } \\
& y \text { - cleperdent }
\end{aligned}
$$

$$
\begin{align*}
& n=10 \\
& \Sigma y=a \cdot n+b \Sigma x \\
& \Sigma y=10 \cdot a+b \Sigma x \Rightarrow 1400=10 \cdot a+60 . b \\
& \Sigma x \cdot \Sigma y=a \Sigma x+b \Sigma x^{2}-(2) \\
& a=72.5 \quad b=11.25 \\
& y=72.5+11.25 x \\
&=10=60 . a+392.1 \\
& f 0 r y=10 \\
& y=185
\end{align*}
$$

On) The sales of an Automobile Company is Rs, ines giro below. Forecast the demand for next two year. using Least Square Method.

Year	Sales (Cr)
$2005-30$	
$2006-33$	
$2007-37$	
$2008-39$	
$2009-42$	
$2010-46$	
$2011-48$	
$2012-50$	
$2013-55$	
$2014-58$	

Soln by Least Square Method

year	Sale $(c r)$	x	x	x^{2}	$x \cdot y$
2005	30	-4.5	-9		
2006	33	-3.5	-7		
2007	37	-2.5	-5		
2008	39	-1.5	+3		
2009	42	-0.5	-1		
2010	46	+0.5	+1		
2011	48	+1.5	+3		
2012	50	42.5	+5		
2013	55	+3.5	+7		
2014	58	+4.5	9		
	$\sum y=438$	$\sum x=0$	$\sum y^{2} 0$	$\sum x^{2}=330$	$\sum x \cdot y=502$

$$
a=\frac{\sum y}{n}=43.8
$$

$$
\begin{array}{ll}
y=43.8+1.52 x \\
\text { for 2015, }, & x=+11, \\
2016 & y=40.53 \mathrm{cr} . \\
& y=63.57 \mathrm{cr}
\end{array}
$$

Assembly Line Balancing 12/unit

\rightarrow The Aim of Assembly line balancing is to group different Facilities \& equipment into different Work station in such a manner that utilization is optimised and idle time is minimized

Advantages:
i) Decrease in Work in process inventory.
ii) Reduction in material handelling.
iii) Effective utilization of man power a mlc .
iv) Uniform rate of Production.
v) Easy Production Control

Terms Associated leith Assembly balancing Line
i) Work Element:-

Tack time
Every Job is Completed by a set of operation and each operation
Which is performed on the job is called Work element
2) Task Time: $\left(T_{i}\right)$

It is the standard time required to Complete work element.
3) Work Station:

It is the specifier location on the assembly line, where gird amount of Work elements are Completed Within a firs period of time.

4) Station Time :- $\left[T_{i}.\right]$

It is the time required to Complete Work element, assigned in a Work station.
5) Total Work Content: (TWC):-

- It is the time required to Complete one set of job. Itio given by;
cither the summission of all the station time or the \sum of the all the element task time.

$$
T W C=\sum T_{s i}=\sum T_{i}=42 \mathrm{~min}
$$

6) Cycle Time $\left(T_{c}\right)_{0}-\quad T_{c} \geq\left(T_{s i}\right)_{\text {max o }}$

- It io the amount of time for which a job is to beassembled remains in a workstation.
- Otis the time gap blu two sucesive product, Combing ont from the assembly line.

7) Balance Delay (BD):-
$9+$ is the ratio of total idle time of the job on the assembly line, to the total time spent by the job on the assembly line.
Balance delay is gum by;

$$
B \cdot D=\left[\frac{n T_{c}-T W c}{\eta \cdot T_{c}}\right] \times 100
$$

$n=3, T_{C}=16 \mathrm{~min} \quad T W C=42 \mathrm{~min}$
$\eta \rightarrow$ no of Workstation
$T_{c} \rightarrow$ Cy che time
TWO \rightarrow Total Work Content

$$
B D \cdot \%=\frac{3 \times 16-42}{3 \times 16}=\frac{6}{48} \times 100
$$

this value show effectiveness \& is as 8 mall as possible required
8) Line Efficiency: (η_{L})

$$
\eta_{L}=\frac{T W C}{n \cdot T_{c}} \times 100
$$

$$
\eta_{L}=100-B D \%
$$

9) Smoothness Indexi(SI)

It is the term use to represent load distribution blu the different Workstation, Compare to a station, consuming maximum time.

$$
\begin{gathered}
S I=\sqrt{\sum_{i=1}^{n}(\text { Max. Stationtime }- \text { station time })^{2}} \\
S I=\sqrt{\sum_{i=1}^{n}\left(\left(T_{s i}\right)_{\text {Max }}-T_{s i}\right)^{2}}
\end{gathered}
$$

example:

$$
S I=\sqrt{(15-13)^{2}+(15-15)^{2}+(15-14)^{2}}
$$

10) Mini mum number of Work station required:-

$$
\eta_{\min }=\frac{T W C}{T_{C}}
$$

Example: $\rightarrow n_{\text {min }}=\frac{42}{16}=2.625 \approx(3)$

Methods of Line Balancing:then used but rather than using Method I only.

1) Largest Candidate Rule.
2) Rank Positioned Weighted Mettiod (RPWM).
or
Helgeson \& Burnie
3) Largest Candidate Rule:-

The steps involved are:-
i) List all the element in the decreasing order of their task time.
ii) To Assign an element, in a Workstation, start from the beginning of list, moving downward, Slarching first feasible element, Which Can be placed in a work station.

- A feasible element is one, that satisfy the precedence requirement and When that element is placed in a Workstation, the total time of lolorestation should not exceed the Cycle time.
iii) Strike of the element which is assigned in work station, so that it cannot be consider again
iv) Continue in the similar manner, lentil all the element will assign to different Workstation.

An) For the following set of element, draw the precedence dea. Balance the line \& determine the Belay Balance delay line efficiery \& 8 moothren index \& take the cycle time as 1 min.

1) $B D=20 \%$
2) $\eta_{L}=80 \%$
3) $S I=0.59$
$\left(Q_{n}\right)$
A company is engaged in Assembly of Wagon on a Conveyor. 500 wagons ares required per day e production time available per day is 420 minute. Find the minimum no. of Work station required, Balance delay ($B \cdot D$) \& line effecinny Represent the different Wbrebstation on the Network dea
$500 \mathrm{Wagm} / \mathrm{day}$
$420 \mathrm{~min} / \mathrm{day}$
$\frac{420 \times 60}{500}=50 \mathrm{yc}$
\&c
$50 \mathrm{sec}=\mathrm{T}_{c}$

I	$12(4)$	E
J	$8(7)$	$F_{1} G, H I$
k	$9(6)$	-
k		

WS	Actuily	T_{i}	$T_{\text {si }}$	Idele teine
I	D	1	50	50
II	A	45	45	0
III	E	15		
	HI	12	50	0
	I	12		
	B	11		
C	9			
	9			
	12	50	0	
	F			

Ary $\left\{\begin{array}{l}B D=2.5 \% \\ \eta_{L}=97.5\end{array}\right.$
Network dia by using Table (3) relation wd (2)

ii) Rank Position Weighted Method (RPWM)

Helgeson \& Buenic
\rightarrow In this method, Arrange all the Work element, in the decreasing order of their position Weight.
\rightarrow Position Weight of an element, correspond to the time off the longest path from the begining of element through the remaining Network.
\longrightarrow Allocation is done Similar to, largest Candidate. Mule. The only difference in final table, that, all the element should be arranged in deceasing order of their position leleight
An) Design an Assembly line for the following set of elements by (RPWM). Also Calculate Balance delay \& line efficiency η_{L} \& smooth ness index. Take the cycletirme as 18 min .

$$
T_{c}=18 \mathrm{~min}
$$

Step I

www.enggbuzz.com

जिसका Weight find करना है। वहाँ से longest Path की value. \& Weight every Point Required है।

Step II Make New Table by arranging elements according to their Weight in decreasing order.

WIs	Element	T_{i}	Poet wit.	Precedence	Psi	idle Time
	1	8	44	-	14	4
(1)	4	3	36	1		
	2	3	$=14<15$	35	1	16

Balance delayz

$$
\begin{aligned}
B \cdot D & =\frac{5.15-T W C \times 100}{5.15}=24.44 \% \\
\eta_{L} & =75.56 \% \\
S I & =7.07
\end{aligned}
$$

Queuing Theory
or
Waiting Line theory

- Aim of Queuing theory is achievement of economic balance b/w the cost of providing service \& cost associated lilith the Weight required for that service.
- It is Applied to Servia oriented organaizatim like mic, Repair shop, Production shop, workshop, food chain, ATM etc.

Charactersties of Queuing Model:
Arrival Rate - λ Server - S
Sercrice Rate - H

1) Arrival Rate / Arrival Pattern (λ) :

- The no. of customers arriving per unit time is termed as Arrival rate.
- Customer Arrival is random s therefore it is assumed to follow (Poisson's distribution) \rightarrow Prefreed bs 3, Random

2) Service Rate or Service Pattern:

The no. of customers serviced per unit time is k norm as service Rate. and it is assumed to follow exponential distribution.

3) Service Rube / Service order:-

i) FIFO or FCFS
ii) LIFO or LCFS
iii) SIRO \rightarrow Service in Random order
iv) Priority treatment

- It givers the information about the Queue dicisibline which means the order by which, Customer are pecked up from the Waiting line. in order to provide Service.

4) System \& Calling Population:-

System:
System is a place of facility, where customer arrive in order to get services its capacity may be finite or infinite.

Calling Population
The entire sample of Customer from lethich only a feu visits the system is termed as calling population or input Source. Its Capacity may be finite or infinite
It is infinite \rightarrow When arrival of fee v customer does't lave any effect on the arrival pattern of future Customer
5) Customer Attitude:-

Jockey:-
Customer Keepon changing Queve, in hope to get service fatter.

