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ABSTRACT 

Ismant el-Kharab (ancient Kellis) is an archaeological site in the Dakhleh 
Oasis, Egypt, which dates from the late Ptolemaic to the late Roman period. 
Previous studies of skeletal material from Kellis and other oasis sites suggest 
that the ancient population of the Dakhleh Oasis was largely homogenous 
and inbred as a result of geographic isolation. Archaeological and textual 
evidence however, indicates a record of contact with the Nile Valley and 
regions further afield since the Neolithic. In order to test these apparently 
conflicting narratives, descriptive and multivariate statistical methods are 
employed in an analysis of heritable dental morphological variants in 186 
individuals from Kellis. Variation in dental morphological trait frequencies are 
commonly used in biological distance studies to assess phenetic 
relationships between groups. The present study has two main components: 
1) an intra-cemetery assessment of inter-sex and inter-group morphological 
variation in order to identify related individuals within the Kellis 2 cemetery 
and provide evidence for post-marital residence patterns; and 2) an inter-
regional comparison between the Kellis skeletal assemblage and groups 
from Egypt, Nubia, North and Sub-Saharan Africa in order to place the 
ancient Dakhleh Oasis population within a broader regional context.  
 
The results of the intra-cemetery analysis demonstrate low levels of inter-sex 
phenetic variation consistent with an isolated and possibly interbred 
population. Spatial analysis within the Kellis 2 cemetery has tentatively 
identified one area containing individuals with distinctive dental trait 
frequencies. This may indicate a kin-structured area of the cemetery, or 
alternatively, an area reserved for individuals who are not native to the 
Dakhleh Oasis. The results of the inter-regional comparison of trait 
frequencies demonstrate an overall affinity with North African populations, 
especially with several early Upper Egyptian and contemporary Lower 
Nubian groups. Despite these similarities, however, the Kellis assemblage 
remains relatively distinct in relation to the comparative groups. This is 
consistent with a geographically isolated population experiencing limited 
gene-flow. 
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Chapter 1 

Introduction 

 

The aim of the present study is to examine biological variability within a late 

Roman period cemetery (Kellis 2) in the Dakhleh Oasis, Egypt, through the 

observation of hereditary morphological dental traits. Additionally, the Kellis 

assemblage will be compared with dental trait data for other Egyptian sites 

and for non-Egyptian populations within a broader regional context. The 

burials derive from the site of Kellis (modern Ismant el-Kharab), a large town 

in existence from the Ptolemaic through to the late Roman period (Hope 

2001). As part of a larger program of ongoing bioarchaeological research in 

the Dakhleh Oasis, the present study will contribute significantly new and 

complementary data to the biological analysis of this ancient population. By 

virtue of its size and exceptional preservation, the Kellis skeletal assemblage 

is an ideal assemblage for studies of this kind. In addition, the geographically 

isolated nature of the Dakhleh Oasis and its population provides an excellent 

opportunity for assessing gene flow between the Western Desert, the Nile 

Valley and beyond. The present study has two main components: 1) an 

intracemetery analysis of biological variation between Late Roman 

individuals within Kellis; and 2) an intercemetery analysis of biological 

variation between the Kellis assemblage and comparative assemblages 

within a wider regional context. 

 

Based on previously conducted analyses of the Kellis skeletal assemblage 

(c.f. Molto 2002), the organization of the Kellis 2 cemetery appears to 
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represent familial groupings. The work of Corrucini and others (e.g. Corrucini 

1998; Corrucini and Shimada 2002; Fix 1993; Howell and Kintigh 1996) 

suggests that kin-groups are likely to share more hereditary skeletal and 

dental morphological traits than non kin-group members. Additionally, other 

researchers have used morphogenetic traits to analyze intracemetery 

variation between males and females relating to postmarital residence 

patterns (e.g. Schillaci and Stojanowski 2003; Konigsberg 1988). An analysis 

of inter-sex and inter-group spatial variation of dental morphological traits 

within the Kellis 2 assemblage is aimed at addressing these issues. 

 

While the Dakhleh Oasis has cultural associations with the Nile Valley and 

regions further afield which date back to the Neolithic, the biological 

relationships between the inhabitants of the oasis and other North African 

populations is not well understood. Comparisons with regional groups are 

undertaken in order to assess the Kellis assemblage’s biological affinities. As 

such, the present study aims to test the following hypotheses: 

 

1. Phenotypic variability between Kellis males and females will indicate 

post-marital residence status, whereby one sex is more mobile 

(marrying into the community from elsewhere) and the other stationary 

(resident to the community from birth).  

 

2. Burials located closer together will share more dental traits than those 

located further apart. Such clustering of dental traits will represent kin 

group burial areas within the Kellis 2 cemetery. 
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3. The Kellis assemblage will share genotypic/phenotypic features with 

Nile Valley groups as a result of cultural, political and economic ties 

between the two regions beginning in the Neolithic period. 

 

4. The Kellis sample will contain a Nubian/Sub-Saharan 

genotypic/phenotypic component as a result of north-south gene flow. 

 

1.1 Materials and methods 

The first systematic archaeological exploration of Kellis began in 1981 by 

members of the Dakhleh Oasis Project (Knudstad and Frey 1999). Early 

work focused on the survey and mapping of the entire settlement; later, test 

excavations of prominent architectural remains such as churches and 

temples were carried out (Knudstad and Frey 1999). Mortuary complexes 

associated with Kellis were found within the town itself, and in cemeteries 

immediately northwest (Kellis 1) and north (Kellis 2) of the townsite (Birrell 

1999; Hope and McKenzie 1999; Knudstad and Frey 1999). Human remains 

from Kellis 1 were interred in rock-cut tombs dating to the Ptolemaic and 

Early Roman Periods, while the Kellis 2 burials and others recovered from 

within the settlement are associated with the Late Roman Period, between 

300 and 400 AD (Molto 2001). The Kellis 1 burials are clearly interred in the 

mortuary tradition of the Late Pharaonic Period (i.e. mummification, 

elaborate wrappings and cartonnage, ample grave goods), with up to 33 

individuals occupying a single tomb (Molto 2001:84). The townsite burials 

and the Kellis 2 cemetery, however, represent a departure from traditional 
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Pharaonic Egyptian burial practice. Burials consist of simple east-west 

extended inhumations with minimal grave inclusions and little evidence for 

mummification, all of which are indicative of early Christian burial practices 

(Birrell 1999; Hope and McKenzie 1999; Molto et al. 2003).  

 

Because the majority of burials from Kellis 1 are mummified (n=44), and 

many of them from disturbed contexts (Molto 2001), they are unsuitable for 

dental morphological analysis as this would require invasive action to access 

the teeth. They are not, therefore, included in the present study. The majority 

of the burials employed in the present study derive from the Kellis 2 

cemetery, which has yielded 701 individuals to date. Of an estimated 3000 to 

4000 burials, this represents between 18 to 23% of the total cemetery 

population (Molto 2002). At the time of data collection for the present study 

(2003-2004), 581 individuals had been excavated and were available for 

study. Of these, however, observations of the permanent dentition could only 

be made on 172 individuals, due to the number of juveniles and older adults 

which make up a sizeable proportion of the assemblage. With the addition of 

14 contemporaneous individuals from tombs within the Kellis settlement 

itself, the total number of individuals used in the present study rises to 186. 

 

In order to assess the biological relationships between individuals within the 

late Roman Kellis skeletal assemblage, observation and scoring of 30 

permanent dental morphological (or nonmetric) traits has been conducted. 

Various studies have demonstrated that dental morphology is influenced by 

the microevolutionary forces of admixture (e.g. Turner 1969), mutation (e.g. 
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Morris et al. 1978), genetic drift (e.g. Turner 1969; Scott and Dahlberg 1982), 

and selection (e.g. Dahlberg 1963; Scott and Turner 1988). The underlying 

assumption in all non-metric trait analyses is that trait expression, or 

phenotype, will approximate the underlying genotype, and thus allow for the 

delineation of biological relationships within and between groups (Schwartz 

1995).  

  

Previously conducted analyses on portions of the Kellis skeletal assemblage 

have demonstrated spatial concentrations of certain hereditary nonmetric 

cranial traits (accessory optic canal, trochlear spur, metopism, and fronto-

temporal articulation) within the site which have been interpreted as 

evidence for familial ties (Molto 2001). In addition, Henderson’s (1993) study 

of craniometric data from Kellis and other sites within the oasis is suggestive 

of a largely homogeneous population with limited inter-regional gene flow. 

The high occurrence of spina bifida occulta in the oasis is another indicator 

of an inbred, isolated population (Parr 2002). In contrast to the picture of a 

remote, isolated population, however, is archaeological and textual data 

which indicate extensive links between the oasis and the Nile Valley during 

the Greco-Roman period (Gardner et al. 1999; Mills 1999; Worp 1995), 

which would have provided ample opportunity for the exchange of peoples 

as well as goods. This is borne out by a preliminary analysis of mitochondrial 

DNA sequences derived from a small subset of the Kellis 2 skeletal sample, 

which demonstrates high levels of maternal genetic diversity (Parr 2002).  
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In order to help address these apparently conflicting results, dental 

morphological data for the Kellis assemblage will be compared with 

comparative groups from Egypt, Nubia, North Africa and Sub-Saharan 

Africa. The aim is to identify those groups which share the closest phenetic 

relationships with the Kellis assemblage. 

 

1.2 Significance of the present study 

Ongoing research has revealed important new information on the cultural, 

political and economic relationships between the Dakhleh Oasis and the Nile 

Valley. The biological relationships between the oasis and its neighbours, 

however, remain unclear. Who were the people of the Dakhleh Oasis? Does 

the population expansion witnessed during the Roman period represent the 

influx of newcomers to the oasis, or a natural increase resulting from 

improvements in irrigation techniques? The addition of dental morphological 

trait frequencies for the entire Late Roman Kellis assemblage will help to 

address these questions by providing complementary data to compare with 

the previously conducted skeletal and mitochondrial DNA studies. By 

assessing inter-sex levels of biological variability within the Kellis 

assemblage, the present study will also contribute to an assessment of 

postmarital residence patterns, another important factor in evaluating the 

biological structure of the ancient Dakhleh Oasis population and their 

relationships to the wider region. 
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Chapter 2 

The Culture-history of the Dakhleh Oasis, Egypt 

 

2.1 Geography and environment 

The Dakhleh (English: Inner) Oasis is one of the five principal oases located 

in the Western Desert of Egypt, and situated approximately 550 km south-

southwest of Cairo at roughly the same latitude as Luxor in the Nile Valley 

(Figure 2.1). Like the other oases in the Western Desert (Siwa, Bahariya, 

Farafra and Kharga), Dakhleh is essentially a large depression in the desert 

floor covering an area between 3000 and 2000 km2 of flat, clay plain, 

bounded to the north by a steep limestone escarpment (Figure 2.2). The 

southern, western and eastern boundaries of the oasis are less distinct, as 

the gradually rising floor of the depression disappears beneath the shifting 

sand dunes of the surrounding desert. It is roughly 60 km long from east to 

west, and a maximum of 25 km from north to south (Kleindienst et al. 1999). 

Dakhleh’s nearest neighbour is Kharga Oasis, located roughly 120 km to the 

east, followed by Farafra Oasis, approximately 200 km to the northwest. In 

ancient times, the Dakhleh and Kharga Oases were often collectively 

referred to as the Great Oasis (Oasis Magna) and this is mirrored today in 

the Egyptian government’s designation of the region as “The New Valley” 

(Arabic: El-Wadi el-Gedid). 

 

The oases of the Western Desert are made habitable through access to 

water, although this access derives not from the skies, in the form of 

precipitation, but rather from below. Lying deep beneath much of the 
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Western Desert is one of the largest groundwater reserves in the world 

(Schild and Wendorf 1977). This massive underground reservoir, which 

forms part of the basal stratigraphic unit known as the Nubian Formation, 

consists of several deep water-bearing sandstone strata which are overlain 

by impervious shale beds nearer the surface. These shale strata essentially 

seal the water within the porous sandstone; it is only in the oasis 

depressions, often more than 100m below the desert plateau level, that 

these vast reservoirs are near enough to the surface to escape via artesian 

pressure through cracks in the shale bed (Giddy 1987). These natural spring 

mounds or vents would have attracted and sustained a variety of flora and 

fauna, including humans. Evidence for rudimentary well-digging has been 

identified in Dakhleh as far back as the Palaeolithic (Schild and Wendorf 

1977), and by the 5th century AD, historian Olympiodorus of Thebes noted 

that the oasis dwellers of the Western Desert were skilled  in drilling for 

water (Wagner 1987).  

 

With the arrival of immigrants from the Nile Valley over 4000 years ago, 

agriculture has been the primary source of subsistence for the oasis 

peoples. In this system, ground water is collected by farmers in basins at 

spring mounds or bore holes and distributed through a series of elaborate 

irrigation canals and ditches for the cultivation of crops such as rice, 

sorghum, and wheat (Mills 1999). Techniques for crop cultivation and 

irrigation remain essentially unchanged from this time onwards, even into the 

modern era (Mills 1999).  
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Within the oasis, there are two distinct zones of cultivation and habitation, 

the existence of which can be attributed to the location of water sources 

(Figure 2.2). The larger of the two zones takes up most of the western and 

central portion of the oasis stretching from Mahoub to Ismant; the smaller 

eastern zone is centred around the villages of Balat, Bashendi and Teneida. 

The two areas are separated by approximately 15km of arid desert. The 

majority of ancient settlement sites in Dakhleh are located within these two 

zones, meaning that little has changed in terms of access to water sources 

over the last 4000 years.  

 

The Dakhleh Oasis is linked to neighbouring oases, the Nile Valley and 

beyond through a network of caravan routes which traverse the Western 

Desert of Egypt. Many of these routes are extremely ancient and provided 

the inhabitants of the isolated oases with a connection to the outside world 

and a means to obtain goods and materials which were not readily available 

locally (Darnell 2002; Kuper 2002). These routes also served as conduits for 

the flow of people and ideas.  

 

The Darb el-Tawil (English: The Long Road) is the only route which provides 

a direct link between the Dakhleh Oasis and the Nile Valley. It runs from the 

northeast corner of the oasis and reaches the Nile Valley at Manfalut near 

Assyut in Middle Egypt. Archaeological evidence attests to its use as far 

back as the Old Kingdom, although it was probably in use much earlier 

(Giddy 1987).  
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The Dakhleh Oasis is connected to Kharga Oasis to the east by two routes, 

the Darb ‘Ayn Amur (English: Road of the Lovely One), and the Darb el 

Ghubari (English: The Dust Road). Several routes leading from Kharga 

connect the oases with the Nile Valley at Abydos to the northeast, and Upper 

Egypt and Sudan to the south via the Darb el-Arbein (English: The Forty 

Days Road). In Pharaonic times these routes were important trade corridors 

for the exchange of goods between Egypt, Sudan, Libya and Central and 

Western Africa. During the Roman Period, the Darb el-Arbein was dotted 

with military forts in order to protect trade and control access to Egypt during 

periods of unrest and foreign incursion (Giddy 1987). Other routes from 

Dakhleh include the Darb el-Farafra and Darb Abu Minqar, which lead to 

Farafra Oasis to the northwest, and the Abu Ballas Trail, which leads 

southwest to the Gilf Kebir and possibly beyond to Gebel Uweinat and 

northern Sudan, and the Libyan oasis of Kufra to the west (Förster 2007; 

Kuper 2001). 

 

2.2 Human occupation in the Dakhleh Oasis 

2.2.1 Prehistory 

Archaeological evidence for the earliest human occupation of the Dakhleh 

Oasis dates back to the Paleolithic, appearing in the form of Upper 

Acheulian lithics between ca. 350,000 and 400,000 years BP (Schild and 

Wendorf 1977; Kleindienst 1999). During the Late Pleistocene (ca. 60,000 to 

11,000 years BP), at the height of the Würm glacial maximum, the Saharan 

Western Desert was gripped by a period of increased aridification (Wiseman 

1999). Based on these climatological data, in association with archaeological 
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evidence, many scholars have argued for an occupational hiatus throughout 

the Western Desert during this period (Close and Wendorf, 1992; Schild 

1987). New evidence based on lithic technologies, however, suggests that 

this was not necessarily the case for the region in and around the Dakhleh 

Oasis, instead supporting the opinion that humans may have continued to 

occupy at least some areas of the Western Desert during the Late 

Pleistocene (Wiseman 1999). 

 

Based on sedimentological, archaeobotanical, and zooarchaeological 

evidence, the Western Desert appears to have been a more habitable 

environment during the onset of the Holocene wet period, ca. 11,000 years 

BP (McDonald 1998, 1999). During this time, the region is characterized as a 

semiarid or savannah environment with higher rainfall levels and a wider 

variety of fauna than is known today; brief climatic fluctuations between dry 

and wet phases occurred throughout the first half of the Holocene epoch, 

however (Churcher 1999; McDonald 1998).  

 

Three distinct late prehistoric indigenous cultural units have been 

distinguished for the early Holocene period of the oasis region: the Masara, 

from the early ninth millennium BC, the Bashendi, ca. 7500–5500 years BP, 

and the Sheikh Muftah, which appears to overlap with both the Bashendi unit 

and the later occupation of the oasis by peoples from the Nile Valley during 

the Old Kingdom (Hope 2002; McDonald 1998). These three cultural units 

are characterized by increasing sedentism and an increasingly centralized 

focus on activity within the oasis region itself; Masara sites occur mainly on 
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the fringes of the oasis, Bashendi sites are found both within and beyond the 

oasis, while Sheikh Muftah sites occur almost exclusively within the oasis 

itself (McDonald 1999). This changing settlement pattern appears to coincide 

with a period of aridification that characterizes the end of the early to mid-

Holocene wet phase, rendering the desert region increasingly uninhabitable 

(Hassan 1986; McDonald 1999; Wendorf and Schild 1980). By the period of 

the Bashendi and Sheikh Muftah cultures, the oasis would have become a 

permanent refuge for displaced fauna and humans alike, with environmental 

conditions remaining relatively stable into the present day (Churcher 1999). 

While little is yet known about the subsistence patterns of the Masara unit, 

the Neolithic Bashendi and Sheikh Muftah cultures appear to have been 

cattle-herding pastoralists (McDonald 1998, 1999). In an analysis of 

imported ceramic types found at Bashendi and Sheikh Muftah sites in the 

oasis, Hope (2002:52) sees evidence of far-reaching contact between the 

inhabitants of Dakhleh and the Nile Valley, as well as regions to the west, 

south and southeast. 

 

2.2.2 Pharaonic Period 

While evidence of contact between the Western Desert and the Nile Valley 

appears to date as far back as the early and mid Holocene (Hope 2002), the 

earliest indications of contact between the Dakhleh Oasis and the nascent 

Pharaonic civilization occur in the Archaic Period (ca. 2920-2650 BC) in the 

form of imported Nile Valley ceramic types (Hope 1980). It is not until the late 

VI Dynasty (ca. 2300 BC), however, that evidence for permanent, settled 

habitation by Pharaonic Egyptians occurs within the oasis near the modern 



24 
 

village of Balat, where a large Late Old Kingdom/First Intermediate Period 

settlement (‘Ayn Asil) and mortuary complex (Qila’ el Dabba) has been 

extensively excavated by the French mission (IFAO) since 1977 (Osing et al. 

