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PoKED: A Semi-Supervised System for Word Sense Disambiguation

Feng Wei 1

Abstract

In this paper, we propose a semi-supervised
neural system, named Position-wise Orthogonal
Knowledge-Enhanced Disambiguator (PoKED),
which effectively supports attention-driven, long-
range dependency modeling for word sense
disambiguation (WSD) tasks. The proposed
PoKED system incorporates position-wise encod-
ing into an orthogonal framework and applies a
knowledge-based attentive neural model to solve
the WSD problem. Our proposed unsupervised
language model is trained over unlabeled corpora.
Then the pre-trained language model is used to
abstract the surrounding context of polysemous
words in labeled corpora into context embeddings.
We further use the semantic relations in the Word-
Net, by extracting semantic level inter-word con-
nections from each document-sentence pair in the
WSD dataset. Our experimental results from stan-
dard benchmarks show that our proposed system,
PoKED, can achieve competitive performance
compared with state-of-the-art knowledge-based
WSD systems.

1. Introduction
Word Sense Disambiguation (WSD) is the task of map-
ping an ambiguous word in a given context to its cor-
rect meaning. For example, the word bank can ei-
ther mean a financial institution or sloping
land, based on different contexts. WSD is an important
problem in natural language processing (NLP), both in
its own right and as a stepping stone to more advanced
tasks such as machine translation, information extraction
and retrieval, and question answering. WSD, being “AI-
complete” (Navigli, 2009), is still an open problem after
over two decades of research. We can roughly distinguish
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between supervised and unsupervised approaches. Super-
vised methods require sense-annotated training data and are
suitable for lexical sample WSD tasks when systems are
required to disambiguate a restricted set of target words.
The performance of supervised systems, however, is limited
in WSD tasks as labeled data for the full lexicon is sparse
and difficult to obtain. As WSD tasks are challenging and
have practical applications, there has been interest in devel-
oping unsupervised systems. These systems only require an
external knowledge source (e.g., WordNet) but no labeled
training data.

Example 1: An example of the importance of human semantic
knowledge to the word sense disambiguation. Our experiment
shows without incorporating human semantic knowledge, the
model would wrongly predict a sense of the target word “doc-
ument”. We believe the reason is due to the difficulty for the
model to find a direct relationship through the given word and
plain document. In the example, we can find the answer be-
cause we know “document” is a hypernym of “information”,
or “information” is a hyponym of “document”. The example
is selected from SemEval-15.

Document: This document is a summary of the European Public As-
sessment Report (EPAR). It explains how the Committee for Medicinal
Products for Human Use (CHMP) assessed the studies performed, to
reach their recommendations on how to use the medicine. If you need
more information about your medical condition or your treatment, read

the Package Leaflet (also part of the EPAR) or contact your doctor or
pharmacist. If you want more information on the basis of the CHMP
recommendation, read the Scientific Discussion (also part of the EPAR).
· · ·
Sentence: This document is a summary of the European Public As-
sessment Report (EPAR).
Answer: <noun.communication>[10] S: (n) document.01 (docu-
ment%1:10:00::), written document.01 (written document%1:10:00::),
papers.01 (papers%1:10:00::) (writing that provides information (espe-
cially information of an official nature))

1

In this paper, we propose a semi-supervised neural system
for WSD tasks, which utilizes the whole document as the
context for a word, rather than just the encompassing sen-
tence used by most WSD systems. In order to model the
whole document for WSD, we propose to incorporate recent
position-wise encoding (Watcharawittayakul et al., 2018;
Wei et al., 2019) into an orthogonal framework (Zhang et al.,
2016; Wei et al., 2020). Our proposed model is used to
train a pseudo-language model over unlabeled corpora. The
pre-trained language model is then used to abstract the sur-
rounding context of polysemous words in labeled corpora
into context embeddings. Moreover, we propose a data en-
richment method, which uses WordNet to extract inter-word
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semantic connections as general knowledge from each given
document. As shown in Example 1, such human semantic
knowledge is essential to WSD tasks. In addition, we pro-
pose an end-to-end knowledge-based attentive neural WSD
model, which explicitly uses the above extracted general
knowledge to assist its attention mechanisms (Bahdanau
et al., 2015). Our semi-supervised WSD system (PoKED),
comprised of one unsupervised position-wise orthogonal
network (PoNet) and one supervised knowledge-enhanced
word sense disambiguator (KED) based on attentive net-
works. We evaluate our system, PoKED, on standard bench-
marks (Raganato et al., 2017) and show that the proposed
model, utilizing the whole document as the context for a
word to be disambiguated, achieves better performance than
the previous state-of-the-art knowledge-based models.

2. Related Work
Word sense disambiguation (WSD) approaches can be di-
vided into two main categories: supervised, which re-
quire human intervention in the creation of sense-annotated
datasets, and the so-called knowledge-based approach (Nav-
igli, 2009), which requires the construction of a task-
independent lexical-semantic knowledge resource. Once
that work is available, it uses models that are completely
autonomous.

Supervised. A popular system, It makes sense (Zhong &
Ng, 2010), takes advantage of standard WSD features such
as POS-tags, word co-occurrences, and collocations and cre-
ates individual support vector machine classifiers for each
ambiguous word. Newer supervised models use deep neural
networks and especially long short-term memory (LSTM)
networks, a type of recurrent neural network particularly
suitable for handling arbitrary-length sequences. (Yuan
et al., 2016) proposed a deep neural model trained with
large amounts of data obtained in a semi-supervised fash-
ion. This model was re-implemented by (Le et al., 2018),
reaching comparable results with a smaller training cor-
pus. (Raganato et al., 2017) introduced two approaches for
neural WSD using models developed for machine transla-
tion and substituting translated words with sense-annotated
ones. (Luo et al., 2018) proposed combining labeled data
and knowledge-based information in recent work. (Uslu
et al., 2018) proposed fastSense, a model inspired by fast-
Text (Joulin et al., 2017) which, rather than predicting con-
text words, predicts word senses. More recently, (Huang
et al., 2019) constructed context-gloss pairs and propose
three BERT-based models for WSD. (Hadiwinoto et al.,
2019) explored different strategies of integrating pre-trained
contextualized word representations.

Knowledge-based. Knowledge-based models, instead,
use the structural properties of a lexical-semantic knowledge
base, and typically use the relational information between

concepts in the semantic graph together with the lexical
information contained therein (Navigli & Lapata, 2009). A
popular algorithm used to select the sense of each word in
this graph is PageRank (Page et al., 1999) that performs
random walks over the network to identify the important
nodes (Mihalcea et al., 2004). Another knowledge-based
approach is Babelfy (Moro et al., 2014), which defines a
semantic signature for a given context and compares it with
all the candidate senses in order to perform the disambigua-
tion task. (Chaplot & Salakhutdinov, 2018) proposed a
method that uses the whole document as the context for the
words to be disambiguated. It models word senses using a
variant of the Latent Dirichlet Allocation framework (Blei
et al., 2003), in which the topic distributions of the words
are replaced with sense distributions modeled by a logistic
normal distribution according to the frequencies obtained
from WordNet. More recently, (Maru et al., 2019) intro-
duced SyntagNet, a novel resource consisting of manually
disambiguated lexical-semantic combinations. (Tripodi &
Navigli, 2019) presented WSDG, a flexible game-theoretic
model for WSD.

3. Position-wise Orthogonal
Knowledge-Enhanced Disambiguator
(PoKED)

In this section, we describe in detail the proposed semi-
supervised neural system (PoKED) for WSD tasks. We aim
to explore how position-wise embedding (unsupervised)
could help the downstream WSD task, and how information
from descriptive linguistic knowledge graphs (WordNet)
can be incorporated into neural network architectures to
improve the linguistic WSD task.

3.1. Unsupervised Language Model (PoNet)

First, we elaborate on the proposed unsupervised language
model named PoNet.

The linguistic distribution hypothesis states that words that
occur in close proximity should have a similar meaning. It
implies that the particular sense of a polysemous word is
highly related to its surrounding context. Moreover, humans
decide the sense of a polysemous word by firstly under-
standing its occurring context (Harris, 1954). Following
this theory, our proposed model has two stages: training
a position-wise orthogonal network (PoNet) that abstracts
context as embeddings as shown in Figure 1, and perform-
ing knowledge-based attentive WSD classification over pre-
trained context embeddings as shown in Figure 4.

3.1.1. POSITION-WISE ENCODING

Recently an alternative method (Watcharawittayakul et al.,
2018; Wei et al., 2019) of commonly used sequence embed-
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Figure 1. The diagram of the unsupervised position-wise orthogo-
nal (PoNet) language module.

ding representations has been proposed, and it achieved com-
petitive results in language modeling. The authors proved a
nice theoretical property that guarantees that extracted codes
can almost uniquely encode any variable-length sequence
of words into a fixed-size representation without losing any
information.

Given a vocabulary V , where each word can be represented
by a 1-of-|V | one-hot vector. Let S = {w1, · · · , wN} de-
note a sequence of N words from V , and en denote the
one-hot vector of the n-th word in S, where 1 ≤ n ≤ N .
Assuming z0 = 0, the extracted code zn of the sequence
from word w1 to wn is as follows:

zn = α · zn−1 + en (1)

where α is a constant forgetting factor. Thus, zn can be
viewed as a fixed-size representation of the subsequence
{w1, · · · , wn}. We can see that, according to the theoretical
properties presented in (Zhang et al., 2015), any sequence
of variable length can be uniquely and losslessly encoded
into a fixed-size representation.

The main idea of position-wise encoding is to generate aug-
mented encoding codes by concatenating two codes using
two different forgetting factors. Each of these codes is still
computed in the same way as the mathematical formulation
shown in Equation (1). By using two different forgetting fac-
tors in the two codes, we can represent both short-term and

long-term dependencies. Hence, our position-wise encod-
ing can maintain the sensitivity to both nearby and faraway
context.

3.1.2. ORTHOGONAL FRAMEWORK

More recently, a novel orthogonal framework (Zhang et al.,
2016; Wei et al., 2020) has been proposed to learn neural net-
works in either supervised or unsupervised way. This frame-
work introduces a linear orthogonal projection to reduce the
dimensionality of the raw high-dimension data and then uses
a finite mixture distribution to model the extracted features.
By splitting the feature extraction and data modeling into
two separate stages, it can derive a good feature extraction
model that can generate better low-dimension features for
the further learning process. More importantly, based on the
analysis in (Zhang et al., 2016), the orthogonal framework
has a tight relationship with neural networks since each hid-
den layer can also be viewed as an orthogonal model being
composed of the feature extraction stage and data modeling
stage. Therefore, the maximum likelihood-based unsuper-
vised learning as well as the minimum cross-entropy error
based supervised learning algorithms can be used to learn
neural networks under the orthogonal framework for deep
learning. In this case, the standard back-propagation method
can be used to optimize the objective function to learn the
models except that the orthogonal constraints are imposed
for all projection layers during the training procedure.

Simply put, in practice in terms of the orthogonal formu-
lation, (Zhang et al., 2016) proposed modeling z, which
is heavily de-correlated but may still exist in a rather high
dimension feature space, with a finite mixture model:

p(z) =

K∑
k=1

πk · fk(z|θk) (2)

where K is the number of mixture components, πk is the
mixture weight of the k-th component (

∑K
k=1 πk = 1), fk()

denotes a selected distribution from the exponential family,
and θk denotes all model parameters of fk().

An example of an orthogonal layer in deep feedforward
networks is shown in Figure 2. For one hidden layer with
input vector x (x ∈ RD) and output vector y (y ∈ RG), it
is first split into two layers:

• The first layer is a linear orthogonal projection layer,
which is used to project x to a feature vector z (z ∈
RM ,M < D) and remove the noise signals by using
an orthogonal projection matrix U : z = Ux.

• The second layer is a non-linear model layer, which
converts z to the output vector y following the selected
model fk() and a nonlinear log-likelihood pruning op-
eration.
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Figure 2. The orthogonal framework is viewed as a hidden layer in
deep feedforward networks.

As the pseudo-language model (PoNet) is trained to predict
the target word, the output layer is irrelevant to WSD tasks.
The remaining layers, however, have learned the ability to
generalize features from word to context during the training
process. The held-out layer (the second last layer) are re-
tained as context embeddings, which provides an effective
representation of the surrounding context of a given target
word.

3.2. Supervised Knowledge-based Attentive Model
(KED)

In this section, we describe in detail the proposed supervised
knowledge-enhanced attentive networks named KED for
WSD tasks, along with the data enrichment method with
WordNet.

3.2.1. DATA ENRICHMENT WITH WORDNET

WordNet is a comprehensive lexical database for the English
language (Miller, 1995), and is commonly used as the sense
repository in WSD systems.

To provide our WSD model with explicit knowledge, we
enrich the gloss information by extracting semantic level
inter-word connections from each document-sentence pair in
it; therefore we propose a WordNet-based data enrichment
method.

Words in WordNet are organized into synsets, as shown in
Figure 3, which in turn are related to each other through
semantic relations, such as “hypernym” and “hyponym”. In
our data enrichment method, we use the semantic relations
of WordNet to extract semantic level inter-word connections
from each document-sentence pair in the WSD dataset. For
each word w in a document-sentence pair, we need to obtain
a set Zw, which contains the positions of the document
words that w is semantically connected to. Besides, when
w itself is a document word, we also need to ensure that its
position is excluded from Zw.

Hyponym Hypernym Meronym Holonym

goal.n.01

content.n.05

purpose.n.01

intention.n.02

aim.n.02

object.n.04

topic.n.02

food.n.03

plan_of_action.n.01

scheme.n.01
policy.n.01

play.n.03

Figure 3. WordNet example showing several synsets and the rela-
tions between them.

Given a word w, its directly-involved synsets Φw represents
the synsets that w belongs to, and its indirectly-involved
synsets Φ̄w represents the synsets that are related to those in
Φw through semantic relations. Based on the two concepts,
we propose the following hypothesis: given a subject word
ws and an object word wo, ws is semantically connected
to wo if and only if (Φws

⋃
Φ̄ws)

⋂
Φwo 6= ∅. According

to the hypothesis, Algorithm 1 describes the process of
extracting semantic level inter-word connections from each
document-sentence pair.

Given a word w, we can easily obtain its directly-involved
synsets Φw from WordNet, but obtaining its indirectly-
involved synsets Φ̄w is much more complicated, because in
WordNet, the way synsets are related to each other is flexible
and extensible. In some cases, a synset is related to another
synset through a single semantic relation. For example, the
synset “cold.a.01” is related to the synset “temperature.n.01”
through the semantic relation “attribute”. In many other
cases, however, a synset is related to another synset through
a semantic relation chain. For example, first the synset
“keratin.n.01” is related to the synset “feather.n.01” through
the semantic relation “substance holonym”; then the synset
“feather.n.01” is related to the synset “bird.n.01” through
the semantic relation “part holonym”; and finally the synset
“bird.n.01” is related to the synset “parrot.n.01” through
the semantic relation “hyponym”; thus we can say that the
synset “keratin.n.01” is related to the synset “parrot.n.01”
through the semantic relation chain “substance holonym
→ part holonym → hyponym”. We name each semantic
relation in a semantic relation chain as a hop. Therefore,
the above semantic relation chain is a 3-hop chain. Besides,
each single semantic relation is a 1-hop semantic relation
chain.

Let us use Γ := {γ1, γ2, ...} to represent the semantic rela-
tions of WordNet, and use Ωγiφ to represent the synsets that
a synset φ is related to through a single semantic relation
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Algorithm 1 Extract semantic level inter-word connections from each document-sentence pair
1: procedure EXTRACT(D,S)

Input: Given a document D and a relevant sentence S.
Output: Return the extraction results on D and S

2: for each document word di in D do
3: Zdi ← {j ∈ {1, ..., n}\{i} : (Φdi

⋃
Φ̄di)

⋂
Φdj 6= ∅} . Obtain the extraction results Zdi

4: for each sentence word si in S do
5: Zsi ← {j ∈ {1, ..., n}\{i} : (Φsi

⋃
Φ̄si)

⋂
Φdj 6= ∅} . Obtain the extraction results Zsi

γi ∈ Γ. Since Ωγiφ is easy to obtain from WordNet, we can
further obtain the synsets that φ is related to through 1-hop
semantic relation chains: Ψ1

φ =
⋃
γi∈Γ Ωγiφ , the synsets

that φ is related to through 2-hop semantic relation chains:
Ψ2
φ =

⋃
φ̂∈Ψ1

φ

⋃
γi∈Γ Ωγi

φ̂
, and by induction, the synsets

that φ is related to through k-hop semantic relation chains:
Ψk
φ =

⋃
φ̂∈Ψk−1

φ

⋃
γi∈Γ Ωγi

φ̂
. In theory, if we do not limit the

hop counts of semantic relation chains, φ can be related to
all other synsets in WordNet, which is meaningless in many
cases. Therefore, we use a hyper-parameter τ ∈ N to rep-
resent the maximum hop count of semantic relation chains,
and only consider the semantic relation chains that have no
more than τ hops. Based on the above descriptions, given a
word w and its directly-involved synsets Φw, we can obtain
its indirectly-involved synsets: Φ̄w =

⋃
φ∈Φw

⋃τ
k=1 Ψk

φ

3.2.2. KNOWLEDGE-BASED ATTENTIVE NEURAL
MODEL

In this section, we describe in detail the proposed
knowledge-based attentive model for WSD tasks. The
key components of our model are the attention mech-
anisms, (i.e., knowledge-enhanced joint-attention and
knowledge-enhanced self-attention). Knowledge-enhanced
joint-attention aims to fuse the sentence representations into
the document representations so as to obtain the sentence-
aware document representations. Furthermore, Knowledge-
enhanced self-attention aims to fuse the sentence-aware
document representations into themselves so as to obtain
the final document representations. More importantly, the
most remarkable feature of our model is that it explicitly
uses the general knowledge extracted by the data enrichment
method to assist its attention mechanisms.

Given a documentD = {d1, ..., dn} and a relevant sentence
S = {s1, ..., sm}, the task is to predict a sense among a list
of K candidates C = {c1, ...,ck}. As depicted in Figure 4,
our proposed end-to-end supervised WSD model consists
of five layers:

• Given a document-sentence pair, the lexicon embed-
ding layer encodes the lexical features of each word
to generate the document lexicon embeddings and the
sentence lexicon embeddings. For each word, we use
our pre-trained context embeddings based on position-

wise encoding approach and orthogonal framework de-
scribed in 3.1, and obtain its character embedding with
a Convolutional Neural Network (CNN) (Kim, 2014).
For both the document and the sentence, we pass the
concatenation of the word embeddings and the char-
acter embeddings through a shared dense layer with
ReLU activation, whose output dimensionality is d.
Therefore we obtain the document lexicon embeddings
LD ∈ Rd×n and the sentence lexicon embeddings
LS ∈ Rd×m.