Bating:
Customer Dos't join the Queue \& leaves the system as Queue is very long

Reneging:
Customer join the clueve for short duration and then leave the system as Queue is moving very slow.

Cheater:
Customer takes illegual means like fighting, Bribing, etc in hope to get Service faster.

Representation of Queuing Model:-
Queuing Model are represented by Kendall \& Lee. $(a|b| c):(d|e| f)$
Welters,
$a \rightarrow$ Probability distribution for arrival pattern.
$b \rightarrow$ Probability distribution for Service pattern.
$C \rightarrow$ No. of Sever r within the System..
$d \rightarrow$ Service rule or service order.
$e \rightarrow$ Size/Capacity of System:
$f \rightarrow$ Size / Capacity of Calling population or input Source.
Symbols:
$a \& b$
$\rightarrow M-$ Markorian (Poissm)
\rightarrow for arrival Pattern. Or exponential Service pattern.
E-Erlan gian (Gamma)
\rightarrow For arrival / service pattern.
$D \rightarrow$ Deterministic arrival / service pattern.
\rightarrow 1,2,3,4 NO. OH Seneror
$\rightarrow d \rightarrow$ FIFO, LIFO, SIRO, GDEgeneral Service deciptisie

$$
\begin{aligned}
& \frac{e s 8 f}{} \rightarrow \text { finite } \\
& \infty-\text { infinite }
\end{aligned}
$$

(1) Atrival Rate $=\lambda>\lambda \frac{\text { (Porson) }}{\lambda=15 \text { custo } / \mathrm{hr} .}$
(2) \longrightarrow Inter arriual rate $=\frac{1}{\lambda}=\frac{1}{15} \mathrm{hr} /$ cast $=4 \mathrm{~min} /$ cust
(Scponential)
(3) \longrightarrow Service Rate $=H$ (Exponential $)$

$$
\rightarrow H=20 \text { cust } / \mathrm{hr} \text {. }
$$

(4) Inter-Service Rate Time $=\frac{1}{H}=\frac{1}{20} \mathrm{hy} /$ cust $=3$ mim $/$ cust (Poisson)
if $\lambda>H$
Severice Rate $\rightarrow H$
ArrivalRate \rightarrow ' λ

- Quer length Llill Kexp on increasing and after the Certain period of time, incomming population Lelell not get sevirid.
- In there Conditions We Can't find solutions ao system ultimately fails.
ii) if $\lambda \leqslant H$ o- System Work

$$
P=\frac{\text { Arrival Rate }}{\text { Servicl Rate }}=\frac{\lambda}{H}
$$

if $H=20$ cust. $/ \mathrm{hr}$.
(1) If $\lambda=5$ cust. $/ \mathrm{hr}, \quad \mathrm{P}=\frac{5}{20}=0.25 \rightarrow 0.25 \%$ Probabilily of cust to Wait
2) if $\lambda=10$ cust/tr, $\quad P=\frac{10}{20}=0.50$
3) if $\lambda=15$ cust \ln. $e=\frac{15}{20}=0.75$
4) if $\lambda=20$ cost $\ln \gamma \quad e=\frac{20}{20}=1.00$
\rightarrow The Ratio of Arrival to Service Rate indicates the \%time Server is bewray and is I Known as utilization factor, Average utilization System extitization, Channel efficiency and Clearing Ration.

- It also indicates the probability that the New customer have to wait.
There are tor formula's for e Two Formula for $P=\frac{\lambda}{1}$
i) Probability that the system io idle

Probability of zero Custorner in the system

$$
P_{0}=1-P
$$

- (1) formula
if Probability of having adjactly " n " customer in the system

$$
P_{n}=P^{n} \cdot P_{0}
$$

(2) formula

Probability $\rightarrow P_{0}+P_{1}+P_{2}+P_{3}+P_{4}+\cdots-+=1$

$$
\begin{aligned}
& P_{3}+P_{4}+\cdots=1-\left(P_{0}+P_{1}+P_{2}\right) \\
& P_{\text {robability }}=\left(1-P_{0}-e^{\prime} P_{0}+e^{2} P_{0}\right)
\end{aligned}
$$

iii) Arrage no. of Customer in the System.

In this we include both the customers waiting in the Queve along lith those getting service.

"Average No. of
Customer in the System"
$P_{n} \rightarrow$ Probability of N customer in the system.
iv) Average no. of Customer in the Queue:-

In this we do not include the Customer getting service.

Little's Law :-
For a stable System, Average no. of Customer in the system or cqueve is giro by;

$$
\begin{aligned}
& \text { Average customer } \times \text { Average Waiting } \\
& =\text { arrival rate time of the } \\
& \text { customer in 'system } \\
& \text { or Queue } \\
& L_{s}=\lambda \cdot W_{s} \rightarrow W_{s}=\frac{L_{s}}{\lambda} \\
& L_{q}=\lambda \cdot W_{q} \rightarrow W_{q}=\frac{L_{q}}{\lambda} \\
& W_{q}=\frac{L_{q}}{\lambda}=W_{s}-\frac{1}{\mu}
\end{aligned}
$$

Where,
Ns \rightarrow Average Waiting time of the Customer in the System $W q \rightarrow$ Average waiting time of the customer in the Queue.

Average \rightarrow System Mean \rightarrow Queue
(In) No. of Person arriving at a Service Centre is 8 Customer Per hour s the service provider takes 5 min per customer then determine.,
i) $L s \& L q$
ii) WS \& WV

Sorn

$$
\frac{1}{H}=5 \mathrm{~min} / \text { custesmer } \quad H=12 \text { custmue } / \mathrm{hro}
$$

$$
\begin{aligned}
& \omega=P=\frac{2}{3} \quad \frac{A}{H}=P \\
& L_{s}=2 \quad L q=1.33 \\
& W_{s}= \\
& W_{q}=\frac{L_{q}}{\lambda}=\frac{1.33}{8}
\end{aligned}
$$

Qm) A Shopkeeper Service 10 customer Per howe and the customer arrival is 7 customer per hour. Find the probability of at least three Customer waiting in the Queue.
Sols)
$H=10$ customer Perhower
$\lambda=7$ Customer perhour

$$
\begin{aligned}
& \quad P=\frac{\lambda}{1-1}=\frac{7}{10} \\
& \sqrt{P}=0.7 \\
& P_{n}=e^{n}-P_{0}
\end{aligned}
$$

Attract 3 in the Cluere
means atterast 4 in in the fesstem.

$$
\begin{aligned}
& P_{4}+P_{5}=1-\left(P_{0}+P_{1}+P_{2}+P_{3}\right) \\
& ==1-\left(P_{0}+P^{1} P_{0}+P^{2} \cdot P_{0}+P^{3} P_{0}\right)=C^{n}=0.240
\end{aligned}
$$

\rightarrow Probability of " n " arrival lon the Systorn during period T
Generalised form
of Poissmis dist ${ }^{n}=P(n, T)=\frac{(\text { exp })^{-\lambda \cdot T} \cdot(\lambda T)^{n}}{n!}$
units meat be same while Applying
\rightarrow Probability thane more than T time period is needed to Serve Customer:

Service \rightarrow exponential diet ${ }^{n}$.

$$
P=(\text { exp })^{-H T}
$$

Probability that the Waiting time in the Queue is greater than T:-

$$
P\left(w_{a}>T\right)=e(e-e)^{-\frac{T}{w_{s}}}
$$

Probability that the Waiting time in the system greater than T:-

$$
P\left(W_{s}>T\right)=(\text { exp })^{\frac{-T}{W_{s}}}
$$

Method
or
Time study or
Work Measuument
Motion Sturdy

1) Method or Motion Study :-
It is the set of Technique develop to dierid a job, into Smaller Part, followed by its rearrangement to make it more effective \& productive, and the stops involved are;

Recording Techniques:-
These are design to Simplify \& Standardadise the Recording Work and most Commonly used recording Techniques are; Process Chart: (P.C)

a) Outline Process chart:-

- These charts are not much detailed and are use to give a little bit of information about what is going cm, lelithin the production System.
- It uses only two symbols ie operation O \& inspection
b) Flow Process chart:
$i) \xrightarrow{\Psi}$ Material Type Flow Procerschart
ii) \longrightarrow Man Type Flow Procis chart
iii) \longrightarrow MIc Type Flow Process Chart

These charts are much detailed and record all the activities Sequence wise along with time, distance, additional remark

- Aet the fire symbols are used in these chart.
c) Two Handed Process chart :-
- Otis used to Record, the activitio of Left hand related to right hand of an operator \& activities of two hands are synchronised on a Common time scale.
- It is used for short duration, Repeated sitting jobs, all the five Symbols ave used in these chart.

2) Time Scale Chart:
a) Multiple Activity Chart:-

Time	Man	Mic	Remark
1.5 min			Job loaded
6 min.			Mic working
0.5 min			Jobumbaded

Cycle time $=8 \mathrm{~min}$.
Gasttchart \rightarrow only for machine
Percentage utitization

$$
\begin{aligned}
& \text { man }=\frac{2}{8} \times 100=25 \% \\
& m / c=\frac{6}{8} \times 100=75 \%
\end{aligned}
$$

- It is the chart in which the activities of more than 1 items are recorded on common scale (time) to show their inter-relatinshifio
- The ster of those charts makes it possible to lecarrange these activities in such a manner that utilization may be optionged
b) Gang Process chart:- F-1 Race Maintaunance grape
- Iris another type of multiple activity chart.
- Whichshows the Relationship carried ont by different members of group wa ta Related to each other lelhele performing a Single Task.
(E) KElQOMingrano

3) Diagram:
a) Flow Diagram:

- It is the scaled Plan or model of the Working area, showing the details, about different facilities, equipment along lilith there n umber symbol.
These are used along lelitt flow proves chart to give complete information about what is going on lelittin the production system
b) String Diagram:-

Scale $-1 \mathrm{~cm}=5 \mathrm{~m}$
\rightarrow It is the Scale plan or model, on lethich a third is used to trace and measure the path, travel by worker or material
\rightarrow The aim is to find, a path having min distanal travelled."
c) Travel chart:-

Show movement

$$
2-5-3-1-4-6
$$

- Travel chart is tabular record lesed for Presenting Quantitative data about the movement of worker or material
- This chart is Always Square, and each Square represents a Work station.