1982; Valloggia and Henein 1986). The settlement appears to have been the 

administrative capital of the oasis for the period in question; this is borne out 

by the discovery of fortified installations and large-scale buildings (Giddy 

1987). Complex political organization and social stratification are evident in 

the funerary inscriptions and large mastaba tombs at Qila’ el Dabba 

(Valloggia and Henein 1986). Subsequent surveys by the Dakhleh Oasis 

Project have discovered smaller Late Old Kingdom and First Intermediate 

Period sites in the oasis (Mills 1979, 2002, 2003), but the complex near Balat 

remains the largest and best excavated (Mills 1999). Abandonment of the 

sites near Balat appears to have occurred by the end of the First 

Intermediate Period (Giddy 1987) and probably coincides with the 

disintegration of the Pharaonic state at the end of the Old Kingdom. 

 

During the Middle Kingdom through to the Late Period (ca. 2040-332 BC), 

archaeological evidence for Pharaonic Egyptian activity in the oasis is 

sparse in comparison with the preceding periods (Giddy 1987; Mills 1999). 

The site of Mut el-Kharab, in the central oasis region, contains the only 

large-scale evidence for an Egyptian presence until the Ptolemaic period, 

although a number of satellite sites and cemeteries are known throughout 

the oasis (Mills 1979, 1999). Another source of evidence for contact with the 

Nile Valley during this time exists in the form of two Pharaonic stelae which 

were recovered from the oasis at the end of the 19th century and now in the 
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possession of the Ashmolean museum in Oxford. The first dates to the 22nd 

Dynasty and records the visit of a governor, a relative of the Pharaoh, to 

settle a dispute over water rights during a period of war and turmoil 

(Gardiner 1933:22); such a visit implies an ongoing political connection to 

the Nile Valley. The second stela, dating to the 25th Dynasty, makes 

reference to the presence of Libyan tribes in the oasis (Janssen 1968). An 

explanation for the lack of a strong Pharaonic presence in the oasis during 

the first and second millennia BC remains tentative, especially as Nile Valley 

sources continue to make mention of contact and trade with the oases of the 

Western Desert, particularly during the New Kingdom (Giddy 1987; Hope 

2002; Redford 1976). It may be that sites dating to these periods have yet to 

be discovered. 

 

2.2.3 Greco-Roman Period 

It is not until the Ptolemaic and Roman Periods (ca. 332 BC – 323 AD) that 

the Dakhleh oasis witnesses a period of renewed contact with the Nile Valley 

(Mills 1999; Worp 1995), and it is from these periods that the majority of 

archaeological sites derive (Mills 1999). This period of re-integration with the 

Egyptian state may be due, in part, to the introduction of the camel as a pack 

animal in the first millennium BC (Bulliet 1975; Rowley-Conwy 1988). The 

domesticated camel greatly facilitated travel and trade between the desert 

oases, the Nile Valley and beyond. Despite these improvements, however, 

textual data recovered from Kellis indicate that while travel between the 

oasis and the Valley occurred regularly, the journey was still considered long 

and arduous (Gardner et al. 1999:12). 
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During the Ptolemaic and Roman Periods, foreign trade became a central 

feature of Egyptian economic policy. The introduction of a monetary system 

by Alexander the Great greatly facilitated trade with other regions of the 

Mediterranean and beyond (Bowman 1986). In this period the number of 

goods imported and exported from Egypt increased dramatically, as did the 

geographical range within which these exchanges took place (Bagnall 1993; 

Bowman 1986). In addition, the Egyptian state became increasingly reliant 

on foreigners to fill the ranks of its military. Ptolemy I recruited a large 

number of Greeks and Macedonians, settling them along the Nile as farmers 

and herders but ready to be called upon in times of war (Bevan 1968). The 

practice of foreign recruitment continued into the Roman Period with the 

establishment of military garrisons at strategic locations throughout Egypt, 

although the army appears to have relied less on foreigners as a source of 

manpower after the 2nd century AD (Alston 1995). 

 

As a result of improved irrigation techniques introduced during the Ptolemaic 

Period (Bowman 1986), the amount of arable land in the oasis was 

dramatically increased (Thanheiser et al. 2002). Such improvements led to a 

profusion of new settlements, especially during the Roman Period when 

intensified agricultural practices aimed at boosting exports led to a dramatic 

increase in population levels throughout Egypt (Bagnall and Frier 1994; Mills 

1984). Commodities produced for export in the Dakhleh Oasis include dates 

and olives (Bagnall 1997; Wagner 1987). Mills (1984) has speculated that 

government incentives may have been introduced at this time to encourage 



27 
 

new migrants to the oasis. Large Roman Period settlements, cemeteries and 

field systems occur throughout the oasis and are preserved to a remarkable 

degree by the accumulation of windblown sands (Mills 1979, 1999). One 

such settlement, Kellis, has been the focus of continued excavation by 

members of the Dakhleh Oasis Project since 1986 (Knudstad and Frey 

1999).  

 

2.3 Ancient Kellis (Ismant el-Kharab) 

The ancient village of Kellis (Greek: Κελλις; Arabic: Ismant el-Kharab), 

located in the south-central area of the Dakhleh Oasis (Figure 2.2), dates 

from the Late Ptolemaic through to the Late Roman period and was an 

important centre for commerce, politics and religion (Hope 1995, 2001). 

Several large religious complexes, bath houses, administrative buildings and 

field systems (Figure 2.3), in addition to a wealth of artifactual and textual 

data, attest to the relative affluence and self-sufficiency of this community 

(Bagnall 1997; Bowen 2002; Hope 1995, 2001; Knudstad and Frey 1999; 

Gardner 1996). During the early 4th century AD, the emergence of a sizeable 

Christian community at Kellis is demonstrated by the construction of several 

purpose-built church complexes (Bowen 2002), textual data (Gardner 1996), 

and by the establishment of new mortuary sites (Figure 2.4) wherein burial 

customs deviate substantially from those of the traditional Pharaonic Period 

(Birrell 1999; Bowen 2003). Estimates of the maximum population size at 

Kellis range from between 1000 and 1500 persons (Molto 2002). 

Archaeological evidence suggests the site was abandoned at the end the 4th 

century AD, possibly as the result of increased salination and sand dune 
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action which would have made continued occupation and agricultural activity 

untenable (Hope 2001; Knudstad and Frey 1999). Following the Late 

Roman/early Byzantine Period, the population of the Dakhleh Oasis seems 

to have declined until the modern era (Mills 1999).  

 

2.4 Kellis mortuary sites 

2.4.1 Pagan (pre-Christian) tombs 

The earliest burials at Kellis are found in a series of chamber tombs which 

riddle the low rising hills northwest of the settlement. This mortuary complex 

is known as Kellis 1. The tombs contain burials dating to the Late Ptolemaic 

and Early Roman periods, as evidenced by mortuary practices which adhere 

to standard Late Pharaonic traditions, i.e. mummification, cartonnage, 

iconography and grave goods (Birrell 1999; Molto 2001). The tombs appear 

to have been used for successive inhumations, as later burials were often 

placed on top of earlier ones; loose and disturbed human remains were also 

pushed aside in order to make room for new inhumations (Birrell 1999). A 

total of 44 individuals have been recovered from 15 tomb chambers. Most of 

the tombs and some of the mummies contained within show evidence of 

disturbance at some point in the past (Molto 2001).  

 

2.4.2 Christian tombs and cemeteries 

Burials pertaining to the Christian period are found in two locations at Kellis. 

The first are the so-called “townsite” burials which have been discovered in 

several locations on the settlement perimeter. North Tombs 1 and 2 are a 

series of large mudbrick mausolea located on the northwestern edge of the 
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settlement. The construction of the North Tombs dates to the Early Roman 

period (1st - 2nd century AD), but the burials recovered in situ appear to follow 

Christian mortuary practices, thus suggesting re-use in the Late Roman 

period (Hope 2003). Highly disturbed skeletal remains were recovered from 

both tombs; these remains likely represent the original occupants of the 

tombs who were disinterred during its re-use, as well as some Christian 

burials disturbed more recently (Hope 2003). The minimum number of 

individuals is 31 for North Tomb 1, and 23 for North Tomb 2 (Dupras and 

Tocheri 2003). Eleven Christian burials dating to the fourth century AD have 

also been recovered from several tombs in areas D/6 and D/7 located on the 

western perimeter of the settlement in association with a church complex 

(Hope and McKenzie 1999; Hope 2003; Molto et al. 2003).  

 

The second, and largest, source of Christian-era burials is the Kellis 2 

cemetery, located to the northeast of the settlement. Since 1992 when 

systematic work in the cemetery began (Birrell 1999), 701 individuals have 

been excavated and recorded. Based on surveys and test excavations, the 

cemetery appears to cover an area of approximately 9000m2, comprising an 

estimated 3000 to 4000 burials (Molto 2002). Thus, the current excavated 

skeletal assemblage represents approximately 18 to 23% of the total 

cemetery population. The burials consist of simple rectangular pits dug into 

the bedrock at an average depth of 1.3m (Birrell 1999). All burials are 

oriented east-west, with the head to the west. Slight deviations from this 

orientation do occur and appear to represent seasonality in the timing of 

interments (Williams 2008). In terms of grave construction, three distinct 
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types of burial are observable. The first and most elaborate consists of a 

vaulted mudbrick ceiling which begins approximately 35cm above the floor of 

the grave and terminating at surface level. The grave is then covered with a 

mudbrick mastaba superstructure. The second type consists of a rectangular 

pit with sides sloping towards the floor. Grave fill is deposited directly onto 

the body and sealed with a false mudbrick floor which is again covered by a 

mastaba superstructure. The third type consists of a simple pit, the fill of 

which is covered by a low earthen mound coated in gypsum. The presence 

of some type of grave superstructure, however minimal, seems to have 

prevented earlier burials from disturbance by later interments as there is no 

evidence for overlapping grave cuts, even within areas of densely packed 

graves. Several large mudbrick tomb enclosures containing males, females 

and juveniles in separate graves have also been identified and may 

represent family groups (Birrell 1999; Bowen 2003). 

 

The burials are all single interments, with the exception of grave 92, which 

contained the bodies of two infants (Birrell 1999). Bodies were wrapped in a 

linen shroud, secured by ties and deposited directly onto the floor of the 

grave pit in a supine position, with the hands to the side of the body or 

across the pelvic region (Birrell 1999). There appears to have been no 

attempt to mummify the dead in the typical Pharaonic manner (Birrell 1999), 

although what appears to be natural resins and other, as-yet unidentified, 

materials have been found adhering to the bones of some individuals. Burial 

goods are minimal and, where found, consist of beads, a re-used glass 

vessel, an occasional ceramic bowl, and rosemary and myrtle sprays 
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(Bowen 2003). In some cases, broken ceramic pots were placed over the 

body (Birrell 1999). Nearly 65% of the individuals recovered from Kellis 2 are 

juveniles, with infant burials occurring throughout the cemetery; their graves 

consisting of shallow pits oriented on an east-west axis (Birrell 1999). Based 

on these mortuary practices, the cemetery appears to be that of an early 

Christian community (Birrell 1999; Bowen 2003; Davies 1999). Multiple bone 

samples from Kellis 2 individuals were submitted to IsoTrace Laboratory at 

the University of Toronto where human bone collagen was extracted for 

accelerated mass spectrometry (AMS) radiocarbon dating; the results 

suggest the cemetery was in use between 50 and 450 AD (Stewart et al. 

2003; Molto et al. 2006). This is disputed by archaeological evidence (e.g. 

ceramic typologies), however, and the fact that separate cemeteries for 

Christians do not appear in the Mediterranean world until the third century 

AD (Bowen 2003; Hope 2001). This discrepancy between the radiocarbon 

dates and archaeological evidence has yet to be resolved satisfactorily, 

despite testing and re-testing of the multiple bone samples. 

 

2.5 Previous osteological research in the Dakhleh Oasis 

The earliest studies of archaeological skeletal material from Dakhleh emerge 

from the French excavations near Balat in the eastern part of the oasis. 

Tadeusz Dzierżykray-Rogalski, a Polish anthropologist, published a series of 

brief papers analyzing the human remains from Old Kingdom, Late Period 

and Ptolemaic sites excavated since 1977 under the direction of the Institut 

Français d'Archéologie Orientale (IFAO). These reports deal mainly with 

observed pathological conditions, both skeletal and dental (Dzierżykray-
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Rogalski 1979a,b, 1981; Dzierżykray-Rogalski and Szlatchetko 1980), as 

well as basic demography (Dzierżykray-Rogalski 1978). The authors have 

argued based on the skeletal evidence that the Old Kingdom remains show 

greater signs of physiological stress than those of the later periods 

(Dzierżykray-Rogalski 1980, 1981).  

 

Of particular interest to the present study are two reports which deal with the 

“racial” classification of the skeletal remains (Dzierżykray-Rogalski 1980; 

Dzierżykray-Rogalski 1983). Here, the Old Kingdom remains are described 

as belonging to an Eastern Mediterranean type with Berber additions 

(Dzierżykray-Rogalski 1983:313), while the Late Period and Ptolemaic 

remains are characterized as Europoid or Caucasian (Dzierżykray-Rogalski 

1980:72; Dzierżykray-Rogalski 1983:313). The author states that these 

skeletal remains probably represent an elite ruling class with ethnic origins 

outside the oasis: “since it is well known that the southern Oases of Egypt 

were inhabited by a Negroid population” (Dzierżykray-Rogalski 1980:72). 

Despite this claim, however, no references are provided to support this 

assertion, and the means by which Dzierżykray-Rogalski characterizes the 

Balat skeletal material are not clearly described. His assessments appear to 

be based on cranial morphology: in an analysis of a skull from Mastaba V 

(Old Kingdom), he characterizes the individual as belonging to a 

“variété blanche” with a small component of “variété noire” based on the 

position of the articular surface of the mandibular heads (Dzierżykray-

Rogalski 1979b:482). In current practice, this would not be considered a valid 

method for determining biological ancestry. Assigning individuals to broad 
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typological categories such as “Europoid” or “Negroid” based on a visual 

assessment of cranial morphology can only provide a very crude 

approximation of population affinity and does not take into account the 

significant amount of variation that occurs within populations. At any rate, it is 

not the aim of the present study to assign the Kellis skeletal assemblage to a 

“Caucasoid” or “Negroid” typology. This sort of essentialist taxonomy is no 

longer considered a valid approach to the study of human variation (Ousley 

et al. 2009; Relethford 2009). More importantly, the phenotype of a particular 

ancient population is unlikely to correspond to any of the socially-constructed 

racial archetypes of our modern era. Nor would ancient peoples likely 

recognise themselves within such archetypes.  

 

Lastly, Promiñska (1981) compared average stature and life expectancies 

between the Late and Ptolemaic period individuals at Balat. While average 

age-at-death was estimated to be 3.5 years higher in the Ptolemaic 

assemblage, average height (using the methods of Trotter and Gleser 1952, 

1958) was 6cm lower than the Late Period assemblage. Because of the 

higher average age-at-death, Promiñska rejects a lower “niveau de vie” 

(standard of living) as a cause of reduced stature in the Ptolemaic group; 

instead she proposes ethnicity as an explanation for the differences, with the 

shorter Ptolemaic era individuals perhaps being Greek in origin (Promiñska 

1981:279). As with Dzierżykray-Rogalski above, this type of analysis belongs 

to an older and outmoded era of physical anthropology and would not be 

considered a valid method of assessing biological variability in human 

skeletal populations. 
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Another oasis site which has produced skeletal material for analysis is ‘Ein 

Tirghi, located 8km southwest of Balat. This large cemetery, excavated 

under the aegis of the Dakhleh Oasis Project (DOP) in the 1980’s, comprises 

a number of rock-cut tombs dating primarily to the Late Period (Frey 1986; 

Molto 2000). A number of studies were conducted on this material, including 

a comparison with the Roman period Kellis burials of cribra orbitalia rates 

and other paleoepidemiological indicators (Fairgrieve and Molto 2000; Molto 

2001). These studies have demonstrated that overall health, as reflected in 

infection and cribra orbitalia rates, among other indicators, improved during 

the Roman period (Molto 2001). Based on similar frequencies of hereditary 

morphological cranial traits, Henderson (1993) and Molto (2001) also argue 

for population continuity and genetic homogeneity between the two 

cemeteries, and by extension the oasis region, throughout the Late and 

Roman periods. The skeletal assemblage from ‘Ein Tirghi would have made 

an ideal comparative collection in the present study, but due to a lack of 

storage space at the time, the remains were reburied after having been 

studied (Molto, personal communication 2002). 

 

The skeletal remains of six individuals dating to the mid-Holocene (late 

Neolithic to Old Kingdom) have been recovered between 1997 and 2000 

(Thompson and Madden 2003). The dating of these individuals is based on 

their association with artifacts linked to the Sheikh Muftah Cultural Unit 

(McDonald 1998, 1999). Five of these individuals were found near Sheikh 

Muftah, a small village in the central oasis region; the sixth individual was 
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recovered near Balat. These remains, though poorly preserved, have yielded 

important information regarding diet, health and environmental stress during 

the Neolithic (Thompson 2008; Thompson and Madden 2003, 2006). 

 

Finally, the substantial collection of burials from Kellis has generated 

numerous studies on a wide range of topics. These include paleopathology 

(Cook et al. 1988; Molto 2000, 2001; Wheeler 2012), paleodemography 

(Dupras et al. 2001; Tocheri and Molto 2002; Tocheri et al. 2005), as well as 

isotopic studies of diet (Dupras 1999; Dupras et al. 2001; Dupras et al. 

2008), migration (Dupras and Schwarcz 2001) and seasonal mortality 

(Williams 2008). Because the majority of individuals recovered from the 

Kellis 1 tombs are mummified, and many are still wrapped, standard 

osteological analyses of these burials have not been carried out. A selection 

of the Kellis 1 mummies has been autopsied, however, and analyses of the 

embalming techniques were conducted (Aufderheide et al. 1999; 

Aufderheide et al. 2004). 

 

Lastly, paleogenetic studies on the Kellis 2 and townsite skeletal 

assemblages have demonstrated spatial concentrations of several hereditary 

nonmetric cranial traits (accessory optic canal, trochlear spur, metopism and 

fronto-temporal articulation) that have been interpreted as evidence for kin-

group burial areas (Kron 2007; Molto 2001). The high occurrence of spina 

bifida occulta at Kellis and other oasis sites has been interpreted as further 

indication of an inbred, isolated population (Molto 2001).  
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In contrast to the picture emerging from osteological analyses, however, is 

archaeological and textual data which indicate extensive links between the 

southern oases and the Nile Valley (Gardner et al. 1999; Worp 1995). While 

texts from Kellis indicate that the inhabitants of the oasis considered 

themselves as separate from Egypt, personal correspondence and receipts 

for economic transactions recovered from several houses indicate that male 

residents of Kellis often travelled to the Nile Valley for work and trade 

(Gardner et al. 1999:13). Close links between the oasis and Middle Egyptian 

centres such as Aphrodite, Antinopolis, Hermopolis and Siaout (modern 

Assyut) are evident in the papyri, with some Kellis males apparently residing 

permanently in the Nile Valley (Gardner et al. 1999; Worp 1995). Such links 

would have provided ample opportunity for the exchange of genes as well as 

goods. This perspective is supported by a preliminary analysis of 

mitochondrial DNA sequences derived from a subset (N=13) of the Kellis 2 

skeletal sample, which appears to demonstrate a high level of maternal 

genetic diversity (Parr 2002). Two isotopic studies also indicate that at least 

eight individuals from the Kellis 2 cemetery came from outside of the oasis 

(Dupras 1999; Dupras and Schwarcz 2001). In light of these previous 

studies, the primary aim of the present study is to explore the biological 

relationships of the Kellis skeletal assemblage to other ancient groups in 

Egypt and beyond, as well as to provide new data for the analysis of kin-

group areas and sex-based differences within the Kellis skeletal 

assemblage. 
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Figure 2.1. Map of Egypt, showing location of Dakhleh Oasis. 