• Based on the two lexicon embeddings, the context
embedding layer encodes the contextual clues about
each word to generate the document context embed-
dings and the sentence context embeddings. For both
the document and the sentence, we process the lexi-
con embeddings (i.e., LD for the document and LS
for the sentence) with a shared bidirectional LSTM
(BiLSTM) (Hochreiter & Schmidhuber, 1997), whose
hidden state dimensionality is 1

2d. By concatenating
the forward LSTM outputs and the backward LSTM
outputs, we obtain the document context embeddings
CD ∈ Rd×n and the sentence context embeddings
CS ∈ Rd×m.

• Based on the two context embeddings, the coarse-
grained memory layer performs both document-to-
sentence and sentence-to-document attention to gen-
erate the preliminary memories over the document-
sentence pair. First we use knowledge-enhanced joint-
attention (discussed in section 3.2.3) to fuse CD into
CS , the outputs of which are represented as G̃ ∈ Rd×n.
Then we process G̃ with a BiLSTM, whose hidden
state dimensionality is 1

2d. By concatenating the for-
ward LSTM outputs and the backward LSTM outputs,
we obtain the coarse-grained memories G ∈ Rd×n,
which are the sentence-aware document representa-
tions.

• Based on the coarse-grained memories, the fine-
grained memory layer generates the refined memo-
ries over the document-sentence pair. First we use
knowledge-enhanced self-attention (discussed in sec-
tion 3.2.4) to fuse G into themselves, the outputs of
which are represented as H̃ ∈ Rd×n. Then we process
H̃ with a BiLSTM, whose hidden state dimensionality
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Figure 4. Our proposed end-to-end supervised WSD model (KED).

is 1
2d. By concatenating the forward LSTM outputs

and the backward LSTM outputs, we obtain the fine-
grained memories H ∈ Rd×n, which are the final
document representations.

• Based on the fine-grained memories and the sentence
context embeddings, the sense prediction layer gener-
ates the sense prediction. We first perform attention
pooling on CS to obtain a summary of the sentence:

ε = CSsoftmax(tanh(WεCS)>vε) ∈ R2d (3)

where Wε and vε are trainable parameters. Then, with
ε as a query, we compute a posterior distribution of all
sense candidates in the list:

o = softmax(tanh(WηεH))>vη) ∈ Rn (4)

where Wη and vη are trainable parameters. Thus, for
the training, we minimize −log(o, t) on each training
sample whose labeled sense is t. For the inference, we
take the index of the maximum element as o.

3.2.3. KNOWLEDGE-ENHANCED JOINT-ATTENTION

As a part of the coarse-grained memory layer, knowledge-
enhanced joint-attention is aimed at fusing the sentence con-
text embeddings CS into the document context embeddings
CD, where the key problem is to calculate the similarity
between each document context embedding cdi (i.e., the

i-th column in CD ) and each sentence context embedding
csj (i.e., the j-th column in CS). To solve this problem,
we follow (Wang & Jiang, 2019) to incorporate a similarity
function:

f(cdi , csj ) = v>f [cdi ; csj ; cdi � csj ] ∈ R) (5)

where vf is a trainable parameter; � represents element-
wise multiplication. Since context embeddings contain
high-level information, we believe that introducing the pre-
extracted general knowledge into the calculation of such
similarities will enhance the ability of the model to iden-
tify the boundaries of word senses and is helpful for the
final disambiguation. Therefore, we use the pre-extracted
general knowledge to construct the enhanced context em-
beddings. Specifically, for each word w, whose context
embedding is cw, to construct its enhanced context embed-
ding c̃w, first recall that we have extracted a set Ew, which
includes the positions of the document words that w is se-
mantically connected to, thus by gathering the columns in
CD whose indexes are given byEw, we obtain the matching
context embeddings Z ∈ Rd×|Ew|. Then by constructing a
cw-attentive summary of Z, we obtain the matching vector
c+w (if Ew = ∅, which makes Z = {}, we will set c+w = 0):

ti = v>c tanh(Wczi + Uccw) ∈ R (6)

c+w = Z softmax({t1, ..., t|Ew|}) ∈ Rd (7)

where vc,Wc, and Uc are trainable parameters; zi represents
the i-th column in Z. Finally we pass the concatenation of
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cw and c+w through a dense layer with ReLU activation,
whose output dimensionality is d. Therefore we obtain the
enhanced context embedding c̃w ∈ Rd.

Based on this context embeddings, to perform knowledge-
enhanced joint-attention, first we construct a knowledge-
enhanced similarity matrix A ∈ Rn×m, where each ele-
ment Ai,j = f(c̃di , c̃sj ). Then we construct the document-
attentive sentence summaries RS and the sentence-attentive
document summaries RD :

RS = CS softmax>r (A) ∈ Rd×n (8)

RD = CD softmaxc(A) softmax>r (A) ∈ Rd×n (9)

where softmaxr represents softmax along the row dimension
and softmaxc along the column dimension. Finally we pass
the concatenation of CD, RS , CD � RS , and RD � RS
through a dense layer with ReLU activation, whose output
dimensionality is d. Thus, we obtain the outputs G̃ ∈ Rd×n.

3.2.4. KNOWLEDGE-ENHANCED SELF-ATTENTION

As a part of the fine-grained memory layer, knowledge-
enhanced self-attention is aimed at fusing the coarse-grained
memories G into themselves. We use the pre-extracted
general knowledge to guarantee that the fusion of coarse-
grained memories for each document word will only involve
a precise subset of the other document words. Specifically,
for each document word di, whose coarse-grained memory
is gdi (i.e., the i-th column in G), to perform the fusion
of coarse-grained memories, first recall that we have ex-
tracted a set Edi , which includes the positions of the other
document words that di is semantically connected to, thus
by gathering the columns in G whose indexes are given
by Edi , we obtain the matching coarse-grained memories
Z ∈ Rd×|Edi |. Then by constructing a gdi-attentive sum-
mary of Z, we obtain the matching vector g+

di
(if Edi = ∅,

which makes Z = {}, we will set g+
di

= 0):

ti = v>g tanh(Wgzi + Uggdi) ∈ R (10)

g+
di

= Z softmax({t1, ..., t|Edi |}) ∈ Rd (11)

where vg , Wg , and Ug are trainable parameters. Finally we
pass the concatenation of gdi and g+

di
through a dense layer

with ReLU activation, whose output dimensionality is d.
Therefore we obtain the fusion result h̃di ∈ Rd, and further
the outputs H̃ = {h̃d1 , ..., h̃dn} ∈ Rd×n.

Our proposed neural model is quite different from the exist-
ing WSD models in that it uses semantic level inter-word
connections, which are pre-extracted from the WSD dataset
using the WordNet-based data enrichment method, as ex-
plicit knowledge to assist the sense prediction of the tar-
get word. On one hand, the coarse-grained memory layer
uses the explicit knowledge to assist both the document-
to-sentence and sentence-to-document attentions. On the

other hand, the fine-grained memory layer uses the explicit
knowledge to assist the self-attention.

4. Experiments and Analysis
We conducted experiments on standard benchmark datasets
introduced by (Raganato et al., 2017) (i.e., Senseval-2 (S2),
Senseval-3 (S3), SemEval-2007 (SE07), SemEval-2013
(SE13) and SemEval-2015 (SE15)), in order to evaluate
the performance of our proposed semi-supervised neural
system (PoKED).

Implementation. To train the proposed unsupervised
position-wise orthogonal (PoNet) pseudo-language model,
we used BooksCorpus (Zhu et al., 2015) and English
Wikipedia as part of our pretraining data. In addition, we
included Giga5 (Parker et al., 2011), ClueWeb 2012-B (ex-
tended from (Callan et al., 2009)), and Common Crawl
(Crawl) for pretraining. The vocabulary consists of the most
frequent 1M words without lemmatization or case normal-
ization. The dimension of word embedding was set to 128.
The position-wise codes led to a dimension of 1024 for
the input layer of the orthogonal framework. Then we ap-
pended three hidden layers of dimension 2048. Additionally,
we chose constant forgetting factors α = (0.5, 0.9) for the
position-wise codes.

To implement our proposed supervised neural model, we
exploited the Stanford CoreNLP (Manning et al., 2014)
to pre-process datasets. We used the WordNet interface
provided by NLTK (BIRD & LOPER, 2004) to perform
the WordNet-based data enrichment method. Additionally,
we implemented a knowledge-based attentive neural model
using Tensorflow (Abadi et al., 2016) and train it on Sem-
Cor (Miller et al., 1994) corpus. For each BiLSTM, we
set its hidden state size to 256. For the training, we used
ADAM (Kingma & Ba, 2014) as our optimizer, set the learn-
ing rate to 0.001, and set the mini-batch size to 32. To avoid
overfitting, we applied Dropout (Srivastava et al., 2014) to
dense layers and BiLSTMs with a value of 0.35. Besides,
we applied an exponential moving average with a decay rate
of 0.999.

Following (Raganato et al., 2017), (Luo et al., 2018) and
(Hadiwinoto et al., 2019), we chose SE07, the smallest
among these test sets, as the development set. When fine-
tuning, we used the development set to find the optimal
settings for our experiments. The reported WSD task results
in F1-score are averaged over three runs.

Experimental results. We performed a comparison with
three configurations of our model, namely: PoKEDα,
obtained using our pre-trained position-wise orthogonal
(PoNet) context embeddings with general knowledge;
PoKEDβ , obtained using Roberta (Liu et al., 2019) and
general knowledge; PoKEDγ , obtained using XLNet (Yang
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et al., 2019) and general knowledge.

As comparison systems we included four semi-supervised
approaches mentioned above, namely: Babelfy (Moro et al.,
2014), pprw2w, the best configuration of UKB (Agirre et al.,
2018), WSD-TM (Chaplot & Salakhutdinov, 2018), and
WSDG (Tripodi & Navigli, 2019). In addition, we also
report the performances of relevant supervised models,
namely: IMS (Zhong & Ng, 2010), IMSw2v (Iacobacci et al.,
2016), YuanLSTM (Yuan et al., 2016), RaganatoBLSTM (Ra-
ganato et al., 2017), GAS (Luo et al., 2018), fastSense (Uslu
et al., 2018), GLU-LW (Hadiwinoto et al., 2019) and Gloss-
BERT (Huang et al., 2019).

The results of our evaluation are shown in Table 1. As we
can see our models achieve state-of-the-art performances
on four datasets, (i.e., S2, S3, SE07, SE15). It is worth
noting that, on SE13 and SE15 datasets, ours perform better
than most supervised systems. In general, the gap between
supervised and semi-supervised systems is narrowed. This
encourages new research in this direction. Our models
perform particularly well on the disambiguation of nouns
and adjectives.

Effect of general knowledge extraction. We obtain
seven enriched WSD datasets by setting τ from zero to
six separately, and train a different PoKEDα system on each
enriched WSD dataset. As shown in Table 2, by increas-
ing τ from zero to six in the data enrichment method, the
amount of general knowledge rises monotonically, but the
F1-score of our proposed PoKEDα first rises until τ reaches
three for SE07 and SE15 datasets, and reaches four for S2,
S3 and SE13 datasets, respectively, and then drops. We
can conclude that the explicit knowledge provided by the
WordNet-based data enrichment method plays an effective
role in the training of our proposed PoKEDα system.

Effect of knowledge-enhancement. We conducted an ab-
lation study and obtained a version without knowledge-
enhancement based on PoKEDα. Specifically, we re-
place knowledge-enhanced joint-attention and knowledge-
enhanced self-attention with full bipartite attention and
standard dot-scale attention, respectively. As shown in Ta-
ble 3, we observe that the performance of the model without
knowledge-enhancement drops dramatically compared with
that of PoKEDα, especially with the SE15 dataset. In this
case, F1-score declined by 5.4%, 70.5 vs. 65.1. It indi-
cates that human semantic knowledge is helping with WSD
tasks remarkably, and plays an important role in our semi-
supervised neural WSD system.

Quantitative analysis of the hunger for data. Specifi-
cally, instead of using all the training examples, we produce
several training subsets (i.e., subsets of the training exam-
ples) so as to study the relationship between the proportion
of the available training samples and the performance. We

produce each training subset by sampling a specific number
of sentences from all the sentences relevant to each doc-
ument. By separately sampling 1, 2, 3, and 4 sentences
on each document, we obtain four training subsets, which
separately contain 20%, 40%, 60%, and 80% of the training
samples. As shown in Figure 5, with PoKEDα trained on
these training subsets, we evaluate its performance on the
SE15, S3 and ALL, and find that PoKEDα performs much
better than MFS baseline even when only 80% of the train-
ing samples are used. That is, when only a subset of the
training examples is available, PoKEDα is still comparable
to the state-of-the-art WSD models.

Figure 5. Quantitative Analysis of the Hunger for Data. With
PoKEDα trained on the training subsets, we evaluate its perfor-
mance on the SE15, S3 and ALL.

Discussion. According to the experimental results,
PoKED not merely achieves state-of-the-art performances
on most datasets, but performs better than most supervised
systems. The reasons for these achievements, we believe,
are as follows.

First, some inter-word semantic connections are distracting
for the disambiguation of word sense. For example, the inter-
word semantic connection between “ballpoint” and “pen”
makes no sense given the context “Little John was looking
for his toy box. Finally, he found it. The box was in the
pen.” It is the knowledge-enhanced attention mechanisms
that enable PoKED to ignore such distracting inter-word
semantic connections so that only the important ones are
used.

Second, PoKED is designed to utilize the pre-extracted inter-
word semantic connections extracted by the data enrichment
method. Several approaches have been presented in recent
years to make use of ontologies or types (such as (Dasigi
et al., 2017)) to represent word tokens based on knowledge
bases (e.g., WordNet). Nevertheless, the importance of inter-
word semantic connections from document-sentence pairs
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Table 1. Comparison with state-of-the-art algorithms: semi-supervised or knowledge-based (semi-sup.), and supervised (sup.). MFS refers
to the Most Frequent Sense heuristic computed on SemCor (Miller et al., 1994) on each dataset. The results are provided as F1-score.
Bold font indicates best systems. Results in the first and last blocks come from (Tripodi & Navigli, 2019; Hadiwinoto et al., 2019; Huang
et al., 2019).

Model S2 S3 SE07 SE13 SE15 ALL N V A R
se

m
i-s

up
. MFS 64.7 65.4 53.9 62.9 66.6 64.1 68.1 49.5 74.1 80.6

Babelfy 67.0 63.5 51.6 66.4 70.3 65.5 68.6 49.9 73.2 79.8
pprw2w 68.8 66.1 53.0 68.8 70.3 67.3 - - - -
WSD-TM 69.0 66.9 55.6 65.3 69.6 66.9 69.7 51.2 76.0 80.9
WSDG 68.9 65.5 54.5 67.0 72.8 67.2 70.4 51.3 75.7 80.6

PoKEDα (ours) 68.8 67.4 54.6 65.2 70.5 67.0 70.1 50.8 75.5 79.7
PoKEDβ (ours) 69.5 67.0 55.8 67.3 72.8 67.4 70.5 51.4 76.2 80.8
PoKEDγ (ours) 69.8 67.1 56.0 67.5 72.7 67.7 70.8 51.6 76.2 80.6

su
p.

IMS 70.9 69.3 61.3 65.3 69.5 68.9 70.5 55.8 75.6 82.9
IMSw2v 72.2 70.4 62.6 65.9 71.5 70.1 71.9 56.6 75.9 84.7
YuanLSTM 73.8 71.8 63.5 69.5 72.6 71.5 - - - -
RaganatoBLSTM 72.0 69.1 64.8 66.9 71.5 69.9 71.5 57.5 75.0 83.8
GAS 72.2 70.5 - 67.2 72.6 - - - - -
fastSense 73.5 73.5 62.4 66.2 73.2 - - - - -
GLU-LW 75.5 73.4 68.5 71.0 76.2 - - - - -
GlossBERT 76.5 73.4 69.2 75.1 79.5 - - - - -

Table 2. Effect analysis of general knowledge extraction. We report the F1-score performance of PoKEDα on standard benchmarks under
each setting for τ . #average stands for average number of inter-word connections per word. Bold font indicates best performance.

τ #average S2 #average S3 #average SE07 #average SE13 #average SE15

0 0.51 67.1 0.47 65.6 0.30 52.7 0.29 63.2 0.36 67.1
1 0.92 67.7 0.84 66.2 0.51 53.4 0.41 63.6 0.68 68.4
2 1.47 68.1 1.32 66.5 1.93 53.9 0.93 64.1 2.03 69.6
3 2.35 68.4 3.06 66.9 3.28 54.6 1.58 64.7 3.97 70.5
4 3.89 68.8 3.97 67.4 3.86 54.0 3.67 65.2 4.87 69.9
5 5.79 68.3 4.28 66.8 4.77 53.2 4.22 64.5 5.52 69.3
6 6.22 68.0 5.45 66.4 6.02 52.6 5.19 63.4 6.45 68.2

Table 3. Effect of knowledge-enhancement. It shows human semantic knowledge plays an important role in our semi-supervised neural
WSD system.

Model S2 S3 SE07 SE13 SE15

PoKEDα 68.8 67.4 54.6 65.2 70.5
- knowledge-enhancement 64.3 H-4.5 63.5 H-3.9 50.2 H-4.4 61.4 H-3.8 65.1 H-5.4

was overlooked. Therefore, in this paper, we explore an
explicit (i.e., understandable and controllable) way to utilize
general knowledge. Some inter-word semantic connections,
especially those obtained through multi-hop semantic re-
lation chains, enhance the ability of the model to identify
the boundaries of word senses and is helpful for the final
disambiguation.

Finally, an inter-word semantic connection extracted from a
document-sentence pair usually also appears in many other
document-sentence pairs; therefore it is very likely that
the inter-word semantic connections extracted from a small
number of training examples cover a larger amount of train-
ing examples. That is, we are using more training examples
for model optimization than the available ones.

5. Conclusion
In this paper, we propose a semi-supervised neural system
(PoKED), which incorporates human semantic knowledge
into the neural network architectures for WSD tasks. Specif-
ically, inter-word semantic connections are first extracted
from each given document by a WordNet-based data enrich-
ment method, and then provided as general knowledge to an
end-to-end WSD model, which explicitly uses the general
knowledge to assist its attention mechanisms. Experimental
results show that PoKED achieves better performance than
the previous state-of-the-art knowledge-based models.