Micro Motion Study:- By Gilbert

- It is used to study those operations which are very fast, very Short duration and repeated serval number of times.
- To facilated miciomotion study, gilbert divided all the basic Hand s eye motim into 17 fundamental motion Knonnas Therblig. One leas added later on, Now they ave total 18 Therblig.
- each Therblig has a specific Symbol, notation and colour for Recording purpose
\rightarrow SIMO Chart: Simultanures motion cycle chart
- It is miciurvion form of Funded Which is based up on film analysis. Otis used for short duration repeated sitting job and time is measured in lelink Counter.
- All the 18 Symbols of therblig over used in these chart. $1 \mathrm{Wink}=\frac{1}{2000} \mathrm{~min}$
Cycle Graph:- By Gilberb:-
- Incycle graph, continous source of light, bulb is attached to the hand of Operator and movement of light is recorded by Camera.
- The Study is performed in a dark levom.

Chron Cycle Graphic- extension of Cycle. graph

- In this Method, light source is intrupted. So that path appear as the series of dot. The pointed end indicate the dir of moment and the distance b/w the dot, tallathe speed of the moment (movement)

PMTS \rightarrow Predetermined Motion Time Study.

MIM \rightarrow Method time measurement.
$W F \rightarrow$ Work factor System.
d) Direct:
a) Stop Watch:-

Observed or elemental time:-
\rightarrow Otis a time measure $\&$ observed by an observer using
some measuring device like stop Watch.
Normal time:-

- It is a time required to complete a job by oo normal average worker under normal Working condition.

NT $=$ OT \times Performance Rating factor

$$
N T=O T \times R F
$$

$$
N T=O T_{A} \times R F_{A}=O T_{B} \times R F_{B}
$$

$$
\begin{aligned}
& O T_{B}>O T_{A} \\
& R F_{A}>R F_{B}
\end{aligned}
$$

NOTE:
Rating factor is applied only to mannual Control operation and is never applied for machincelement

Standard Time:-

- It is a time required to Complete ajob, taking all the uncertainty Related to the production system into account.

$$
S T=N T+\text { Allowances }
$$

Allowances $=2 D \%$ of (NT)

$$
S T=N T+0.2 N T
$$

$$
S T=1.2 \mathrm{NT}
$$

Allowances:-
It is the extra time provided to a Qualified Worker above the normal time to lelork continnusly for long duration, few of these Are, Rest, Personal, Fatigue, Contingency, Policy.

- Rest Allowance.
- Personal Allowana.
- Fatigue Allowance.
- Contingency Allowance.
- Policy Allowance.

Qr) An operated rated at 125% to 10 min to complete an Observed job, if total 10%. Allowances are he quivered for jobs, then find no. of jobs completed in shift of shout duration.

Sols)

$$
\begin{aligned}
& N T=10 \times 1.2 .5=12.5 \mathrm{~min} \\
& S T=N T+0.1 N T=1.1 \mathrm{NT} \\
& S T=13.75 \mathrm{~min}
\end{aligned}
$$

$$
\text { No. of job }=\frac{8 \times 60}{13.75}=34.9 \approx 34 \text { jobs }
$$

Sn) Obserbed tome in minute for four cycle of an operation Consisting of 5 element using stop Watch is as girn below find the standard time per unit, when element (2) \& (1) are mic element \& for all other element, operater is rated at 120% take the total allouanas as 20% of standard time

Work Sampling OR Activity Sampling:- [L.H.S Tippet $]$

- It is a Work measurement Technique, in which large no. of Random obserirations ares made at random interval over specified Period of time aver a group of Worker or machine.
- It is based up on probability theory, but higher the no. of observation better the results will be.
- 9+io the best Technique to determine, allowances required by Worker or operator.
NO. of Observation for Defined level of Confidence:-

$$
P \cdot L=Z \cdot \sigma_{P}
$$

$n \rightarrow$ no. of observation
$p \rightarrow$ Propotion or fraction occuranc1 of Activity

Where,

$$
\begin{gathered}
\sigma_{p}=\sqrt{\frac{P(1-P)}{n}} \\
P \cdot L=Z \sqrt{\frac{P(1-P)}{n}} \\
n=\frac{z^{2}}{L^{2}} \frac{(1-P)}{P}
\end{gathered}
$$

$L=$ Limit of Accuracy
$Z=$ Standard normal variant
Whose value depens upon
Confidence Level required.

$$
\begin{aligned}
\underline{z} & \frac{\text { Confidence Level } \%}{1.96} \longrightarrow 95 \% \\
\cdot 2 & \longrightarrow 95.45 \% \\
3 & \longrightarrow 99.74 \%
\end{aligned}
$$

(100) Observation

$$
\begin{aligned}
& P=\frac{78}{100}=0.78 \\
& L=5 \%=0.05 \\
& L= \pm 5 \%=0.10
\end{aligned}
$$

$$
\begin{aligned}
& \text { Confidence Precision }=K=\frac{Z}{L} \\
& \text { Factor }
\end{aligned}
$$

for Objective take $Z=2$

In Muttered

$$
\begin{aligned}
P \cdot L & =z \cdot \sigma p \\
L & =z \cdot \sigma p \\
L & =z \sqrt{\frac{P(1-P)}{n}} \\
\eta & =\frac{z^{2}}{L^{2}} P(1-P)
\end{aligned}
$$

$$
n=\frac{4 P(1-P)}{L^{2}}
$$

On) Find the no. of Observation for 14 Activities out of 20 and 95% of Confidence Level \& 5% Accuracy

$$
\begin{aligned}
& Z=2 \\
& L=0.05 \\
& P=0.7=\frac{14}{20} \\
& n=\frac{2^{2}}{0.05^{2}} \frac{(1-0.7)}{0.7} \\
& 1600 \\
& n=685.714
\end{aligned}
$$

On) A Work Sampling Study Was Conducted in the mc shop 2 the data Recorded are total no. of observation $=2000$ no Activity observation $=400$

* Ratio b/w mannual to $\mathrm{m} / \mathrm{c} 3: 2$ Propotion of actiritis
* Rating factor is 120%
* Total no. of Pieces produced during
* Study is 240 unit
* duration of study 150 hr .

Calculate standard time per unit assuming 15% Allowances.
going

$$
\begin{aligned}
& P=\frac{1600}{2000}=0.8 \\
& \text { Production time }=0.8 \times 150 \\
&=120 \mathrm{hr} \\
& \text { OT/ time }
\end{aligned}
$$

Observation.
time

$$
\begin{aligned}
& \text { Total obs }=2000 \\
& \text { Nollork }=400 \\
& \text { Work obs }=1600 \\
& \% \text { time Working }=80 \%
\end{aligned}
$$

Observation time \rightarrow

$$
\begin{aligned}
& (O T)_{M}=\frac{3}{5} \times 30=18 \mathrm{~min} \\
& (O T)_{m / c}=\frac{2}{5} \times 30=12 \mathrm{~min}
\end{aligned}
$$

$$
N T=(O T)_{\max } \times R \cdot F *(O T)_{m / c}
$$

$N_{T}=33.6 \mathrm{~min}$

$$
\begin{aligned}
S T & =N T+0.15 \mathrm{NT} \\
& =1.15 \mathrm{NT} \\
S T & =38.6 \mathrm{~min} \text { Ans }
\end{aligned}
$$

if Allowances are not Mention in Question then take from Question

Here is 20%

Linear Programming

(George. B. Darting)

- Linear programming is used for optimization of our limited resources, when there are no. of Alternate solution, possible for the problem.
- It io the mathematical Techorique, and the term Linear, is used for the variable and it simply means that, the rulationalib blu the Variable can be represented in the form of straight line.

Requirement of LPP.

i) Objective function:

It is the function, which we need to optimize \& it should be Clary identifiable \& measurable in Quantitative term like Maximization of Profit, sales, minimization of cost.

ii) Constraint or Condition:-

These ar the limited Resources, wilton which, we need to optimize our objective function.
iii) All the Variables in the objective function \& Constraint, Should be Linear and nom-negative

General Statement of Linear Programming:

$$
\begin{aligned}
& \text { Max. } z=C_{1} x_{1}+C_{2} x_{2}+\cdots+C_{n} x_{n} \\
& \text { Constraint } \begin{array}{ccc}
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
\vdots & \vdots & \vdots \\
& \vdots
\end{array} \\
& a_{m_{1}} x_{1}+a_{m_{2}} x_{2}+\ldots . . .+a_{m n} x_{n} \leqslant b_{m}
\end{aligned}
$$

Nonnegative $\longrightarrow x_{1}, x_{2}, \ldots x_{n} \geqslant 0$
Condition

Lethere,
$a_{i j}, b_{i}, \& C_{j}$ are Constraint and x_{j} io variable

$$
\begin{aligned}
& i=1,2, \ldots \ldots m \\
& j=1,2, \ldots \ldots
\end{aligned}
$$

$a_{i j} \rightarrow$ Technological Coefficient for Substitution
$\mathrm{b}_{\mathrm{i}} \rightarrow$ Resource value
$C_{j} \rightarrow$ Profit Coefficient
$x_{j} \rightarrow$ Decision or Choice variable

Graphical Method:-
Steps in Graphical Method:-
i) Identified the problem \& defined decision variable, objective fun. and Constraint.
ii) Draw the Graph, that include all the Constraints and identify the Common feasible region.
iii) Find out the point, within the feasible Region, that optimizes the objective function. This point gives the final solution.