 



38 
 

 

Figure 2.2. Map of Dakhleh Oasis showing location of Kellis in red (Ismant el-Kharab). Grey areas represent areas 
under cultivation. 
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Figure 2.3. Map of Kellis settlement. The Kellis 2 cemetery is located just off this map to the north. The townsite 
burials were recovered from the North Tomb Group located in the upper centre of the map (Reproduced with the 
permission of Dr. Colin Hope). 
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Figure 2.4. Map of Kellis 2 cemetery located northeast of the settlement. 
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Chapter 3 

Dental Morphological Traits and Biological Distance: Methodological 

Background 

 

3.1 Introduction 

Teeth are formed early in life and once their development is complete their 

basic morphology is not subject to the physiological alterations that affect the 

rest of the skeleton in the course of a lifetime. By nature of their structural 

composition, they are a more durable tissue than bone, and thus more likely 

to survive the often harsh conditions of the post-depositional environment. 

As a result, dental assemblages often comprise the majority of material 

available for study by osteologists and archaeologists.  

 

In relation to their size, teeth contain an extraordinary amount of information. 

Studies of the dentition can provide numerous insights into cultural, 

biological and ecological aspects of human behaviour, environments, and 

living conditions in the past, as well as the present. Such insights include 

information on age, sex, dietary practices and health patterns. In addition, 

many hominid phylogenetic theories are based largely on fossilized teeth 

(Kieser 1990; Alt et al. 1998). Because of the ease with which the dentition 

can be observed (in both living populations and archaeological 

assemblages), and of the increasing number of fossil teeth available for 

analysis, evolutionary studies based on the hominid dental variation have 

become increasingly common in the twentieth century and continue into the 

twenty-first century. These studies have focused on two primary aspects of 
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dental variation: tooth shape and tooth size, i.e., dental morphometrics. The 

present study aims to employ the analysis of tooth shape -dental 

morphology- for the purposes of assessing biological relationships within the 

Late Roman period skeletal assemblage at Kellis, as well as its affinities with 

other Egyptian groups and a number of regional populations as well. Before 

presenting the results of the study, however, it is necessary to provide an 

overview of basic dental anatomy and terminology, as well as to review the 

history of dental morphological research and its applicability to the present 

study. Finally, the four hypotheses for the present study are put forward, 

followed by a presentation of the materials analyzed and a critical overview 

of the methodologies employed.  

 

3.2 Structure and function of the human dentition 

Humans, like most mammals, have two sets of dentition during the course of 

their life: the primary or deciduous teeth, which typically begin to emerge one 

year after birth and are retained into late childhood, and the permanent 

teeth, which gradually replace the exfoliated deciduous teeth beginning in 

mid-childhood. The smaller deciduous teeth, whilst performing the same 

functions as that of their successors (i.e. mastication, speech), also act as 

place holders for the larger permanent teeth, allowing the bones of the jaws 

sufficient time to grow in order to accommodate them. The first permanent 

teeth to appear (erupt) are typically the first molars, which emerge in the 

jaws just behind the deciduous premolars around the age of six. By the age 

of 12, the deciduous dentition will normally have been replaced by that of the 

permanent. The entire set of permanent teeth is not complete, however, until 
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late adolescence/early adulthood when the final pair of upper and lower third 

molars, or wisdom teeth, emerge.  

 

Deciduous and permanent teeth are composed of two main regions: a crown 

and a root (Figure 3.1). The crown is the enamel coated portion of the tooth 

which protrudes from the jaw into the oral cavity, whilst the root is anchored 

firmly in the sockets, or alveolae, of the jaw bones. Each tooth, crown and 

root, is comprised primarily of a hard-wearing core of tissue known as dentin. 

The dentin portion of the tooth crown is encased in a thick sheath of dental 

enamel which is the most highly mineralized tissue in the body. This sturdy 

coating provides the durability required for a life’s worth of exposure in the 

mouth. The tooth root does not have an enamel component but is instead 

covered in a thin layer of bone-like cementum. Cementum provides an 

anchor for the periodontal ligament which fastens the tooth root firmly to the 

alveolus. The external boundary between crown and root is known as the 

cemento-enamel junction or CEJ. This area is also known as the cervix or 

neck of the tooth. At the centre of each tooth is a pulp chamber containing 

nerve and blood vessels which lead in through the root tips and provide 

nourishment to the dentin. The tip of each root is referred to as an apex 

(apices, pl.). Unseparated root-like divisions within the primary tooth root are 

referred to as ‘radicals’. 

  

There are four permanent tooth types which are classified according to their 

form and position within the jaws. These types are incisors, canines, 

premolars and molars (Figures 3.2 and 3.3). Incisors and canines, located at 
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the front of the jaw, comprise the anterior dentition, while premolars and 

molars, located at the back of the jaw, are known as the posterior dentition 

or cheek teeth. In the deciduous dentition, there are three tooth types: 

incisors, canines and premolars. Deciduous premolars are sometimes 

referred to as deciduous molars, typically by anthropologists, but from a 

paleontological view the former is considered a more accurate terminology 

as these teeth are replaced by permanent premolars (Hillson 2005).  

 

A standard terminology is employed by dental workers when describing 

specific regions or aspects of the dentition. This helps to orient oneself within 

the dentition, and makes it easily understood when describing morphological 

variation in a specific tooth. The upper (maxillary) and lower (mandibular) 

jaws are often individually referred to as the dental arcade or arch (Figure 

3.4). The two arches may be partitioned into left and right quadrants by an 

imaginary line extending from the front of the jaw through to the back 

(imagine dividing the letter “U” down the middle). This dividing line is called 

the median sagittal plane or midline. Within each dental arcade, the vertical 

aspect of the tooth which faces anterior, or towards the midline, is known as 

the mesial surface. Conversely, the aspect of the tooth which faces away 

from the midline is known as the distal surface. The area between two 

contiguous teeth in the dental arcade is known as the approximal or 

interproximal surface. The lingual surface refers to the side of the tooth that 

faces the inside of the oral cavity, while the outer aspect of the tooth is 

referred to as the buccal (in the case of molars and premolars) or labial (in 

the case of incisors and canines) surface. When the jaws are closed, the 
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portion of the tooth crown that comes into contact with its upper or lower 

opposite is known as the occlusal surface and it is this site that provides the 

cutting and grinding planes required for mastication. The lower section, or 

base, of the crown is called the cervical margin. In this region there may 

occur a prominence or bulge known as the cingulum. In the anterior 

dentition, this cingulur bulge is known as the tuberculum. 

 

The main structural components of the tooth crown are protrusions known as 

cusps which vary in number according to tooth class (i.e. incisor vs. molar). 

Smaller cusplets or tubercles may also occur. Cusps are separated from one 

another by a series of grooves and furrows which, taken together, form the 

topographic landscape of the crown surface. 

 

For the deciduous dentition, each dental quadrant normally comprises two 

incisors, one canine and two premolars, making for a total of twenty teeth. 

For each half of the upper and lower dental arches, this arrangement can be 

expressed in the following dental formula (where di stands for deciduous 

incisors, dc is for deciduous canines, and dp is for deciduous premolars):  

di
2

2
, dc

1

1
, dp

2

2

 

 

In the permanent dentition, each quadrant is typically comprised of two 

incisors, one canine, two premolars, and three molars. Thus, there are 

normally 32 teeth which make up the permanent dentition. The dental 

formula (where I stands for incisors, C for canines, P for premolars, and M 

for molars) for the permanent teeth is: 
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I
2

2
, C

1

1
, P

2

2
, M

3

3
 

 

3.2.1 Description of tooth types 

3.2.1.1 Incisors 

Incisors, the most anterior of the four tooth types, are characterized by their 

spatulate morphology and their incisive occlusal surface. The blade-like 

edge of the incisors is used for cutting and shearing during mastication. 

Within each dental quadrant there are two incisors. The first or central incisor 

is the more mesial of the two, whilst the second or lateral incisor is distal to 

the first. In both the deciduous and permanent incisors, the upper or 

maxillary first incisors are appreciably larger than the second incisors. In the 

lower or mandibular incisors, the first incisor is slightly smaller than the 

second. For both deciduous and permanent teeth, the upper first and second 

incisors are always larger than the lowers. The labial surface of the incisors 

is convex in shape, although more so in upper incisors than lowers, and the 

lingual surface is concave. On newly erupted or unworn incisors, the incisal 

edge contains three to five small cusplets called mamelons, which are 

rapidly worn down once the tooth comes into occlusion. On the lingual 

surface, two ridges run down the mesial and distal margins and meet at the 

cervix, forming the tuberculum on the cingular region (Figure 3.5). These 

marginal ridges are usually more pronounced in the upper incisors than in 

the lowers. In some cases the labial marginal ridges are so pronounced they 

produce a shovel-shaped appearance. This particular form of incisor 

morphology has been demonstrated to cluster along population lines 

(Hanihara 1998, Scott and Turner 1997), and is one of several tooth traits 
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used in the present study. Upper incisors tend to demonstrate more variation 

in form than lower incisors. This is especially true of the upper second incisor 

which is more variable in size and shape than any other tooth, and -after the 

third molars- has the second highest frequency of congenital absence (Scott 

and Turner 1997). Incisors are normally single-rooted teeth whose apices 

are frequently skewed distally. 

 

3.2.1.2 Canines 

As with the incisors, canines are typically single-rooted spatulate teeth with 

marginal ridges on the labial surface. With canines, however, the crown is 

more tubular in shape, with the central third of the occlusal surface forming a 

pointed cusp. Two strongly developed lingual marginal ridges, one mesial 

and one distal, run down from the central cusp; the distal ridge is the longer 

of the two and slightly curved, whilst the mesial ridge is more prominent and 

perpendicular to the jaw line (Figure 3.6). This lends the crown of the canine 

an asymmetrical silhouette when seen from the lingual or buccal aspect. 

This asymmetry helps to differentiate canines from incisors. Canine crowns 

are also taller and have longer roots than incisors. The arrangement of the 

marginal ridges is the same in deciduous and permanent canines, except for 

the deciduous upper canine where their orientation is reversed. In addition, a 

central ridge or buttress runs down the centre of the lingual surface and 

merges with the prominent bulge of the tuberculum in the cingular region. 

Occasionally, the tuberculum may take the form of a small cusplet. 

Permanent lower canines are occasionally two-rooted. A shallow furrow 
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known as the developmental groove runs down the mesial and distal surface 

of the root of the permanent canines. 

 

3.2.1.3 Premolars 

Premolars are often referred to as bicuspids because of their typically 

double-cusped crown morphology (Figure 3.7). Upper premolars have two 

major cusps, one buccal and one lingual. The buccal cusp is the larger of the 

two and is centred on the midline of the crown, while the slightly smaller 

lingual cusp is offset mesially. The two cusps are divided by a mesial-distal 

oriented furrow. Ridges on the mesial and distal margins of the crown join 

the two cusps, with the mesial ridge being slightly more prominent than the 

distal. In both the deciduous and permanent dentitions there are two 

premolars per quadrant. In upper premolars the second tooth is usually 

smaller than the first, although average crown diameters for upper premolars 

are similar (Hillson 1996). When viewed from the occlusal surface, upper 

third premolar crowns are slightly triangular, while the fourth is more 

rectangular. Root number, length, separation and prominence of upper 

premolars are highly variable. Upper premolars may have one, two or three 

roots. Single-rooted premolars have developmental grooves on the mesial 

and distal surfaces of the root. In two-rooted premolars, the roots are 

oriented in the same way as the cusps: buccal and lingual, with the buccal 

root being the larger of the two. Three-rooted premolars, which are rarer, 

have a lingual root, and a distobuccal and mesiobuccal root.  
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Lower premolars may have two or three cusps, with the buccal cusp being 

the most prominent, and one or two smaller cusps located lingually. The 

fourth premolar usually has three cusps, while the third has two. Marginal 

ridges on the mesial and distal rim of the crown run down from the main 

buccal crown and join the smaller lingual cusp or cusps. A mesial-distal 

fissure divides the buccal and the lingual cusps, while a prominent buttress 

runs lingually from the centre of the buccal cusp, creating two dimples on the 

occlusal surface. When viewed occlusally, lower premolar crowns are 

circular in form in relation to uppers (although fourth premolars are slightly 

squarer in comparison with third premolars), which are more ovoid. The third 

lower premolar is typically smaller than the fourth. Lower premolars typically 

display a single conical root with grooves of varying depth on the mesial and 

distal surfaces. Occasionally these grooves are of sufficient depth to create 

two roots, one buccal and one lingual. This variation is referred to as a 

Tome’s root. The double-rooted form, when it occurs, almost always appears 

on the lower third premolar. Multiple-rooted lower fourth premolars are 

extremely rare.  

 

3.2.1.4 Molars 

The permanent molar teeth are the largest of the four tooth types, and have 

correspondingly broad occlusal surfaces with complex arrangements of 

cusps and furrows which act as grinding surfaces for the act of mastication. 

There are usually three molars per dental quadrant, with the first molar 

typically the largest of the series, followed by the second and the third. The 

third molars, or wisdom teeth, are the most variable in size and cusp 
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arrangement. In some individuals, some or all of the third molars may fail to 

develop; this phenomenon is known as third molar agenesis, or congenital 

absence. 

 

Upper permanent molar crowns (Figure 3.8) have four primary cusps, the 

protocone (mesiolingual), paracone (mesiobuccal), hypocone (distolingual) 

and metacone (distobuccal). The tips of the buccal cusps, paracone and 

metacone, are higher than the lingual protocone and hypocone, and the 

lingual crown surface is more swollen outward in comparison to the buccal, 

whose surface is split by a groove which divides the bases of the paracone 

and metacone. The distolingual cusp, or hypocone, is the most variable in 

size, typically being largest in first molars, reduced in second molars, and 

often not present in third molars. Similarly, the distobuccal cusp, or 

metacone, is often reduced or absent in third molars. A small fifth cusp 

known as the metaconule is occasionally present on the distal marginal ridge 

between the hypocone and metacone. Additionally, a cusplet known as the 

cusp of Carabelli may occur on the base of the protocone and varies 

considerably in size and expression. When this cusp occurs, it appears most 

often on the first molar. This accessory cusp is often used by researchers to 

distinguish between population groups (Scott and Turner 1997). Rarer still, a 

second accessory cusp known as the parastyle, or paramolar tubercle, may 

occur on the base of the paracone. Upper molars are normally three-rooted, 

with one large lingual root and two smaller buccal roots. The apices of the 

buccal roots tend to curve towards one another, whilst the lingual root tip 

tends to curve distolingually. In some instances, the three roots may fuse 
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into one with deep grooves betraying the fused lingual and buccal root 

lengths. This occurs most commonly in third molars, where the fused roots 

take on a conical appearance.  

 

Lower permanent molar crowns (Figure 3.8) tend to be rectangular in form 

when viewed from the occlusal surface, with the long axis running 

mesiodistally. As with the upper molars, crown size is largest in lower first 

molars, and decreases as one moves distally through the series. There are 

commonly four main cusps, one in each corner of the rectangle: the 

protoconid (mesiobuccal), the metaconid (mesiolingual), the hypoconid 

(centrobuccal) and the entoconid (distolingual). In lower first molars, a 

smaller fifth cusp known as the hypoconulid often occurs between the 

centrobuccal and distolingual cusps. Second lower molars typically have four 

cusps, whilst third molars may have four or five cusps. Additionally, a distal 

sixth cusp, the tuberculum sextum, may occur alongside the hypoconulid 

and a seventh lingual cusp occurs infrequently between the disto- and 

mesiolingual cusps. Rarely, a seventh cusp, the tuberculum intermedium, 

may occur between the mesiolingual and distolingual cusps. Lastly, lower 

molars normally have two broad, flattened roots, one mesial and one distal, 

with apices curving distally. The mesial root is larger than the distal and has 

more prominent grooving. 

 

3.3 History and development of Dental Anthropology 

The modern study of the human dentition begins with the work of nineteenth 

century geologists and biologists (Dahlberg 1991). Charles Lyell’s 
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establishment of the earth’s antiquity paved the way for far-reaching 

concepts such as Charles Darwin’s theory of evolution, which influenced 

scientists in a wide array of fields, from biology and zoology, to comparative 

anatomy and palaeontology. Richard Owen’s Odontography (1840-1845) 

was the first comprehensive monograph on the comparative dental anatomy 

of living and fossilized animals and remained the foundation for subsequent 

comparative investigations for many years (Alt et al. 1998). With fossil 

hominid remains emerging in Europe and Africa in the nineteenth and early 

twentieth century, teeth became recognized as valuable tools for assessing 

ontogenetic and phylogenetic questions such as mammalian development 

and evolution (Alt et al. 1988). Researchers such as E.D. Cope (1840-1897), 

H.F. Osborn (1857-1935), and W.K. Gregory (1876-1970), were pioneers in 

the study of growth and evolutionary factors, establishing much of the 

framework for future inquires (Dahlberg 1991; Alt et al. 1998). The 

beginnings of the independent development of dental anthropology are 

marked by the emergence of population-based studies of particular ethnic 

groups or fossil assemblages during the early half of the twentieth century 

(Hillson 1996). These dental studies were known as “odontographies”, 

examples of which include the analysis of the dentition of Australian 

Aborigines by Campbell (1925), Bantu tribesman of Africa by Shaw (1931), 

and Chinese Homo erectus by Weidenreich (1937; cited in Hillson 1996). 

A.A. Dahlberg’s paper, The Changing Dentition of Man (1945), further 

refined and developed the concept of population studies based on the teeth 

and set the stage for a dramatic increase in the number of anthropological 

dental studies in the second half of the twentieth century (Dahlberg 1991; 
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Hillson 1996). Later, D.R. Brothwell’s (1963) edited symposium volume, 

Dental Anthropology, established the scope of dental anthropological 

research, and included papers on tooth morphology, growth and 

development, and dental pathology in both living populations and 

archaeological skeletal assemblages.  

 

Today, dental anthropology is considered a sub-field of physical 

anthropology, encompassing a wide variety of research pursuits. Some 

researchers concentrate on post-eruptive changes such as tooth wear and 

cultural modification (reviewed by Milner and Larsen 1991), while others 

concentrate on pathological afflictions of the dentition such as caries and 

periodontal disease (reviewed by Brothwell 1963; Koritzer 1973). Such 

research has revealed a great deal of information on diet and habitual 

activities involving the teeth. Another avenue of inquiry is the study of 

developmental patterns in the dentition, including tooth germ formation and 

developmental defects (reviewed by Hillson 1996). Finally, researchers 

interested in the genetic and evolutionary aspects of the dentition study tooth 

shape and size (reviewed by Hillson 1996; Kieser 1991; Scott and Turner 

1988, 1997). This particular branch of dental anthropology, tooth shape 

(morphological variation) and tooth size (metric variation), generates more 

literature than any other topic in dental anthropology (Mayhall 2000). In the 

present study, tooth shape, or dental morphology, is used to assess 

biological variation within an ancient Egyptian skeletal assemblage and to 

test for biological relationships between this assemblage and regional 
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population groups. This type of analysis is commonly referred to as the study 

of biological distance. 

 

3.4 Biological distance analysis 

Biological distance analyses assess human biological variation through the 

observation and recording of phenotypic data, most often from the cranium 

or dentition. “Phenotype” is commonly defined as the physical characteristics 

of an organism resulting from the interaction between its genes and the 

environment. The basic theoretical assumption of any biological distance 

study is that phenotypic similarity, or dissimilarity, between individuals or 

populations will provide an approximation of genetic relatedness (Buikstra et 

al. 1990; Konigsberg 2006; Larsen 1997; Stojanowski and Schillaci 2006). In 

order for a physical characteristic, or trait, to have utility in biological distance 

studies, it should be demonstrably heritable, while environmental effects 

should be minimal or randomly distributed within the groups being compared 

(Stojanowski and Schillaci 2006).  