PoKED: A Semi-Supervised System for Word Sense Disambiguation

Acknowledgements
I would like to thank my thesis advisor Professor Uyen
Trang Nguyen for her tremendous help and many fruitful
discussions. I also thank anonymous reviewers for their thor-
ough constructive comments to improve the paper. Many
of my past and present collaborators have made valuable
contributions to this work.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In Proceedings of the 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI), pp.
265–283, 2016.

Agirre, E., de Lacalle, O. L., and Soroa, A. The risk of
sub-optimal use of open source nlp software: Ukb is
inadvertently state-of-the-art in knowledge-based wsd. In
Proceedings of Workshop for NLP Open Source Software,
pp. 29–33, 2018.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In
International Conference on Learning Representations,
2015.

BIRD, S. and LOPER, E. Nltk: The natural language toolkit.
Association for Computational Linguistics, 2004.

Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent dirichlet
allocation. Journal of Machine Learning Research, 3:
993–1022, 2003.

Callan, J., Hoy, M., Yoo, C., and Zhao, L. Clueweb09 data
set, 2009.

Chaplot, D. S. and Salakhutdinov, R. Knowledge-based
word sense disambiguation using topic models. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

Crawl, C. Common crawl. http://commoncrawl.
org.

Dasigi, P., Ammar, W., Dyer, C., and Hovy, E. Ontology-
aware token embeddings for prepositional phrase attach-
ment. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 2089–2098, 2017.

Hadiwinoto, C., Ng, H. T., and Gan, W. C. Improved word
sense disambiguation using pre-trained contextualized
word representations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 5300–5309,
2019.

Harris, Z. S. Distributional structure. Word, 10(2-3):146–
162, 1954.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

Huang, L., Sun, C., Qiu, X., and Huang, X. Glossbert: Bert
for word sense disambiguation with gloss knowledge.
arXiv preprint arXiv:1908.07245, 2019.

Iacobacci, I., Pilehvar, M. T., and Navigli, R. Embeddings
for word sense disambiguation: An evaluation study. In
Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), pp. 897–907, 2016.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. Bag
of tricks for efficient text classification. In Proceedings
of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2,
Short Papers, pp. 427–431, 2017.

Kim, Y. Convolutional neural networks for sentence classi-
fication. arXiv preprint arXiv:1408.5882, 2014.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Le, M., Postma, M., Urbani, J., and Vossen, P. Deep dive
into word sense disambiguation with lstm. In Proceed-
ings of 27th International Conference on Computational
Linguistics, pp. 354–365, 2018.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Luo, F., Liu, T., Xia, Q., Chang, B., and Sui, Z. Incor-
porating glosses into neural word sense disambiguation.
In Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pp. 2473–2482, 2018.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard,
S., and McClosky, D. The stanford corenlp natural lan-
guage processing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Linguistics:
System Demonstrations, pp. 55–60, 2014.

Maru, M., Scozzafava, F., Martelli, F., and Navigli, R. Syn-
tagnet: Challenging supervised word sense disambigua-
tion with lexical-semantic combinations. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 3525–3531, 2019.

http://commoncrawl. org
http://commoncrawl. org


PoKED: A Semi-Supervised System for Word Sense Disambiguation

Mihalcea, R., Tarau, P., and Figa, E. Pagerank on semantic
networks, with application to word sense disambiguation.
In Proceedings of the 20th International Conference on
Computational Linguistics, pp. 1126–1132, 2004.

Miller, G. A. Wordnet: a lexical database for english. Com-
munications of the ACM, 38(11):39–41, 1995.

Miller, G. A., Chodorow, M., Landes, S., Leacock, C., and
Thomas, R. G. Using a semantic concordance for sense
identification. In Proceedings of the Workshop on Human
Language Technology, pp. 240–243, 1994.

Moro, A., Raganato, A., and Navigli, R. Entity linking
meets word sense disambiguation: a unified approach.
Transactions of the Association for Computational Lin-
guistics, 2:231–244, 2014.

Navigli, R. Word sense disambiguation: A survey. ACM
Computing Surveys, 41(2):10, 2009.

Navigli, R. and Lapata, M. An experimental study of graph
connectivity for unsupervised word sense disambiguation.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 32(4):678–692, 2009.

Page, L., Brin, S., Motwani, R., and Winograd, T. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab, 1999.

Parker, R., Graff, D., Kong, J., Chen, K., and Maeda, K. En-
glish gigaword fifth edition. Linguistic Data Consortium,
2011.

Raganato, A., Camacho-Collados, J., and Navigli, R. Word
sense disambiguation: A unified evaluation framework
and empirical comparison. In Proceedings of the 15th
Conference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Papers,
pp. 99–110, 2017.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Tripodi, R. and Navigli, R. Game theory meets embeddings:
a unified framework for word sense disambiguation. In
Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 88–99, 2019.

Uslu, T., Mehler, A., Baumartz, D., and Hemati, W. fast-
sense: An efficient word sense disambiguation classifier.
In Proceedings of the Eleventh International Conference
on Language Resources and Evaluation, 2018.

Wang, C. and Jiang, H. Explicit utilization of general knowl-
edge in machine reading comprehension. In Proceedings
of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 2263–2272, 2019.

Watcharawittayakul, S., Xu, M., and Jiang, H. Dual fixed-
size ordinally forgetting encoding (fofe) for competitive
neural language models. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pp. 4725–4730, 2018.

Wei, F., Nguyen, U. T., and Jiang, H. Dual-fofe-net neural
models for entity linking with pagerank. In International
Conference on Artificial Neural Networks, pp. 635–645.
Springer, 2019.

Wei, F., Trang Nguyen, U., and Jiang, H. Fonet: A memory-
efficient fourier-based orthogonal network for object
recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops,
pp. 688–689, 2020.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R. R., and Le, Q. V. Xlnet: Generalized autoregressive
pretraining for language understanding. In Advances in
Neural Information Processing Systems, pp. 5754–5764,
2019.

Yuan, D., Richardson, J., Doherty, R., Evans, C., and Al-
tendorf, E. Semi-supervised word sense disambiguation
with neural models. In Proceedings of COLING 2016,
the 26th International Conference on Computational Lin-
guistics: Technical Papers, pp. 1374–1385, 2016.

Zhang, S., Jiang, H., Xu, M., Hou, J., and Dai, L. The
fixed-size ordinally-forgetting encoding method for neu-
ral network language models. In Proceedings of ACL,
2015.

Zhang, S., Jiang, H., and Dai, L. Hybrid orthogonal pro-
jection and estimation (hope): a new framework to learn
neural networks. The Journal of Machine Learning Re-
search, 17(1):1286–1318, 2016.

Zhong, Z. and Ng, H. T. It makes sense: A wide-coverage
word sense disambiguation system for free text. In Pro-
ceedings of the ACL 2010: System Demonstrations, pp.
78–83, 2010.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-
sun, R., Torralba, A., and Fidler, S. Aligning books and
movies: Towards story-like visual explanations by watch-
ing movies and reading books. In Proceedings of the
IEEE International Conference on Computer Vision, pp.
19–27, 2015.



1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

EMNLP 2018 Submission 610. Confidential Review Copy. DO NOT DISTRIBUTE.

Exploring Machine Reading Comprehension with Explicit Knowledge

Anonymous EMNLP submission

Abstract

To apply general knowledge to machine read-
ing comprehension (MRC), we propose an in-
novative MRC approach, which consists of a
WordNet-based data enrichment method and
an MRC model named as Knowledge Aided
Reader (KAR). The data enrichment method
uses the semantic relations of WordNet to
extract semantic level inter-word connections
from each passage-question pair in the MRC
dataset, and allows us to control the amount
of the extraction results by setting a hyper-
parameter. KAR uses the extraction results of
the data enrichment method as explicit knowl-
edge to assist the prediction of answer spans.
According to the experimental results, the sin-
gle model of KAR achieves an Exact Match
(EM) of 72.4 and an F1 Score of 81.1 on the
development set of SQuAD, and more impor-
tantly, by applying different settings in the data
enrichment method to change the amount of
the extraction results, there is a 2% variation in
the resulting performance of KAR, which im-
plies that the explicit knowledge provided by
the data enrichment method plays an effective
role in the training of KAR.

1 Introduction

Machine reading comprehension (MRC) is a chal-
lenging task in artificial intelligence. As the name
suggests, MRC requires a machine to read a pas-
sage and answer a relevant question. Since the an-
swer to each question is supposed to stem from
the corresponding passage, a common solution for
MRC is to train an MRC model that predicts for
each given passage-question pair an answer span
(i.e. the answer start position and the answer end
position) in the passage. To encourage the explo-
ration of MRC models, many MRC datasets have
been published, such as SQuAD (Rajpurkar et al.,
2016) and MS-MARCO (Nguyen et al., 2016). In
this paper, we focus on SQuAD.
A lot of MRC models have been proposed for the

challenge of SQuAD. Although the top models on
the leader-board have achieved almost the same
performance as human beings, we are firmly con-
vinced that the way human beings conduct read-
ing comprehension is still worth studying for us to
make further innovations in MRC. Therefore, let
us briefly review human reading comprehension
before diving into MRC. Given a passage and a
relevant question, we may wish to match the pas-
sage words with the question words, so that we
could find the answer around the matched passage
words. However, due to the complexity and di-
versity of natural languages, this naive method is
often useless in practice. Instead, we must rely
on our reasoning skills to deal with reading com-
prehension, which makes it necessary for us to
obtain enough inter-word connections from each
given passage-question pair. Inter-word connec-
tions have a wide coverage, they exist not only on
the syntactic level (e.g. dependency), but also on
the semantic level (e.g. synonymy). The exam-
ples provided in Table 1 demonstrate how human
reading comprehension could benefit from seman-
tic level inter-word connections.
By roughly analyzing the MRC models proposed
for SQuAD, we find that leveraging neural atten-
tion mechanisms (Bahdanau et al., 2014) based
on recurrent neural networks, such as LSTM
(Hochreiter and Schmidhuber, 1997) and GRU
(Cho et al., 2014), is currently the dominant ap-
proach. Since neural network models are usually
deemed as simulations of human brains, we may
as well interpret the training of an MRC model
as a process of teaching knowledge to it, where
the knowledge comes from the training samples,
and thus can be absorbed into the model param-
eters through gradient descent. However, neural
network models are also known as black boxes,
that is to say, by just updating model parameters
according to training samples, we cannot under-
stand the meaning of the knowledge taught to an
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Passage Question Answer
Teachers may use a lesson plan to facilitate student
learning, providing a course of study which is called
the curriculum.

What can a teacher use to
help students learn?

lesson plan

Manufacturing accounts for a significant but declin-
ing share of employment, although the city’s gar-
ment industry is showing a resurgence in Brooklyn.

In what borough is the
garment business promi-
nent?

Brooklyn

Table 1: Two examples about the effects of semantic level inter-word connections on human reading compre-
hension. In the first example, we can find the answer because we know “facilitate” and “help” are synonyms.
Similarly, in the second example, we can find the answer because we know “borough” is a hypernym of “Brook-
lyn”, or “Brooklyn” is a hyponym of “borough”. Both of the two examples are selected from SQuAD.

MRC model, neither can we control the amount
of the knowledge taught to it, therefore we name
such knowledge as implicit knowledge.
So far, human beings have accumulated a tremen-
dous amount of general knowledge. These general
knowledge, despite being an essential component
of human intelligence, has never been effectively
applied to MRC, which we believe is the biggest
gap between MRC and human reading compre-
hension. We intend to bridge this gap with the help
of knowledge bases, which store general knowl-
edge in structured forms. In recent years, many
knowledge bases have been established, such as
WordNet (Fellbaum, 1998) and Freebase (Bol-
lacker et al., 2008), and they have made it conve-
nient for machines to access and process the gen-
eral knowledge of human beings. Therefore, it is
both meaningful and feasible to integrate the gen-
eral knowledge in a knowledge base with the train-
ing of an MRC model. However, rather than lever-
aging knowledge base embeddings (Bordes et al.,
2011, 2013; Yang et al., 2014; Yang and Mitchell,
2017), we would prefer our MRC model to use
general knowledge in an understandable and con-
trollable way, and we name the general knowledge
used in this way as explicit knowledge.
In this paper, by using WordNet as our knowledge
base, we propose an innovative MRC approach,
which consists of two components: a WordNet-
based data enrichment method, which uses Word-
Net to extract semantic level inter-word connec-
tions from each passage-question pair in the MRC
dataset, and an MRC model named as Knowl-
edge Aided Reader (KAR), which uses the ex-
traction results of the data enrichment method as
explicit knowledge to assist the prediction of an-
swer spans. There are two important features in
our MRC approach: on the one hand, the data en-
richment method allows us to control the amount

of the extraction results; on the other hand, this
amount in turn affects the performance of KAR.
According to the experimental results, by applying
different settings in the data enrichment method to
change the amount of the extraction results, there
is a 2% variation in the resulting performance of
KAR, which implies that the explicit knowledge
provided by the data enrichment method plays an
effective role in the training of KAR.

2 Task Description

The MRC task considered in this paper is defined
as the following prediction problem: given a pas-
sage P := [p1, . . . , pn], which is a sequence of n
words, and a relevant question Q := [q1, . . . , qm],
which is a sequence of m words, predict an an-
swer start position as and an answer end position
ae, where 1 ≤ as ≤ ae ≤ n, so that the fragment
[pas , . . . , pae ] in P is the answer to Q.

3 WordNet-based Data Enrichment

To provide our MRC model with explicit knowl-
edge, we would like to enrich the content of the
MRC dataset by extracting semantic level inter-
word connections from each passage-question pair
in it, therefore we propose a WordNet-based data
enrichment method.

3.1 What and how to extract from each
passage-question pair

WordNet is a lexical database for English. Words
in WordNet are organized into synsets, which in
turn are related to each other through semantic
relations, such as “hypernym” and “hyponym”.
In our data enrichment method, we use the se-
mantic relations of WordNet to extract semantic
level inter-word connections from each passage-
question pair in the MRC dataset. Considering the
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requirements of our MRC model, we need to rep-
resent the extraction results as positional informa-
tion. Specifically, for each word w in a passage-
question pair, we need to obtain a set Zw, which
contains the positions of the passage words that w
is semantically connected to. Besides, when w it-
self is a passage word, we also need to ensure that
its position is excluded from Zw.
The key problem to obtain the above extraction re-
sults is to determine if a subject word is semanti-
cally connected to an object word. To solve this
problem, we introduce two concepts: the directly-
involved synsets and indirectly-involved synsets
of a word. Given a word w, its directly-involved
synsets Φw represents the synsets that w belongs
to, and its indirectly-involved synsets Φw repre-
sents the synsets that the synsets in Φw are re-
lated to through semantic relations. Based on the
two concepts, we propose the following hypoth-
esis: given a subject word ws and an object word
wo, ws is semantically connected to wo if and only
if (Φws ∪ Φws) ∩ Φwo 6= ∅. According to the
hypothesis, Algorithm 1 describes the process of
extracting semantic level inter-word connections
from each passage-question pair.

3.2 How to obtain the indirectly-involved
synsets of each word

The above hypothesis and process can work only
if we know how to obtain the directly-involved
synsets and indirectly-involved synsets of each
word. Given a word w, we can easily obtain
its directly-involved synsets Φw from WordNet,
but obtaining its indirectly-involved synsets Φw

is much more complicated, because in WordNet,
the way synsets are related to each other is flexi-
ble and extensible. In some cases, a synset is re-
lated to another synset through a single semantic
relation. For example, the synset “cold.a.01” is
related to the synset “temperature.n.01” through
the semantic relation “attribute”. However, in
more cases, a synset is related to another synset
through a semantic relation chain. For exam-
ple, first the synset “keratin.n.01” is related to
the synset “feather.n.01” through the semantic
relation “substance holonym”, then the synset
“feather.n.01” is related to the synset “bird.n.01”
through the semantic relation “part holonym”, and
finally the synset “bird.n.01” is related to the
synset “parrot.n.01” through the semantic relation
“hyponym”, thus we can say that the synset “ker-

atin.n.01” is related to the synset “parrot.n.01”
through the semantic relation chain “substance
holonym→ part holonym→ hyponym”. We name
each semantic relation in a semantic relation chain
as a hop, so that a semantic relation chain having
k semantic relations is a k-hop semantic relation
chain. Besides, each single semantic relation is a
1-hop semantic relation chain.
Let us use Γ := {γ1, γ2, . . .} to represent the se-
mantic relations of WordNet, and use Ωγi

φ to repre-
sent the synsets that a synset φ is related to through
a single semantic relation γi ∈ Γ. Since Ωγi

φ

is easy to obtain from WordNet, we can further
obtain the synsets that φ is related to through 1-
hop semantic relation chains: Ψ1

φ =
⋃
γi∈Γ Ωγi

φ ,
the synsets that φ is related to through 2-hop se-
mantic relation chains: Ψ2

φ =
⋃
φ̂∈Ψ1

φ

⋃
γi∈Γ Ωγi

φ̂
,

and by induction, the synsets that φ is related to
through k-hop semantic relation chains: Ψk

φ =⋃
φ̂∈Ψk−1

φ

⋃
γi∈Γ Ωγi

φ̂
. In theory, if we do not limit

the hop counts of semantic relation chains, φ can
be related to all other synsets in WordNet, which
is meaningless in many cases. Therefore, we use a
hyper-parameter χ ∈ N to represent the maximum
hop count of semantic relation chains, and only
consider the semantic relation chains that have no
more than χ hops. Based on the above descrip-
tions, given a word w and its directly-involved
synsets Φw, we can obtain its indirectly-involved
synsets: Φw =

⋃
φ∈Φw

⋃χ
k=1 Ψk

φ.

3.3 About controlling the amount of the
extraction results

The hyper-parameter χ is crucial in controlling the
amount of the extraction results. When we set χ
to 0, the indirectly-involved synsets of each word
contains no synset, so that semantic level inter-
word connections only exist between synonyms.
As we increase χ, the indirectly-involved synsets
of each word usually contains more synsets, so
that semantic level inter-word connections are
likely to exist between more words. As a result,
by increasing χ within a certain range, we can ex-
tract more semantic level inter-word connections
from the MRC dataset, and thus provide our MRC
model with more explicit knowledge. However,
due to the limitations of WordNet, only a part of
the extraction results are useful explicit knowl-
edge, while the rest are useless for the prediction
of answer spans. According to our observation,
the proportion of the useless explicit knowledge
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Algorithm 1 Extract semantic level inter-word connections from each passage-question pair
procedure EXTRACT(P,Q) . Given a passage P and a relevant question Q

for pi in P do . For each passage word pi
Zpi ← {j ∈ {1, . . . , n}\{i} : (Φpi ∪ Φpi) ∩ Φpj 6= ∅} . Obtain the extraction results Zpi

end for
for qi in Q do . For each question word qi

Zqi ← {j ∈ {1, . . . , n} : (Φqi ∪ Φqi) ∩ Φpj 6= ∅} . Obtain the extraction results Zqi
end for

end procedure . Return the extraction results on P and Q

increases as χ gets larger. Therefore, there exists
an optimal setting for χ, which can result in the
best performance of our MRC model.