Step \rightarrow The Key decision is to determine, no. of unit produced of $A \& B$ in a Week.

- Let these are $x_{1} \& x_{2}$ Respectively.

Step 2 \rightarrow Feasible Alternatives are all the valves of $x_{1} \& x_{2} \geqslant 0$
Step $3 \rightarrow$ The objective is to maximize Ulukly profit, when the profit Per unit is given. So the objective functim.

$$
M a x . z=60 x_{1}+70 x_{2}
$$

Step $4 \rightarrow$ Restriction of max. $\mathrm{m} / \mathrm{c}^{n y}$ time available for the three wees in a lelelk.
so the constraints are.

$$
\begin{array}{ccl}
& & \frac{x_{1}}{7.5}+\frac{x_{2}}{10}=1 \\
Q \rightarrow \quad 10 x_{1}+7.5 x_{2} \leqslant 75 & 6 x_{1}+9 x_{2} \leqslant 54 \longrightarrow & \frac{x_{1}}{9}+\frac{x_{2}}{6}=1 \\
R \rightarrow \quad 5 x_{1}+13 x_{2} \leqslant 65 \longrightarrow & \frac{x_{1}}{13}+\frac{x_{2}}{5}=1 \\
x_{1}, x_{2} \geqslant 0
\end{array}
$$

Step $5 \rightarrow \mathrm{Ael}$ the Constraints are plotted on a graph, to get the feasible Region.

The shaded Region OABCD is a regear of feasible Sol". and any point Within this region cam be our solution under the given Constrainst.

Optimality:
Now 作 but the valves of Corner point of the feasible region in the objective function. The point lelhich optimises the objective function gives the final solution.

$$
\begin{aligned}
& Z(0)=60 \times 0+70 \times 0=0 \\
& z(A)=60 \times 0 * 70 \times 5=350 \\
& z(B)=60 \times 3.54+70 \times 3.63=466.5 \\
& z(C)=60 \times 6+70 \times 2=500 \\
& Z(D)=60 \times 7.5+70 \times 0=450 \\
& M
\end{aligned}
$$

gre
\rightarrow Explain why one of the vertion of the feasible Region become the optimum solution point

- One of the Vertices of the feasible Regin gives the final folution $b_{c z}$ the objective function is the straight line, lith the constant Slope. and as it move away from the origin, objective function increases and optimum valve will be at one of the corner extreme Point.
- Objective function Will be tangent to that point and gives the optimum solution.

Binding and Non Binding:-

$$
\begin{array}{ll}
& x_{1}=6 \quad x_{22} \\
P \rightarrow \quad 10 x_{1}+7 \cdot 5 x_{2} \leq 75 & \longrightarrow 75=75 \quad \text { Binding } \\
Q \rightarrow 5 x_{1}+9 x_{2} \leq 54 & \longrightarrow 54=54 \quad 65 \neq 56 \text { Non Binding } \\
R \rightarrow 5 x_{1}+13 x_{2} \leq 65 \quad \longrightarrow
\end{array}
$$

When We put the valves of optimum solution in the Constraint and $L H S=$ RHS the Constraints is termed as Binding other Wise nonBinding.

Final Solution is Always obtained from the Binding Constraint.

Q3) Solve the following $\angle P$ Problem for minimization.

$$
\begin{aligned}
& \operatorname{Min} z=6 x_{1}+4 x_{2} \\
& 3 x_{1}+3 x_{2} \geqslant 40 \quad 3 x_{1}+x_{2} \geqslant 40 \\
& 2 x_{1}+5 x_{2} \geqslant 44 \\
& x_{1}, x_{2} \geqslant 0
\end{aligned}
$$

Sorn)

$$
\begin{array}{ll}
\frac{x_{1}}{40 / 3}+\frac{x_{2}}{40 / 3}=1 & \frac{40}{3}=0.33 \\
\frac{x_{1}}{(40 / 3)}+\frac{x_{2}}{40}=1 \\
\frac{x_{1}}{22}+\frac{x_{2}}{(44 / 5)}=1
\end{array}
$$

Redundant Der Degenerate or Unneusary Constraint:Constraint is dost become part of Boundary, mating feasible Region is termed has redundant Constraint.
The inclusion \& exclusion of Such Constraint dors't have any effect on the final solution of the problem.

SPacial Cases:-

A) Infinite or multioptional Solution:-

- Infinite no. of Solution means, le get same optimum valve. of the objective function for different Varying variable.
- We always get a unique solution, when the slope of objective fun is different from Constraint
 becomes equal to one of the binding Constraint.
B) No Solution or Infeasibility:-

In some condition constraints mage be unconstiaint in such a manner, that, it is not posieble to find a feasible sol? Which Satisfy all the Comthaint There is no sot of to such problem.

c) Un Bounded Solution:-

- In some condition, the highest valve of objective function, goes up to infinite 2 it simply means that, common feasible region, is not bounded by the limit on the constraint.

Otis termed as unbounded Solution

Simplex Method

- It io the Set by slap proceduvel, in which, we proceed in a Systematic manner from an initial feasible solution.
- With an improve up on that initial solution until in Certain no. of stops may reach at optimal solution

Standard Form For Simplex:-
i) Resource valve:
i) All the Resource valve for the girm Constraint should be non-negative.

$$
\begin{aligned}
& 2 x_{1}-5 x_{2} \leqslant-40 \\
& -2 x_{1}+5 x_{2} \geqslant=40
\end{aligned}
$$

ii) All the inequalities of the germ constraint should be converted into equalities. in equal sign into equal sign

$$
\begin{gathered}
4 x_{1}+x_{2} \leqslant 60 \\
4 x_{1}+x_{2}+s_{1}=60 \\
\uparrow
\end{gathered}
$$

Slack variable

$$
\begin{gathered}
5 x_{1}+2 x_{2} \geqslant 85 \\
5 x_{1}+2 x-s_{2}=85 \\
\uparrow
\end{gathered}
$$

Surplus variable
iii) Each of the decision variable for the otyecture fan n. of Corvitiaint Should be non-negative and Linear.

$$
x_{j} \geqslant 0
$$

$$
M_{a x} Z Z=C_{1} x_{1}+C_{2} x_{2}+\ldots+C_{n} x_{n}
$$

$$
\text { Constraint }\left[\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leqslant b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x n \leqslant b_{2} \\
\vdots & \vdots & \vdots \\
a_{m 1} x_{1}+a_{m_{2}} x_{2}+\ldots+a_{m n} x n \leqslant b_{m} \\
x_{j} \geqslant 0
\end{array}\right.
$$

No. of Variable
 Constraint

Basic variable
Non-Basic variable
if (-vie) then Called Basic Sol
But if all are tvei.e Basic feasible sol x^{m}

- if there are m, equality Constraint i n is no. of variable and $n>m$ then we need to put $(n-m)$ variable equal to Zero known as nom Basic variable. and Solve the Remaining m Basic variable to give basic solution.
- This Step Reduces the number of Alternate solution, whose max. limit io Given by;

$$
\eta_{c_{m}}=\frac{n!}{m!(n-m)!}
$$

P986
Q.41)

$$
\text { Max. } z=40 x_{1}+35 x_{2}
$$

$$
\begin{aligned}
R \cdot M= & 2 x_{1}+3 x_{2} \leqslant 60 \\
& 4 x_{1}+3 x_{2} \leqslant 96
\end{aligned}
$$

Non-ve Constraint $x_{1}, x_{2} \geqslant 0$

$$
\begin{array}{cc}
\text { Max. } z_{2}+40 x_{1}+35 x_{2}+0 s_{1}+0 s_{2} & \\
2 x_{1}+3 x_{2}+s_{1}=60 . & n=2 \\
4 x_{1}+3 x_{2}+s_{2}=96 . & m=4
\end{array}
$$

$$
x_{1}, x_{2}, \geq 0
$$

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=0
\end{aligned}
$$

Non Basix

Ist feasible Solution,

$$
\begin{array}{ll}
x_{1}=0 & x_{2}=0 \\
S_{1}=60 . & S_{2}=96
\end{array}
$$

Kayelement

$$
Z=O B
$$

Key column

- Calculate Δj valor as the different of $C j \in z Z_{j}$ and it is termed as net evaluation Row or net oppoturnity Cost Raw.
- Thevaler of Δ_{j} Row indications the amount of increase or decrease if the objective function that Would occur, if one unit Represented by the Column head is brought into the Current solution.
- A simplex table indicates the Current solution as optimum, when all the values in the Δj row cree
i) - ve or zero when LP is for maximization.

All elemertin
ii) + ve or zero when LP is for minimization Dj wee either

- The current problem is maximization, so dele select the highest positive value in Δj row and the selected Column is called Key Column. and the variable in the Column at incomming variable - Now divide the bi values, from corrooponding elements of Key Colin to get replacement Ratio. In this column, We debt the min. +ie value and the selected low is called Key Row. With the variable in the rio v as outgoing variable.
- The element at the intersection of Key colum \& Key Row io termed as kay element.

Steps

1) Key element is converted into unity by multiplying or dividing the key rn by common multiplying factor.
2) All the element in) <ely column are made zero except key element Which elould be unity ord.
This is done by adding or substracting proper trultibles of Key roo from other crow.