 

Biological distance studies most commonly aim to reconstruct the origins, 

affinities and movements of human populations at both the regional (local) 

and inter-regional (continental) levels. In this sense, the term “distance” 

should not be taken to imply spatial or geographical proximity except in the 

sense that population groups physically closer to one another are more likely 

to be related to one another than they are to groups thousands of kilometres 

away (Konigsberg 1990; Sewell 1943). When populations exchange mates 

through migration or smaller-scale cultural processes, they tend to become 
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more similar, both phenotypically and genetically, over time. In evolutionary 

terms, this phenomenon is known as gene flow. Conversely, where 

populations are separated from one another, thus preventing mate 

exchange, they tend to become less similar over time. This occurrence is 

referred to as genetic drift. Impediments to the exchange of mates between 

populations may be physical in nature, e.g., geography, or cultural, e.g., 

religion, socioeconomic status, etc. The ease with which modern populations 

circulate globally means that groups once separated both geographically 

may now live next door to one another. Cultural barriers, however, may still 

exist which prevent mate exchange. 

 

Examples of this regional and inter-regional approach to biological distance 

using dental morphology include C.G. Turner’s study of the origins of Native 

Americans (Turner 1971, 1983, 1984), J.R. Lukacs and co-workers’ studies 

of prehistoric populations in Pakistan and India (Lukacs 1983, 1987; Lukacs 

and Hemphill 1991; Lukacs and Walimbe 1984), and J.D. Irish’s analysis of 

African population groups (Irish 1993, 1997, 1998a,b,c,d, 2000, 2006). 

Turner noted similarities in dental crown and root morphology between 

Native Americans and East Asians which, in conjunction with genetic and 

linguistic evidence, led to the formulation of the three-wave model for the 

peopling of the Americas from Northeast Asia (Greenberg et al. 1985, 1986). 

Lukacs and co-workers’ research led to the development of a model for the 

peopling of South Asia (Lukacs 1984; Lukacs and Hemphill 1991), while 

Irish’s work identified a series of dental morphological traits which 
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characterizes Sub-Saharan African populations (Irish 1997), and lends 

tentative support to the Out-of-Africa model of human origins (Irish 1998a). 

 

Other researchers have used biological distance studies to assess genetic 

relationships within a single site. These intracemetery approaches to 

biological variation, while less prevalent in the literature, are providing deeper 

and complementary insights into cultural behaviours previously accessible 

only through the study of artifactual data (Stojanowski and Schillaci 2006). 

Such behaviours include mortuary practices, mating patterns, kinship 

structures and socioeconomic status (Alt and Vach 1998). At the 

intracemetery level of analysis, phenotypic data can be used to compare 

individuals in order to assess their level of relatedness via the non-random 

spatial patterning of rare traits (Alt and Vach 1998). This form of kin-group 

analysis assumes that related individuals will be buried together within 

particular areas of a cemetery or other mortuary site. Alternatively, the 

summed frequencies of phenotypic data for groups of individuals may be 

compared in the same way as regional groups.  

 

Examples of intracemetery analyses using dental morphological traits include 

Johnson and Lovell’s (1994) study of social inequality in an Upper Egyptian 

Predynastic cemetery, Corruccini and Shimada’s (2002) kinship analysis of 

individuals from Huaca Loro, Peru, and Tomczak and Powell’s (2003) 

research on postmarital residence patterns at the prehistoric Windover site in 

Florida. 
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3.5 Dental morphological variation 

Dental morphological traits are commonly referred to as “non-metric” 

variations in external morphological structures that occur at a particular site 

on one or more members of a tooth class or classes (i.e. incisors, premolars, 

molars). As opposed to metric analysis of the dentition, which typically 

concerns the measurement of individual tooth dimensions such as crown 

height, root length, occlusal area, etc., the term non-metric implies structural 

variations of individual crown and root forms that are visually scored in two 

ways: (1) “presence-absence” characters such as furrow patterns, accessory 

ridges, supernumerary cusps and roots, or (2) as differences in form such as 

curvature and angles (Hillson 1996; Scott and Turner 1997). While many of 

these traits are typically characterized as either present or absent, most non-

metric traits vary in the degree to which a particular morphological structure 

is expressed (e.g. cusp/ridge size) (Scott and Turner 1997). In this sense, 

while they are sometimes referred to as discrete or discontinuous traits, most 

dental morphological variants are more accurately characterized as quasi-

continuous, because they occur along a gradient of expression which cannot 

easily be divided into distinct stages. The concept of quasi-continuous 

variation was first developed by Grüneberg (1952) as a result of his 

laboratory studies on mice.  

 

The earliest study of human dental morphological variation comes from the 

dental anatomist Georg von Carabelli, who published a paper in 1842 on his 

observations of a small mesiolingual accessory cusp on the upper molars 

(cited in Scott and Turner 1997). Carabelli noted the common occurrence of 
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this cusp in European dentitions. In 1920, Aleš Hrdlička published a study of 

shovel shaped incisors in the American Journal of Physical Anthropology 

which is considered by many as the foundation of the modern study of 

human dental morphology (Scott and Turner 1997). Hrdlička was the first to 

attempt to classify the degree of expression of a morphological dental trait 

and to examine its variation among human populations (Turner et al. 1991; 

Alt et al. 1998). His research on the geographic distribution of shovel shaped 

incisors lent increasing weight to the argument for the close biological 

relationship between East Asians and Native Americans. W.K. Gregory, in 

his major work The Origin and Evolution of the Human Dentition (1922), 

furthered the comparative study of human dentition by noting that, among 

other things, apart from some minor variations, differences in morphology 

between human populations were minimal (cited in Scott and Turner 1997). 

Some minor variations observed by Gregory include shovel-shaped incisors, 

tuberculum dentale of the anterior maxillary teeth, molar cusp number, lower 

molar groove pattern, and Carabelli’s cusp. Despite these advances, 

however, subsequent studies of dental morphological variation were in short 

supply until the arrival of two key researchers, A.A. Dahlberg and P.O. 

Pederson, in the mid-twentieth century. 

 

Dahlberg and Pederson, both of whom began their careers as dentists, 

made great strides in the advancement of dental morphological studies 

during the second half of the twentieth century; Dahlberg, through the 

collection and study of large numbers of dental casts from living White and 

Native Americans, and Pederson, through his studies of living and 
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archaeological Greenlandic Eskimo dentitions (Hillson 1996). Working 

together, Dahlberg and Pederson also organized several Dental Morphology 

Symposia beginning in the mid-1960s. Over the years these symposia have 

promoted the study of tooth variation and the discipline of dental 

anthropology as a whole (Dahlberg 1991; Hillson 1996). Dahlberg advocated 

the comparative study of dental morphology unceasingly through these 

symposia, and through his own research (e.g. Dahlberg 1963). Through his 

introduction and distribution of a series of 17 standardized reference plaques 

which presented the classification of permanent dental traits and their 

variations, Dahlberg also helped to overcome one of the major problems of 

dental morphological studies: the classification of traits and standardization 

of scoring procedures (Dahlberg 1991; Scott and Turner 1997; Mayhall 

2000). Some of the traits represented in Dahlberg’s series include plaques 

for upper incisor shovelling and double-shovelling, Carabelli’s cusp, the 

upper second molar hypocone, and the protostylid. 

 

Building on Dahlberg’s efforts to standardize the classification of permanent 

dental morphological variation, researchers at the Dental Anthropology 

Laboratory of the Arizona State University developed a procedure for the 

graded scoring of key morphological traits of the permanent dentition, 

complete with reference plaques and detailed descriptions of trait expression 

for each scoring grade (Turner et al. 1991; Mayhall 2000). Known as the 

Arizona State University (ASU) Dental Anthropology System, this method 

standardizes scoring for over 40 crown, root, and jaw variants, many of them 

based on the earlier works of Hrdlička and Dahlberg. Most traits in this 
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system are scored by reference to a graded scale which reflects the degree 

to which the trait is expressed. Zero represents trait absence, while the 

highest number represents full trait expression. Other traits, such as cusp 

and root number, interruption groove, molar groove pattern and congenital 

tooth absence are recorded as either present or absent. Due to the 

comprehensiveness of the system and the widespread distribution of the 

reference plaques, the ASU system is the most widely employed method in 

use today and is also the recommended standard for scoring dental non-

metric traits (Buikstra and Ubelaker 1994). In Japan, Kazuro Hanihara and 

co-workers devised similar reference plaques and scoring procedures for the 

deciduous dentition and, at the same time, developed and defined the 

characteristics of the “Mongoloid dental complex” based on living 

populations (Hanihara 1963; Hanihara and Minimidate 1965; Hanihara et al. 

1974). Unfortunately, these plaques are not widely available and the 

comparative study of deciduous dental morphological variation has lagged 

behind that of the permanent dentition (Mayhall 2000). 

 

3.6 The Arizona State University Dental Anthropology System  

A description of each Arizona State University Dental Anthropology System 

(ASUDAS) dental morphological trait used in the present study is given 

below. A summary of the geographical distribution for each trait is also 

provided. While the precise mode of inheritance for these traits is not well-

understood, most researchers now conclude that dental morphological trait 

variation is governed by complex polygenic factors, rather than simple 

dominant/recessive modes of inheritance (Scott and Turner 1997; Scott 
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2008). As such, trait frequencies cannot be directly equated with gene 

frequencies. While twin and family studies (e.g. Sofaer et al. 1972; 

Townsend and Martin 1992; Townsend et al. 1992) have shown that 

environmental factors may influence individual trait expression, they do not 

have a significant effect on overall population trait frequencies (Scott and 

Turner 1997). Studies of traits used in the ASU system have shown that they 

respond to microevolutionary forces of gene flow (e.g. Turner 1969), genetic 

drift (e.g. Turner 1969; Scott and Dahlberg 1982), mutation (e.g. Morris et al. 

1978), and selection (e.g. Dahlberg 1963; Scott and Turner 1988), thus 

evincing their high degree of genetic control and suitability for use in 

biological distance studies. 

 

3.6.1 Maxillary crown and root traits 

Central incisor winging 

Winging of the upper central incisors is not a true crown trait in the sense 

that the morphology of the individual tooth is not at issue. The trait is 

expressed as a bilateral rotation of the central incisors within their sockets so 

that the mesial crown margins are oriented towards the palate. From an 

occlusal view they form a V-shape. This trait may be expressed in a variety 

of ways including bilateral winging, unilateral winging of either the left or right 

central incisor, and counterwinging, in which the mesial margins of the teeth 

are rotated outwards rather than inwards (Enoki and Dahlberg 1958). 

Unilateral winging and counterwinging are typically disregarded in population 

studies, however, as they are usually the result of anterior tooth crowding 

and not reflective of underlying genetic factors (Scott and Turner 1997). 
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Lumholtz (1902) is credited with the first observation of bilateral incisor 

winging during his ethnographic work among several Mexican Indian groups. 

Other early observations of the trait include Nelson’s (1938) work with the 

Pecos Pueblo Indians, and Wright’s (1941) study of the Jivaro of South 

America. 

 

Bilateral winging occurs in low frequencies (0-15%) among Western 

Eurasian, Sub-Saharan African and Sahul-Pacific populations. It occurs in 

moderate frequencies (15-30%) among East and Central Asian, American 

Arctic and Sunda-Pacific populations. Its highest rate of occurrence (30-

50%) is among Northeast Siberian and North and South American 

populations (Scott and Turner 1997). The ASU system employs Enoki and 

Dahlberg’s (1958) four-point trait classification which includes bilateral 

winging, unilateral winging, counterwinging and trait absence (no winging) 

(Turner et al. 1991). Winging may also be expressed in the mandibular 

central incisors, although this is not recorded in the ASU system (Turner et 

al. 1991). 

 

Shovelling of the incisors and canines 

In both upper and lower incisors and sometimes canines, pronounced mesial 

and distal marginal ridges of the lingual tooth surface may occur, creating a 

lingual fossa in which the tooth has the appearance of a coal-shovel. Shovel-

shaping of the incisors and canines spans a range of expression, from 

slight/trace shovelling to heavily-buttressed marginal ridges which give the 

tooth a barrel-shaped appearance. Ales Hrdlička’s seminal paper (1920) on 
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shovel-shaped teeth is the first to systematically describe variation of the 

trait, as well as defining four categories of trait expression: shovelling absent, 

trace-shovelling, semi-shovelling and full-shovelling. Albert Dahlberg later 

elaborated on Hrdlička’s work by creating, among others, a three-

dimensional reference plaque which adopted the four grades of trait 

expression for shovel-shaped teeth (Scott and Turner 1997). While 

Dahlberg’s plaque and grading system are still used by anthropologists 

today, researchers at Arizona State University (ASU) have developed a 

seven-grade scale and reference plaque (Figure 3.9) which provides finer 

distinctions between Hrdlička and Dahlberg’s original scoring system (Turner 

et al. 1991).  

 

Shovel-shaped teeth have been studied extensively by researchers working 

in various regions of the world (e.g. Abrahams 1949; Carbonell 1963; 

Greene 1982; Hellman 1928; Suzuki and Takai 1964), and have been shown 

to be one of the most reliable dental traits for distinguishing between major 

geographical populations (Scott and Turner 1997). When the frequencies of 

shovel-shaped incisors are dichotomized into presence-absence, the highest 

rates of expression (>90%) are seen in East and North Asian and American 

Indian populations (Sino-Americans), while the lowest rates of expression 

(<20%) are observed in European and Sub-Saharan African populations 

(Carbonell 1963; Scott and Turner 1997). Other geographic groups such as 

Sunda-Pacific populations (Southeast Asia and the East Indian archipelago) 

occupy an intermediate position in terms of trait expression (Scott and 

Turner 1997). While shovel-shaping of the anterior dentition may be 
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observed on both maxillary and mandibular teeth, the trait tends to occur 

most often on the upper incisors (Hanihara 1963). In the ASU system, 

Turner et al. (1991) state that the key tooth for population comparisons of the 

shovelling trait should be confined to the upper teeth, especially the central 

incisors. An example of trace shovelling (grade 2) in the upper lateral 

incisors from the Kellis skeletal assemblage is given in Figure 3.10.  

 

Labial convexity (upper central incisors) 

The labial surface of the upper central incisors, when viewed occlusally, may 

range from extremely convex to relatively flat in appearance. Nichol et al. 

(1984) have developed a five-grade scaling plaque (Figure 3.11) for the 

purposes of scoring the trait and it has been incorporated into the ASU 

Dental Anthropology System (Turner et al. 1991). Nichol and co-workers 

(1984) have demonstrated that the degree of labial convexity is inversely 

correlated with double-shovelling. As these two traits are highly correlated, 

they should not be used in tandem for population analyses (Turner et al. 

1991).Significant differences occur between populations in relation to trait 

expression. African and Asiatic Indian groups exhibit the strongest amount of 

labial convexity, while American Indians have low convexity frequency 

levels. Interobserver error levels for recording of this trait have been shown 

to be relatively high (Nichol et al. 1984, Nichol and Turner 1986), and as 

such, labial convexity trait frequencies, while recorded, are not used for 

population comparisons in the present study. 
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Double-shovelling of the upper incisors and canines 

The term double-shovelling refers to the occurrence of pronounced mesial 

and distal ridges on the labial surface of the upper incisors (lateral and 

central) and canines. The trait was first characterized by Dahlberg and 

Mikkelson (1947). The mesial labial ridge is often more strongly developed 

than the distal labial ridge, and in some cases there is no development of the 

distal ridge at all (Scott and Turner 1997). Although double-shovelling can 

occur on any of the upper anterior teeth, (incisors and canines), the trait is 

typically most strongly expressed on the central incisors. The first attempt at 

standardizing the classification of this trait was made by Albert Dahlberg 

(1956). The ASU scoring rationale and reference plaque (Figure 3.12) was 

developed by Turner and Laidler Dowda in 1979 (Turner et al. 1991). 

 

In terms of geographic distribution, double-shovelling is most commonly 

observed (45-65%) in Sino-American populations (Scott and Turner 1997). 

The trait is relatively rare in other populations, and is at its lowest frequency 

in Western Eurasian, Sub-Saharan African, Sahul-Pacific and Sunda-Pacific 

groups (Scott and Turner 1997). The key tooth for comparative population 

studies is the upper central incisor (Turner et al. 1991). 

 

Interruption grooves (upper incisors)  

Interruption grooves (dens invaginatus) are vertical developmental furrows 

which may occur on the lingual surface of the cingulum and roots of upper 

incisors. These grooves can start at the cingulum and proceed down the 

length of the root, or may be restricted largely to the enamel portion of the 
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cingulum with minimal involvement of the root. CG Turner II (1967) was the 

first person to systematically study this trait. In the ASU system there are no 

reference plaques; scoring is based on the location of the interruption groove 

on the lingual surface of the tooth (i.e. mesial lingual surface, distal lingual 

surface, medial lingual surface, etc.).  

 

While interruption grooves are found to varying degrees in all major world 

populations, they occur most frequently in Sino-American groups (45-65%), 

and least frequently in Sub-Saharan and Sahul-Pacific populations (10-20%) 

(Scott and Turner 1997). The trait is most often expressed in the upper 

lateral incisors and it is this tooth that is recommended by Turner et al. 

(1991) for population comparisons. An example of the trait from the Kellis 

skeletal assemblage is shown in Figure 3.13.  

 

Tuberculum dentale 

Tuberculum dentale are cingular structures occurring on the lingual surface 

of the upper anterior teeth. They are sometimes referred to as lingual 

tubercles or cingular ridges (Scott and Turner 1997). They appear as vertical 

crests known as mediolingual ridges, or small tubercles or cusplets. The 

upper lateral incisor exhibits the greatest variety of cingular expressions 

ranging from single ridges to multiple cusplets. When these cusps occur on 

the canines they are known as canine tubercles (Scott and Turner 1997). 

W.K. Gregory (1922) was one of the earliest researchers to describe this trait 

in his magnum opus The Origin and Evolution of the Human Dentition. 

Classification and scoring of this trait has proven difficult, however, and the 
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levels of intra and interobserver error in recording this trait has been shown 

to be extremely high (Nichol and Turner 1986). The ASU system 

recommends focusing on trait expressions on the upper lateral incisors when 

conducting comparative population studies (Turner et al. 1991). The 

reference plaques for scoring this trait on the upper incisors and canines are 

shown in Figure 3.14. 

 

Canine mesial ridge 

In the upper canines, the mesiolingual and distolingual marginal ridges are 

normally equal in size. In rare instances, a strongly developed mesiolingual 

marginal ridge of the upper canine may fuse with the tuberculum dentale. 

This feature was first described by Morris (1975) as the “Bushman canine” 

due to its high occurrence among the Bushmen and other Sub-Saharan 

African groups. The trait has been observed in other populations however, 

although the highest rates (12-35%) of expression are confined to Sub-

Saharan Africa (Scott and Turner 1997). The canine mesial ridge is least 

often seen (0-3%) among the indigenous peoples of the Americas (Scott and 

Turner 1997). The ASU scale (Figure 3.15) for recording of the trait was 

developed by Turner and Dale Klausner in 1979 (Turner et al. 1991). 

 

Canine distal accessory ridge 

There are typically three distinct ridges on the lingual surface of the upper 

and lower canines: a median ridge, and a mesiolingual and distolingual 

marginal ridge. Occasionally, an accessory ridge may occur between the 

median and distolingual ridges and this polymorphism is known as the 
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canine distal accessory ridge (Morris 1965; Scott 1977). The trait occurs 

more often and is more strongly expressed in upper canines than in lowers 

(Scott and Turner 1997). The canine distal accessory ridge is the most 

sexually dimorphic crown trait, with male expressions being more strongly 

developed and occurring in higher frequencies (Scott and Turner 1997).  