4 Knowledge Aided Reader

As depicted in Figure 1, our MRC model, Knowl-
edge Aided Reader (KAR), consists of five lay-
ers: given a passage-question pair, the lexical
embedding layer encodes the lexical features of
each word to generate the passage lexical embed-
dings and the question lexical embeddings; based
on the lexical embeddings, the contextual embed-
ding layer encodes the contextual clues about each
word to generate the passage contextual embed-
dings and the question contextual embeddings;
based on the contextual embeddings, the memory
generation layer performs passage-to-question at-
tention and question-to-passage attention to gen-
erate the preliminary memories over the passage-
question pair; based on the preliminary memories,
the memory refining layer performs self-matching
attention to generate the refined memories over the
passage-question pair; based on the refined mem-
ories and the question contextual embeddings, the
answer span prediction layer generates the answer
start position distribution and the answer end posi-
tion distribution. KAR is quite different from the
existing MRC models in that it uses the seman-
tic level inter-word connections, which are pre-
extracted from the MRC dataset by the WordNet-
based data enrichment method, as explicit knowl-
edge to assist the prediction of answer spans. On
the one hand, the memory generation layer uses
the explicit knowledge to assist the passage-to-
question attention and the question-to-passage at-
tention. On the other hand, the memory refining
layer uses the explicit knowledge to assist the self-
matching attention. Besides, to better utilize the
explicit knowledge, the lexical embedding layer
encodes dependency and synonymy information

into the lexical embedding of each word.

4.1 Lexical Embedding Layer
For each word, the lexical embedding layer gener-
ates its lexical embedding by merging the follow-
ing four basic embeddings:
1. Word-level Embedding. We define our vo-
cabulary as the intersection between the words in
all training samples and those in the pre-trained
300-dimensional GloVe (Pennington et al., 2014).
Given a wordw, if it is in the vocabulary, we set its
word-level embedding αw to its GloVe word vec-
tor, which is fixed during the training, otherwise
we have αw = αo ∈ R300, where αo is a trainable
parameter serving as the shared word vector of all
out-of-vocabulary (OOV) words.
2. Character-level Embedding. We represent
each character as a separate 150-dimensional vec-
tor, which is a trainable parameter. Given a word
w consisting of a sequence of k characters, whose
vectors are represented as Uβ ∈ R150×k, we use
a bidirectional FOFE (Zhang et al., 2015) to pro-
cess Uβ , concatenate the forward FOFE output
(R150×k) and the backward FOFE output (R150×k)
across rows to obtain Fβ ∈ R300×k, and perform
self attention on Fβ to obtain the character-level
embedding of w:

βw = Fβsoftmax(tanh(WβFβ)>vβ) ∈ R300

whereWβ and vβ are trainable parameters. Apply-
ing character-level embedding is helpful in repre-
senting OOV words.
3. Dependency Embedding. Inspired by Liu
et al. (2017a), we use a dependency parser to ob-
tain the dependent words of each word. Given a
word w having k dependent words, whose word-
level embeddings are represented as Uη ∈ R300×k,
we perform self attention on Uη to obtain the de-
pendency embedding of w:

ηw = Uηsoftmax(tanh(WηUη)
>vη) ∈ R300
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Figure 1: Our MRC model: Knowledge Aided Reader (KAR)

where Wη and vη are trainable parameters. By
applying dependency embedding, we make use
of syntactic level inter-word connections, which
serve as a supplement to the pre-extracted seman-
tic level inter-word connections.
4. Synonymy Embedding. In the scope of the vo-
cabulary, we use WordNet to obtain the synonyms
of each word. Given a wordw having k synonyms,
whose word-level embeddings are represented as
Uµ ∈ R300×k, we perform self attention on Uµ to
obtain the synonymy embedding of w:

µw = Uµsoftmax(tanh(WµUµ)>vµ) ∈ R300

where Wµ and vµ are trainable parameters. By
applying synonymy embedding, we improve the
vector-space similarity between synonyms, and
thus promote the effects of the pre-extracted se-
mantic level inter-word connections.
Based on the above descriptions, given a word
w, we obtain αw, βw, ηw, and µw, and concate-
nate them across rows to obtain πw ∈ R1200.
In this way, for all passage words, we obtain
ΠP = [πp1 , . . . , πpn ] ∈ R1200×n, and for all ques-
tion words, we obtain ΠQ = [πq1 , . . . , πqm ] ∈
R1200×m. We put ΠP through a 1-layer highway

network (Srivastava et al., 2015) to obtain the pas-
sage lexical embeddings: LP = [lp1 , . . . , lpn ] ∈
R1200×n, and put ΠQ through the same high-
way network to obtain the question lexical embed-
dings: LQ = [lq1 , . . . , lqm ] ∈ R1200×m.

4.2 Contextual Embedding Layer

For each word, the contextual embedding layer
fuses its lexical embedding with those of its sur-
rounding words to generate its contextual embed-
ding. Specifically, we use a bidirectional LSTM
(BiLSTM), whose hidden state size is d, to pro-
cess LP and LQ separately. For LP , we con-
catenate the forward LSTM output (Rd×n) and the
backward LSTM output (Rd×n) across rows to ob-
tain the passage contextual embeddings: CP =
[cp1 , . . . , cpn ] ∈ R2d×n. For LQ, we concatenate
the forward LSTM output (Rd×m) and the back-
ward LSTM output (Rd×m) across rows to ob-
tain the question contextual embeddings: CQ =
[cq1 , . . . , cqm ] ∈ R2d×m.

4.3 Memory Generation Layer

For each passage word, the memory generation
layer fuses its contextual embedding with both the
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passage contextual embeddings and the question
contextual embeddings to generate its preliminary
memory over the passage-question pair. Specifi-
cally, the task of this layer is decomposed into the
following four steps:
1. Generating enhanced contextual embed-
dings. We enhance the contextual embedding of
each word according to the pre-extracted seman-
tic level inter-word connections. Given a word w,
whose contextual embedding is cw ∈ R2d, sup-
pose we have obtained Zw through Algorithm 1,
then we gather the columns inCP whose positions
are contained in Zw, represent these columns as
Uτ ∈ R2d×|Zw|, and perform attention on Uτ to
obtain the cw-attended contextual embedding:

τw = Uτ softmax(tanh(Wτ (cwoUτ ))>vτ ) ∈ R2d

where Wτ and vτ are trainable parameters, and
x o X represents concatenating a vector x with
each column in a matrix X across rows. Based on
the above descriptions, given a word w, we con-
catenate cw and τw across rows to obtain λw ∈
R4d. In this way, for all passage words, we ob-
tain ΛP = [λp1 , . . . , λpn ] ∈ R4d×n, and for all
question words, we obtain ΛQ = [λq1 , . . . , λqm ] ∈
R4d×m. We put ΛP through a 1-layer highway
network to obtain the enhanced passage contex-
tual embeddings: BP = [bp1 , . . . , bpn ] ∈ R4d×n,
and put ΛQ through the same highway network to
obtain the enhanced question contextual embed-
dings: BQ = [bq1 , . . . , bqm ] ∈ R4d×m.
2. Constructing knowledge aided alignment
matrix. Based on the enhanced contextual em-
beddings, we construct an alignment matrix A ∈
Rn×m, where each element A[i, j] (i.e. the i-th
row and j-th column in A) represents the simi-
larity between the enhanced contextual embedding
bpi ∈ R4d of the passage word pi and the enhanced
contextual embedding bqj ∈ R4d of the question
word qj . We use the similarity function proposed
by Seo et al. (2016) to obtain each element in A:

A[i, j] = vA
>(bpi 1 bqj 1 (bpi � bqj )) ∈ R

where vA ∈ R12d is a trainable parameter, 1 repre-
sents concatenation across rows, and � represents
element-wise multiplication. Since the enhanced
contextual embeddings are generated according to
the pre-extracted semantic level inter-word con-
nections, the alignment matrix A is named as
knowledge aided alignment matrix.
3. Performing passage-to-question attention

and question-to-passage attention. On the
one hand, following Seo et al. (2016), we per-
form passage-to-question attention to obtain the
passage-attended question representations:

RQ = CQsoftmaxr(A)> ∈ R2d×n

where softmaxr(X) represents normalizing each
row in a matrix X by softmax. On the other
hand, following Xiong et al. (2016), we per-
form question-to-passage attention to obtain the
question-attended passage representations:

RP = CP softmaxc(A)softmaxr(A)> ∈ R2d×n

where softmaxc(X) represents normalizing each
column in a matrix X by softmax.
4. Generating preliminary memories. We con-
catenate CP , RQ, CP �RQ, and CP �RP across
rows, put this concatenation (R8d×n) through a
1-layer highway network, use a BiLSTM, whose
hidden state size is d, to process the output of
the highway network (R8d×n), and concatenate the
forward LSTM output (Rd×n) and the backward
LSTM output (Rd×n) across rows to obtain the
preliminary memories over the passage-question
pair: G = [gp1 , . . . , gpn ] ∈ R2d×n.

4.4 Memory Refining Layer
For each passage word, the memory refining layer
fuses its preliminary memory with those of some
other passage words to generate its refined mem-
ory over the passage-question pair. Inspired by
Wang et al. (2017), we perform self-matching at-
tention on the preliminary memories. However,
we are different from Wang et al. (2017) in that
for each passage word, we only match its prelimi-
nary memory with those of a corresponding subset
of other passage words, which are selected accord-
ing to the pre-extracted semantic level inter-word
connections, therefore our self-matching attention
is named as knowledge aided self-matching at-
tention. Specifically, given a passage word pi,
whose preliminary memory is gpi ∈ R2d, sup-
pose we have obtained Zw through Algorithm 1,
then we gather the columns in G whose positions
are contained in Zw, represent these columns as
Uζ ∈ R2d×|Zw|, and perform attention on Uζ to
obtain the gpi-attended preliminary memory:

ζpi = Uζsoftmax(tanh(Wζ(gpioUζ))
>vζ) ∈ R2d

where Wζ and vζ are trainable parameters. Based
on the above descriptions, given a passage word
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pi, we concatenate gpi and ζpi across rows to ob-
tain δpi ∈ R4d. In this way, for all passage words,
we obtain ∆ = [δp1 , . . . , δpn ] ∈ R4d×n. We
put ∆ through a 1-layer highway network, use a
BiLSTM, whose hidden state size is d, to process
the output of the highway network (R4d×n), and
concatenate the forward LSTM output (Rd×n) and
the backward LSTM output (Rd×n) across rows
to obtain the refined memories over the passage-
question pair: H = [hp1 , . . . , hpn ] ∈ R2d×n.

4.5 Answer Span Prediction Layer
In the answer span prediction layer, we first per-
form self attention on CQ to obtain a summary of
the question:

ε = CQsoftmax(tanh(WεCQ)>vε) ∈ R2d

where Wε and vε are trainable parameters. Then
with ε as the query, we perform attention on H to
obtain the answer start position distribution:

ds = softmax(tanh(Ws(εoH))>vs) ∈ Rn

where Ws and vs are trainable parameters. Next
we concatenate ε and Hds ∈ R2d across rows to
obtain ξ ∈ R4d. Finally with ξ as the query, we
perform attention on H again to obtain the answer
end position distribution:

de = softmax(tanh(We(ξ oH))>ve) ∈ Rn

where We and ve are trainable parameters.
Based on the above descriptions, for the training,
we minimize the sum of the negative log probabil-
ities of the ground truth answer start position and
the ground truth answer end position by the pre-
dicted distributions, and for the inference, the an-
swer start position as and the answer end position
ae are chosen such that the product of ds[as] and
de[ae] is maximized and as ≤ ae.

5 Related Works

Data enrichment has been widely used in the ex-
isting MRC models. For example, Yu et al. (2018)
use translation models to paraphrase the original
passages so as to generate extra training samples;
Yang et al. (2017) generate extra training samples
by training a generative model that generates ques-
tions based on unlabeled text; Chen et al. (2017),
Liu et al. (2017b), and Pan et al. (2017) append
linguistic tags, such as POS tag and NER tag, to
each word in the original passages; and Liu et al.

(2017a) generate a syntactic tree for each sen-
tence in the original passage-question pairs. How-
ever, the above works just enrich the original MRC
dataset with the outputs of certain external models
or systems, therefore their MRC models can only
make use of machine generated data, but cannot
utilize human knowledge explicitly.
Attention mechanism has also been widely used
in the existing MRC models. For example, Xiong
et al. (2016) use a coattention encoder and a dy-
namic pointer decoder to address the local maxi-
mum problem; Seo et al. (2016) use a bidirectional
attention flow mechanism to obtain the question-
aware passage representation; and Wang et al.
(2017) use a self-matching attention mechanism
to refine the question-aware passage representa-
tion. The passage-to-question attention, question-
to-passage attention, and self-matching attention
in KAR draw on the ideas of the above works,
but are different from them in that we integrate ex-
plicit knowledge with these attentions.

6 Experiments

6.1 MRC Dataset

The MRC dataset used in this paper is SQuAD,
which contains over 100, 000 passage-question
pairs and their answers. All questions and answers
in SQuAD are human generated, and the answer to
each question is a fragment in the corresponding
passage. SQuAD has been randomly partitioned
into three parts: the training set (80%), the devel-
opment set (10%), and the test set (10%). Both the
training set and the development set are publicly
available, while the test set is confidential. Be-
sides, SQuAD adopts both Exact Match (EM) and
F1 Score as the evaluation metrics.

6.2 Implementation Details

To implement KAR, we first preprocess SQuAD.
Specifically, we put each passage and question in
SQuAD through a Stanford CoreNLP (Manning
et al., 2014) pipeline, which performs tokeniza-
tion, sentence splitting, POS tagging, lemmatiza-
tion, and dependency parsing in order. With the
outputs of the pipeline, we use the WordNet inter-
face provided by NLTK (Bird and Loper, 2004)
to perform the WordNet-based data enrichment
method, and thus obtain an enriched MRC dataset.
Based on the data preprocessing, we implement
KAR using TensorFlow (Abadi et al., 2016). For
the character-level embedding, we set the forget-
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χ
Amount of the Extrac-
tion Results
(connections per word)

Performance
of KAR
(EM / F1)

0 0.39 70.8 / 79.8
1 0.63 71.1 / 80.0
2 1.24 71.6 / 80.4
3 2.21 72.4 / 81.1
4 3.68 71.9 / 80.7
5 5.58 71.8 / 80.5

Table 2: The amount of the extraction results and the
performance of KAR under each setting for χ.

ting factor of FOFE to 0.7. For each BiLSTM, we
set its hidden state size d to 300. For the train-
ing, we use ADAM (Kingma and Ba, 2014) as our
optimizer, set the learning rate to 0.0005, and set
the mini-batch size to 40. To avoid overfitting,
we apply dropout (Srivastava et al., 2014) to the
word vectors, the character vectors, the input to
each BiLSTM, and the linear transformation be-
fore each softmax in the answer span prediction
layer, with a dropout rate of 0.2, and apply early
stopping with a patience of 5. To avoid the explod-
ing gradient problem, we apply gradient clipping
(Pascanu et al., 2013) with a cutoff threshold of 2.
Besides, we also apply exponential moving aver-
age with a decay rate of 0.999.

6.3 Experimental Process and Results

In this paper, we only consider the single model
performance of MRC models on the development
set of SQuAD. On this premise, we perform the
following two experiments:
1. Verifying the effects of explicit knowledge.
We obtain six enriched MRC datasets by setting χ
to 0, 1, 2, 3, 4, and 5 separately, and train a dif-
ferent KAR on each enriched MRC dataset. As
shown in Table 2, the amount of the extraction
results increases monotonically as we increase χ
from 0 to 5, but during this process, the perfor-
mance of KAR first rises by 2% until χ reaches 3,
and then begins to drop gradually. Thus it can be
seen that the explicit knowledge provided by the
WordNet-based data enrichment method plays an
effective role in the training of KAR.
2. Verifying the effects of dependency embed-
ding and synonymy embedding. By applying the
optimal setting for χ (i.e. 3), we perform abla-
tion analysis on the dependency embedding and
the synonymy embedding. As shown in Table 3,

Ablation Part Performance
(EM / F1)

Dependency Embedding 71.6 / 80.2
Synonymy Embedding 70.9 / 79.5
No Ablation 72.4 / 81.1

Table 3: The ablation analysis on the dependency em-
bedding and the synonymy embedding.

MRC Models Performance
(EM / F1)

GDAN (Yang et al., 2017) – / 67.2
DCN (Xiong et al., 2016) 65.4 / 75.6
BiDAF (Seo et al., 2016) 67.7 / 77.3
SEDT (Liu et al., 2017a) 68.1 / 77.5
DrQA (Chen et al., 2017) 69.5 / 78.8
MEMEN (Pan et al., 2017) 70.9 / 80.3
R-NET (Wang et al., 2017) 72.3 / 80.6
KAR (ours) 72.4 / 81.1
QANet (Yu et al., 2018) 75.1 / 83.8
SAN (Liu et al., 2017b) 76.2 / 84.0

Table 4: The comparison of different MRC models
(published single model performance on the develop-
ment set of SQuAD).

both of the two basic embeddings contribute to the
performance of KAR, but the synonymy embed-
ding seems to be more important.
Besides, we also compare the best performance of
KAR with the published performance of the MRC
models mentioned in the related works. As shown
in Table 4, although KAR has achieved fairly good
performance, there is still some way to go to catch
up with the cutting-edge MRC models. This is be-
cause the scope of the general knowledge in Word-
Net is very limited, so that KAR cannot obtain
enough useful explicit knowledge.

7 Conclusion

In this paper, we explore how to apply the general
knowledge in WordNet as explicit knowledge to
the training of an MRC model, and thereby pro-
pose the WordNet-based data enrichment method
and KAR. Based on the explicit knowledge pro-
vided by the data enrichment method, KAR has
achieved fairly good performance on SQuAD, and
more importantly, the performance of KAR varies
with the amount of the explicit knowledge. In the
future work, we will use larger knowledge bases,
such as Freebase, to improve the quality of the ex-
plicit knowledge provided to KAR.