N3) In the New Table, outgoing variable is replaced by incoming variable.

e_{i}	Basis	x_{1}	x_{2}	S_{1}	S_{2}	$b i$
0	S_{1}	0	$3 / 2$ 1 40 x_{1}	1	$-1 / 2$	12

and feasible sol

$$
\begin{aligned}
& x_{1}=24, x_{2}=0 \\
& s_{1}=12, s_{2}=0 \quad z=s_{0} 0960
\end{aligned}
$$

Key element

e_{i}	Basic	x_{1}	$T x_{2}$	s_{1}	s_{2}	b_{i}	$\theta_{i=} \frac{b_{i}}{a_{i j}}$
0	s_{1}	0	$3 / 2$	1	$-1 / 2$	12	8
40	x_{1}	1	$3 / 4$	0	$1 / 4$	24	32
	c_{j}	40	35	0	0		
	$z_{j 2} c_{i j}-a_{i j}$	40	30	0	10		
	$\Delta j_{2} C_{j}-z_{j}$	0	5	0	-10		

$$
\uparrow
$$

e_{i}	Basis	x_{1}	x_{2}	s_{1}	s_{2}	b_{i}
35	x_{2}	0	1	$2 / 3$	$-1 / 3$	8
40	x_{1}	1	0	$-1 / 2$	$1 / 2$	18

$3^{7 d}$ feasible solution

$$
\begin{gathered}
x_{1}=18, \quad x_{2}=8 \\
s_{1}=0, s_{2}=0 \\
Z=R_{3} .1000
\end{gathered}
$$

$$
\begin{aligned}
& R_{1} \rightarrow R_{1} \times \frac{2}{3} \\
& R_{2} \rightarrow R_{2}-\frac{3}{4} R_{1}
\end{aligned}
$$

$9^{\text {rd }}$ Simplese Table.

e_{i}	Basis	x_{1}	x_{2}	s_{1}	S_{2}	b_{i}
35	x_{2}	0	1	$2 / 3$	$-1 / 3$	8
40	x_{1}	1	0	$-1 / 2$	$1 / 2$	18
	c_{j}	40	35	0	0	
	$\left.Z_{j=} z_{i j} \cdot a_{i j}\right)$	40	35	$10 / 3$	$25 / 3$	
$\Delta j_{2}\left(j-z_{j}\right.$	0	0	$-10 / 3$	$-25 / 3$		

Big-M Method

$$
\begin{gathered}
4 x_{1}-x_{2} \geqslant 50 \\
4 x_{1}-x_{2}-s_{1}=50 \\
x_{1}=0, x_{2}=0 \quad s_{1}=-50
\end{gathered}
$$

$$
\begin{aligned}
& M_{a x}=-M A_{1} \\
& M_{\text {in }}=+M \cdot A_{1}
\end{aligned}
$$

By Adding one Artificial variable

$$
u_{x_{1}-x_{2}-S_{1}+A_{1}=50}^{\text {Non-Basic }} \quad A_{1}=50
$$

NonBasic $=x_{1}, x_{2}, 5_{1}=0$

$$
5 x_{1}-3 x_{2}=25
$$

A1 -This must not be seen infinal solution or.
Amis to elermeriate

It is the Modified form of Simplex Methods is always Required Whenever the constraints are \geqslant or $=$ Type, irrespective of Whether the problem is for maximization or for minimization.

In these Conditions We introduce an Artificial variable in the Current solution to get an initial Working Matrix These Artificial variable must not appear in the final solution and this is ensured by providing an extromly (ie) value to their profit coefficient In the objective function.

$$
\begin{aligned}
& \text { Maximization }=-M A_{1} \\
& \text { Minimization }=+M \cdot A_{1}
\end{aligned}
$$

Where
M is no. higher them any finite somber.
Special Cases:
i) Infinite or multi optimum Solution:

When a non Basis variable in the optimum sole have zero vale for Miro. then fobetion is not unique \& it indicates that problem has infinite no. of solutions
ii) unbounded solution:

If in a case all the values in the Replacement Ratio column (θ_{i}) are either ($-v$) or infinite them the solution terminate \&it indicates that the problem has unbounded solution.
iii) No Solution / infeasibility:-

When in the final soletim, artificial variable remains in the basis. then there is no feasible sol" to the problem.
iv) Degenerate Solution:-

- When one or more of the basic variable becomes equal to zero during calculation, then the solution is called degenerate and the Condition is I nouns Degeneracy.
- In a degenerate solution, the no. of Basic variable becomes less than equality constraints.

Duality
Primal Transpose Dual

- The initial given problem is termed as primal and the problem Obtained by Transposing rn and column, but having the same Optimum valve of objective function is termed as Dual

Primal:-
a) Maximization:

$$
\leqslant \text { type Constraint }
$$

b) Minimization:
\geqslant Type Constraint

Primal
Dual

Max. \longleftrightarrow Min.
$\eta \longleftrightarrow m$
$m \quad \longleftrightarrow n$
$\mathrm{bi}_{i} \longleftrightarrow \mathrm{C}_{j}$
$\mathrm{C}_{j} \longleftrightarrow \mathrm{~b}_{i}$
\leqslant Type Constraint \longleftrightarrow Non-Negative Variable
$=$ Type Constraint \longleftrightarrow un restricted sign variable (+ or -ne)
(In) Find the dual for the following LP problem for minimization

$$
\begin{aligned}
\operatorname{Min} z= & 4 x_{1}-7 x_{2}+13 x_{3} \\
& 3 x_{1}-x_{2}+6 x_{3} \geqslant 8 \\
& 5 x_{1}-2 x_{3} \leqslant 7 \\
& 4 x_{2}-5 x_{3} \geqslant 12 \\
& x_{1}-3 x_{2} \geqslant 6 \\
& x_{1}-5 x_{2}+7 x_{3} \leqslant 15 \\
& x_{1}, x_{2}, x_{3} \geqslant 0
\end{aligned}
$$

Sorn)

$$
\begin{aligned}
& y_{1}-3 x_{1}-x_{2}+6 x_{3} \geqslant 8 \\
& y_{2}-5 x_{1}+2 x_{3} \geqslant-7 \\
& y_{3}-4 x_{2}-5 x_{3} \geqslant 12 \\
& y_{4}-x_{1}-3 x_{2} \geqslant 6 \\
& y_{5}-x_{1}+5 x_{2}-7 x_{3} \geqslant-15
\end{aligned}
$$

$$
\text { Max. } W=8 y_{1}-7 y_{2}+13 y_{3}+6 y_{4} 15 y_{5}
$$

$$
\begin{gathered}
3 y_{1}-5 y_{2}+y_{4}-y_{5} \leqslant 4 \\
-y_{1}+4 y_{3}-3 y_{4}+5 y_{5} \leqslant-7 \\
6 y_{1}+2 y_{2}-5 y_{3}-7 y_{5} \leqslant 13 \\
y_{1}, y_{2}, y_{3}, y_{4}, y_{5} \geqslant 0
\end{gathered}
$$

$$
\begin{aligned}
& 2 x_{1}-5 x_{2}=25 \\
& 2 x_{1}-5 x_{2} \geqslant 25 \\
& 2 x_{1}-5 x_{2} \leqslant 25
\end{aligned}
$$

$$
\text { for }=\text { to sign }
$$

for $=$ to sign.

Transportation

Aim of Transportation problem is to meet the demand \& Supply, in the most effective manner to minimizing total transportation cost.

$$
\begin{aligned}
& \longrightarrow \sum_{i=1}^{n} a_{i}=\sum_{j=1}^{n} b_{j} \\
& M M i n \cdot z=\sum_{i=1}^{m} \sum_{j=1}^{n} C_{i j} \cdot x_{i j}
\end{aligned}
$$

1) Feasible Solution:
which
A set of nom - negative individual allocation is satisfy all the give Constraint is Known as feasible solution
2) Basic Feasible Solution:

In $(m \times N)$ transportation model, if the total no. of Allocation is adjactly equal to $(m+n-1)$ then the solution is Called Basic feasible Solution. $(m+n-1)=$ No. of Allocation
3) Non-Degenurate basic feasible Solution:

For ($m \times n$) transportation Model, solution is called Non-Degenertz When the following two Conditims are Satisfied:-
i) Total no. of allocation are adjactly equal to $m+n-1$.
ii) These $(m+n-1)$ allocations must be at independent position.

Dependent

- By dependent position, we mean that, it is always impossible to form a close loop, by joining. These allocations by the series of Horizontal \& vertical Lines from one allocated cell to Another.

NOTE:-
\rightarrow Optimality test Can only be perform. When initial Sot ${ }^{n}$ is Non degenerate.

Balanced \& Unbalanced Transportation problem:-

- The total supply from all the factories equal to total Demand from all the destinatim, problem is, Called balanced. other lilise unbalanced.
- If the given problem is unbalanced, then balanced it by adding dummy source or destination
Supply = Demand

A complete trasport product from 3 factories to 4 destiñalion asgirm in the table, find optimum allocatim to minimize total transportation Cost.

