Unofficial Mark Scheme Edexcel Core 2 answers only

X_IDE_sidf

May 26, 2016

1. Geometric series question, prove $a=64$ given $S_{4}=175$ and $r=\frac{3}{4}$ then workout sum to infinity. Then find the difference between the 9 th and 10th term
1 a) (2 marks) proof
b) (2 marks) 256
c) (2 marks) 1.602
2. Trapezium rule. $y=8-2^{x-1}$ in the interval $[0,4]$ with 4 trapeziums

2 a) (1 mark) 7
b) (3 marks) 20.75
c) (2 marks) 5.75
3. Circle centred at $(7,8)$. Find the equation of it and of a tangent at point $(10,13)$
3 a) (2 marks) $\sqrt{34}$
b) $\left(3\right.$ marks) $(x-7)^{2}+(y-8)^{2}=34$
c) (4 marks) $3 x+5 y-95=0$
4. where $f x=6 x^{3}+13 x^{2}-4$ find the remainder when divided by $(2 x+3)$ then factorise it fully given $(x+2)$ is a factor.
4 a) (2 marks) 5
b) (2 marks) $f(-2)=0$
c) $(4$ marks $) f(x)=(x+2)(3 x+2)(2 x-1)$
5. Expansion of $(2-9 x)^{4}$. The using that expand $(1+k x)(2-9 x)^{4}$ in the form $A-232 x+B x^{2}$ given the coefficient of x
5 a) (4 marks) $16-288 x+1944 x^{2}$
b) (1 mark) 16
c) $(2$ marks $) \frac{7}{2}$
d) (2 marks) 936
6. $1-2 \cos \left(\theta-\frac{\pi}{5}\right)=0$ solve for θ and $4 \cos ^{2} x+7 \sin x-2=0$

6 i) (3 marks) $\frac{8 \pi}{15}$ or $\frac{-2 \pi}{15}$
ii) (6 marks) 345.5° or 194.5°
7. This was $\int\left(3 x-x^{\frac{3}{2}}\right) d x$ and then find the limits (where it crossed the x axis.
7 a) (3 marks) $\frac{3}{2} x^{2}-\frac{2}{5} x^{\frac{5}{2}}+c$
b) $(3$ marks $) 24.3$
8. $\log _{3}(3 b+1)-\log _{3}(a-2)=-1$, write b in terms of a then find x given $2^{2 x+5}-7\left(2^{x}\right)=0$.
8 i) (3 marks) $b=\frac{a-5}{9}$
ii) (4 marks $)-2.19$
9. Find optimum perimeter of a funny shape which comprised a rectangle, sector and a equilateral triangle, need diagram.

Image by Cake_Chan Equations given, that needed proving are,
$y=\frac{500}{x}-\frac{x}{24}(4 \pi+3 \sqrt{3})$ and $P=\frac{1000}{x}+\frac{x}{24}(4 \pi+36-3 \sqrt{3})$
9 a) (2 marks) $\frac{\pi x^{2}}{3}$
b) (3 marks) proof of the $y=$ equation
c) (3 marks) proof of the $p=$ equation
d) (5 marks) $x=16.63 P=120 \mathrm{~m}$
e) (2 marks) $f^{\prime \prime} x=0.437>0 \therefore$ is a minimum at x