EMNLP 2018 Submission 610. Confidential Review Copy. DO NOT DISTRIBUTE.

1



9

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

EMNLP 2018 Submission 610. Confidential Review Copy. DO NOT DISTRIBUTE.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–
283.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Steven Bird and Edward Loper. 2004. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, page 31. Association for Computational Lin-
guistics.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data, pages 1247–1250. AcM.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Antoine Bordes, Jason Weston, Ronan Collobert,
Yoshua Bengio, et al. 2011. Learning structured em-
beddings of knowledge bases. In AAAI, volume 6,
page 6.

Danqi Chen, Adam Fisch, Jason Weston, and An-
toine Bordes. 2017. Reading wikipedia to an-
swer open-domain questions. arXiv preprint
arXiv:1704.00051.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
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Abstract

To bridge the gap between Machine Reading
Comprehension (MRC) models and human
beings, which is mainly reflected in the hunger
for data and the robustness to noise, in this
paper, we explore how to integrate the neu-
ral networks of MRC models with the general
knowledge of human beings. On the one hand,
we propose a data enrichment method, which
uses WordNet to extract inter-word semantic
connections as general knowledge from each
given passage-question pair. On the other
hand, we propose an end-to-end MRC model
named as Knowledge Aided Reader (KAR),
which explicitly uses the above extracted gen-
eral knowledge to assist its attention mecha-
nisms. Based on the data enrichment method,
KAR is comparable in performance with the
state-of-the-art MRC models, and significantly
more robust to noise than them. When only
a subset (20%–80%) of the training examples
are available, KAR outperforms the state-of-
the-art MRC models by a large margin, and is
still reasonably robust to noise.

1 Introduction

Machine Reading Comprehension (MRC), as the
name suggests, requires a machine to read a pas-
sage and answer its relevant questions. Since the
answer to each question is supposed to stem from
the corresponding passage, a common MRC so-
lution is to develop a neural-network-based MRC
model that predicts an answer span (i.e. the an-
swer start position and the answer end position)
from the passage of each given passage-question
pair. To facilitate the explorations and innovations
in this area, many MRC datasets have been estab-
lished, such as SQuAD (Rajpurkar et al., 2016),
MS MARCO (Nguyen et al., 2016), and Trivi-
aQA (Joshi et al., 2017). Consequently, many pi-
oneering MRC models have been proposed, such
as BiDAF (Seo et al., 2016), R-NET (Wang et al.,
2017), and QANet (Yu et al., 2018). According

to the leader board of SQuAD, the state-of-the-art
MRC models have achieved the same performance
as human beings. However, does this imply that
they have possessed the same reading comprehen-
sion ability as human beings?
OF COURSE NOT. There is a huge gap between
MRC models and human beings, which is mainly
reflected in the hunger for data and the robust-
ness to noise. On the one hand, developing MRC
models requires a large amount of training exam-
ples (i.e. the passage-question pairs labeled with
answer spans), while human beings can achieve
good performance on evaluation examples (i.e. the
passage-question pairs to address) without training
examples. On the other hand, Jia and Liang (2017)
revealed that intentionally injected noise (e.g. mis-
leading sentences) in evaluation examples causes
the performance of MRC models to drop signif-
icantly, while human beings are far less likely to
suffer from this. The reason for these phenomena,
we believe, is that MRC models can only utilize
the knowledge contained in each given passage-
question pair, but in addition to this, human beings
can also utilize general knowledge. A typical cate-
gory of general knowledge is inter-word semantic
connections. As shown in Table 1, such general
knowledge is essential to the reading comprehen-
sion ability of human beings.
A promising strategy to bridge the gap mentioned
above is to integrate the neural networks of MRC
models with the general knowledge of human be-
ings. To this end, it is necessary to solve two prob-
lems: extracting general knowledge from passage-
question pairs and utilizing the extracted gen-
eral knowledge in the prediction of answer spans.
The first problem can be solved with knowledge
bases, which store general knowledge in struc-
tured forms. A broad variety of knowledge bases
are available, such as WordNet (Fellbaum, 1998)
storing semantic knowledge, ConceptNet (Speer
et al., 2017) storing commonsense knowledge, and



2264

Passage Question Answer
Teachers may use a lesson plan to facilitate student
learning, providing a course of study which is called
the curriculum.

What can a teacher use to help
students learn?

lesson plan

Manufacturing accounts for a significant but declin-
ing share of employment, although the city’s gar-
ment industry is showing a resurgence in Brooklyn.

In what borough is the gar-
ment business prominent?

Brooklyn

Table 1: Two examples about the importance of inter-word semantic connections to the reading comprehension
ability of human beings: in the first one, we can find the answer because we know “facilitate” is a synonym of
“help”; in the second one, we can find the answer because we know “Brooklyn” is a hyponym of “borough”.

Freebase (Bollacker et al., 2008) storing factoid
knowledge. In this paper, we limit the scope of
general knowledge to inter-word semantic con-
nections, and thus use WordNet as our knowl-
edge base. The existing way to solve the second
problem is to encode general knowledge in vector
space so that the encoding results can be used to
enhance the lexical or contextual representations
of words (Weissenborn et al., 2017; Mihaylov and
Frank, 2018). However, this is an implicit way
to utilize general knowledge, since in this way we
can neither understand nor control the functioning
of general knowledge. In this paper, we discard
the existing implicit way and instead explore an
explicit (i.e. understandable and controllable) way
to utilize general knowledge.
The contribution of this paper is two-fold. On the
one hand, we propose a data enrichment method,
which uses WordNet to extract inter-word seman-
tic connections as general knowledge from each
given passage-question pair. On the other hand,
we propose an end-to-end MRC model named as
Knowledge Aided Reader (KAR), which explic-
itly uses the above extracted general knowledge to
assist its attention mechanisms. Based on the data
enrichment method, KAR is comparable in per-
formance with the state-of-the-art MRC models,
and significantly more robust to noise than them.
When only a subset (20%–80%) of the training ex-
amples are available, KAR outperforms the state-
of-the-art MRC models by a large margin, and is
still reasonably robust to noise.

2 Data Enrichment Method

In this section, we elaborate a WordNet-based data
enrichment method, which is aimed at extract-
ing inter-word semantic connections from each
passage-question pair in our MRC dataset. The
extraction is performed in a controllable manner,

and the extracted results are provided as general
knowledge to our MRC model.

2.1 Semantic Relation Chain
WordNet is a lexical database of English, where
words are organized into synsets according to their
senses. A synset is a set of words expressing the
same sense so that a word having multiple senses
belongs to multiple synsets, with each synset cor-
responding to a sense. Synsets are further related
to each other through semantic relations. Accord-
ing to the WordNet interface provided by NLTK
(Bird and Loper, 2004), there are totally sixteen
types of semantic relations (e.g. hypernyms, hy-
ponyms, holonyms, meronyms, attributes, etc.).
Based on synset and semantic relation, we define a
new concept: semantic relation chain. A semantic
relation chain is a concatenated sequence of se-
mantic relations, which links a synset to another
synset. For example, the synset “keratin.n.01”
is related to the synset “feather.n.01” through
the semantic relation “substance holonym”, the
synset “feather.n.01” is related to the synset
“bird.n.01” through the semantic relation “part
holonym”, and the synset “bird.n.01” is related
to the synset “parrot.n.01” through the semantic
relation “hyponym”, thus “substance holonym →
part holonym→ hyponym” is a semantic relation
chain, which links the synset “keratin.n.01” to the
synset “parrot.n.01”. We name each semantic re-
lation in a semantic relation chain as a hop, there-
fore the above semantic relation chain is a 3-hop
chain. By the way, each single semantic relation is
equivalent to a 1-hop chain.

2.2 Inter-word Semantic Connection
The key problem in the data enrichment method is
determining whether a word is semantically con-
nected to another word. If so, we say that there
exists an inter-word semantic connection between
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them. To solve this problem, we define another
new concept: the extended synsets of a word.
Given a word w, whose synsets are represented as
a set Sw, we use another set S∗w to represent its
extended synsets, which includes all the synsets
that are in Sw or that can be linked to from Sw
through semantic relation chains. Theoretically, if
there is no limitation on semantic relation chains,
S∗w will include all the synsets in WordNet, which
is meaningless in most situations. Therefore, we
use a hyper-parameter κ ∈ N to represent the per-
mitted maximum hop count of semantic relation
chains. That is to say, only the chains having no
more than κ hops can be used to construct S∗w so
that S∗w becomes a function of κ: S∗w(κ) (if κ = 0,
we will have S∗w(0) = Sw). Based on the above
statements, we formulate a heuristic rule for deter-
mining inter-word semantic connections: a word
w1 is semantically connected to another word w2

if and only if S∗w1
(κ) ∩ Sw2 6= ∅.

2.3 General Knowledge Extraction

Given a passage-question pair, the inter-word se-
mantic connections that connect any word to any
passage word are regarded as the general knowl-
edge we need to extract. Considering the require-
ments of our MRC model, we only extract the
positional information of such inter-word seman-
tic connections. Specifically, for each word w,
we extract a set Ew, which includes the positions
of the passage words that w is semantically con-
nected to (if w itself is a passage word, we will
exclude its own position from Ew). We can con-
trol the amount of the extracted results by setting
the hyper-parameter κ: if we set κ to 0, inter-word
semantic connections will only exist between syn-
onyms; if we increase κ, inter-word semantic con-
nections will exist between more words. That is to
say, by increasing κ within a certain range, we can
usually extract more inter-word semantic connec-
tions from a passage-question pair, and thus can
provide the MRC model with more general knowl-
edge. However, due to the complexity and diver-
sity of natural languages, only a part of the ex-
tracted results can serve as useful general knowl-
edge, while the rest of them are useless for the
prediction of answer spans, and the proportion of
the useless part always rises when κ is set larger.
Therefore we set κ through cross validation (i.e.
according to the performance of the MRC model
on the development examples).

3 Knowledge Aided Reader

In this section, we elaborate our MRC model:
Knowledge Aided Reader (KAR). The key com-
ponents of most existing MRC models are their
attention mechanisms (Bahdanau et al., 2014),
which are aimed at fusing the associated represen-
tations of each given passage-question pair. These
attention mechanisms generally fall into two cat-
egories: the first one, which we name as mutual
attention, is aimed at fusing the question repre-
sentations into the passage representations so as
to obtain the question-aware passage representa-
tions; the second one, which we name as self at-
tention, is aimed at fusing the question-aware pas-
sage representations into themselves so as to ob-
tain the final passage representations. Although
KAR is equipped with both categories, its most re-
markable feature is that it explicitly uses the gen-
eral knowledge extracted by the data enrichment
method to assist its attention mechanisms. There-
fore we separately name the attention mechanisms
of KAR as knowledge aided mutual attention and
knowledge aided self attention.

3.1 Task Definition

Given a passage P = {p1, . . . , pn} and a relevant
question Q = {q1, . . . , qm}, the task is to predict
an answer span [as, ae], where 1 ≤ as ≤ ae ≤ n,
so that the resulting subsequence {pas , . . . , pae}
from P is an answer to Q.

3.2 Overall Architecture

As shown in Figure 1, KAR is an end-to-end MRC
model consisting of five layers:
Lexicon Embedding Layer. This layer maps the
words to the lexicon embeddings. The lexicon em-
bedding of each word is composed of its word em-
bedding and character embedding. For each word,
we use the pre-trained GloVe (Pennington et al.,
2014) word vector as its word embedding, and ob-
tain its character embedding with a Convolutional
Neural Network (CNN) (Kim, 2014). For both
the passage and the question, we pass the con-
catenation of the word embeddings and the charac-
ter embeddings through a shared dense layer with
ReLU activation, whose output dimensionality is
d. Therefore we obtain the passage lexicon em-
beddings LP ∈ Rd×n and the question lexicon
embeddings LQ ∈ Rd×m.
Context Embedding Layer. This layer maps the
lexicon embeddings to the context embeddings.
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Figure 1: An end-to-end MRC model: Knowledge Aided Reader (KAR)

For both the passage and the question, we process
the lexicon embeddings (i.e. LP for the passage
and LQ for the question) with a shared bidirec-
tional LSTM (BiLSTM) (Hochreiter and Schmid-
huber, 1997), whose hidden state dimensionality
is 1

2d. By concatenating the forward LSTM out-
puts and the backward LSTM outputs, we obtain
the passage context embeddings CP ∈ Rd×n and
the question context embeddings CQ ∈ Rd×m.
Coarse Memory Layer. This layer maps the con-
text embeddings to the coarse memories. First we
use knowledge aided mutual attention (introduced
later) to fuse CQ into CP , the outputs of which are
represented as G̃ ∈ Rd×n. Then we process G̃
with a BiLSTM, whose hidden state dimension-
ality is 1

2d. By concatenating the forward LSTM
outputs and the backward LSTM outputs, we ob-
tain the coarse memories G ∈ Rd×n, which are
the question-aware passage representations.
Refined Memory Layer. This layer maps the
coarse memories to the refined memories. First
we use knowledge aided self attention (introduced
later) to fuse G into themselves, the outputs of
which are represented as H̃ ∈ Rd×n. Then we
process H̃ with a BiLSTM, whose hidden state di-
mensionality is 1

2d. By concatenating the forward
LSTM outputs and the backward LSTM outputs,
we obtain the refined memoriesH ∈ Rd×n, which
are the final passage representations.
Answer Span Prediction Layer. This layer pre-

dicts the answer start position and the answer end
position based on the above layers. First we obtain
the answer start position distribution os:

ti = v>s tanh(Wshpi + UsrQ) ∈ R

os = softmax({t1, . . . , tn}) ∈ Rn

where vs, Ws, and Us are trainable parameters;
hpi represents the refined memory of each passage
word pi (i.e. the i-th column in H); rQ represents
the question summary obtained by performing an
attention pooling over CQ. Then we obtain the an-
swer end position distribution oe:

ti = v>e tanh(Wehpi + Ue[rQ;Hos]) ∈ R

oe = softmax({t1, . . . , tn}) ∈ Rn

where ve, We, and Ue are trainable parameters;
[; ] represents vector concatenation. Finally we
construct an answer span prediction matrix O =
uptri(oso

>
e ) ∈ Rn×n, where uptri(X) represents

the upper triangular matrix of a matrix X . There-
fore, for the training, we minimize −log(Oas,ae)
on each training example whose labeled answer
span is [as, ae]; for the inference, we separately
take the row index and column index of the maxi-
mum element in O as as and ae.

3.3 Knowledge Aided Mutual Attention
As a part of the coarse memory layer, knowledge
aided mutual attention is aimed at fusing the ques-
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tion context embeddings CQ into the passage con-
text embeddings CP , where the key problem is to
calculate the similarity between each passage con-
text embedding cpi (i.e. the i-th column in CP )
and each question context embedding cqj (i.e. the
j-th column in CQ). To solve this problem, Seo
et al. (2016) proposed a similarity function:

f(cpi , cqj ) = v>f [cpi ; cqj ; cpi � cqj ] ∈ R

where vf is a trainable parameter; � represents
element-wise multiplication. This similarity func-
tion has also been adopted by several other works
(Clark and Gardner, 2017; Yu et al., 2018). How-
ever, since context embeddings contain high-level
information, we believe that introducing the pre-
extracted general knowledge into the calculation
of such similarities will make the results more rea-
sonable. Therefore we modify the above similarity
function to the following form:

f∗(cpi , cqj ) = v>f [c
∗
pi ; c

∗
qj ; c

∗
pi � c

∗
qj ] ∈ R

where c∗x represents the enhanced context embed-
ding of a word x. We use the pre-extracted gen-
eral knowledge to construct the enhanced context
embeddings. Specifically, for each word w, whose
context embedding is cw, to construct its enhanced
context embedding c∗w, first recall that we have
extracted a set Ew, which includes the positions
of the passage words that w is semantically con-
nected to, thus by gathering the columns in CP

whose indexes are given by Ew, we obtain the
matching context embeddings Z ∈ Rd×|Ew|. Then
by constructing a cw-attended summary of Z, we
obtain the matching vector c+w (if Ew = ∅, which
makes Z = {}, we will set c+w = 0):

ti = v>c tanh(Wczi + Uccw) ∈ R

c+w = Z softmax({t1, . . . , t|Ew|}) ∈ Rd

where vc, Wc, and Uc are trainable parameters; zi
represents the i-th column in Z. Finally we pass
the concatenation of cw and c+w through a dense
layer with ReLU activation, whose output dimen-
sionality is d. Therefore we obtain the enhanced
context embedding c∗w ∈ Rd.
Based on the modified similarity function and
the enhanced context embeddings, to perform
knowledge aided mutual attention, first we con-
struct a knowledge aided similarity matrix A ∈
Rn×m, where each element Ai,j = f∗(cpi , cqj ).
Then following Yu et al. (2018), we construct the

passage-attended question summaries RQ and the
question-attended passage summaries RP :

RQ = CQ softmax>r (A) ∈ Rd×n

RP = CP softmaxc(A) softmax>r (A) ∈ Rd×n

where softmaxr represents softmax along the row
dimension and softmaxc along the column dimen-
sion. Finally following Clark and Gardner (2017),
we pass the concatenation of CP , RQ, CP � RQ,
andRP�RQ through a dense layer with ReLU ac-
tivation, whose output dimensionality is d. There-
fore we obtain the outputs G̃ ∈ Rd×n.