	1	2	3	4			
	P_{1}	20	30	50	17		7
:---							
P_{2}		70					
:---							

(1) North West Cormer Mithod (Rule):

$$
\begin{aligned}
& 20 \times 5+35 \times 6+40 \times 4+60 \times 3+15 \times 25 \\
& z=100+210+160+180+375=102.5
\end{aligned}
$$

No. of Alloration $=5$

$$
\begin{gathered}
m+n-1=5 \\
3+4-1=5 \\
6=5
\end{gathered}
$$

b) Row Minima:

No. Of Allocation $=5$

$$
\begin{gathered}
119+280+80+200+200+300 \\
Z=17 \times 7+35 \times 8+40 \times 2+40 \times 5+25 \times 8 \times 60 \times 5 \\
Z=1179
\end{gathered}
$$

3) Column Minima

$$
Z=940 \mathrm{BS} .
$$

4) Least Cost Method of Matrix Minima:

$$
\begin{aligned}
& z=7 \times 17+3 \times 70+7 \times 40+2 \times 40+8 \times 12+8 \times 25 \\
& z=985
\end{aligned}
$$

5) Vogel's Approximation Method
or
[Max. Penalty \rightarrow Min cost]
Unit Cost Penalty Method

(20) (18)
(io)
(8)
$\uparrow \quad \begin{array}{ccc}(18) & (10) & (8)\end{array}$
(10) (8)
io $\quad 43$

$$
\begin{gathered}
z=20 \times 5+17 \times 2+40 \times 7+60 \times 3+8 \times 12+25 \times 10 \\
z=100+34+280+180+96+250 \\
z=940
\end{gathered}
$$

No. of Allocation :-6

$$
\begin{gathered}
m+n-1=6 \\
7-1=6 \\
6=6
\end{gathered}
$$

- In this model we take the difference blu smallest and $2^{\text {nd }}$ smallest element in each Row \& Column \& lebrite then below the respective row \& Column.
- Then we select the highest individual difference 2 max. Possible allocation is clone in the min. Cost cell in the Selected raw or column.
- The row or column whose requirement become zero is selected out, so that it cannot be considered again
- Continuing in Similar manner lentil it ali the allocation are done.

Optimality:
As a total nos. of Allocation is adjactly equal to

$$
m+m-1=\text { No. of allocatim }
$$

and at independent position. So optimality test can be performed.

1) Stepping Stone's Method:

- In this method we allocate one unit in an unilocated empty Cell \& Compute the effect on the cost of matrise.
- It is hit and trial Method, in which Chances of making error are moue \& therefore not much-preferred.

2) Modified Distribution Mean Method (MODI Method) or

U-V Method

The Steps Involved are;
i) clevelop Cost Matrise for allocated Cells only.

51				2	
20	30		50		17
70	35		40		60
40	8	12		60	10
			25		

(Co)

Let $v_{1}=0$

$$
\begin{array}{ll}
u_{1}+v_{1}=20 & u_{1}+v_{4}=17 \\
u_{2}+v_{3}=40 & u_{2}+v_{4}=60 \\
u_{3}+v_{2}=12 & u_{3}+v_{4}=25
\end{array}
$$

Computing lii $\& V_{j}$ value by taking $V_{1}=0$
μ_{i}

| | 0 | | -16 | -23 |
| :---: | :---: | :---: | :---: | :---: | | -3 |
| :---: |
| 20 |
| |
| 23 |
| 20 |
| |

$$
\begin{array}{ll}
U_{1}=20 & V_{1}=0 \\
U_{2}=63 & v_{2}=-16 \\
U_{3}=28 & V_{3}=-23
\end{array}
$$

Develop $\mu_{i} \& v_{j}$ Matrix for unallocated coals by entering \sum op $\mu i i V_{j}$ value for unallocated cell. $\left(U_{i}+v_{j}\right)$ Matrix e for unallocated cell.

	4	-3	
63	477	\cdots	
28		5	

$\left(\mu_{i}+v_{j}\right)$ Matrix for unallocated cells

Subtract the cell value of (lei $+v_{j}$) Matrix fir unallocated Gill from the original Cost Matrix to get Cell evaluation Matrise

	26	53	
7	-12		1
12		55	

Cell evaluation Matrix

If any of the call value in the call evaluation matrise is (-ve) then the current solution is not optimum.

Step \rightarrow In the cell, evaluation Matrix, identify. the cell With the most ($-v e$) valve, mark it \& it is called identified Cell.

Step \rightarrow form a loop, such that it start from the identified Cell \& Coth Corner of the should Already have only Allocation.

Step \rightarrow Make identified cell as positive and each other Cell at the Corer of Path, alternatively $(-v e),(+v e),(-v e) \& 80 \mathrm{~m}$.
Step \rightarrow Make a new allocation to the identified cell, by entering the smallest allocation on the path, that hasbeen assigned a negative sign. The Basic cell lelhose allocation becomes o laves the solution.

51	20	30	50
17			
70	3	35	71
	40	60	
40	12	60	35
131	1	1	

New cost table Matsu

$$
Z=90 y \mathrm{~A},
$$

$\mu_{i}+v_{j} \rightarrow$

	4	9	
51			48
28		17	

Cell evaluation Technique

There is no (ie) value in cell evaluation Matrix.
So Current Solution is optimum *

1) Special Cases:
2) Degeneracy:-

$$
(m+n-1) \neq \text { No of Allocation }
$$

When a no. of allocation become less than $(m+n-1)$, then Optimality Con't be performed and such a solution is Called Degenerate
2) Masimizatim problem:
(I)

30	80	70	20
60	10	90	40
50	100	20	70

\rightarrow New Matrix

70	20		
	$\|18\|$	30	80
40	90	$\frac{51}{} 10$	60
20	0	80	30

But Allocate (I) Matrix Cat Always

$$
Z=34 \times 80+18 \times 70+26 \times 60+51 \times 90+100 \times 0+19 \times 70
$$

- Maximization problems are Solved by, Converting it into first into minimization
This is Done by -Selecting highest Cat in matrix \& Subtract the entire matrix by this highest cost.
An) Unit Transportation Coot in Rupees is given in the Cost Matrix below, determine the initial feasible solution using Vogel's approximation. \&find the optimum distribution posies for the company.

(a) $($ (1) $\leftarrow(1)$
(1)
(10)
(2)
(6)
(0)
(i)
(ib)
(2)
(6)
\uparrow
(I)
(2) (6)
(2) (6)
$12 \uparrow$

$$
\begin{aligned}
& m+n-1=\text { No of Allocation } \\
& 3+\frac{c}{k}-1=6 \\
& 8-1= \\
& 7 \neq 6
\end{aligned}
$$

$$
Z=20080 R_{0}
$$

Hence this solution is Degenviate.

As the total no. of Allocation, is 6 , which is lessthan $(m+n-1)$ eqied to. 7 . So the Current solution is degenerate.

- Nor o Allocating infinitely Small but (tue) valve $\epsilon \approx 0$ at vacant min. Cost cell such that all allocation remains at independent position.
- In the final solution, we put $\epsilon \approx 0$.

47	50	40	39	(Θ) 0
42	.51	54	53	0
41	40	42	.450	0

$$
Z=\beta \cdot 20060
$$

Assignment
${ }^{1}$ Steps:-

1) Square Matrix $(m=n)$
2) $x_{i j}=0$ or 1
all $a_{i}=1 \quad \& \quad b_{j}=1$
$\square-$ Allocation $\left(x_{i j}=1\right)$
X - Non -Allocation $\left(\dot{x}_{i j}=0\right)$

$$
\operatorname{Min} z=\left[\sum_{i=1}^{n} \cdot \sum_{j=1}^{m} C_{i j} \cdot x_{i j}\right]^{\prime}
$$

- Assignment problem is a special Case of Transportation problem, where matrix must be square Matrix 8 in every mos Column, only one allocation is possible.

On) Solve the problem.

four Technician are required to perform detterent job. lethose time in hour is gion below. Assign the sob to the tectriecion to mesumize horktim.

Hungarian Method (Flood'sechnique)

Steps Involved ares;

1) Develop oppoturnity cost matrise.
(a) Subtract the smallest element in each Row. Fromevery element. \Leftrightarrow Of Corrosponding Row.

0	16	11	7		
2	12	23	0		
4	27	20	0		
9	12	7	0	\quad	min
:---					
20					

(b) Subtract the 8 molest element in each Column from every element of Corroponding Column.

0	4	4	7
2	0	16	$\not 2$
4	15	13	0
9	$\not 2$	0	0

$$
z={ }^{\prime} 20+34+35+18=107 \text { hours. }
$$

(3) Make allocation in opportunity Cost Matrix.
if the total No-of Allocation is Adyactty equal to the size of Matrix then the Currentesolution is optimum. Otherwise perform optimality

Qr) Solve the following Arsignment problem for minimgation of Cost.

20	30	40	50
40	50	60	70
70	80	90	80
30	50	80	40

0	10	20	30
0	10	20	30
0	10	20	10
0	20	30	10

$$
\begin{gathered}
20+50+90+40 \\
70+40+90 \\
200
\end{gathered}
$$

ϕ	0	0	20
$\not Q$	0	0	20
\notin	0	0	0
0	10	30	\nsim

An) Solve the following Assignment problem for minimization of Cost.

9	22	58	11	19	27
43	78	72	50	63	48
41	28	91	37	45	33
74	42	27	49	39	32
36	11	57	22	25	18
3	56	53	31	17	28

- As the total no. Of allocation is (5) Which is less than the size.. Of Matrix $n=6$ so the Current solution io not optimum.
- Now wee proud to find the minimum no. of lines required to Cover all zero atteast once, and the steps inerberd are

1) Mark all Row for which assignment have not been made [-3x1 Row]
2) Mark all Column which have unassigned Zero, in the marked row ie $2^{\text {nd }} \&$ siret column.
3) Mark All Row, which have assignment, in the marked Column. ie $2^{\text {nd }} \& 5^{n+1}$ Row
4) Continue step $2 \& 3$ until chain of Marking ends.
5) Draw the minimum no. I lines to through Unmarked kew and through Marthed Column to cover all zero at least once.
*) Select the Smallest element that donot have line through them, Subtracted it from all the uncut element, Adding it to every element at, the intersection of two lines \& leave the remaining elements of the matrix e unchanged. Make Allocation in the New opportunity coot Motrise.