 

Because there is no dentin involvement, this trait is difficult to record in older 

individuals where even slight attrition may obliterate any trace of its 

occurrence. For this reason, trait frequencies for children and young adults 

with unworn teeth should be used exclusively in population studies (Turner 

et al. 1991). Scoring for this trait was first developed by G.R. Scott (1973, 

1977). The ASU reference plaque for this trait is shown in Figure 3.16. 

 

Premolar mesial and distal accessory cusps (upper premolars) 

First described by Turner (1967), these small cusps are occasionally 

observed at either end of the occlusal sagittal groove. For recording 

purposes, true accessory cusps must be distinctly separate from the buccal 

and lingual cusps. As these cusps are easily worn down, observations 

should be limited to younger individuals (Turner et al. 1991). Because it is so 

easily obliterated in older individuals, this trait is rarely used in population 

comparisons although it has been recorded for the present study. There is 

no reference plaque for this trait.  
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First premolar distosagittal ridge (Uto-Aztecan premolar) 

This rare upper first premolar trait was first observed in the dentition of 

southwestern American Indians (Morris et al. 1978) and given the term Uto-

Aztecan premolar. It is now known to occur among other American Indian 

populations but is not seen anywhere else (Turner et al. 1991). It is 

characterized by a strongly defined ridge extending from the apex of the 

buccal cusp to the distal occlusal border. The buccal surface is rotated 

mesially and the cusp is expanded buccolingually. Because of the 

geographic specificity of this trait, it is not usually employed in population 

comparisons outside of the Americas. The reference plaque for this trait is 

shown in Figure 3.17. 

 

Metacone reduction (upper molars) 

The third (distobuccal) cusp of the upper molars is known as the metacone. 

Reduction or absence of the distobuccal cusp is atypical in the first and 

second molars, but can occur on the third molars (Turner et al. 1991). 

Because of the infrequency of reduced or absent metacone expressions 

worldwide, the trait is rarely used for comparative population studies, 

although it has been recorded in the present study. The reference plaque for 

this trait is shown in Figure 3.18. 

 

Hypocone reduction (upper molars) 

The fourth (distolingual) cusp of the upper molars is known as the hypocone. 

It is the most variable of the four main upper molar cusps, and can range 

from a large, fully developed cusp, most often seen on the first molars, to a 



70 
 

reduced or absent cusp on the second and third molars (Hillson 1996; Scott 

and Turner 1997). Anthropologists and palaeontologists have for many years 

been interested in the number of cusps in both upper and lower molars as 

they relate to hominid dental evolution (Scott and Turner 1997). The 

evolutionary trend towards hypocone reduction and loss in the hominid line 

has long been noted by researchers (e.g. Campbell 1925; Shaw 1931). 

Dahlberg (1951), building on the work of early twentieth-century scholars, 

developed a cusp counting system which takes into account the reduction of 

the hypocone: 4 (fully expressed hypocone; i.e. 4 cusps), 4- (slightly reduced 

hypocone), +3 (drastically reduced hypocone), and 3 (hypocone absent; i.e. 

3 cusps). In the ASU system (Turner et al. 1991), a six grade system of 

scoring hypocone expression has been developed along with an 

accompanying reference plaque (Figure 3.19).  

 

Because the hypocone is almost always present in the upper first molars, 

any trait comparisons between populations should focus on the upper 

second molars, as they are more variable in terms of cusp retention (Turner 

et al. 1991). The worldwide variation of three-cusped (hypocone absent) 

upper second molars is quite limited in range. Sub-Saharan and Sahul-

Pacific populations appear to have the lowest occurrence of three-cusped 

upper second molars (<10%), While Western Eurasian and Sino-American 

groups show the highest frequencies (10-30%) (Scott and Turner 1997). An 

example of second molar hypocone reduction in the Kellis skeletal 

assemblage is shown in Figure 3.20. 
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Carabelli’s trait (upper molars) 

The cusp of Carabelli is a supernumerary cusp which occurs on the 

mesiolingual surface of the protocone on the upper molars. While the trait 

may be present on all three upper molars, it is most commonly seen on the 

upper first molar (Scott and Turner 1997). The trait runs a gamut of 

expression from small pit and furrow features, to large tubercles with free-

standing apexes. As one of the most intensively studied of all dental 

morphological variants (e.g. Bang and Hasund 1972; Hassanali 1982; 

Kolakowski et al. 1980; Reid et al. 1991; Scott 1980; Turner et al. 1998), the 

trait has been the subject of numerous attempts at classification (reviewed in 

Scott and Turner 1997). Of these, the eight-grade scale and reference 

plaque (Figure 3.21) developed by Albert Dahlberg (1956) has become the 

most commonly employed standard for scoring expression of the trait, and it 

is the method that is used in the ASU system (Turner et al. 1991).  

 

Carabelli’s trait has long been associated with western Eurasian (Caucasoid) 

populations, and Scott and Turner (1997) have demonstrated that it is this 

group which shows the highest incidence of cusp and tubercle forms (grade 

5-7), followed by Sub-Saharan Africans. The trait does occur less frequently, 

however, in other populations (Scott 1980; Turner and Hawkey 1998). An 

example of a large Carabelli’s cusp from the Kellis dental assemblage is 

given in Figure 3.22. 
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Cusp 5 (metaconule, distal accessory tubercle) 

There are normally four main cusps on the occlusal surface of the upper 

molars: the protocone (mesiolingual cusp), paracone (mesiobuccal cusp), 

metacone (distobuccal cusp) and hypocone (distolingual cusp). In certain 

individuals, a small accessory cusp of variable size known as the 

metaconule occurs on the distal occlusal surface of the upper molars 

between the metacone and the hypocone (Scott and Turner 1997). Harris 

(1977) and Harris and Bailit (1980) were the first to attempt to classify this 

trait for scoring purposes, including trait absence and five grades of trait 

expression. The ASU scoring scale is similar to Harris’ (1977), while the 

plaque (Figure 3.23) for Cusp 5 was developed by C.G. Turner and Richard 

Warner in 1977 (Turner et al. 1991).  

 

The key tooth for population studies is the upper first molar (Turner et al. 

1991; Scott and Turner 1997). In terms of geographic distribution, low 

frequencies of Cusp 5 occur in Western Eurasian and Sino-American groups 

(10-25%); Sunda-Pacific and certain Sub-Saharan African groups occupy an 

intermediate position (30-40%), while Sahul-Pacific and Western Sub-

Saharan African groups have the highest rates of occurrence (45-60%) 

(Scott and Turner 1997). An example of the metaconule from the Kellis 

population is shown in Figure 3.24. 

 

Parastyle (paramolar tubercle) 

The parastyle is a cingular accessory cusp which occurs on the buccal 

surface of upper molar paracones (mesiobuccal cusp). Expression of this 
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trait can range from a small pit or attached cusp to a very large cusp with a 

free-standing apex. Rarely, the trait is expressed as a supernumerary 

conical or peg-shaped tooth which is fused to the buccal surface of the tooth 

(Scott and Turner 1997; Turner et al. 1991). The parastyle most commonly 

occurs on the upper third molars, although the trait is sometimes observed 

on the first and second molars as well (Scott and Turner 1997). The 

reference plaque for this trait is shown in Figure 3.25. 

 

Enamel extensions 

The contour of the cemento-enamel junction is normally horizontal along the 

buccal and lingual surfaces of the molars. Enamel extensions are thin lines 

of enamel which project downward from the buccal and/or lingual cervical 

enamel borders towards the root bifurcations of both upper and lower 

molars. Enamel extensions may also occur on upper and lower premolars as 

well. The trait was first systematically described and classified by Pedersen 

in his study of Greenland Eskimo teeth (1949), although earlier observations 

of the trait do exist in the literature (e.g. Chappel 1927; Leigh 1928, 1929). In 

the ASU scoring system there are three categories of trait presence: slight, 

moderate and pronounced (Turner et al. 1991). While enamel extensions 

can occur on both the lingual and buccal surfaces of the molars, the ASU 

system records only those extensions present on the buccal surface (Turner 

et al. 1991). There is no reference plaque for this trait. 

 

In terms of geographic distribution, enamel extensions occur in low 

frequencies (0-10%) among Western Eurasian, Sub-Saharan African, Sahul-
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Pacific and Jomon (Japan) populations. The trait occurs most often (40-60%) 

in American and East and North Asian populations. Sunda-Pacific and South 

Siberian groups occupy an intermediate position with regards to trait 

expression (20-30%) (Scott and Turner 1997). The key tooth for population 

studies is the upper first molar (Turner et al. 1991). 

 

Premolar root number 

Upper premolars may have one, two or three radicals. Single-rooted upper 

premolars are not bifurcated but may show developmental grooves which 

separate the root into two radicals, one lingual and one buccal. When the 

lingual and buccal radicals are separated by a root bifurcation, the tooth is 

considered double-rooted. The rare three-rooted upper premolar has three 

completely separated radicals, one lingual, one mesiobuccal and one 

distobuccal. In order for the tooth to be considered double or triple rooted, 

the roots must be separated at least one-fourth of the total root length 

(Turner et al. 1991). There is no reference plaque for this trait. 

 

In terms of geographic distribution, Sub-Saharan African populations exhibit 

the highest rates of multi-rooted upper premolars (>60%). Intermediate 

groups include Western Eurasian, Sunda-Pacific, Sahul-Pacific, East Asian 

and Jomon populations (20-60%), while North Asian and American 

populations have the lowest rates of multi-rooted upper premolars (5-15%) 

(Scott and Turner 1997). The key tooth for population comparisons is the 

third premolar, as it more likely to have multiple roots than the fourth 

premolar (Turner et al. 1991). 
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Molar root number 

Both upper and lower molars vary in terms of root number. Upper molars are 

typically three-rooted, while lower first molars are typically two-rooted. 

Environmental factors such as space restrictions at the back of the jaw may 

influence the number of roots on third molars; this precludes their use in 

dental morphological studies. The upper second molar is the most variable in 

terms of root number and is the key tooth for population studies (Turner et al. 

1991). For lower molars, variation in root number is recorded for first and 

second molars. The scoring procedure for these traits was developed by 

Turner (1967). There is no reference plaque for this trait. 

 

Peg-shaped upper lateral incisors and third molars 

Reduced forms of upper lateral incisors and third molars may occasionally 

occur. These small peg- or cone-like teeth lack standard crown morphology 

and appear to exist at the threshold of a continuum that culminates with 

congenital absence of the tooth (Turner et al. 1991). Dahlberg (1956) was 

one of the first researchers to attempt a classification of upper lateral incisor 

variation. Usage and standardization for both tooth traits was developed by 

Turner for the ASU scoring system (Turner et al. 1991). This trait is rare for 

both upper lateral incisors and third molars (0-5%) and its utility in population 

comparisons remains uncertain (Scott and Turner 1997). As such, although 

both traits are recorded in the present study, they are not used in inter-

population analyses. An example of a peg-shaped upper third molar from the 

Kellis dental assemblage is shown in Figure 3.26. 
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Odontomes (occlusal tubercles) 

Odontomes are enamel and dentin spicules which may occur on the occlusal 

surface of both upper and lower premolars. This trait was first described by 

Pedersen (1949) in his study of the East Greenland Eskimo dentition. Three 

distinct geographic clusters are discernible among world populations. The 

trait is nearly absent (0-1%) among Western Eurasian, African, New 

Guinean, South Siberian and Jomon groups, while Sino-Americans, 

especially North American Indians, display the highest frequencies (4-7%); 

Australian, Melanesian and Sunda-Pacific groups occupy an intermediate 

position (1-3%) vis-à-vis the other groups (Scott and Turner 1997). In the 

ASU scoring system, odontomes are recorded as present or absent, 

although variation does occur in size and shape (Scott and Turner 1997). 

Because of the dentin component of this trait, odontome presence can be 

readily observed even in teeth with moderate cusp wear. There is no 

reference plaque for this trait. 

 

Congenital absence (hypodontia) 

Upper lateral and lower central incisors, lower fourth premolars and upper 

and lower third molars commonly fail to develop (agenesis) in some 

individuals (Hillson 1996). Such anomalies are thought to be inherited 

(Davies 1967, Lasker 1951). Congenital absence of teeth was first studied 

by Montagu (1940), who focused on upper lateral incisor variation, while 

Garn and co-workers (1962) studied third molar agenesis in relation to other 

anomalies of dental formation and eruption. Agenesis of the third molar is 

the most common form of congenital absence with up to one-third of a 



77 
 

population displaying the trait; absence of other tooth types is usually a 

much rarer occurrence (Hillson 1996). Without the use of x-rays, however, it 

may be impossible to determine whether a particular tooth is completely 

absent or unerupted/impacted and still lurking within the jaw. Teeth may also 

have been lost antemortem (i.e. before death) due to disease or injury, and 

thus care must be taken to determine the circumstances for each missing 

tooth. Because the use of x-ray machines is rare for the examination of 

archaeological skeletal assemblages, the potential for misdiagnosis of 

congenital absence is high and caution must be taken when comparing 

frequencies of tooth agenesis between groups. 

 

3.6.2 Mandibular crown and root traits 

Premolar lingual cusp variation (lower premolars) 

While upper premolars have a single lingual cusp, lower premolar lingual 

cusp number is highly variable. One, two or three lingual cusps of varying 

size are common. A number of researchers have attempted to classify the 

considerable amount of variation in lower premolar crown morphology, 

including Pedersen (1949) and Kraus and Furr (1953). The ASU Dental 

Anthropology System, with its eleven-grade scoring scale, focuses strictly on 

variation in the number of lingual cusps and their relative size (Turner et al. 

1991). The procedure, with slight modification, was developed by Scott 

(1973). The lower fourth premolar is considered the key tooth for use in 

population studies (Scott and Turner 1997). The reference plaques for 

scoring the trait in lower premolars are shown in Figure 3.27. 
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Anterior fovea (precuspidal fossa) 

The anterior fovea, or precuspidal fossa, is a deep triangular indentation 

distal to the mesial marginal ridge that often occurs on lower first molars. 

The trait was first described in detail by Hrdlička (1924) who believed it to 

have evolutionary significance as it features in many fossil hominid dentitions 

as well as in anatomically modern humans. While anterior foveae are also 

known to occur on lower third molars, especially among fossil hominids, the 

lower first molar is considered the key tooth for population studies in the 

ASU Dental Anthropology System (Scott and Turner 1991). Nichol and 

Turner (1986), however, have shown that inter- and intraobserver error 

levels for scoring this trait are often unacceptably high; the trait is also 

extremely susceptible to occlusal wear, precluding observation in individuals 

above the age of twelve years (Turner et al. 1991). For this reason, although 

it has been recorded, the trait is not used for comparative purposes in the 

present study. The ASU scoring procedure was developed by C.G. Turner 

and S.M. Chilton in 1979 (Turner et al. 1991). The reference plaque is shown 

in Figure 3.28. 

 

Lower molar cusp number 

W.K. Gregory (1916) was the earliest researcher to categorize variation in 

the lower molar cusp number. Lower molars can have anywhere from three 

to seven cusps, although three-, four- and five-cusped molars are the most 

common. An example from the Kellis dental assemblage is shown in Figure 

3.29. The distolingual cusp (entoconid) is omitted in three-cusped molars, 

while five-cusped molars have an additional distobuccal cusp (hypoconulid). 
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A sixth cusp (entoconulid) may occur between the entoconid (distolingual 

cusp) and hypoconulid (distobuccal cusp). Finally, a lingual seventh cusp 

(metaconulid) may occur between the metaconid (mesiolingual cusp) and 

entoconid (distolingual cusp). This seventh cusp, however, is not counted 

when scoring lower molar cusp number in the ASU system as Cusp 7 may 

occur without Cusp 6 (Turner et al. 1991). The ASU scoring system is based 

on Gregory’s (1916) classification, with slight modification. There is no 

reference plaque for this trait. 

 

Lower first molars typically have five cusps, while second molars typically 

have four. Lower third molars are more variable but are usually four or five-

cusped. The relatively rare absence of the fifth cusp (hypoconulid) on lower 

first molars (world range: 0-20.0%) has a fairly clear geographic distribution 

as follows: Western Eurasian populations show the highest occurrence of 

hypoconulid absence (10-20.0%), while most other populations have 

frequencies of less than 3% (Scott and Turner 1997:211). 

 

Lower second molars exhibit a much higher level of variation with regard to 

cusp number (world range: 10-80%) and for this reason it is the key tooth in 

population studies (Turner et al. 1991). 4-cusped lower second molars occur 

with regularity among many populations with Western Eurasian groups 

showing by far the highest frequencies (>80%). The Sub-Saharan San, 

Northeast Siberians, Native Americans and indigenous Australians have the 

lowest frequencies (10-30%) (Scott and Turner 1997:211).  
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Lower molar groove pattern 

In lower molars, each of the main and accessory cusps is divided from the 

other by a series of fissures which form one of three common configurations: 

the Y, the X and the + patterns. In the Y groove pattern the fissure 

arrangement allows the mesiolingual (metaconid) and centrobuccal 

(hypoconid) cusps to abut one another, whilst the mesiobuccal and 

distolingual cusps are separated by a short length of fissure. In the X groove 

pattern, the arrangement is reversed so that the mesiobuccal and 

distolingual cusps abut one another and the mesiolingual and centrobuccal 

cusps are separated. In the + groove pattern the fissures dividing the main 

cusps meet at the same point in the centre of the crown surface forming a 

cross. The Y groove pattern, designated by W.K. Gregory (1916) as the 

Dryopithecus pattern, is found in fossil and extant hominoid dentitions and 

retained to varying degrees in modern human populations. In modern 

dentitions, the Y groove pattern occurs most commonly on the first molars. 

Because of the common tendency of modern humans to retain the ancestral 

Y groove pattern in the first molars, the lower second molar is the focal tooth 

for comparative studies of groove pattern (Turner et al. 1991). An example of 

the Y and + molar groove patterns from the Kellis assemblage is shown in 

Figure 3.30, and an example of the X pattern is shown in Figure 3.31. There 

is no reference plaque for this trait. 

 

In terms of geographical distribution, the retention of the Y groove pattern on 

the lower second molars occurs most often among the San peoples of Sub-

Saharan Africa (60-70%). East and South African, Melanesian and New 
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Guinean groups occupy an intermediate position (25-40%), while low 

frequencies of trait expression occur among Western Eurasian, Sino-

American, Sunda-Pacific and Australian groups (5-20%) (Scott and Turner 

1997).  

 

Deflecting wrinkle (lower first molars) 

The deflecting wrinkle is a deviation of the median occlusal ridge on the 

lower first molar, which normally follows a straight line from the tip of the 

metaconid (mesiolingual cusp) to the central fossa. In such cases, the 

median occlusal ridge is deflected mesially before continuing into the central 

fossa. Full expressions of this trait lend the median occlusal ridge a 

distinctive ‘L’ shape. Weidenreich (1937) was the earliest researcher to 

identify this occlusal variant, while Morris (1970) was the first to categorize 

the trait’s occurrence geographically.  