3.4 Knowledge Aided Self Attention

As a part of the refined memory layer, knowledge
aided self attention is aimed at fusing the coarse
memories G into themselves. If we simply fol-
low the self attentions of other works (Wang et al.,
2017; Huang et al., 2017; Liu et al., 2017b; Clark
and Gardner, 2017), then for each passage word
pi, we should fuse its coarse memory gpi (i.e. the
i-th column in G) with the coarse memories of
all the other passage words. However, we believe
that this is both unnecessary and distracting, since
each passage word has nothing to do with many
of the other passage words. Thus we use the pre-
extracted general knowledge to guarantee that the
fusion of coarse memories for each passage word
will only involve a precise subset of the other pas-
sage words. Specifically, for each passage word
pi, whose coarse memory is gpi , to perform the fu-
sion of coarse memories, first recall that we have
extracted a set Epi , which includes the positions
of the other passage words that pi is semantically
connected to, thus by gathering the columns in G
whose indexes are given by Epi , we obtain the
matching coarse memories Z ∈ Rd×|Epi |. Then
by constructing a gpi-attended summary of Z, we
obtain the matching vector g+pi (if Epi = ∅, which
makes Z = {}, we will set g+pi = 0):

ti = v>g tanh(Wgzi + Uggpi) ∈ R

g+pi = Z softmax({t1, . . . , t|Epi |}) ∈ Rd

where vg, Wg, and Ug are trainable parameters.
Finally we pass the concatenation of gpi and
g+pi through a dense layer with ReLU activation,
whose output dimensionality is d. Therefore we
obtain the fusion result h̃pi ∈ Rd, and further the
outputs H̃ = {h̃p1 , . . . , h̃pn} ∈ Rd×n.
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4 Related Works

Attention Mechanisms. Besides those mentioned
above, other interesting attention mechanisms in-
clude performing multi-round alignment to avoid
the problems of attention redundancy and atten-
tion deficiency (Hu et al., 2017), and using mutual
attention as a skip-connector to densely connect
pairwise layers (Tay et al., 2018).
Data Augmentation. It is proved that properly
augmenting training examples can improve the
performance of MRC models. For example, Yang
et al. (2017) trained a generative model to generate
questions based on unlabeled text, which substan-
tially boosted their performance; Yu et al. (2018)
trained a back-and-forth translation model to para-
phrase training examples, which brought them a
significant performance gain.
Multi-step Reasoning. Inspired by the fact that
human beings are capable of understanding com-
plex documents by reading them over and over
again, multi-step reasoning was proposed to bet-
ter deal with difficult MRC tasks. For example,
Shen et al. (2017) used reinforcement learning to
dynamically determine the number of reasoning
steps; Liu et al. (2017b) fixed the number of rea-
soning steps, but used stochastic dropout in the
output layer to avoid step bias.
Linguistic Embeddings. It is both easy and effec-
tive to incorporate linguistic embeddings into the
input layer of MRC models. For example, Chen
et al. (2017) and Liu et al. (2017b) used POS em-
beddings and NER embeddings to construct their
input embeddings; Liu et al. (2017a) used struc-
tural embeddings based on parsing trees to con-
structed their input embeddings.
Transfer Learning. Several recent breakthroughs
in MRC benefit from feature-based transfer learn-
ing (McCann et al., 2017; Peters et al., 2018) and
fine-tuning-based transfer learning (Radford et al.,
2018; Devlin et al., 2018), which are based on
certain word-level or sentence-level models pre-
trained on large external corpora in certain super-
vised or unsupervised manners.

5 Experiments

5.1 Experimental Settings

MRC Dataset. The MRC dataset used in this pa-
per is SQuAD 1.1, which contains over 100, 000
passage-question pairs and has been randomly par-
titioned into three parts: a training set (80%),

a development set (10%), and a test set (10%).
Besides, we also use two of its adversarial sets,
namely AddSent and AddOneSent (Jia and Liang,
2017), to evaluate the robustness to noise of MRC
models. The passages in the adversarial sets con-
tain misleading sentences, which are aimed at dis-
tracting MRC models. Specifically, each passage
in AddSent contains several sentences that are
similar to the question but not contradictory to the
answer, while each passage in AddOneSent con-
tains a human-approved random sentence that may
be unrelated to the passage.
Implementation Details. We tokenize the MRC
dataset with spaCy 2.0.13 (Honnibal and Mon-
tani, 2017), manipulate WordNet 3.0 with NLTK
3.3, and implement KAR with TensorFlow 1.11.0
(Abadi et al., 2016). For the data enrichment
method, we set the hyper-parameter κ to 3. For the
dense layers and the BiLSTMs, we set the dimen-
sionality unit d to 600. For model optimization,
we apply the Adam (Kingma and Ba, 2014) opti-
mizer with a learning rate of 0.0005 and a mini-
batch size of 32. For model evaluation, we use
Exact Match (EM) and F1 score as evaluation met-
rics. To avoid overfitting, we apply dropout (Sri-
vastava et al., 2014) to the dense layers and the
BiLSTMs with a dropout rate of 0.3. To boost the
performance, we apply exponential moving aver-
age with a decay rate of 0.999.

5.2 Model Comparison in both Performance
and the Robustness to Noise

We compare KAR with other MRC models in both
performance and the robustness to noise. Specif-
ically, we not only evaluate the performance of
KAR on the development set and the test set, but
also do this on the adversarial sets. As for the com-
parative objects, we only consider the single MRC
models that rank in the top 20 on the SQuAD 1.1
leader board and have reported their performance
on the adversarial sets. There are totally five such
comparative objects, which can be considered as
representatives of the state-of-the-art MRC mod-
els. As shown in Table 2, on the development set
and the test set, the performance of KAR is on par
with that of the state-of-the-art MRC models; on
the adversarial sets, KAR outperforms the state-
of-the-art MRC models by a large margin. That
is to say, KAR is comparable in performance with
the state-of-the-art MRC models, and significantly
more robust to noise than them.
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Single MRC model Dev set
(EM / F1)

Test set
(EM / F1)

AddSent
(F1)

AddOneSent
(F1)

FusionNet (Huang et al., 2017) 75.3 / 83.6 76.0 / 83.9 51.4 60.7
RaSoR+TR+LM (Salant and Be-
rant, 2017)

77.0 / 84.0 77.6 / 84.2 47.0 57.0

SAN (Liu et al., 2017b) 76.2 / 84.1 76.8 / 84.4 46.6 56.5
R.M-Reader (Hu et al., 2017) 78.9 / 86.3 79.5 / 86.6 58.5 67.0
QANet (with data augmentation)
(Yu et al., 2018)

75.1 / 83.8 82.5 / 89.3 45.2 55.7

KAR (ours) 76.7 / 84.9 76.1 / 83.5 60.1 72.3

Table 2: Model comparison based on SQuAD 1.1 and two of its adversarial sets: AddSent and AddOneSent. All
the numbers are up to date as of October 18, 2018. Note that SQuAD 2.0 (Rajpurkar et al., 2018) is not involved in
this paper, because it requires MRC models to deal with the problem of answer triggering, but this paper is aimed
at improving the hunger for data and robustness to noise of MRC models.

To verify the effectiveness of general knowledge,
we first study the relationship between the amount
of general knowledge and the performance of
KAR. As shown in Table 3, by increasing κ from
0 to 5 in the data enrichment method, the amount
of general knowledge rises monotonically, but the
performance of KAR first rises until κ reaches 3
and then drops down. Then we conduct an ablation
study by replacing the knowledge aided attention
mechanisms with the mutual attention proposed
by Seo et al. (2016) and the self attention proposed
by Wang et al. (2017) separately, and find that the
F1 score of KAR drops by 4.2 on the development
set, 7.8 on AddSent, and 9.1 on AddOneSent. Fi-
nally we find that after only one epoch of train-
ing, KAR already achieves an EM of 71.9 and an
F1 score of 80.8 on the development set, which is
even better than the final performance of several
strong baselines, such as DCN (EM / F1: 65.4 /
75.6) (Xiong et al., 2016) and BiDAF (EM / F1:
67.7 / 77.3) (Seo et al., 2016). The above empiri-
cal findings imply that general knowledge indeed
plays an effective role in KAR.
To demonstrate the advantage of our explicit way
to utilize general knowledge over the existing im-
plicit way, we compare the performance of KAR
with that reported by Weissenborn et al. (2017),
which used an encoding-based method to utilize
the general knowledge dynamically retrieved from
Wikipedia and ConceptNet. Since their best model
only achieved an EM of 69.5 and an F1 score of
79.7 on the development set, which is much lower
than the performance of KAR, we have good rea-
son to believe that our explicit way works better
than the existing implicit way.

κ
Average number of inter-
word semantic connections
per word

Dev set
(EM / F1)

0 0.39 74.2 / 82.8
1 0.63 74.6 / 83.1
2 1.24 75.1 / 83.5
3 2.21 76.7 / 84.9
4 3.68 75.9 / 84.3
5 5.58 75.3 / 83.8

Table 3: With κ set to different values in the data en-
richment method, we calculate the average number of
inter-word semantic connections per word as an estima-
tion of the amount of general knowledge, and evaluate
the performance of KAR on the development set.

5.3 Model Comparison in the Hunger for
Data

We compare KAR with other MRC models in the
hunger for data. Specifically, instead of using all
the training examples, we produce several train-
ing subsets (i.e. subsets of the training examples)
so as to study the relationship between the pro-
portion of the available training examples and the
performance. We produce each training subset by
sampling a specific number of questions from all
the questions relevant to each passage. By sepa-
rately sampling 1, 2, 3, and 4 questions on each
passage, we obtain four training subsets, which
separately contain 20%, 40%, 60%, and 80% of
the training examples. As shown in Figure 2, with
KAR, SAN (re-implemented), and QANet (re-
implemented without data augmentation) trained
on these training subsets, we evaluate their perfor-
mance on the development set, and find that KAR
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Figure 2: With KAR, SAN, and QANet (without data
augmentation) trained on the training subsets, we eval-
uate their performance on the development set.

Figure 3: With KAR, SAN, and QANet (without data
augmentation) trained on the training subsets, we eval-
uate their performance on AddSent.

performs much better than SAN and QANet. As
shown in Figure 3 and Figure 4, with the above
KAR, SAN, and QANet trained on the same train-
ing subsets, we also evaluate their performance on
the adversarial sets, and still find that KAR per-
forms much better than SAN and QANet. That is
to say, when only a subset of the training exam-
ples are available, KAR outperforms the state-of-
the-art MRC models by a large margin, and is still
reasonably robust to noise.

6 Analysis

According to the experimental results, KAR is not
only comparable in performance with the state-of-
the-art MRC models, but also superior to them in
terms of both the hunger for data and the robust-

Figure 4: With KAR, SAN, and QANet (without data
augmentation) trained on the training subsets, we eval-
uate their performance on AddOneSent.

ness to noise. The reasons for these achievements,
we believe, are as follows:

• KAR is designed to utilize the pre-extracted
inter-word semantic connections from the
data enrichment method. Some inter-word
semantic connections, especially those ob-
tained through multi-hop semantic relation
chains, are very helpful for the prediction of
answer spans, but they will be too covert to
capture if we simply leverage recurrent neu-
ral networks (e.g. BiLSTM) and pre-trained
word vectors (e.g. GloVe).

• An inter-word semantic connection extracted
from a passage-question pair usually also ap-
pears in many other passage-question pairs,
therefore it is very likely that the inter-word
semantic connections extracted from a small
amount of training examples actually cover
a much larger amount of training examples.
That is to say, we are actually using much
more training examples for model optimiza-
tion than the available ones.

• Some inter-word semantic connections are
distracting for the prediction of answer spans.
For example, the inter-word semantic con-
nection between “bank” and “waterside”
makes no sense given the context “the bank
manager is walking along the waterside”. It
is the knowledge aided attention mechanisms
that enable KAR to ignore such distracting
inter-word semantic connections so that only
the important ones are used.



2271

7 Conclusion

In this paper, we innovatively integrate the neural
networks of MRC models with the general knowl-
edge of human beings. Specifically, inter-word se-
mantic connections are first extracted from each
given passage-question pair by a WordNet-based
data enrichment method, and then provided as
general knowledge to an end-to-end MRC model
named as Knowledge Aided Reader (KAR), which
explicitly uses the general knowledge to assist its
attention mechanisms. Experimental results show
that KAR is not only comparable in performance
with the state-of-the-art MRC models, but also su-
perior to them in terms of both the hunger for data
and the robustness to noise. In the future, we plan
to use some larger knowledge bases, such as Con-
ceptNet and Freebase, to improve the quality and
scope of the general knowledge.
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Abstract
Convolutional neural networks (CNNs) have yielded the excellent performance in a variety of
computer vision tasks, where CNNs typically adopt a similar structure consisting of convolution
layers, pooling layers and fully connected layers. In this paper, we propose to apply a novel method,
namely Hybrid Orthogonal Projection and Estimation (HOPE), to CNNs in order to introduce
orthogonality into the CNN structure. The HOPE model can be viewed as a hybrid model to combine
feature extraction using orthogonal linear projection with mixture models. It is an effective model to
extract useful information from the original high-dimension feature vectors and meanwhile filter
out irrelevant noises. In this work, we present three different ways to apply the HOPE models to
CNNs, i.e., HOPE-Input, single-HOPE-Block and multi-HOPE-Blocks. For HOPE-Input CNNs,
a HOPE layer is directly used right after the input to de-correlate high-dimension input feature
vectors. Alternatively, in single-HOPE-Block and multi-HOPE-Blocks CNNs, we consider to use
HOPE layers to replace one or more blocks in the CNNs, where one block may include several
convolutional layers and one pooling layer. The experimental results on CIFAR-10, CIFAR-100
and ImageNet databases have shown that the orthogonal constraints imposed by the HOPE layers
can significantly improve the performance of CNNs in these image classification tasks (we have
achieved one of the best performance when image augmentation has not been applied, and top 5
performance with image augmentation).
Keywords: Deep Learning, Neural Networks, HOPE

1. Introduction

Convolutional neural networks (CNNs) (LeCun et al., 1990) currently play an important role in the
deep learning and computer vision fields. In the past several years, researchers have revealed that
CNNs can give the state-of-the-art performance in many computer vision tasks, especially for image
classification and object detection tasks (Krizhevsky et al., 2012a; Szegedy et al., 2014; Simonyan and
Zisserman, 2015; Pan and Jiang, 2017). Comparing with the fully connected deep neural networks
(DNNs), CNNs are superior in exploiting spatial constraints and in turn extracting better local
features from input images using the convolution layers and weight sharing, and furthermore may
provide better invariance through the pooling mechanism. All of these make CNNs very suitable for
image-related tasks (LeCun and Bengio, 1995). Moreover, large-scale deep CNNs can be effectively
learned end-to-end in a supervised way from a large amount of labelled images.

In the past several years, a tremendous amount of research efforts have been devoted to further
improve the performance of deep CNNs. In (Hinton et al., 2012; Srivastava et al., 2014), the dropout

c© 2017 H. Pan & H. Jiang.
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method has been proposed to prevent CNNs from overfitting by randomly dropping a small portion
of hidden nodes in the network during the training procedure. Many experiments have confirmed
that the dropout technique can significantly improve the network performance, especially when only
a small training set is available. Besides, a similar idea, called dropconnect (Wan et al., 2013), has
been proposed to drop connections between layers instead of hidden nodes during the training stage.
Another interesting research field is to design good nonlinear activation functions for neural networks
beyond the popular rectified linear function (ReLU), such as maxout (Goodfellow et al., 2013) and
PReLU (He et al., 2015), which are also demonstrated to yield improvement in terms of classification
performance. On the other hand, another important path to improve model performance is to search
for some new CNN structures. For example, in (Lin et al., 2013), Network in Network (NIN) has
been proposed, in which one micro neural network is used to replace the regular linear convolutional
filter. Recurrent Convolutional Neural Network (RCNN) (Liang and Hu, 2015) is another new CNN
structure, which introduces recurrent connections into the convolution layers.

More recently, a novel model, called Hybrid Orthogonal Projection and Estimation (HOPE)
(Zhang et al., 2016), has been proposed to learn fully-connected deep neural networks in either
supervised or unsupervised ways. This model introduces a linear orthogonal projection to reduce the
dimensionality of the raw high-dimension data and then uses a finite mixture distribution to model
the extracted features. By splitting the feature extraction and data modeling into two separate stages,
it may derive a good feature extraction model that can generate better low-dimension features for
the further learning process. More importantly, based on the analysis in (Zhang et al., 2016), the
HOPE model has a tight relationship with neural networks since each hidden layer of DNNs can
also be viewed as a HOPE model being composed of the feature extraction layer and data modeling
layer. Therefore, the maximum likelihood based unsupervised learning as well as the minimum
cross-entropy error based supervised learning algorithms can be used to learn neural networks under
the HOPE framework for deep learning. In this case, the standard back-propagation method may be
used to optimize the objective function to learn the models except that the orthogonal constraints are
imposed for all projection layers during the training procedure.

However, (Zhang et al., 2016) has not taken CNNs into account but merely investigated the HOPE
models for the fully connected neural networks and demonstrated good performance in the small
MNIST data set. To make the HOPE model work for more image-related tasks, we need to consider
how to combine the basic idea of the HOPE model with non-fully connected CNNs. In this paper,
we extend the HOPE model to the popular CNNs by considering the special model structures of both
convolution and pooling layers, and further consider how to introduce the orthogonal constraints into
the CNN model structure and learn CNNs under the HOPE framework. The main contribution of
this paper is to propose a suitable method to split one convolution layer into one HOPE projection
layer and one HOPE model layer. The projection layer introduces orthogonal constraints into the
convolution filters and removes the correlations from the feature maps of convolution layers, and
the model layer can then model the projected vectors. Moreover, the proposed HOPE CNNs can
be learned end-to-end via a modified error back-propagation algorithm. Specifically, we force the
convolution filter in the projection layer becomes orthogonal during the weight updating process,
then with the moving of the orthogonal convolution filter, most noise signals of each local part in
the input feature maps can be removed. The proposed HOPE CNN framework is technically novel
and significantly differs from previous HOPE DNN models, because the projection layers of HOPE
CNNs work on the convolution filters and the model layers not only consider single projected vector,
but also its neighbors. The most straightforward idea is to use a HOPE layer as the first hidden layer
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in CNNs to de-correlate the high-dimension input CNN features and remove the irrelevant noises,
which is called a HOPE-Input layer. This idea is similar as the original formulation in (Zhang et al.,
2016) except the HOPE model is applied to each convolutional filter. Moreover, we may introduce
even more HOPE layers into the CNNs for better performance. Generally speaking, we can split one
CNN into several building blocks, and each block may include several convolutional layers and end
with one pooling layer. In practice, we can either replace one block (single-HOPE-Block CNNs) or
multiple blocks (multi-HOPE-Blocks CNNs) by using HOPE layers for better performance.

Our experimental results on CIFAR-10, CIFAR-100 and ImageNet databases have shown that the
application of HOPE layers results in significant performance improvement over the regular CNN
baseline models.

2. Hybrid Orthogonal Projection and Estimation (HOPE) Framework

In the original Hybrid Orthogonal Projection and Estimation (HOPE) formulation (Zhang et al.,
2016), it is assumed that any high-dimension feature vector can be modelling by a hybrid model
consisting of feature extraction using a linear orthogonal projection and statistic modeling using
a finite mixture model. Assuming that each high-dimension feature vector x is of dimension D,
then the linear orthogonal projection maps x to an M -dimension feature space (M < D), and the
projected vector may retain the most useful information of x. Specifically, we define a D × D
orthogonal matrix [U; V ] which satisfies:

[z; n] =

[
U
V

]
x (1)

where z is an M -dimension vector, called the signal component, and n is the residual noise vector
with the dimensionality of D −M .