4	17	49	0	\nsim	17
0	35	25	1	6	\nsim
13	\nsim	59	3	3	0
51	19	0	20	2	4
25	0	42	5	\nsim	2
$\%$	53	46	22	0	20
$z=11+43+33+27+11+17$					

$$
Z=142 \text { Ans }
$$

Quality Control

- Quality can be termed as, fitness for use, where fitness is defined, by the customer itself, who is using that product.
- Quality of a product refers to the degree which, product satisfy customer's expectations.
- Quality has no specific meaning, unless it is related to Specific function \& performance of product.

Quality Cost

Internal

Failure Cost:
It is a cost of Producing defective part or product, Within an Organization.
i) Internal failure cost:

- If the defect is detected inside the organization, it is termed as internal failure cost.
- It induce cost of rework, material \& product loss, Scrap, Down time Depreciation etc.
U) If the defect is detected by the customer, while using that product it is termed as external failure cost.
- It induce Replacement Cost, Returmprodect Cost, Warranty Cost Loss of goodwill, fine, claim etc.

2) Appraisal Cost:-

- It is the cost associated with measuring, evaluating \& finding out Defective part within the production System.
- It includes Inspection equipment cost, salary of inspector, Intruption of production during Sample Collection, Lab cost etc.
B) Preventive Cost:
- Whatever the expenditure is made, in order to minimize failure and appraisal cost, can be termed as preventive Cost.
- It includes. Quality improvement programe, training of Worker Maintenance Cost, Quality programe, on time tool replacement, M/C change etc.

Valve of Quality:

- It is the term use to represent. the return obtained, directly or indirectly due to good Quality of Product, is termed as value of Quality.
- Good Quality Cam earn by good response from Customer, increase in market share. Firm price policy, higher perantage of Sucessul bids, other benifito to the income of organisation.

Inspection and Quality Control:-

- Inspection Simply means, checking \& Sorting out, defective 8 non defective product,

Where as. Quality control is a brooded term Which includes no. of steps including inspection and regulate the Quality of future production.

- In Quality control, if the product is defective, we search for the reason, behind defective part and also include steps to be taken so that, those type of defectives may not be repeated in future.

Variation:

Common
or

Assignable
Cause

Chance
or
Random Cause
i) Comm on Cause Variation:

- These are difficult to trace \& difficult to Control even under the best Condition of production.
- These variations are of Louvre Magnitude always within the limit. and Defective parts are not produce due to them.

ii) Assignable Cause:

- These variation's are of higher magnitude, close beyond the limit, and effective parts are produced due to them. These are due to some particular Reasons, like, mk Setting change improper training of operator, defective raw material, tool Wear, m / c vibration etc.
A) Type I -Error:-
- When there is no problem Within the System, bit still We Conclude that there is some assignable cause of variation.
B) Type II-Error:-
- When there is some problem within the system, but We conduce that, there is no Assignable cost of variation.

Control Chart:-

- Control Chart is a graph use to study, how a process Changes over time, in which observations are plotted in time order.
- Control Chart has the Centre line, for the aucrage \& upper line for the imper Control limit \& Lower line for the Lower Control limit.

Assignoble Cause

$U S L=U C L=20 \cdot 2$
$\angle S L=\angle C L=19.8$

Lusce 19.7

$$
\begin{array}{ll}
U S L-L S L=30 & \\
30=2 \sigma & \sigma=15 \\
30=4 \sigma & \sigma=7.5
\end{array}
$$

$30=6 \sigma$
$\sigma=5.0 \longrightarrow$ cost affection
$30=80$

$$
\sigma=3.75
$$

$$
30=100
$$

$$
\sigma=3.0
$$

$30=120$
$\sigma=2.5 \longrightarrow$ Quality Best But \uparrow cost of variation

- I 3σ limit are sebcted most of the time, for plotting Control chart, therefore such charts are e Called 30 control chart

Types of Control Chart:

A) Variable Control Chart :-

- These charts aver applied to data, that follows continows distribution and Camb measured on Continuous Scale. For example; time, distance, Weight, Temperature etc.
- These data Continows and they where assumed to follow normal Distribution.
B) Attribute:
- These data are Counted \& Cannot have fraction or decimal.
- These data arise while determining the presence or absence of something like suces or failure, good-Bad, Defective -Non Defective etc.
- This datas are discontinuous and therefore assumed to follow Brinomial distribution.

Brand Average

$$
\begin{aligned}
& \text { nd Average }=\overline{\bar{x}}=\frac{\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}+\bar{x}_{4}+\cdots \bar{x}_{n}}{N} \\
& \text { or } \\
& \text { Sample Mean }
\end{aligned}
$$

Average of Sample Mean

Average Range, $\bar{R}=\frac{R_{1}+R_{2}+R_{3}+R_{4}+\cdots+R_{N}}{N}$

Mean Chart:

- It shows the centering of the prows or invether lords it shoves the Variations in the Average of pampl.

Range chart:

- It monitors the dispersion or variation of process.
- It io the measure of spread of sample

Control limits

1) $\bar{x}-c$ hares :-

Centre line $(C L)=\overline{\bar{x}}$
leper control limit $(U C L)=\overline{\bar{x}}+3 \sigma_{\bar{x}}$
Lower Control Limit (LCL) $=\overline{\bar{x}}-3 \sigma_{\bar{x}}$
lelhere

$$
\begin{align*}
& \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \\
& U C L=\overline{\bar{x}}+\frac{3 \sigma}{n}
\end{align*}
$$

where,
$\sigma_{\bar{x}} \rightarrow$ Standard Deviation for the sample mean.
$\sigma \rightarrow$ Standard Deviation for the prows or leniverse.
$n \rightarrow$ Sample size or no. of observation in each Sample.

$$
\begin{align*}
& \bar{R}=\sigma \cdot d_{2} \tag{@}\\
& \sigma=\frac{\bar{R}}{d_{2}} \\
& U C L=\overline{\bar{X}}+\frac{3 \bar{R}}{d 2 \sqrt{n}} \tag{B}\\
& \angle C L=\overline{\bar{X}}-\frac{3 \bar{R}}{d 2 \sqrt{n}}
\end{align*}
$$

$$
u C L=\overline{\bar{x}}+A_{2} \bar{R}
$$

$$
\angle C L=\overline{\bar{X}} A_{2} \cdot \bar{R}
$$

$$
\text { Where } A_{2}=\frac{3}{d_{2} \sqrt{n}}
$$

Where; $d_{2} \& A_{2}$ are the Constant factor, lelhose value depends up on the sample size (n).
Control limit:
2) R-chart:-

Center Line $(C L)=\bar{R} \cdot \sigma \cdot d_{2}$
Upper Control line $(U C L)=\sigma \cdot d_{2}+3 \sigma d_{3}$
Lower Control line $(L C L)=\sigma d_{2}-3 \sigma d_{3}$
Where,

$$
\bar{R}=\sigma d_{2} \quad \longrightarrow \quad \sigma=\frac{\bar{R}}{d_{2}}
$$

$$
\begin{equation*}
U C L=\bar{R}+\frac{3 \bar{R} \cdot d_{3}}{d_{2}}= \tag{1}
\end{equation*}
$$

$$
U C L=D_{4} \cdot \bar{R}
$$

$$
L C L=D_{3} \cdot \bar{R}
$$

Where,

$$
L C L=\bar{R}-\frac{3 \bar{R} \cdot d_{3}}{d_{2}}-(1 a)
$$

$$
\begin{equation*}
U C L=\bar{R}\left[1+\frac{3 d_{3}}{d_{2}}\right] \tag{2}
\end{equation*}
$$

$2 D_{3}=1-\frac{3 d_{3}}{d_{2}}$
$\&$ for $n<T, D_{3}=0$

$$
L C L=\bar{R}\left[1-\frac{3 d 3}{d z}\right]-(2 a)
$$

Where $d_{2} d_{3}, D_{3}$, D_{4} are the Constant factor, Whose value depends only on the sample size (n).
Qi) The following data give reading for ten sample, of size 8 each, in the production of curtain Component. Draw the Control Chart for the mean 8 Range and point out which Sample if any are out of Range.

Sample No.	1	2	3	4	5	6	7	8	9	10
Mean	5.4	5.1	5.4	4.9	5.2	4.7	5.1	5.0	5.0	5.2
Range	0.4	0.7	0.7	0.8	0.9	0.6	0.6	0.6	0.7	0.6

for $n=8, d_{2}=2.847, D_{3}=0.136, D_{4}=1.864$
for $n=10, d_{2}=3.114 \quad D_{3}=0.287, \quad D_{4}=2.113$

Sorn

$$
\begin{aligned}
& \overline{\bar{X}}=5.1 \quad \bar{R}=0.65 \\
& \bar{R}=\sigma d_{2} \quad \Rightarrow \quad \sigma=\frac{0.65}{2.847}=0.2283 \quad \sigma=0.2283
\end{aligned}
$$

1) \bar{x}-chart

$$
\begin{aligned}
& C L=\overline{\bar{x}}=5.1 \\
& U C L=\overline{\bar{x}}+\frac{3 \sigma}{\sqrt{n}}=5.1+\frac{3 \times 0.2283}{\sqrt{8}}=5.3421 \\
& L C L=\overline{\bar{x}}-\frac{3 \sigma}{\sqrt{n}}=4.8578 .
\end{aligned}
$$

\bar{x} - Chart:

2) R-chart

$$
\begin{aligned}
C L & =\bar{R}=0.65 \\
U C L & =A_{4} \cdot \bar{R}=1.2116 \\
L C L & =D_{y} \cdot \bar{R}=0.0884
\end{aligned}
$$