 

The deflecting wrinkle rarely occurs on lower second and third molars; thus, 

the lower first molar is the key tooth for population studies. The trait does not 

show any distinctive geographic patterning (world range: 5-55%). Native 

American groups and Northeast Siberians have the highest frequency of trait 

occurrence (35-55%), while Western Eurasians have the lowest incidence 

(5-15%). Intermediate groups (20-35%) include Sub-Saharan Africans and 

East Asians (Scott and Turner 1997). As with other occlusal crown traits 

without a dentin component, the deflecting wrinkle can easily be obliterated 

by attrition. For this reason, it is recommended that only juveniles be scored 

for this trait as it may be missed in older individuals with high levels of tooth 
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wear (Turner et al. 1991). The reference plaque for this trait is shown in 

Figure 3.32. 

 

Protostylid (lower molars) 

The protostylid is the term used to describe a cingular variation which occurs 

on the buccal aspect of the mesiobuccal cusp in lower molars. The trait 

ranges in expression from a small pit located in the buccal groove, to a 

secondary fissure which emanates mesially from the buccal groove, and 

culminating in a large free-standing cusp (Dahlberg 1950). The trait most 

commonly occurs on the lower first and third molars (Scott and Turner 1997). 

Dahlberg (1950) was the earliest researcher to assess the evolutionary 

significance of the protostylid, which had been commonly observed in fossil 

hominids and living apes but rarely seen in modern humans until his seminal 

research on the Pima Indians of the American southwest (Dahlberg 1945). 

He later produced a reference plaque and eight-grade scale (Dahlberg 1956) 

for scoring expressions of the trait which is still used in the ASU system 

(Figure 3.33). The lower first molar is considered the key tooth for population 

studies utilizing the protostylid (Scott and Turner 1997). Expressions of this 

trait may occur in up to 40% of a population (Hillson 1996).  

 

Cusp 5 (lower molars) 

The fifth (distobuccal) cusp of the lower molars, also known as the 

hypoconulid, occurs most frequently on first molars, while second molars 

exhibit greater variation in terms of hypoconulid retention (Scott and Turner 

1997). When the fifth cusp is present it may vary from a small tubercle to a 
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large cusp equal in size to that of the hypoconid and entoconid. The ASU 

Dental Anthropology System employs a six-grade scale with corresponding 

reference plaque (Figure 3.34) developed by C.G. Turner and R. Warner in 

1977 (Turner et al. 1991).  

 

Cusp 6 (lower molars) 

A sixth cusp, also known as the tuberculum sextum or entoconulid, may 

occur on lower molars between the hypoconulid (Cusp 5) and the entoconid 

(Cusp 4). It is a rare trait in modern human populations, although it occurs 

frequently in fossil hominids (Robinson 1956) as well as primates, especially 

pongids (Swindler 1976). If there is only a single distal cusp occurring 

between Cusp 4 and Cusp 3, it is impossible to determine whether or not it is 

Cusp 5 or 6. Typically, if there is only a single distal cusp, it is considered the 

fifth cusp. Consequently, Cusp 6 can only be determined in the presence of 

Cusp 5 (i.e. two distal cusps). When two distal cusps occur, Cusp 6 is always 

lingual to Cusp 5. In most cases, Cusp 6 is smaller than Cusp 5, although it 

is occasionally equal in size or larger (Scott and Turner 1997).  

 

In the ASU scoring system, the size of Cusp 6 is scored on a six-grade scale 

in relation to Cusp 5 (Figure 3.35). The reference plaque and scale were 

developed by Turner in 1970 (Turner et al. 1991). The key tooth for trait 

frequency comparisons is the lower first molar. The world range for the 

expression of this trait is 4.7-61.7%, with Western Eurasian populations 

having the lowest rates of occurrence (Scott and Turner 1997). Sino-
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American, Polynesian and Australian populations have the highest 

frequencies of Cusp 6 presence. 

 

Cusp 7 (lower molars) 

Cusp 7, also known as the tuberculum intermedium or metaconulid, is a 

supernumerary wedge-shaped cusp which may occur in the lingual groove 

between the metaconid (cusp 2) and the entoconid (cusp 4) of the lower 

molars. Like Cusp 6, the tuberculum intermedium is rare in modern human 

groups but common in living primates and some fossil hominids, e.g. 

Paranthropus (Hillson 1996). This trait occurs most often on the lower first 

molars and thus it is the key tooth for recording trait frequencies. The ASU 

system uses a six-grade scoring scale and reference plaque (Figure 3.36) 

that was developed by Turner in 1970 (Turner et al. 1991). In terms of 

geographical distribution, Cusp 7 occurs most frequently among Sub-

Saharan African populations (25-40%); all other groups exhibit uniformly low 

frequencies of expression for this trait (0-10%) (Scott and Turner 1997). An 

example of a large Cusp 7 from the Kellis dental assemblage is shown in 

Figure 3.37. 

 

Canine root number 

Permanent lower canines are typically single-rooted teeth. In rare instances, 

however, the lower canine may be bifurcated into two roots, one buccal and 

one lingual (Alexandersen 1962, 1963). For scoring purposes, the tooth root 

must be separated for at least one-fourth of the total root length in order to 
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be considered double-rooted (Turner et al. 1991). There is no reference 

plaque for this trait. 

 

In terms of geographic distribution, European groups exhibit the highest 

expression rates (>5%). North African and South Siberian groups occupy an 

intermediate position (2-4%), while Sub-Saharan African, Sino-American, 

Sunda-Pacific and Sahul-Pacific groups rarely exhibit the trait (0-1%) (Scott 

and Turner 1997). 

 

Tome’s root (third premolar) 

C.S. Tomes (1889) was the earliest researcher to describe the occurrence of 

deep developmental grooves on the mesial surface of the lower third 

premolar root surface. It is now known that this phenomenon is part of a 

morphological continuum from a single to a double-rooted tooth (Scott and 

Turner 1997). In the ASU scoring procedure for this trait, there are six 

grades including trait absence (no developmental grooving), several grades 

of progressively deep developmental grooving, culminating in complete 

radical separation (two-roots) (Turner et al. 1991). The reference plaque for 

this trait is shown in Figure 3.38. Multiple-rooted lower premolars are far less 

common than multiple-rooted upper premolars (Scott and Turner 1997). 

Lower fourth premolars are not scored for Tome’s root as they rarely display 

bifurcated radicals.  

 

In terms of geographic distribution, the trait is relatively rare in Western 

Eurasian, Jomon, American Arctic and New Guinea groups (0-10%), while 
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high frequency groups include Sub-Saharan Africans and Aboriginal 

Australians. Groups occupying intermediate positions include North and East 

Asians, North and South American Indians, Melanesians, South Siberians 

and Sunda-Pacific peoples (Scott and Turner 1997).  

 

Lower molar root number 

Lower molars are typically two-rooted teeth. Single-rooted lower molars 

occur less often as the result of incomplete separation of the mesial and 

distal roots. In some situations, both the lingual and buccal root surfaces fail 

to separate, while in others it is only the buccal or lingual root surface which 

is involved (Scott and Turner 1997). Single-rooted lower first molars are 

exceedingly rare. Lower third molars are quite often single-rooted as the root 

complex is compacted due to space constrictions in the mandible. For these 

reasons, the lower second molar is the key tooth for scoring the single-

rooted trait in the ASU system (Turner et al. 1991). A smaller supernumerary 

third root, conical in form, may also occur on the lingual aspect of the distal 

root. This three-rooted form occurs most often on the first molar and it is this 

tooth which is typically scored for the trait (Scott and Turner 1997). There is 

no reference plaque for this trait. 

 

With regards to geographic distribution, single-rooted lower second molars 

are most commonly observed in Sino-American groups (30-40%). North 

African, Sunda and Sahul-Pacific and European groups occupy an 

intermediate position in terms of trait frequency (10-30%), while the trait 

rarely occurs among Sub-Saharan African, Jomon, and Aboriginal Australian 
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populations (0-10%) (Scott and Turner 1997). Three-rooted lower first molars 

occur most often among American Arctic and North and East Asian groups 

(>20%). Intermediate groups include Sunda-Pacific and American Indian 

groups (5-15%), while low frequency groups are comprised of Western 

Eurasians, Sub-Saharan Africans, Jomon, South Siberian and Sahul-Pacific 

peoples (Scott and Turner 1997). 

 

Additional morphological traits not recorded in the present study 

There are several additional crown, root and jaw morphological variants 

used in the ASU system which were not recorded for the Kellis assemblage. 

These include tooth root radical number, lower molar distal and middle 

trigonid crests, lower third molar torsomolar angle, palatine torus, mandibular 

torus and rocker jaw. Tooth root radical number is a difficult trait to score, 

and because the majority of the teeth recorded for the Kellis assemblage are 

still in their sockets, the number of potentially observable cases was deemed 

to be minimal. The distal and middle trigonid crests are rare traits which are 

notoriously difficult to score with even the slightest occlusal wear (Turner et 

al. 1991). Finally, the three traits based on the bony morphology of the 

palate and mandible were also left out because they do not directly involve 

the dentition. For these reasons, and the fact that none of these traits are 

commonly used in comparative studies of dental morphological data, I feel 

justified in excluding them from the present study. 
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3.7 Previous biological distance studies in Egypt and Nubia 

The origins of ancient Egyptian civilization continue to be a major focus of 

Egyptologists and archaeologists alike. Early theories of large-scale 

population migration from western Asia (e.g. Derry 1956; Emery 1961; Petrie 

1920, 1939) compete with more recent proposals of indigenous cultural 

evolution (e.g. Hassan 1986, 1988; Kemp 2006; Trigger 1983; Wendorf and 

Schild 2002). As such, the ancestry of the ancient Egyptians has been an 

Egyptological obsession since the birth of the discipline. Beginning with the 

likes of Samuel G. Morton (1844), many early anthropologists used the 

burgeoning collections of ancient Egyptian and Nubian skeletons to classify 

the ancient peoples of the Nile Valley using a largely outdated 

racialist/essentialist typology characteristic of the era (reviewed by Keita 

1993). These early studies largely focused on cranial dimensions (e.g. 

Batrawi 1945, 1946; Morant 1925; Smith 1915, 1923; Smith and Wood Jones 

1910), a methodology which flourished in the late 19th and early 20th 

centuries and continues to be used by physical anthropologists today, albeit 

in a far more sophisticated fashion (see for example: Angel 1972; Brace et 

al. 1993; Keita 1990; 1992; Zakrzewski 2007). In the second half of the 

twentieth century, physical anthropologists also began to use non-metric 

traits of the skeleton, especially of the cranium, to assess the biological 

affinities of the ancient Egyptians (see for example: Berry and Berry 1972; 

Prowse and Lovell 1995; Strouhal and Jungwirth 1979; Van Gerven et al. 

1977).  
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One of the first systematic attempts to use dental morphological traits to 

examine the biological affinities of the ancient Egyptians was by D.L. Greene 

(1966, 1972, 1982) who compared dental traits amongst early Egyptian and 

Nubian skeletal collections. With the development of the Arizona State 

University Dental Anthropology System (Turner and Scott 1991), further 

studies of dental morphological trait variation in Egypt emerged during the 

1990’s. Johnson and Lovell’s (1994) study of the Predynastic cemetery at 

Naqada is one of few papers to utilize dental morphological traits in order to 

understand the phenetic relationships within an intracemetery assemblage. 

A diachronic approach to dental trait variation was also conducted by 

Johnson and Lovell (1995) on A-Group and C-Group Nubians. Recently, J.D. 

Irish (2006) conducted an extensive survey of Egyptian archaeological 

dentitions in order to assess the population structure of the region from the 

prehistoric through the post-Pharaonic periods. His work, like that of Greene 

(1972), Brace et al. (1993), and Zakrzewski (2007), suggests a relatively 

high degree of population stability before, during and after the Egyptian 

Predynastic and Dynastic periods, while still allowing for small-scale genetic 

contributions from outside the immediate region. A later study by Schillaci 

and Irish (2009) using the same trait data in combination with new statistical 

methods draws similar conclusions. Irish (2005) has also examined Nubian 

dental trait variation from the Late Paleolithic to the Christian era in an 

attempt to estimate the biological affinities of the ancient peoples of Upper 

and Lower Nubia. This study also makes a strong case for Nubian 

population continuity in the Post-Pleistocene period (Irish 2005), although an 

earlier study demonstrated evidence for some Egyptian gene flow into Nubia 
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(Irish 1998b). Finally, Irish and Friedman (2010) used dental morphological 

traits to determine whether C-Group Nubians resident at Hierakonpolis 

during the Middle Kingdom and Second Intermediate Period remained 

genetically distinct from local Egyptians or became increasingly similar as a 

result of gene flow between the two groups. The results indicate that C-

Group Nubians maintained their genetic distinctiveness throughout their 

occupation at Hierakonpolis despite being becoming culturally “Egyptianised” 

over time (Irish and Friedman 2010:98). 

 

3.8 The present study: materials 

At the time of data collection for the present study (2003-2004), 581 

individuals had been recovered from the Kellis 2 cemetery since excavations 

began in 1992. Of these, however, only a much smaller subset of permanent 

dentitions was available for observation, due to the fact that nearly 65% of 

the skeletal assemblage is comprised of juveniles whose permanent teeth 

are either undeveloped or unerupted. There are also a sizeable number of 

older adults who are either completely edentulous (having lost all teeth 

antemortem), or whose teeth are too worn for observation. Consequently, 

only 172 individuals from Kellis 2 could be observed for permanent dental 

morphological traits. To bolster the study collection, 14 individuals with 

observable permanent teeth recovered from several tomb sites within the 

Kellis settlement itself have been recorded, bringing the total number of 

individuals to 186. These additional individuals are collectively referred to as 

the “townsite” burials. Before combining the two assemblages for use in the 
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regional and inter-regional comparative analysis, however, they will be 

tested for significant differences. 

 

Based on grave goods, mortuary treatment and other archaeological 

indicators, the townsite burials have been tentatively assigned to the Late 

Roman period and thus are contemporary with the Kellis 2 cemetery. 

Multiple samples from Kellis 2 were submitted for accelerated mass 

spectrometry (AMS) radiocarbon dating with the results suggesting the 

cemetery was in use between 50 and 450 AD (Stewart et al. 2003; Molto et 

al. 2006). Others, however, have argued based on artifactual and mortuary 

evidence that the cemetery could not have existed earlier than the fourth 

century AD (Bowen 2003; Hope 2003). 

 

The demographic structure of the Kellis assemblage is shown in Figure 3.39. 

Age at death estimation for the Kellis subadult assemblage is based on 

Ubelaker’s (1989) dental eruption standards and regression formulas for 

long bone lengths developed by Sheuer and co-workers (1980). For adults, 

cranial suture closure (Meindl and Lovejoy 1985) and changes to the 

symphyseal surface of the pubic bone (Brooks and Suchey 1990) were 

used. Assessment of sex for the adult skeletal assemblage is based on the 

observation of sexually dimorphic indicators in the pelvis (e.g. sciatic notch, 

subpubic angle and presence/absence of the ventral arc) and skull (e.g. 

nuchal crest, mastoid process, supraorbital margin, glabella and mental 

eminence) (see Bass 1995; Phenice 1969; White and Folken 2005 for details 

of these methods). An individual skeleton can be assigned to one of five sex 
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categories: male, possible male, indeterminate, possible female and female; 

none of the adults used in the present study, however, were assigned to the 

possible male or female category. For the majority of burials analysed in the 

present study, all individuals are represented by a complete, well-preserved 

skeleton; as such, the demographic information can be presented with 

confidence. 13 individuals (7% of the overall sample), however, were 

missing either the mandible or cranium as a result of disturbances to the 

burial through looting activity. The sex distribution for Kellis, 64 males and 82 

females, is shown in Figure 3.40. The distribution of burials by sex within the 

Kellis 2 cemetery is illustrated in Figure 3.41. Because all age categories are 

well-represented, the Kellis 2 assemblage appears to provide an accurate 

demographic profile of the population (Molto 2002), although the noticeably 

higher number of females than males is unusual. Perhaps their involvement 

in the caravan trade meant more males died away from home.  

 

The data collection took place in Egypt over a period of two months between 

2003 and 2004. During this phase, all available permanent teeth were 

scored individually, but only the antimere exhibiting the highest degree of 

trait expression was used in the analysis, according to the individual count 

method (Scott 1977, 1980; Turner and Scott 1973). This technique accounts 

for the fluctuating asymmetric effects of environmental factors (Van Valen 

1962a, b; Staley and Green 1971; Sciulli et al. 1979), and maximizes sample 

sizes in dental series obtained from archaeological contexts where remains 

are often fragmentary. All traits are described in the Arizona State University 

(ASU) Dental Anthropology System, which presents well-established criteria 
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for scoring intra-trait variation (Turner et al. 1991). The traits were recorded 

with the aid of standardized ASU and Dahlberg Zoller Laboratory rank-

scaled reference plaques. Intraobserver variation, the testing of which is 

recommended by Nichol and Turner (1986), was assessed by re-scoring 21 

maxillary and 13 mandibular traits in a 10% sub-sample (18 individuals) of 

Kellis adults. The test of intraobserver variation took place at the end of the 

data collection season. Scoring inconsistencies were observed in only 3% of 

either maxillary or mandibular tooth-trait combinations. Scoring 

inconsistencies occurred during observations of the hypocone on the 

maxillary molars, and of shovelling on both maxillary and mandibular 

incisors. None of these inconsistencies, however, affect the dichotomized 

expression frequencies presented in this study.  

 

3.9 Hypotheses 

With an eye to addressing issues raised by previously conducted 

osteological studies, as well as more general archaeological issues 

concerning the Dakhleh Oasis within a broader regional context, the 

following hypotheses have been formulated:  

 

1. Phenotypic variability between Kellis males and females will indicate 

post-marital residence status, whereby one sex is more mobile 

(marrying into the community from elsewhere) and the other stationary 

(resident to the community from birth).  

 



94 
 

2. Burials located closer together will share more dental traits than those 

located further apart. Such clustering of dental traits will represent kin 

group burial areas within the Kellis 2 cemetery. 

 

3. The Kellis assemblage will share genotypic/phenotypic features with 

Nile Valley groups as a result of cultural, political and economic ties 

between the two regions beginning in the Neolithic period.  

 

4. The Kellis assemblage will contain a Nubian/Sub-Saharan 

genotypic/phenotypic component as a result of north-south gene flow 

stemming from historically known trade/exchange routes with northern 

Sudan and other parts of the Sahara. 

 

The first two hypotheses deal with the Kellis assemblage in an intracemetery 

(i.e. single site) context, while Hypotheses 3 and 4 necessitate an inter-

regional approach. The methodologies for assessing both sets of 

hypotheses are described below.  

 

3.10 Hypotheses 1 and 2: intracemetery analysis 

3.10.1 Inter-sex trait variation 

Biological distance studies which attempt to assess postmarital residence 

patterns work under the assumption that mates marrying into a community 

from elsewhere will be more phenotypically variable than mates who are 

resident in the community from birth (reviewed in Stojanowski and Schillaci 

2006). Thus, if significant inter-sex differences in trait expressions are found 
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within an assemblage, they may indicate that one sex is more mobile than 

the other. According to Roman-era census data, the overwhelming majority 

of marriages in Egypt resulted in patrilocal residency (Bagnall and Frier 

1994:121), in which the wife resides in the husband’s household. In a 

cemetery assemblage deriving from a society which practices patrilocal 

residence, one would expect that females, having married into the 

community from elsewhere, would be the more variable sex in terms of 

dental morphology. Endogamy, however, the practice of choosing marriage 

partners from within a community, class or kin group, is also a common 

characteristic of ancient Egyptian society (Bagnall and Frier 1994). As such, 

if mates were chosen from within Kellis, one would not expect to see major 

inter-sex differences in trait frequencies because both sexes derive from the 

same local population. Instead, differences between male and female trait 

frequencies may pattern spatially within a cemetery, assuming that 

groupings of burials represent the accretion of patrilocal kin-groups over 

time. If the assumption holds, one would expect that within a cluster of 

burials males would be morphologically more similar than adult females, as 

they share the same genetic make-up (fathers, sons, grandsons, cousins, 

etc.). A complicating factor in this equation is that endogamous marriage 

between close kin (lineage endogamy) was a regular occurrence in Greco-

Roman Egypt (Bagnall and Frier 1994; Hopkins 1980; Lewis 1983; Middleton 

1962; Scheidel 1996a, 1997). Roman census data indicates that one-fifth of 

all Egyptian marriages with determinable kinship were between full siblings, 

half-siblings or first cousins (Bagnall and Frier 1994:127). If lineal endogamy 

was practiced at Kellis, it might make the task of observing inter-sex trait 
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variation more difficult as males and females would be equally related as a 

result of inbreeding. 