In practice, z is heavily de-correlated but it may still locate in a rather high dimension feature
space. In the HOPE formulation, it is proposed to model z with a finite mixture model:

p(z) =

K∑
k=1

πk · fk(z|θk) (2)

where K is the number of mixture components, πk is the mixture weight of the kth component
(
∑K

k=1 πk = 1), fk() denotes a selected distribution from the exponential family, and θk denotes
all model parameters of fk(). As discussed in (Zhang et al., 2016), if the von Mises-Fisher (vMF)
distribution is chosen for fk(), the resultant HOPE model is equivalent in mathematical formulation
to a hidden layer in neural networks using the popular rectified linear units (ReLU).

The HOPE model combines a linear orthogonal projection and a finite mixture model under
a unified generative modeling framework. It can be learned unsupervisingly based on maximum
likelihood estimation from unlabelled data as well as discriminatively from labelled data. In (Zhang
et al., 2016), the HOPE model has been applied to the fully connected DNNs, and the models can
be learned in either supervised or unsupervised ways. For one hidden layer with input vector x
(x ∈ RD) and output vector y (y ∈ RG), it is first split into two layers: i) The first layer is a linear
orthogonal projection layer, which is used to project x to a feature vector z (z ∈ RM ,M < D) and
remove the noise signals by using an orthogonal projection matrix U:

z = Ux. (3)
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ii) The second layer is a non-linear model layer, which convert z to the output vector y following
the selected model fk() and a nonlinear log-likelihood pruning operation (in supervised learning
the model can be learned automatically from the training dataset). An example of a HOPE layer in
DNNs is shown in Figure 1.

Figure 1: The HOPE model is viewed as a hidden layer in DNNs.

As in (Zhang et al., 2016), all HOPE model parameters, including the projection matrix U and
the model matrix W , can be learned, using the error back-propagation algorithm with stochastic
gradient descent, to optimize an objective function subject to an orthogonal constraint, UUT = I,
for each projection layer. As in (Zhang et al., 2016), for computational simplicity, the constraint is
cast as the following penalty term to gradually de-correlate the matrix U during the learning process:

P (U) =
M∑
i=1

M∑
j=i+1

|ui · uj |
|ui| · |uj |

. (4)

In (Zhang et al., 2016), both unsupervised learning and supervised learning are studied for DNNs
under the HOPE framework. The above orthogonal constraint is found to be equally important in
both scenarios. In this paper, we will study how to supervisingly learn CNNs under the HOPE
formulation and more specifically investigate how to introduce the orthogonality into the CNN model
structure.

3. Our Proposed Method

In (Zhang et al., 2016), the authors have applied the HOPE model to the fully connected DNNs and
have achieved good performance in experiments on small databases like MNIST. However, more
widely used neural models in computer vision, i.e. convolutional neural networks (CNNs), have not
been considered. Unlike DNNs, CNNs adopt some unique model structures and have achieved huge
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successes in many large-scale image classification tasks. Therefore, it is interesting to consider how
to combine the HOPE model with CNNs to further improve image classification performance.

3.1. Applying the HOPE model to CNNs

To introduce the HOPE model to CNNs, the most straightforward solution is to split each convolution
layer into a concatenation of a projection layer and a model layer and impose the orthogonal
constraints onto the projection layer as in (Zhang et al., 2016). Assuming that we have a regular
convolution layer in CNNs, which uses some S × S linear filters to map from Ci input feature maps
to Cm output feature maps. As shown in Figure 2, under the HOPE framework, we propose to split
this convolution layer into the two separate layers:

i) One linear orthogonal projection layer with the projection matrix U: in the projection layer, we
use each local region that is ’covered’ by the orthogonal convolution filter in the input feature
maps as the basic unit of the orthogonal projection. Specifically, the orthogonal convolution
filter linearly maps a 3-dimension tensor with the size of S×S×Ci into a vector 1×1×Cp, Cp

denotes the number of feature maps to be used in the projection layer. As the projection filters
convolve with the input layer, it generates a total of Cp feature maps in the projection layer.
The projection filter itself is a 4-dimension tensor with the size of S × S ×Ci ×Cp. Based on
the definition of the convolution procedure and follow the formulation in (Zhang et al., 2016),
we can reshape this 4-dimension tensor as a matrix U with the size of (S · S · Ci)× Cp, as
shown in Figure 2. Notice that we do not apply any non-linear activation function in the linear
orthogonal projection layer.

ii) One non-linear model layer with the weight matrix W : it has exactly same structure as a
regular convolutional layer, which maps the Cp projected feature maps into Cm output feature
maps. Differing from (Zhang et al., 2016), instead of only mapping the projected vector, the
proposed model layer here takes all projected vectors within each S × S region into account
and map all projected features within this region into the final output feature maps. We have
found that this modification is critical in CNNs for better performance in image classification
since it helps the network to extract local features. In our implementation, we use ReLU as
the non-linear activation function. Since we apply supervised learning method to learn HOPE
CNNs, we do not need to explicitly define the mixture model, and the mixture model can be
learned automatically from training data.

Figure 2 shows the whole structure of one HOPE layer in CNNs. Since the projection layer is
linear, we may collapse these two layers to derive a normal convolution layer in CNNs. However, as
argued in (Zhang et al., 2016), the HOPE framework provides many advantages by explicitly define
the feature extraction stage and data modeling stage.

Note that Cp is always far less than S × S × Ci in the above HOPE formulation, it implies that
the orthogonal projection may help to remove irrelevant noises in this step.

In this paper, we only consider the supervised learning of CNNs under the HOPE framework.
In this case, the model parameters in the model layer can be learned in the same way as in the
convolutional CNNs. However, for the projection layers, we need to impose the orthogonal constraint,
i.e. UUT = I, during the learning process. Following (Zhang et al., 2016), we cast this constraint as
a penalty term in Eq. (4).
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Figure 2: A convolution layer in CNNs can be converted into a HOPE model. We do not need to ex-
plicitly define the data distribution of the model layer since it can be learned automatically
via supervised learning criteria.

First of all, we need to derive the gradient of the penalty term P (U) with respect to U as follows:

∂P (U)

∂ui
=

M∑
j=1

(
|ui · uj |
|ui| · |uj |

) ·
(

(
uj

ui · uj
)− (

ui

ui · ui
)

)
(5)

To facilitate the above computation in GPUs, we may equivalently represent the above gradient
computation as a matrix form, i.e., essentially a multiplication of the two matrices D and B as
follows:

∂P (U)

∂U
= (D−B)U (6)

where D is an M -by-M matrix of dij =
sign(ui·uj)
|ui|·|uj | (1 < i, j < M) and B is another M -by-M

diagonal matrix of bii =
∑

j gij
ui·ui

with gij =
|ui·uj |
|ui|·|uj | (1 < i, j < M).

Secondly, we can combine the above ∂P (U)
∂U with the gradient ∆U, which is calculated from the

objective function:

∆̃U = ∆U + β · ∂P (U)

∂U
(7)

where β is a pre-defined parameter to balance the orthogonal penalty term. Finally, the projection
matrix U can be updated as follows:

U(n) = U(n−1) − γ · ∆̃U (8)
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where γ is the learning rate for the weight update. During the learning process, U is gradually
de-correlated and eventually becomes an orthogonal matrix. In Figure 3, we display all correlation
coefficients, i.e., |ui·uj |

|ui|·|uj | , of the HOPE orthogonal projection matrix U and the corresponding linear
projection matrix, in which the orthogonal constraints are removed. The two images in Figure 3
clearly show that the HOPE projection matrix removes most of the correlation and thus becomes
orthogonal. As shown in the results, the proposed HOPE layer in CNNs may remove the noise
signals from the feature maps.

Figure 3: The correlation coefficients of the HOPE orthogonal projection matrix (left) and the
corresponding linear projection matrix (right). We can see the HOPE projection matrix is
more orthogonal compare with its linear counterpart. Here S = 3, Ci = 64 and Cp = 48.

3.2. The HOPE-Input Layer

The first way to apply the HOPE model to CNNs is to use the above HOPE layer to replace the first
convolution layer right after the image pixel input. The HOPE formulation may help to de-correlate
the raw image pixel inputs and filter out irrelevant noises in the first place. This is called as one
HOPE-Input layer.

3.3. HOPE-Blocks

In many cases, simply applying one HOPE-Input layer is not enough to remove noise signals from
features and achieve good performance. Therefore, we need to introduce more HOPE layers into
the baseline CNN. In practice, one CNN can be divided into some building blocks, and each block
may include several convolutional layers and end with one pooling layer. We can use these blocks
as the basic units to introduce HOPE layers. Figure 4 shows an example of one HOPE-Block, and
here we apply three HOPE layers to replace the corresponding convolutional layers (for the first
convolutional layer, the projection layer is from the last block).
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Figure 4: One HOPE-Block

For the pooling layer, we may need to consider a slightly different way to apply HOPE model. In
CNNs, the pooling layers (Krizhevsky et al., 2012b) are traditionally considered as an important part
for good performance. (Springenberg et al., 2014) has shown that the pooling layers result in the
reduction of feature dimensionality, which help the CNNs to view much larger regions of the input
feature maps, and generate more stable and invariant high level features.

Since the projection layer in HOPE models shares the similar objection with pooling layers, i.e.,
reducing the feature dimensionality, remove noise and increase the stability of the feature, we can just
use one HOPE projection layer to replace one pooling layer, and view the next convolutional layer as
the model layer. Comparing with the regular pooling layers, we believe that the HOPE projection
layer may be advantageous in feature extraction since the learnable linear orthogonal projection may
help to de-correlate the input feature maps more precisely and generate better features for the upper
layers.

In practice, we can just introduce one HOPE-Block to replace the first building block in the
baseline CNN (single-HOPE-Block), or apply multiple HOPE-Blocks (multi-HOPE-Blocks).

4. Experiments

In this paper, we use three widely used image classification databases, namely CIFAR-10. CIFAR-
100 (Krizhevsky and Hinton, 2009) and ImageNet (Deng et al., 2009), to evaluate the performance of
our proposed HOPE methods 1.

4.1. Databases

CIFAR-10 and CIFAR-100 are two popular databases that are widely used in computer vision. Both
databases contain 50,000 32-by-32 RGB images for training and 10,000 images for validation. The

1. The codes of the proposed method can be downloaded via: https://github.com/mowangphy/HOPE-CNN.
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Figure 5: From Left to Right: Baseline CNN, HOPE-Input CNN, single-HOPE-Block CNN, and
multi-HOPE-Blocks CNN (Using CIFAR experiments as examples), where Proj denotes
one HOPE projection layer, Model denotes one HOPE model layer, and HOPE denotes
one whole HOPE layer (includes one projection layer and one model layer).

main difference between these two databases is that CIFAR-10 only divides all images into 10 coarse
classes, but CIFAR-100 divides them into 100 fine classes. All CIFAR data should be zero-mean
normalized, and we did not apply data whitening to pre-process the training and test data.

To expand the training sample size and reduce over-fitting, we also consider to use data augmen-
tation techniques on the two databases. Specifically, In each mini-batch, we will randomly select half
of the images to apply four kinds of augmentation methods respectively:

• Translation: The selected images will be randomly translate horizontally and vertically for
at most 5 pixels.

• Rotation: The selected images will be randomly rotated by -5 to 5 degrees. The rotated
images should be cropped to keep the original size.

• Scaling: We firstly randomly extract a patch from the input image (the patch size is pre-
defined), and resize the patch to the original image size. This procedure equals to zoom-in.

• Color space translation: For each channel of one image, we define a translation matrix.
Each element in the translation matrix is corresponding to one pixel in the corresponding color
channel, and the value lays between 0.95 and 1.05. The image will element-wise multiply with
the translation matrix for the color space translation.
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Figure 6 displays some examples of the selected data augmentation methods.

Figure 6: From Left to Right: original images, translated images, rotated images, scaled images and
color space translated images.

Comparing with CIFAR-10 and CIFAR-100, ImageNet is an image database with much larger
sample size (nearly 1.3 million training images and 50,000 validation images in the classification
tasks), and all images are divided into 1000 classes. During the experiments, all images should be
re-scaled to 224-by-224 to feed into CNNs.

4.2. CIFAR Experiments

In our CIFAR-10 and CIFAR-100 experiments, we consider several different CNN structures as
specified in Figure 5 in detail. Firstly, we follow the CNN structure that is defined by Sergey
Zagoruyko as our baseline CNNs.2 Then we evaluate the HOPE-Input CNN, single-HOPE-Block and
multi-HOPE-Block CNNs as discussed in section 3, and compare them with the baseline models. In
Figure 5, we have provided the detailed description of the structure of 4 CNNs (baseline, HOPE-Input,
single-HOPE-Block and multi-HOPE-Blocks) used in our experiments.

2. See https://github.com/szagoruyko/cifar.torch for more information. According to the website, without using data
augmentation, the best performance on the CIFAR-10 test set is 8.7% in error rate. By using RGB color channel
instead of YUV, our reproduced baseline performance is 8.30% in this paper.
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In Figure 5, for the HOPE-Input layer, we use 20 feature maps in the projection layer. For
the whole HOPE layer in the Block 1 (single-HOPE-Block and multi-HOPE-Blocks CNNs), the
projection layer contains 48 feature maps. For the rest HOPE layers in the multi-HOPE-Blocks
CNN, the projection layers should have the same number of feature maps as the corresponding model
layers. In practice, the feature map number of the input layer and the first block should be tuned very
carefully. The reason of this fact is that the shallow layers tend to have highly correlated data, which
may more sensitive to the size of projection layers. It is easy to learn that too many feature maps or
too few feature maps can both lead to worse performance. We did several tests on HOPE-Input and
single-HOPE-Block CNNs to determine the best scale of the projection layers, and the results are
shown in Table 1.

Table 1: The relationship of the size of projection layers and classification performance (using
CIFAR-10 tests as examples).

Proj Layer 1 Proj Layer 2 Test Err

HOPE-Input

10 - 8.01%
15 - 7.86%
20 - 7.77%
25 - 7.92%

Single-HOPE-Block

20 24 8.12%
20 32 7.71%
20 48 7.06%
20 64 7.57%

To further investigate the performance of the HOPE CNNs (HOPE-Input, single-HOPE-Block
and multi-HOPE-Blocks), we also consider the model configurations called as LIN CNNs (Lin-Input,
single-Lin-Block and multi-Lin-Blocks), which uses the same model structure as the HOPE CNNs
except that the orthogonal constraint in Eq. (4) is NOT applied in training.

In all CIFAR experiments, we use the mini-batch SGD with a batch size of 100 images to perform
350 epochs of network training. The initial learning rate is 0.065, and the learning rate should be
halved after every 30 epochs. We also use momentum of 0.9 and weight decay rate of 0.0005. In
batch normalization (Ioffe and Szegedy, 2015), we set ε = 0.001. For the HOPE layers, we use an
initial β that equals to 0.15, and the β should be divided by 1.75 after every 25 epochs. As shown
in Table 2, the choices hyper parameter β and its decay rate may have some impacts on the final
classification performance. Generally speaking, it is not very sensitive once we choose a good value
for β. All weights in CNNs are initialized by using the method proposed by He et al (He et al.,
2015). For the multi-HOPE-Blocks CNN experiments, we introduce 5 HOPE-Blocks (overall 6
blocks), since the last block only includes fully connected layers. In CNNs, fully-connected layers
are applied at the end of the network. Our previous experiments show that adding HOPE layers
on fully-connected layers cannot bring about positive influences on classification accuracy. One
important reason is that the previous CNN layers (or HOPE CNN layers) already remove most of
data correlation.
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Table 2: The corresponding test error of different combination of initial β and its decay rate (the β
should be decayed every 25 epochs).

Initial β 0.015 0.05 0.1 0.15 0.15 0.15 0.2

Decay Rate 1.75 1.75 1.75 1.50 1.75 2.00 1.75

Test Error 8.43% 8.31% 8.06% 7.46% 7.06% 7.37% 7.63%

4.2.1. LEARNING SPEED

We firstly consider the computational efficiency of the proposed HOPE methods in learning CNNs.
Our computing platform includes Intel Xeon E5-1650 CPU (6 cores), 64 GB memory and a Nvidia
Geforce TITAN X GPU (12 GB memory). Our method is implemented with MatConvNet (Vedaldi
and Lenc, 2015), which is a CUDA based CNN toolbox in Matlab. The learning speed of all CNNs
are listed in Table 3.

From Table 3, we can see that using the more complicated HOPE layers in CNNs will slow
down the computation of CNNs in GPUs, but the speeds are still reasonably good. Moreover, the
learning speed of the HOPE methods is similar with the corresponding LIN methods, which implies
that the computational overhead for the orthogonal projection constraint is negligible in training.

Table 3: The learning speed of different CNNs on CIFAR experiments.

Methods Learning Speed

Baseline 220 images/s
LIN-Input 206 images/s

HOPE-Input 203 images/s
Single-LIN-Block 200 images/s

Single-HOPE-Block 195 images/s
Multi-LIN-Blocks 149 images/s

Multi-HOPE-Blocks 141 images/s

4.2.2. PERFORMANCE ON CIFAR-10 AND CIFAR-100

We use the classification error rate on the test sets of the selected databases to evaluate the performance
of all CNN models. Besides the 7 CNN configurations we mentioned above, we also include several
well-known CNN models from the previous work to compare with our methods, including Tree-
Pooling (Lee et al., 2015), Deep Networks for Global Optimization (DNGO) (Snoek et al., 2015),
Fitnet4-LSUV (Mishkin and Matas, 2015), RCNN (Liang and Hu, 2015), ALL-CNN (Springenberg
et al., 2014), Maxout Networks (Goodfellow et al., 2013) and Network in Network (Lin et al., 2013).
All selected models have the comparable model size with our proposed CNNs.

From all results summarized in Table 4, we can see that the proposed HOPE-based CNNs models
work well in both CIFAR-10 and CIFAR-100 databases. In the cases that the data augmentation
methods are not applied, the single-HOPE-Block CNNs can achieve the best performances on both
CIFAR-10 and CIFAR-100, which is the state-of-the-art performance without data augmentation,
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Table 4: The classification error rates of all examined CNNs on the test set of CIFAR-10 and
CIFAR-100. CIFAR-10+ and CIFAR-100+ denote the results using data augmentation.