Always after Solving Preen: Thess Pt mast be libitten.
Me c capability
The prows is not under contra, and it may be der to any one of the assemble lessons like mic setting change, improper training Assignable
of operator, defective Raw material, tool Wear, mic vibration etc.
\therefore :- Attribute Control Chart:-
i) P-Chact (Proportion or Fraction Defective Chart):Sample size used to change (Discrete)

- Average Proportion defective $=\frac{\bar{P}}{\text { - } P_{1}+P_{2}+P_{3}+P_{4}+\cdots+P_{1}} \underset{N}{N}$
- Average Sample size $=\bar{n}=\frac{n_{1}+n_{2}+n_{3}+n_{4}+\cdots \cdots+n_{N}}{N}$

Control Limit:

$$
\text { - } C L=\bar{P}
$$

- $u C L=\bar{p}+3 . \sigma_{\bar{p}}=\bar{p}+3 \sqrt{\frac{\bar{p}(1-\bar{p})}{\bar{n}}}$

$$
\sigma_{\bar{p}}=\sqrt{\frac{\bar{p} \cdot(1-\bar{p})}{\bar{n}}}
$$

$$
\begin{aligned}
& 0_{0} 0^{2} L C L=\bar{p}-3 . \sigma_{\bar{p}}=\bar{p}-\sqrt[3]{\frac{\bar{p} \cdot(1-\bar{p})}{\bar{n}}} \\
& =1
\end{aligned}
$$

- P-charts are used, Velure We Can Compete the total Sample size \& no. of defective.
- It is prefreed f or the Condition, Where Sample size is variable

Special Cases of P-chart :-
i) NP-Chart (Number of Defective Chart.) (Sample size remain Constant throughout)

$$
n_{1}=n_{2}=n_{3}=n_{4}=\ldots .=n_{N}=\bar{n}=n
$$

$n p$-chart limit

$$
U C L=n \bar{P}+3 \sqrt{n \bar{P} \cdot(1-\bar{P})}
$$

$$
\begin{align*}
C L & =n \cdot \bar{P} \\
U C L & =n \bar{P}+3 \sqrt{n \cdot \bar{P} \cdot(1-\bar{P})} \tag{a}\\
L C L & =n \cdot \bar{P}-3 \sqrt{n \cdot \bar{P}(l-\bar{P})} \tag{b}
\end{align*}
$$

- It is prefered for the Condition Ul here sample size remain Constant throughout.
ii) C-Chart (Count of Defect Chart) :- Distribution
- C-Charts are used Wether Lele can Compute. only the number of defect, but Cannot Compute the proportion defect.
- Defect is Random, therefore it is assumed to follow poisson's disbibution. Random
For Poisson's distribution $=$ Variance $=$ mean

$$
\sigma^{2}=\bar{c} \longrightarrow \sigma=\sqrt{\bar{c}}
$$

Control limit:

$$
\begin{gathered}
C L=\bar{C} \\
U C L=\bar{C}+3 \cdot \sqrt{C} \\
L C L=\bar{C}-3 \sqrt{C}
\end{gathered}
$$

Lelhere,
$\bar{C} \rightarrow$ Average no. of defect
Q2) A manufacturer find from his experiment that on an acreage 1 out of 10 item produced by a m / C is defective
On a particular day he select the' a lot of 100 item's Ramedomly \& finds that 18 of them are defective. Otis the prows under control.

Sol (x)

$$
\begin{aligned}
& \bar{P}=\frac{1}{10}=0.1 \\
& n=100 \rightarrow d=18
\end{aligned}
$$

using $\rightarrow n P$-chart

$$
\begin{aligned}
& C L=n \bar{P}=10 \text { unit } \\
& U C L= n \bar{P}+3 \sqrt{n \dot{P}(1-\bar{P})} \\
&= 10+3 \sqrt{100 \times 0.1 \times 0.9} \\
& U C L=19 \text { unit }
\end{aligned}
$$

3) Acceptance Sampling \rightarrow (Low Cost Product)

- It is the Method of inspection Where Sample of goods, is eandomley inspected in order to decide whether to accept or reject the entire LOT.
- It is used where inspecting every items is either feasibly not Possible or lelould be very expensive.
- It is the only Method of inspection, lehere testing is don e through destructing pattern.

Sampling Plan:-
i) Single Sampling Plan:

Sample is taken once and if no. of defectur are equal to or les than acceptance No entire lot is accepted, otherwise Rejected.
ii) Double Sampling Plan:

- A sample of 1 ni units is taken randomly, if the total no. of defective are c_{1} or less the entire lot is accepted. if it is c_{2} or more, then entire lot is rejected and if no. of defective are blu $c_{1} \& c_{2}$, then another sample of \hat{H}_{2}) items is taken randomly.
- If total no. ज defective from the two sample together is C_{3} ar les the entire lot is accepted other Wise rejected.

NOTE:

- As the no. of Sampling plan incerases, chances of making errors at average nu. of unit inspected decreases, but operating difficulty increases.

Operating characterstic Curve

$\xrightarrow{\text { Percent defective }}$
OC curve is the graph blu probability of Acceptance against the percentdettectirion a lot $\&$ term associated with OC Curve are,
i) Acceptable Quality Level $[A Q L]:$

- There is 8 mall \% defective, Which Consumer's don t problem in accepting.
- $A Q L$, represent that Level.
ii) Rejectable Quality Level $(R Q L]$:
- Lot torenancs \% defective (LTPD), Consumers normally toterate a feu more defective above $A Q L$, but then comes a limit beyond which, they do not capt, any more defective, $R Q L$ Represent that level.
iii) Production risk: (α)

9+ Represent the probability of Regintsing avery good let having $\%$ defective $=A Q L$ (Ierror Type).
iv) Consumeris Risk: (β)

It Represent the probability of accepting a bad Quality let, having $\%$ defective equal to $R Q L$ (T ye II errefe).

* Average outgoing Quality (AOQ) :It is the term use to represent, Average of defection in the outgoing procluct, after inspection.

$$
A O Q=P \cdot P a\left(\frac{N-n}{N}\right)
$$

if $N>n$

$$
A O Q=P \cdot P a
$$

Where,

$$
\begin{aligned}
& P=0 \text { defective } \\
& P_{a}=P_{r o b a b i l i l y ~ o f a c c i p t a i n c e ~} \\
& N=\text { Lot Size } \\
& n=\text { Sample size }
\end{aligned}
$$

Material Requirement PLanning

Structure of MRP

MRP, is a method of Working out daproductuon plan in the multistage production system, that produces many product, and require raw material and their sub assembly.

- It is loused Sathat all the things needed should be aurilable within the production system at appropriate time and production Can be Carried out without any delay.
- Today MRP is a Computer based information system, for production, Schedulling and purchasing of dependent demand item.

Master Production Schedule (MPS):

- It is the Complete time table of our schedule production, in future.
- It gives information about, what product is to be produced, when it is to be produced and in what Quantity. prestuced

Inventory Record File:
This file gives Complete \& bp todate information about on hand inventory, transiat inventory, Plant order, \& Scheduled Reciept.

Bill of Material:
It gives information about, How to each ferial product is manulfacturet specifiging all sub component item \& their sequence of Bield up in the final product.

Product Stuctur:

On) find the net Requiriment for which we should black an order in order to produa 400 unit of Product X.
When the inventory on hand 8 the schedule Recipe is as gum below

Sol Inventory on Hand

$$
\begin{array}{ll}
A-80, B-210 & , C-90 \\
D-200 \cdot G-110 & H-330
\end{array}
$$

$$
\begin{gathered}
=200 \times 4-330-270 \\
=200
\end{gathered}
$$

Schedule Recipt

```
\[
B-190 ; D-180, E-300, H-270
\]
\[
A-320, \quad B-410, C=310, \quad D=
\]
```

Advantages of MRP :

1) It help us to know lelhen and how much to order.
2) It helps in inventory reduction.
3) It help to avoid delay in production.
4) It helps to giro timely uniform matin to the marketting department about the expected delivery time.

MRS
(Material Resource Planning)

1) It in the Push System, where Product is produced to meet the future requirement
2) Keep Safety stock along with inerntory
3) It Cam Handle dynamic situation Where demand Suddenly changes.

P1) No Need to maintain good Relation lith the vendor.
5) It is suited for batch or job type production
2) It is from PULL System, where materials are provided only when there is demand of Product.
2) It eliminate safety stock \& $1 \mathrm{cel} p$ very less inventory.
3) Not able to Handle dynamic Condition as incapable of large \& Sudden variation.
4) Need to maintain good Relation With the vendor, to get timely information.
5) $9 t$ is suited for mass flow production

Valve Engineering s-
Product Life cycle:-

Time

Valuer is Mainly of four types;

1) Cost value:-

- It is a Cost of Manufacturing a product \& isis the sum of Raw material, labour, tool, \& other overhead cost.

2) Use valve:

It is the comont of cost included into the product to pertrom its particular function.
3) Ester value?

- It is a amount of Coat, included inter a product tomake it more attractive and appealing.

4) Exchange value:-

- All the properties and Features of a product, which rakes it possible to trade or exchange of product with any otter product is termed as exchange value.
Steps in valve anylysis 8

) Blast:
- Select the product, foo which we wont to increase vel \& collet all the information regarding the functions \cos of the product.

2) Create:

- Develop New Acternate function at lesser cost and Critically examine all those alternate.

3) Refine:

- Select the best Alternate which increases th, valve of product \& - install it

Advantages:

1) Reduction in the no. of elselers part.
2) Reduction in the amount of Scrap.
3) Overall cost Reduction.
4) Better Customer Satisfaction.

Valve Analysis \&
withaveier

- Valve analysis is a Applied to existing product to improve its value.

Valve engineering:

- Valve engernuring is applied to product at design stage before reaching into the hands of Customer.