 

3.10.2 Spatial analysis 

In their review of intracemetery approaches to biological distance analysis, 

Stojanowski and Schillaci (2006:56) identify three cemetery contexts, each of 

which affect the methodologies employed in identifying closely-related 

individuals or groups: 1) small grave contexts containing a limited number of 

individuals such as crypts, tombs or double burials, 2) spatially structured 

large cemeteries containing distinct burial areas or differences in mortuary 

practices, 3) large cemeteries which are not spatially structured or contain no 

differences in mortuary practices. The Kellis 2 cemetery contains attributes 

of the second and third categories, as there is very little difference in 

mortuary practices among burials and, while there does appear to be spatial 

clustering of burials in certain areas of the site, there is considerable overlap 

between these burial groupings. In such circumstances, kin-structured 

cemeteries will be indentified through the positive correlation of spatial and 

phenotypic proximity (Stojanowski and Schillaci 2006). Thus, if kin-group 

burial areas exist at Kellis, they can potentially be identified by the non-

random spatial distribution of traits, as individuals who are closely related will 

share similar trait frequencies. 

 

In the present study, two methods are employed in an attempt to identify kin-

groups within the Kellis 2 cemetery. The first method is to plot the spatial 

distribution of individual dental traits in order to assess whether or not they 



97 
 

are non-randomly distributed. A similar type of analysis has been conducted 

at Kellis using rare skeletal nonmetric traits (Kron 2007; Molto 2002). Alt and 

Vach (1998) recommend the use of rare or genetically anomalous traits 

when conducting intra-cemetery kinship analyses as these are more useful 

in identifying closely related individuals than commonly occurring dental 

traits. Such traits might include premolar odontomes, peg-shaped 

molars/incisors, talon cusps or incisor twinning. Unfortunately, rare traits 

such as talon cusps and incisor twinning are not recorded in the ASU 

system, while premolar odontomes and peg-shaped maxillary lateral incisors 

do not occur at all in the Kellis assemblage.  

 

As such, a selection of traits which occur in low frequencies at Kellis have 

been chosen for this analysis in the hopes that non-random spatial 

patterning can be observed. While they are not considered rare or 

genetically anomalous, it is worth attempting to map their distribution. These 

traits are Y-groove pattern on mandibular second molars, Cusp 6 and 7 on 

mandibular first molars, 4-cusped mandibular first molars, 5 or more cusps 

on maxillary second molars, reduced maxillary second molar hypocone and 

metacone, shovel shaped maxillary lateral incisors, interruption grooves on 

maxillary lateral incisors and peg-shaped maxillary third molars. Each of 

these traits’ occurrence is plotted on the map of the Kellis 2 cemetery.  

 

The second approach is to divide the cemetery into four colour-coded groups 

of burials based on their location. Red corresponds to the northern group of 

burials, brown to the western group, blue to the southern group, and green to 
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the eastern and central burials (see Figure 3.42). The assumption is that 

these four groups will correspond to kin group burial areas. This is based on 

the observation that many of the burials tend to cluster around a number of 

large mudbrick tomb structures; these tombs may represent founding family 

groups with descendants or extended family members buried adjacent to 

them in simpler pit graves (Birrell 1999; Bowen 2003). Group assignation is 

based on a visual analysis of burials which appear to cluster together. The 

decision to include some burials in a particular group was often arbitrary as 

there are not always clear delineations between clusters of burials. The West 

group burials, however, appear to cluster around two large mudbrick tomb 

structures (Tomb 1 and 2) which predate them. The same is evident for the 

East group burials, which cluster around mudbrick Tomb 3. The North group 

represents a well-defined area of burials that appear to cluster around Tomb 

4 (unexcavated at the time of data collection). The South group burials do 

not appear to have a focal point, and the graves appear more haphazardly 

lain, although a focal point may lie outside the area of excavation. Dental 

trait frequencies can then be compared between these areas to determine 

whether statistically significant differences can be observed and plotted. In 

addition, the combined dental trait frequencies for each group can be 

analyzed in order to see how they relate to one another in the same way the 

inter-regional groups are compared (i.e. MMD values and hierarchical 

cluster).  
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3.11 Hypotheses 3 and 4: regional trait comparisons 

In order to assess the biological relationships of the Kellis assemblage to 

regional and inter-regional groups, dental trait frequencies obtained from 

studies of ancient Egyptian (Irish 2006) and Nubian (Irish 2005) groups are 

used as the basis for the present study’s regional comparison. Additional 

comparative data for North and Sub-Saharan African groups derive from 

studies conducted by Irish (1993) and Irish and Konigsberg (2007), 

respectively. Table 3.1 provides a list of the skeletal assemblages used in 

the comparative study, along with their origin, time period and number of 

individuals. Finally, a comparison between the Kellis assemblage and those 

of broader-based regional groups will be undertaken using frequencies for 

thirteen commonly observed dental traits.  

 

3.11.1 Egyptian comparative material 

The Egyptian comparative data derives from Irish’s (2006) study of dental 

traits from nine Upper Egyptian and six Lower Egyptian sites ranging from 

the Final Neolithic through to the Byzantine period (Table 3.1). The Upper 

Egyptian material is comprised of skeletal material from Gebel Ramlah, 

Badari, Naqada, Hierakonpolis, Abydos, Thebes, Qurneh, El Hesa and 

Kharga oasis. The Lower Egyptian material is comprised of skeletal material 

from Tarkhan, Saqqara, Lisht, Giza, and Hawara. The Greek Egyptian 

sample consists of Ptolemaic individuals from Saqqara and Manfalut in 

Middle Egypt. See Figure 3.43 for the locations of these sites. These data 

represent a total of 996 individuals (Irish 2006:530). The observation and 

recording of the dental trait frequencies were conducted entirely by Irish.  
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3.11.2 Nubian comparative material 

The Nubian comparative data derive from Irish’s (2005) study of dental traits 

from ten skeletal assemblages from Upper and Lower Nubia ranging from 

ca. 3000 BC to the 14th century AD. Nubian groups are commonly described 

as having a mix of Western Eurasian and Sub-Saharan African craniofacial 

and dental characteristics (Billy and Chamla 1981; Gill 1998; Irish 1993; 

Nielson 1970). The Upper Nubian material consists of skeletal remains from 

Kawa, Kerma, and Soleb. The Kushite group is comprised of Meroitic and 

Post-Meroitic era individuals from Kawa and Gabati. The Lower Nubian 

material consists of A-Group, C-Group and Pharaonic Nubian skeletal 

remains from Faras and Gamai. The Meroitic, X-Group, and Christian 

Nubians also derive from Faras and Gamai, with the addition of several 

individuals from Semna. See Figure 3.43 for the locations of these sites. 

These groups represent a total of 545 individuals (Irish 2005:522). The 

observation and recording of the dental trait frequencies were conducted 

entirely by Irish.  

 

3.11.3 North African comparative material 

The North African comparative data (Table 3.1) is taken from Irish’s (1993) 

unpublished PhD thesis and consists of one ancient and four recent skeletal 

assemblages (Table 3.1). The total number of individuals is 164 (Irish 

1993:78). They are used in the present study to test the Kellis assemblage 

for affinities with Saharan groups west of the Nile Valley. The Carthaginian 

assemblage consists of skeletal remains from the ancient Phoenician city of 
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Carthage located on the coast of Tunisia. The Carthaginians are a West 

Asian-derived population who most likely experienced some degree of 

admixture with indigenous Berber groups (Wysner 1945). The Algerian 

assemblage is comprised of recent Shawia Berber skeletal remains. The 

Shawia Berbers are known to have considerable admixture with Bedouin 

Arab and other Eurasian populations, i.e. Phoenicians, Greeks, Romans, 

Turks, Spanish and French (Wysner 1945). The Bedouin assemblage 

consists of recent skeletal remains from Morocco, Tunisia and Libya. North 

African Bedouin groups are typically classified as Arab peoples who first 

entered the region during the Muslim conquests of the 7th century AD (Julien 

1970; Hiernaux 1975). The Kabyle assemblage consists of the recent 

skeletal remains of Kabyle Berbers from Algeria. Unlike other Berber groups, 

the isolated Kabyle were not exposed to high levels of foreign admixture, 

making them the most representative of indigenous North Africans (Wysner 

1945). Finally, the Chad assemblage consists of the recent skeletal remains 

of several ethnic groups from this eastern Saharan country. The people of 

Chad are generally described as having Sub-Saharan physical 

characteristics, although some individuals may have lighter skin and 

Caucasoid facial features (Lebeuf 1959). The observation and recording of 

dental trait frequencies were conducted by Irish. See Figure 3.44 for the 

locations of the comparative groups. 

 

3.11.4 Sub-Saharan African comparative material 

In order to test for biological relationships between Kellis and Sub-Saharan 

Africa, dental trait frequencies from five West and two East African recent 
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skeletal assemblages are employed. The Sub-Saharan African comparative 

data (Table 3.1) derives from Irish and Konigsberg’s (2007) comparative 

study of the inhabitants of Jebel Moya, an ancient Upper Nubian site. The 

West African material derives from Congo, Nigeria/Cameroon, Ghana, 

Gabon and Togo/Dahomey (Figure 3.44). The East African material derives 

from Kenya/Tanzania and Ethiopia (Figure 3.44). The total number of 

individuals is 374 (Irish and Konigsberg 2007:141). The observation and 

recording of dental trait frequencies were conducted by Irish. 

 

3.11.5 Inter-regional comparative material 

Dental trait frequency data for Western Europe, North Africa and three Sub-

Saharan African groups (West Africa, South Africa and Khoisan) are used to 

situate the Kellis assemblage within a broader regional context. The 

comparative data for the inter-regional analysis are derived from Scott and 

Turner’s (1997) compilation of dental trait frequencies from several 

independent studies conducted by Turner and Irish (Scott and Turner 

1997:318). The Western European (WE) group is comprised of trait 

frequency data from Finnish, English, Dutch and Danish populations. While 

trait frequencies for Mediterranean Europeans would be more appropriate for 

comparisons with Kellis, such data are not currently available. Comparable 

data for western Asia are also nonexistent. The North African group (NAF) is 

comprised of combined trait frequency data from Algerian, Bedouin, 

Carthaginian, Canary Islander, Chadian, Nubian and Egyptian populations. 

Three Sub-Saharan African groups: West Africa (WAF), South Africa (SAF) 

and Khoisan (KHO) are comprised of trait frequency data from Congo, 
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Gabon, Nigeria, Cameroon, Pygmy, South Africa, Senegambia, Sotho, 

Tanzania, Togo/Benin, Tukolor, San and Khoikhoi.  

 

3.12 Trait selection for comparative studies 

While many comparative studies of dental morphology have demonstrated 

that the distribution of certain trait frequencies such as incisor shovelling and 

Carabelli’s cusp tends to pattern along major geographical population lines 

(e.g. Swindler 1976; Brues 1977), more recent studies have shown that 

attempts to classify populations based on one or two traits are inadequate, 

as they do not sufficiently discriminate between groups (Scott 1980; Turner 

and Hawkey 1998). As such, Turner and Hawkey (1998) have recommended 

that, whenever possible, all traits in the ASU system be employed in 

assessments of biological affinities. In practice, however, especially when 

dealing with archaeological skeletal assemblages, it is rarely possible to 

score all 42 traits, given factors such as post/antemortem tooth loss, and 

attrition.  

 

Another consideration when comparing trait frequencies between groups is 

to avoid using traits with low numbers of observable cases, as these may 

adversely affect the outcome of statistical analyses. These typically include 

the deflecting wrinkle, distal trigonid crest, anterior fovea and other crown 

traits which can be obscured by even small amounts of tooth wear. Traits 

which do not vary across comparative groups (i.e., 100% present or absent 

in all groups) should also be avoided as they lack discriminatory value in 

biological distance studies (Irish 2005). Intra- and inter-trait correlations are 
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another consideration in choosing the appropriate set of traits for 

comparative purposes (Scott 2008; Scott and Turner 1997). Examples of 

strong intra-trait correlations are shovelling of maxillary and mandibular 

incisors and canines, or hypocone and metacone expression on maxillary 

molars. In these cases, while the trait is recorded for each tooth in which it 

occurs, population comparisons should only compare trait frequencies for a 

specific tooth to avoid redundancy (Scott 2008). An example of an inter-trait 

correlation is the link between Carabelli’s Cusp and hypocone expression on 

maxillary molars (Scott 1979). In this case, population comparisons typically 

employ frequencies for Carabelli’s Cusp on the maxillary first molar where 

the trait is usually most strongly expressed, while frequencies for the 

hypocone are taken from the maxillary second molar as the trait is more 

variably expressed on this tooth (Turner et al. 1991). As a result, the number 

of traits used in comparative studies of dental morphology is usually a much-

reduced subset of the total range of tooth-trait combinations; in some studies 

this number may be as low as nine (e.g. Johnson and Lovell 1994). 

 

To facilitate the comparison of dental trait frequencies between groups, each 

trait’s expression is dichotomized into binary presence/absence categories, a 

practice which is required before submitting the data for multivariate 

analyses (Sjøvold 1977). Because most traits are expressed quasi-

continuously, however, it is not always a simple matter of characterizing a 

trait as present if it has a score above zero on the rank-scale; sometimes a 

trait is considered present only if it reaches a certain level of expression 

(Scott and Turner 1997). As such, the cut-off or breakpoint which determines 
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presence or absence is based on the morphological threshold of each trait 

(Scott and Turner 1997). These breakpoints have been established and 

standardized by Scott (1973) and Nichol (1990) through segregation analysis 

studies. Some researchers, however, may vary the breakpoints used in a 

particular study in order to emphasize or de-emphasize particular traits 

within a population for the purposes of intra-regional comparisons, for 

example lower molar Cusp 7 among Sub-Saharan populations (Irish 1993, 

1997, 1998a). Thus, it essential to ensure that the same breakpoints are 

employed when comparing dichotomized dental trait data between 

researchers, as raw scores for dental traits are rarely published. 

 

3.13 Statistical analyses 

Sophisticated analyses of large numbers of traits can be analyzed profitably 

through the use of multivariate statistics, which allows the discernment of 

finer levels of biological distance between groups (Scott and Turner 1997). 

For those generating quantitative data such as tooth crown or cranial 

measurements, techniques such as principal coordinates, principal 

components and factor analysis are typically utilized (Keiser 1990; Relethford 

and Lees 1982; Stojanowski and Schillaci 2006). Those workers who deal in 

qualitative data such as cranial and dental morphological trait frequencies 

typically employ methods such as the chi-square statistic, angular 

transformations of frequencies or kinship coefficients (Harris and Sjøvold 

2004; Scott and Turner 1997). Biological distance values calculated using 

quantitative data are based on differences in intergroup means, while those 
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generated from qualitative data are based on differences in frequencies or 

proportions.  

 

Distance values calculated by researchers looking at dental morphology are 

typically measures of dissimilarity. Any value generated by biological 

distance analysis is a relative measure of relationship generated when a 

common set of variables are compared between groups (Scott and Turner 

1997). Thus, two groups with identical trait frequencies will have a pairwise 

distance coefficient of 0.0. Similarity between groups as indicated by a small 

intergroup distance value implies a close biological relationship and a recent 

common ancestry (Scott and Turner 1997). As differences in trait frequencies 

increase, the distance coefficient will increase from zero, which implies 

population divergence. When many groups are compared in matrix format 

the pairwise distance coefficients between groups will indicate their relative 

relatedness. The more similar or related a group across all compared traits, 

the smaller the distance value will be, while dissimilar groups will have a 

larger distance value. These distance matrices are often plotted in a 

dendrogram (tree diagram) chart which visually represents the relatedness of 

multiple comparative groups. Groups which are more closely related (with 

small distance coefficients) will be linked at the lowest rungs of the 

dendrogram, while less related groups will diverge at higher levels on the 

dendrogram.  

 

The morphological data for the Kellis permanent dentition are presented as 

follows. Variation in trait frequencies for males and females are analysed 
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through the use of the chi-square and Fisher’s Exact tests in order to test for 

significant intersex differences from which inferences on post-marital 

residency at Kellis can be made. If no significant differences are apparent 

between Kellis 2 males and females, the trait frequencies for both sexes can 

be lumped and compared with trait frequencies for other geographic 

populations in order to assess the biological affinities of the Kellis skeletal 

assemblage. In the comparative section, the dichotomized tooth trait 

frequencies for each trait are presented and compared with data for major 

regional groups in order to position the Kellis assemblage within a global 

context. Following this, the Kellis tooth trait data are subjected to a series of 

statistical analyses in order to quantify in a more precise manner the 

assemblage’s biological affinities with several regional groups. These 

statistical methods are outlined below. 

 

3.13.1 Mean Measure of Divergence (MMD) 

While there are a number of multivariate statistical approaches to quantifying 

biological distance, for example, Penrose’s size and shape coefficients 

(1954) and more recently the use of the Mahalanobis D2 distance (1936) for 

nonmetric data, the Mean Measure of Divergence (MMD) statistic is the most 

commonly used method for comparing both skeletal and dental discrete trait 

frequencies within and between skeletal assemblages (e.g. De Souza and 

Houghton 1977; Greene 1982; Greene et al. 1979; Guatelli-Steinberg et al. 

2001; Irish 1997, 1998a,b,c,d, 2000, 2006; Johnson and Lovell 1995; 

Prowse and Lovell 1996; Ullinger et al. 2005).  
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The MMD statistic was formulated by Cedric A.B. Smith for use in genetic 

studies of inbred laboratory mice by M.S. Grewal (1962). Grewal used the 

MMD statistic to quantify the level of genetic divergence among successive 

generations of lab mice through the observation and recording of a series of 

skeletal nonmetric traits (Grewal 1962). The use of the Mean Measure of 

Divergence statistic has since become fashionable in anthropological studies 

as a result of seminal research papers by A.C. and R.J. Berry among others 

(e.g. Berry 1968; Berry and Berry 1967; Berry et al. 1967; Berry 1974, 1976).  

 

The Mean Measure of Divergence statistic is a dissimilarity measure which 

produces values based on pair-wise comparisons of non-metric biological 

data between two groups. In the present study, dichotomized frequencies for 

individual dental morphological traits comprise the pair-wise comparisons. 

Low MMD values imply phenetic similarity between groups, while high values 

imply phenetic divergence. MMD values may be adversely affected by 

insufficient numbers of recorded individuals (i.e. small sample size), which 

are typical of studies employing archaeological data; as a result, a number of 

modifications to the original formula have been developed for dealing with 

this problem (Sjøvold 1977). The present study employs the Freeman and 

Tukey (1950) angular transformation which stabilizes variance between small 

samples and corrects for trait frequencies which are either very low (≤5%) or 

very high (≥95%). Other researchers use the Anscombe (1948) 

transformation, which produces similar results to the Freeman and Tukey 

(1950) formula (Harris and Sjøvold 2004); however, Greene and Suchey 
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(1976) have shown that that the latter method works better with small, 

archaeologically derived assemblages.  