CIFAR-10 CIFAR-10+ CIFAR-100 CIFAR-100+

Baseline 8.30% 6.96% 30.71% 29.38%
LIN-Input 7.97% 6.88% 30.13% 28.91%

HOPE-Input 7.77% 6.65% 29.96% 28.79%
Single-LIN-Block 8.30% 7.21% 31.85% 30.27%

Single-HOPE-Block 7.06% 5.89% 29.47% 26.99%
Multi-LIN-Blocks 9.29% 8.16% 39.28% 35.52%

Multi-HOPE-Blocks 7.88% 6.47% 31.01% 27.59%

Tree-Pooling (Lee et al., 2015) 7.62% 6.05% 32.37% -
DNGO (Snoek et al., 2015) - 6.37% - 27.40%

Fitnet4-LSUV (Mishkin and Matas, 2015) - 6.06% - 27.66%
RCNN (Liang and Hu, 2015) 8.69% 7.09% 31.75% -

ALL-CNN (Springenberg et al., 2014) 9.08% 7.25% 33.71% -
Maxout (Goodfellow et al., 2013) 11.68% 9.38% 34.54% -

Network in Network (Lin et al., 2013) 10.41% 8.81% 35.68% -

and much better compare with the selected strong baselines. Moreover, we can see that HOPE-Input,
single-HOPE-Block and multi-HOPE-Blocks CNNs consistently outperform the counterpart LIN
models that do not use the orthogonal constraints. This implies that the orthogonality introduced by
the HOPE methods is quite useful to improve the performance of CNNs in the image classification
tasks.

Table 4 also shows that after data augmentation the proposed HOPE method can also achieve
state-of-the-art performance on both CIFAR-10 and CIFAR-100 databases.

In the supervised learning of HOPE CNNs, the projection layers in the shallow layers (from input
layer to the first block) are most important since those layers can remove most of residual noises and
data correlation from the raw data. Therefore, adding more HOPE layers (multi-HOPE-Blocks) may
not bring about obvious improvements. Moreover, introducing HOPE layers in the top may introduce
a lot of extra model parameters due to the large number of feature maps used in those layers. This
may further lead to over-fitting and decrease the performance on the test sets. This can explain why
single-HOPE-Block CNNs show better performance compare with multi-HOPE-Blocks CNNs.

4.3. ImageNet Experiments

In our ImageNet experiments, we directly apply VGG-16 (Simonyan and Zisserman, 2014) as
the baseline network 3 Then we evaluate the HOPE-Input CNN and single-HOPE-Block CNN as
discussed in section 3, and compare them with the original VGG-16 model. Similar to CIFAR
experiments, we also take the corresponding LIN CNNs into account to further demonstrate the
effectiveness of HOPE.

3. See http://http://www.vlfeat.org/matconvnet/pretrained/ for more information. According to the website, the top-5
error of VGG-16 on ImageNet validation set is 9.5% on MatConvNet platform.
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Table 5: The learning speed and top-5 classification error (validation set) of different CNNs on
ImageNet experiments.

Methods Learning Speed Top-5 Error

VGG-16 58 images/s 9.5%
LIN-Input 56 images/s 9.5%

HOPE-Input 55 images/s 9.3%
Single-LIN-Block 53 images/s 9.6%

Single-HOPE-Block 52 images/s 9.0%

In all ImageNet experiments, we use 128 mini-batch size to train the CNNs for 50 epochs. The
initial learning rate and β are 0.01 and 0.02 respectively, and both of them should be halved after
every 5 epochs. The momentum and weight decay rate are 0.9 and 0.0005 respectively. In batch
normalization (Ioffe and Szegedy, 2015), we set ε = 0.001. All weights in CNNs will be initialized
by using the method proposed by He et al (He et al., 2015).

4.3.1. LEARNING SPEED

Since ImageNet database has very large sample size, and the CNNs are much deeper comparing with
their counterparts in CIFAR experiments, we use 4 Nvidia Geforce TITAN X GPUs to do network
training, and the learning speeds are listed in Table 5. In our platform, one single training round of
ImageNet takes nearly 2 weeks. Therefore, we can not try all possible combinations of HOPE model
as CIFAR experiments, but just the best configuration obtained from CIFAR (Single-HOPE-Block).

4.3.2. PERFORMANCE ON IMAGENET

From Table 5, we can also see that HOPE models also work well on the ImageNet database. And
Single-HOPE-Block CNN shows the best performance among all selected models. HOPE-Input
CNN can also yield improvement over the VGG-16 baseline model.

5. Conclusion and Future Work

In this paper, we have proposed several methods to apply the recent HOPE model to CNNs for
image classification. Experimental results on the CIFAR-10, CIFAR-100 and ImageNet databases
have shown that our proposed HOPE methods work well with CNNs, and can yield the state-of-
the-art classification performance in these databases. This study has confirmed that the orthogonal
constraints imposed by the HOPE models can significantly improve the performance of CNNs in
these image classification tasks.

Due to the limitation of time and computing resources, we haven’t applied the propose HOPE
CNN methods to the more recent deep residual nets (He et al., 2016). However, the application of
HOPE CNN is straightforward since the HOPE model can also be inserted in the shortcut connections
in deep residual nets. We will continue to investigate along this line as a possible direction to extend
this work in the future.
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Abstract

In this paper, we present our method of us-
ing fixed-size ordinally forgetting encoding
(FOFE) to solve the word sense disambigua-
tion (WSD) problem. FOFE enables us to en-
code variable-length sequence of words into a
theoretically unique fixed-size representation
that can be fed into a feed forward neural net-
work (FFNN), while keeping the positional in-
formation between words. In our method, a
FOFE-based FFNN is used to train a pseudo
language model over unlabelled corpus, then
the pre-trained language model is capable of
abstracting the surrounding context of pol-
yseme instances in labelled corpus into con-
text embeddings. Next, we take advantage of
these context embeddings towards WSD clas-
sification. We conducted experiments on sev-
eral WSD data sets, which demonstrates that
our proposed method can achieve comparable
performance to that of the state-of-the-art ap-
proach at the expense of much lower compu-
tational cost.

1 Introduction

Words with multiple senses commonly exist in
many languages. For example, the word bank
can either mean a “financial establishment” or “the
land alongside or sloping down to a river or lake”,
based on different contexts. Such a word is called
a “polyseme”. The task to identify the meaning
of a polyseme in its surrounding context is called
word sense disambiguation (WSD). Word sense
disambiguation is a long-standing problem in nat-
ural language processing (NLP), and has broad
applications in other NLP problems such as ma-
chine translation (Taghipour and Ng, 2015). Lexi-
cal sample task and all-word task are the two main
branches of WSD problem. The former focuses
on only a pre-selected set of polysemes whereas
the later intends to disambiguate every polyseme

in the entire text. Numerous works have been de-
voted in WSD task, including supervised, unsu-
pervised, semi-supervised and knowledge based
learning (Iacobacci et al., 2016). Our work fo-
cuses on using supervised learning to solve all-
word WSD problem.

Most supervised approaches focus on extract-
ing features from words in the context. Early ap-
proaches mostly depend on hand-crafted features.
For example, IMS by Zhong and Ng (2010) uses
POS tags, surrounding words and collections of
local words as features. These approaches are
later improved by combining with word embed-
ding features (Taghipour and Ng, 2015), which
better represents the words’ semantic information
in a real-value space. However, these methods ne-
glect the valuable positional information between
the words in the sequence (Kågebäck and Sa-
lomonsson, 2016). The bi-directional Long-Short-
Term-Memory (LSTM) approach by Kågebäck
and Salomonsson (2016) provides one way to
leverage the order of words. Recently, Yuan et al.
(2016) improved the performance by pre-training
a LSTM language model with a large unlabelled
corpus, and using this model to generate sense
vectors for further WSD predictions. However,
LSTM significantly increases the computational
complexity during the training process.

The development of the so called “fixed-size or-
dinally forgetting encoding” (FOFE) has enabled
us to consider more efficient method. As firstly
proposed in (Zhang et al., 2015), FOFE provides
a way to encode the entire sequence of words
of variable length into an almost unique fixed-
size representation, while also retain the positional
information for words in the sequence. FOFE
has been applied to several NLP problems in the
past, such as language model (Zhang et al., 2015),
named entity recognition (Xu et al., 2017), and
word embedding (Sanu et al., 2017). The promis-
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ing results demonstrated by the FOFE approach in
these areas inspired us to apply FOFE in solving
the WSD problem. In this paper, we will first de-
scribe how FOFE is used to encode sequence of
any length into a fixed-size representation. Next,
we elaborate on how a pseudo language model is
trained with the FOFE encoding from unlabelled
data for the purpose of context abstraction, and
how a classifier for each polyseme is built from
context abstractions of its labelled training data.
Lastly, we provide the experiment results of our
method on several WSD data sets to justify the
equivalent performance as the state-of-the-art ap-
proach.

2 Fixed-size Ordinally Forgetting
Encoding

The fact that human languages consist of variable-
length sequence of words requires NLP mod-
els to be able to consume variable-length data.
RNN/LSTM addresses this issue by recurrent con-
nections, but such recurrence consequently in-
creases the computational complexity. On the con-
trary, feed forward neural network (FFNN) has
been widely adopted in many artificial intelligence
problems due to its powerful modelling ability and
fast computation, but is also limited by its require-
ment of fixed-size input. FOFE aims at encoding
variable-length sequence of words into a fixed-size
representation, which subsequently can be fed into
an FFNN.

Given vocabulary V of size |V |, each word can
be represented by a one-hot vector. FOFE can en-
code a sequence of words of any length using lin-
ear combination, with a forget factor to reflect the
positional information. For a sequence of words
S = w1, w2, .., wT from V, let ei denote the one-
hot representation for the ith word, then the FOFE
code of S can be recursively obtained using fol-
lowing equation (set z0 = 0):

zt = α · zt−1 + et (1 ≤ t ≤ T )

where α is a constant between 0 and 1, called for-
getting factor. For example, assuming A, B, C are
three words with one-hot vectors [1, 0, 0], [0, 1, 0],
[0, 0, 1] respectively. The FOFE encoding from
left to right for ABC is [α2,α,1] and for ABCBC
is [α,α + α,1 + α]. It becomes evident that the
FOFE code is in fixed size, which is equal to the
size of the one-hot vector, regardless of the length
of the sequence S.

The FOFE encoding has the property that the
original sequence can be unequivocally recovered
from the FOFE encoding. According to Zhang
et al. (2015), the uniqueness for the FOFE encod-
ing of a sequence is confirmed by the following
two theorems:

Theorem 1 If the forgetting factor α satisfies 0 ≤
α < 0.5, FOFE is unique for any sequence of fi-
nite length T and any countable vocabulary V .

Theorem 2 If the forgetting factor α satisfies
0.5 ≤ α ≤ 1, FOFE is almost unique for any
finite value of T and vocabulary V , except only a
finite set of countable choices of α.

Even for situations described by Theorem 2
where uniqueness is not strictly guaranteed, the
probability for collision is extremely low in prac-
tice. Therefore, FOFE can be safely considered
as an encoding mechanism that converts variable-
length sequence into a fixed-size representation
theoretically without any loss of information.

3 Methodology

The linguistic distribution hypothesis states that
words that occur in close contexts should have
similar meaning (Harris, 1954). It implies that
the particular sense of a polyseme is highly re-
lated to its surrounding context. Moreover, hu-
man decides the sense of a polyseme by firstly un-
derstanding its occurring context. Likewise, our
proposed model has two stages, as shown in Fig-
ure 1: training a FOFE-based pseudo language
model that abstracts context as embeddings, and
performing WSD classification over context em-
beddings.

3.1 FOFE-based Pseudo Language Model

A language model is trained with large unlabelled
corpus by Yuan et al. (2016) in order to overcome
the shortage of WSD training data. A language
model represents the probability distribution of a
given sequence of words, and it is commonly used
in predicting the subsequent word given preceding
sequence. Zhang et al. (2015) proposed a FOFE-
based neural network language model by feed-
ing FOFE code of preceding sequence into FFNN.
WSD is different from language model in terms
of that the sense prediction of a target word de-
pends on its surrounding sequence rather than only
preceding sequence. Hence, we build a pseudo
language model that uses both preceding and suc-



Figure 1: Context abstraction through FOFE-based
pseudo language model and WSD classification over
context embeddings

ceeding sequence to accommodate the purpose of
WSD tasks.

The preceding and succeeding sequences are
separately converted into FOFE codes. As shown
in Figure 1, the words preceding the target word
are encoded from left to right as the left FOFE
code, and the words succeeding the target word
are encoded from right to left as the right FOFE
code. The forgetting factor that underlies the en-
coding direction reflects the reducing relevance of
a word due to the increasing distance relative to
the target word. Furthermore, the FOFE is scal-
able to higher orders by merging tailing partial
FOFE codes. For example, a second order FOFE
of sequence S = w1, w2, .., wT can be obtained as
[zT−1, zT ]. Lastly, the left and right FOFE codes
are concatenated into one single fixed-size vector,
which can be fed into an FFNN as an input.

FFNN is constructed in fully-connected layers.
Each layer receives values from previous layer as
input, and produces values through a function over
weighted input values as its output. FFNN increas-
ingly abstracts the features of the data through the
layers. As the pseudo language model is trained
to predict the target word, the output layer is ir-
relevant to WSD task and hence can be discarded.
However, the remaining layers still have learned
the ability to generalize features from word to con-
text during the training process. The values of the

held-out layer (the second last layer) are extracted
as context embedding, which provides a nice nu-
merical abstraction of the surrounding context of
a target word.

3.2 WSD Classification

Words with the same sense mostly appear in simi-
lar contexts, hence the context embeddings of their
contexts are supposed to be close in the embed-
ding space. As the FOFE-based pseudo language
model is capable of abstracting surrounding con-
text for any target word as context embeddings,
applying the language model on instances in an-
notated corpus produces context embeddings for
senses.

A classifier can be built for each polyseme over
the context embeddings of all its occurring con-
texts in the training corpus. When predict the
sense of a polyseme, we similarly extract the con-
text embedding from the context surrounding the
predicting polyseme, and send it to the polyseme’s
classifier to decide the sense. If a classifier cannot
be built for the predicting polyseme due to the lack
of training instance, the first sense from the dictio-
nary is used instead.

For example, word w has two senses si for
i = 1, 2 occurring in the training corpus, and
each sense has ni instances. The pseudo language
model converts all the instances into context em-
beddings cij for j = 1, . . . , ni, and these embed-
dings are used as training data to build a classifier
forw. The classifier can then be used to predict the
sense of an instance of w by taking the predicting
context embedding c′.

The context embeddings should fit most tradi-
tional classifiers, and the choice of classifier is
empirical. Yuan et al. (2016) takes the average
over context embeddings to construct sense em-

beddings si =

∑
j=i

ci
j

ni
, and selects the sense

whose sense embedding is closest to the predicting
context embedding measured by cosine similarity.
In practice, we found k-nearest neighbor (kNN)
algorithm, which predicts the sense to be the ma-
jority of k nearest neighbors, produces better per-
formance on the context embeddings produced by
our FOFE-based pseudo language model.

4 Experiment

To evaluate the performance of our proposed
model, we implemented our model using Tensor-
flow (Abadi et al., 2015) and conducted experi-



Model Corpus Size Vocab. Training Time Senseval2 SemEval13
IMS ∗ - - - 0.625 -
IMS + Word2vec ∗ - - - 0.634 -
LSTM (Yuan et al., 2016) 100B 1M - 0.736 0.670
LSTM (Le et al., 2017) 2B 1M 4.5 months 0.700 0.666
LSTM (our training) † 0.8B 100K 2 weeks 0.661 0.633
FOFE (this work) 0.8B 100K 3 days 0.693 0.650

Table 1: The corpus size, vocabulary size and training time when pre-training the language models, and F1 scores
of different models on multiple WSD tasks using SemCor as training data. The asterisk (∗) indicates the results
are from (Iacobacci et al., 2016). Our training (†) uses code published by (Le et al., 2017) with Google1B (Chelba
et al., 2014) as training data.

ments on standard SemEval data that are labelled
by senses from WordNet 3.0 (Fellbaum, 1998).
We built the classifier using SemCor (Miller et al.,
1993) as training corpus, and evaluated on Sense-
val2 (Edmonds and Cotton, 2001), and SemEval-
2013 Task 12 (Navigli et al., 2013).

4.1 Experiment settings

When training our FOFE-based pseudo language
model, we use Google1B (Chelba et al., 2014) cor-
pus as the training data, which consists of approx-
imately 0.8 billion words. The 100,000 most fre-
quent words in the corpus are chosen as the vo-
cabulary. The dimension of word embedding is
chosen to be 512. During the experiment, the best
results are produced by the 3rd order pseudo lan-
guage model. The concatenation of the left and
right 3rd order FOFE codes leads to a dimension
of 512 * 3 * 2 = 3072 for the FFNN’s input layer.
Then we append three hidden layers of dimension
4096. Additionally, we choose a constant forget-
ting factor α = 0.7 for the FOFE encoding and
k = 8 for our k-nearest neighbor classifier.

4.2 Results

Table 1 presents the micro F1 scores from differ-
ent models. Note that we use a corpus with 0.8 bil-
lion words and vocabulary of 100,000 words when
training the language model, comparing with Yuan
et al. (2016) using 100 billion words and vocab-
ulary of 1,000,000 words. The context abstrac-
tion using the language model is the most crucial
step. The sizes of the training corpus and vocab-
ulary significantly affect the performance of this
process, and consequently the final WSD results.
However, Yuan et al. (2016) did not publish the
100 billion words corpus used for training their
LSTM language model.

Recently, Le et al. (2017) reimplemented the
LSTM-based WSD classifier. The authors trained
the language model with a smaller corpus Giga-
word (Graff and Cieri, 2003) of 2 billion words
and vocabulary of 1 million words, and reported
the performance. Their published code also en-
abled us to train an LSTM model with the same
data used in training our FOFE model, and com-
pare the performances at the equivalent conditions.

Additionally, the bottleneck of the LSTM ap-
proach is the training speed. The training process
of the LSTM model by Le et al. (2017) took ap-
proximately 4.5 months even after applying opti-
mization of trimming sentences, while the training
process of our FOFE-based model took around 3
days to produce the claimed results.

5 Conclusion

In this paper, we propose a new method for word
sense disambiguation problem, which adopts the
fixed-size ordinally forgetting encoding (FOFE) to
convert variable-length context into almost unique
fixed-size representation. A feed forward neural
network pseudo language model is trained with
FOFE codes of large unlabelled corpus, and used
for abstracting the context embeddings of anno-
tated instance to build a k-nearest neighbor clas-
sifier for every polyseme. Compared to the high
computational cost induced by LSTM model, the
fixed-size encoding by FOFE enables the usage of
a simple feed forward neural network, which is
not only much more efficient but also equivalently
promising in numerical performance.
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