 

 

The Mean Measure of Divergence statistic is expressed as follows: 

 

Where: 

r = number of uncorrelated traits 

n = number of individuals examined for trait ‘‘i’’ 

Ɵ = angular transformation of Freeman and Tukey (1950): 

Ɵ = 1/2sin-1(1-(2k)/(n+1)) + 1/2sin-1(1-2(k+1)/(n+1)) 

 

Where: 

k = number of positive observations for trait ‘‘i’’ 

n = number of individuals examined for trait ‘‘i’’ 

 

The variance formula is expressed as: 

 

 

The standard deviation of the MMD is the square root of its variance: 
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Sjøvold (1973:216, 1977) states that if an MMD value is greater than twice its 

standard deviation, a statistically significant difference exists between the 

two groups. Thus, the null hypothesis that both groups are drawn from the 

same population can be rejected at the 0.025 confidence level. Such tests of 

significance are commonly employed in biodistance studies using the MMD 

statistic (e.g. Greene 1982; Johnson and Lovell 1995; Irish 2005, 2006, 

2010; Ullinger et al. 2005). However, as pointed out by Harris and Sjøvold 

(2004:92) in a review of the MMD statistic, no statistically significant 

difference between groups does not imply that these groups can be assumed 

to represent the same population, only that it is impossible to distinguish 

between them on the basis of the data at hand. Archaeological skeletal 

assemblages, so often separated by temporal and spatial distances, already 

represent distinct populations by their very nature. As a result of these 

considerations, the test of significance in biodistance studies must be used 

as part of a broader range of statistical approaches in order to obtain a more 

accurate depiction of the biological relationships between skeletal 

assemblages. These additional approaches are discussed in detail in the 

next section. 

 

 While the use of the MMD statistic has come under criticism in recent years 

in terms of its modification by various researchers and the corresponding 

lack of specificity when reporting their results (c.f. Harris and Sjøvold 2004; 

Harris 2008; Kongisberg 2006), several authors have recently attempted to 
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clarify and defend the use of the MMD in biodistance studies (Harris and 

Sjøvold 2004; Irish 2010). These authors explicate the proper formula for 

calculating the MMD statistic, while jettisoning some of the statistical 

baggage the formula has accumulated over the years, including the recent 

tendency for standardization of the MMD statistic (Harris and Sjøvold 2004). 

Irish (2010) goes further and lays out some of the major considerations that 

should be taken into account before using the MMD statistic, including trait 

selection and testing for inter-trait correlations. In direct comparisons 

between the Mahalanobis D2 distance and MMD statistic, Edgar (2004) and 

Irish (2010) demonstrate that both methods are appropriate for nonmetric 

traits and produce highly concordant results. Irish (2010:391) posits that the 

MMD statistic may be the more robust of the two methods, as the MMD 

statistic uses summary count data, unlike the Mahalanobis D2 distance 

which can be adversely affected by missing data. Based on these findings, I 

feel justified in employing the Mean Measure of Divergence statistic, using 

the formulas stated above, for the present study. As the MMD formula is 

currently not available as a module in SPSS (or any widely available 

statistical software package) the MMD statistic is calculated by programming 

the formula in MS Excel. 

 

3.13.2 Hierarchical cluster analysis 

Hierarchical cluster analysis is a useful tool for visually representing the 

relationships between different populations. It is a form of multivariate 

analysis which attempts to find structure in the relationships between cases 

defined by a set of variables (Drennan 2009). To begin, the MMD value for 
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each pairwise case (in the present study case = comparative group) 

comparison is used to produce a distance matrix. A distance matrix is a two-

dimensional array (table) containing the pairwise values of a set of points – 

in this case the intercemetery comparative groups. The matrix is entered into 

a statistical software package which analyzes the data and generates a 

cluster analysis output in the form of a dendrogram. Hierarchical cluster 

analysis typically proceeds by linking individual groups to form larger 

clusters. In the first step, the two most similar groups are linked to form the 

first cluster; then two more groups are linked to form a second cluster, or a 

third group is added to the pre-existing cluster. Gradually, more groups are 

added to the hierarchy of agglomeration until all groups are incorporated into 

the finalized dendrogram (Drennan 2009). Within the dendrogram, groups 

that are closely related to one another will cluster together, while less related 

groups will appear in separate clusters. Groups linked at lower branches of 

the dendrogram will be more closely related than groups separated at higher 

branches of the dendrogram. SPSS 17 was used to run the hierarchical 

cluster analysis with Ward’s linkage as the clustering method and Squared 

Euclidean distance as the measure. Ward’s linkage (Ward 1963) is 

commonly used in biological distance cluster analyses (e.g. Hallgrimsson et 

al. 2004; Irish 1993, 1997; Irish and Hemphill 2004; Lukacs 2007; Ricaut and 

Waelkens 2008; Sutter and Mertz 2004). This method differs from other 

clustering methods in that it uses an analysis of variance (ANOVA) approach 

to evaluate distances between clusters. Ward’s method attempts to minimize 

the Sum of Squares of any two clusters that can be formed at each step and 

has the effect of creating clusters of smaller size (Ward 1963). This is 
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considered advantageous in analyses of biological distance as closely 

related groups tend to stand out within the resulting dendrogram. It should 

be noted, however, that hierarchical clustering programs – by their nature – 

often force outliers into clusters that do not necessarily reflect reality. In 

addition, this method is not as useful as multidimensional scaling or principal 

components analysis for observing patterns of variation within a dataset 

(Drennan 2009). As such, while hierarchical cluster analysis is a useful tool 

for representing variation, many researchers consider multidimensional 

scaling as a more accurate method for plotting biological distance matrices 

(Irish, pers. comm.).  

 

3.13.3 Multidimensional Scaling (MDS) 

Multidimensional scaling is similar to hierarchical clustering in that it 

facilitates the visual representation of data generated from multivariate 

analyses of biological distance (Kruskal and Wish 1978). Like hierarchical 

clustering, a multidimensional scaling algorithm uses the distance matrix 

produced from the pairwise MMD values for each group and plots them in 

relation to one another. Each point on the plot represents one of the 

intracemetery comparative groups used in the MMD calculation. 

Multidimensional scaling plots the comparative groups as if they were 

Euclidean distances in such a way that “the rank order of the distances 

between pairs of points corresponds as well as possible to the rank order of 

the similarity coefficients in space” (Drennan 2009:285). In the present study, 

the similarity coefficient used is the MMD value generated for paired 

comparative groups. Thus, those groups that have smaller MMD values (i.e. 
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are more similar to one another) will be plotted closer together, while those 

that have larger MMD values (i.e. are less similar) will be placed further apart 

from one another.  The spatial arrangement of groups is a trial-and-error 

process in which the scaling algorithm attempts to produce an initial 

configuration of points and then continuously adjusts them until no further 

improvements can be made.  

 

As the name implies, multidimensional scaling can visualize data in any 

number of dimensions, although interpreting the results becomes difficult 

beyond three dimensions. Two- and three-dimensional plots are the most 

common in analyses of biological distance. Two important considerations in 

the interpretation of these plots are: 1) Kruskal’s stress formula 1 value, 

which is a measure of the “goodness of fit” of the data; and 2) the r2 value, 

which represents the proportion of variance of the scaled values accounted 

for by their corresponding distance values (Kruskal and Wish 1978). These 

values are generated as part of the multidimensional scaling output for the 

range of dimensions chosen. The values should be compared for each plot 

(e.g. two-dimensional vs. three-dimensional plots) to determine which 

number of dimensions provides the best representation of the data. Lower 

stress values imply a better fit between data values, while high r2 values 

imply a truer representation of the spatial relationships between data values, 

i.e. comparative groups (Kruskal and Wish 1978). Typically, a higher number 

of dimensions used in a plot will produce a better representation of the data, 

but interpreting the output becomes increasingly difficult beyond three 
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dimensions. For the present study, multidimensional scaling is restricted to 

two- and three-dimensional plots as they are the easiest to interpret. 
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Figure 3.1. Cross-section of molar tooth with anatomical terminology.  
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 Figure 3.2. The four tooth types (Occlusal view). 
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Figure 3.3. The four tooth types (buccal/labial view). 
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Figure 3.4. Positional terms for the teeth and jaws. 
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Figure 3.5. Left maxillary central incisor showing anatomical features (modified from Hillson 1996). 
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Figure 3.6. Left maxillary canine showing anatomical features (modified from Hillson 1996). 
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Figure 3.7. Left maxillary and mandibular premolars showing anatomical features (modified from Hillson 1996). 
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Figure 3.8. Maxillary and mandibular left molars showing anatomical features (modified from Hillson 1996). 
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 Figure 3.9. ASU Dental Anthropology System reference plaque showing different grades of shovelling in the 
permanent upper central incisor. 

 

 

Figure 3.10. Grade 2 shovelling on the lateral incisors. Kellis North Tomb (townsite) burial 3 maxillae. 
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Figure 3.11. ASU Dental Anthropology System reference plaque for upper central incisor labial convexity. 

 

 

 

 

 

 

Figure 3.12. ASU Dental Anthropology System reference plaque for upper incisor double shovelling. 
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Figure 3.13. Interruption grooves on lateral incisors. K2 burial 169 maxillae. 
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(a) 

 

(b) 

 
 
Figure 3.14. ASU Dental Anthropology System reference plaques for scoring tuberculum dentale on: (a) upper 
central incisors and (b) upper lateral central incisors and canines. 
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Figure 3.15. ASU Dental Anthropology System reference plaque for upper canine mesial ridge (“Bushman canine”). 

 
 
(a) 

 

(b) 

 

Figure 3.16. ASU Dental Anthropology System reference plaques for scoring canine distal accessory ridge on: (a) 
lower canines, and (b) upper canines. 
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Figure 3.17. ASU Dental Anthropology System reference plaque for upper third premolar distosagittal ridge (“Uto-
Aztecan” premolar). 

 

 

 

 

 

 

Figure 3.18. ASU Dental Anthropology System reference plaque for upper molar metacone. 
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Figure 3.19. ASU Dental Anthropology System reference plaque for upper molar hypocone. 

 

 

 

 

 Figure 3.20. Reduction in hypocone (distolingual cusp) size from M1 to M2. K2 burial 491 (upper left molars).  
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 Figure 3.21. Dahlberg’s eight-grade reference plaque for Carabelli’s trait in the upper molars. 
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Figure 3.22. Grade 7 Carabelli’s cusp on M1. Note rare presence of low-grade Carabelli’s cusp on M2 and M3. K2 
burial 284. 
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 Figure 3.23. ASU Dental Anthropology System reference plaque for upper molar cusp 5 (metaconule). 

 

 

Figure 3.24. ASU Grade 3 cusp 5 (metaconule) on left upper first molar. Note the large Carabelli’s cusp on the first 
molar. K2 burial 287. 
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Figure 3.25. ASU Dental Anthropology System reference plaque for upper molar parastyle. 

 

 

Figure 3.26. Left maxilla showing peg-shaped third molar. K2 Burial 274. 
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(a) 

 
 
(b) 

 

Figure 3.27. ASU Dental Anthropology System reference plaques for lower premolar lingual cusp variation on: (a) 
third premolars; (b) fourth premolars. 

 

 

 

 

Figure 3.28. ASU Dental Anthropology System reference plaque for lower first molar anterior fovea. 
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Figure 3.29. 5-cusped M1 and 4-cusped M2. Lower molars. K2 burial 258. 

 

 

 
Figure 3.30. Lower right molars. Y-groove pattern on M1 (5 cusps), and +-groove pattern on M2 (4 cusps). Kellis 
North Tomb (townsite) burial 3. 

 



137 
 

 

Figure 3.31. Lower left molars. X-groove pattern on M2 and M3. K2 burial 522. 

 

 

 

Figure 3.32. ASU Dental Anthropology System reference plaque for lower molar deflecting wrinkle. 
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Figure 3.33. ASU Dental Anthropology System reference plaque for lower molar protostylid. 

 

 

Figure 3.34. ASU Dental Anthropology System reference plaque for lower molar Cusp 5. 

 

Figure 3.35. ASU Dental Anthropology System reference plaque for lower molar Cusp 6. 
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Figure 3.36. ASU Dental Anthropology System reference plaque for lower molar Cusp 7. 

 

 

 Figure 3.37. Mandible with large Cusp 7 on left and right lower first molars. K2 Burial 559.  
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Figure 3.38. ASU Dental Anthropology System reference plaque for lower third premolar Tome’s root. 
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Figure 3.39. Kellis age distribution (N=186) (individuals with observable permanent teeth only). 
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Figure 3.40. Kellis sex distribution (N=186) (individuals with observable permanent teeth only). 
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Figure 3.41. Kellis 2 cemetery sex distribution (individuals with observable dentitions only). 
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Table 3.1. Comparative groups used in the present study. 
Assemblage name Origin/Site Period Date N Source 

UPPER EGYPT 

Gebel Ramlah (GRM) Gebel Ramlah Final Neolithic c. 4650-4400 BC 59 Irish, 2006 

Badari (BAD) Badari Predynastic (Badarian) c. 4400–4000 BC 40 Irish, 2006 

Naqada (NAQ) Naqada Predynastic (Naqada I & II) c. 4000-3200 BC 65 Irish, 2006 

Hierakonpolis (HRK) Hierakonpolis Predynastic (Naqada II) c.3500-3200 BC 247 Irish, 2006 

Abydos (ABY) Abydos Early Dynastic (Dynasty 1-2) c. 3000-2686 BC 54 Irish, 2006 

Thebes (THE) Thebes Middle Kingdom (Dynasty 11-12) 2055-1773 BC 54 Irish, 2006 

Qurneh (QUR) Qurneh New Kingdom (Dynasty 19) 1295-1186 BC 67 Irish, 2006 

El Hesa (HES) El Hesa Roman AD 200-400 72 Irish, 2006 

Kharga (KHA) Kharga Oasis Roman (Byzantine) AD 500-600 26 Irish, 2006 

LOWER EGYPT 

Tarkhan (TAR) Tarkhan Early Dynastic (Dynasty 1) c. 3000-2890 BC 51 Irish, 2006 

Saqqara (SAQ) Saqqara Old Kingdom (Dynasty 4) 2613–2494 BC 41 Irish, 2006 

Lisht (LIS) Lisht Middle Kingdom (Dynasty 12) 1985-1773 BC 61 Irish, 2006 

Giza (GIZ) Giza Late Dynastic (Dynasty 26-30) 664-332 BC 62 Irish, 2006 

Greek Egyptians (GEG) Saqqara, Manfalut Ptolemaic 332–30 BC 46 Irish, 2006 

Hawara (HAW) Hawara Roman AD 50-120 51 Irish, 2006 

UPPER NUBIA 

Kawa (KAW) Kawa Kerma Ancien/Moyen 2500–1750 BC 37 Irish, 2005 

Kerma (KER) Kerma Kerma Classique Nubian c. 1750–1500 BC 63 Irish, 2005 

Soleb (SOL) Soleb Pharaonic (Dynasty 18) 1550–1380 BC 32 Irish, 2005 

Kushite (KUS) Kawa, Gabati Meroitic/Post-Meroitic c. 600 BC-550 AD 63 Irish, 2005 

LOWER NUBIA 

A-Group (AGR) Faras to Gamai A-Group Nubian c. 3000 BC 52 Irish, 2005 

C-Group (CGR) Faras to Gamai C-Group Nubian c. 2000–1600 BC 62 Irish, 2005 

Pharaonic (PHA) Faras to Gamai Pharaonic 1650–1350 BC 38 Irish, 2005 

Meroitic (MER) Semna; Faras/Gamai Meroitic Nubian 100 BC–AD 350 94 Irish, 2005 

X-Group (XGR) Semna; Faras/Gamai X-Group Nubian AD 350–550 63 Irish, 2005 

Christian (CHR) Semna; Faras/Gamai Christian AD 550–1350 41 Irish, 2005 

   
NORTH AFRICA 

Carthage (CAR) Tunisia Phoenician 751-146 BC 28 Irish, 1993 

Algeria (ALG) Algeria Recent 19th cent. AD 26 Irish, 1993 

Bedouin (BED) 
Morocco, Tunisia, 
Libya 

Recent 19-20th cent. AD 49 Irish, 1993 

Kabyle (KAB) Algeria Recent 19-20th cent. AD 32 Irish, 1993 

Chad (CHA) Chad Recent 19-20th cent. AD 29 Irish, 1993 

SUB-SAHARAN AFRICA 

Kenya (KEN) Kenya, Tanzania Recent 19–20th cent. AD 114 Irish & Konigsberg, 2007 

Ethiopia (ETH) Ethiopia, Eritrea Recent 19–20th cent. AD 40 Irish & Konigsberg, 2007 

Congo (CNG) Congo, Gabon Recent 19–20th cent. AD 52 Irish & Konigsberg, 2007 

Nigeria-Cameroon (NIC) Nigeria, Cameroon Recent 19th cent. AD 57 Irish & Konigsberg, 2007 

Ghana (GHA) Ghana Recent 19th cent. AD 47 Irish & Konigsberg, 2007 

Gabon (GAB) Gabon Recent 19–20th cent. AD 39 Irish & Konigsberg, 2007 

Togo-Dahomey (TOD) Togo, Benin Recent 19th cent. AD 25 Irish & Konigsberg, 2007 
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 Figure 3.42. Map of Kellis 2 cemetery showing four burial subgroups (green=east; brown=west, red=north and 
blue=south) 
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Figure 3.43. Map of northeast Africa showing Egyptian and Nubian sites for comparative groups. 
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Figure 3.44. Map of Africa showing locations for North African and Sub-Saharan comparative groups. 
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Chapter 4 

Results of the Dental Morphological Analysis 

 

4.1 Introduction 

The total number of individuals for which dental morphological observations 

of the permanent teeth can be made is 186 (172 individuals from the Kellis 2 

cemetery, and 14 individuals from the townsite burials). For the present 

study, seventeen permanent mandibular and twenty-three maxillary tooth-

trait combinations have been recorded in accordance with the Arizona State 

University Dental Anthropology System. Unfortunately, several occlusal traits 

were often unobservable due to high dental attrition rates, especially for 

older individuals. These traits are the canine distosagittal and mesial ridges, 

first molar anterior fovea, molar deflecting wrinkle and distal trigonid crest. 

Despite this, the majority of dental nonmetric traits were scorable in most 

individuals.  

 

Despite the fact that the Kellis townsite burials appear to be contemporary 

with the Kellis 2 cemetery based on archaeological evidence, it is essential 

to check for significant differences between the two assemblages before 

combining them for broader regional comparisons. Chi-square and Fisher’s 

Exact tests were conducted using frequency data for the twenty dental traits 

used in the comparative portion of the present study (see Appendix I). Of the 

twenty dental trait frequencies observed, two traits showed significant (P ≤ 

0.05) differences between the two assemblages: Carabelli’s cusp (Fisher’s 

Exact Test P=0.000) and upper lateral incisor interruption groove (Fisher’s 
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Exact Test P=0.008). However, these significant differences can largely be 

attributed to the very small number of observable cases within the townsite 

assemblage. Only eight individuals were observable for upper lateral incisor 

interruption groove, and eleven individuals for Carabelli’s cusp. As such, I 

feel justified in combining the two groups for the regional and inter-regional 

analysis. The Mean Measure of Divergence statistic was not used to 

compare the two groups as the number of observable cases for the townsite 

burials is below the limit that the formula is designed for.  

 

4.2 Presentation of results 

The results of the analysis are presented as follows: a qualitative description 

of the Kellis dental trait frequencies is presented first. Each recorded dental 

trait for the Kellis population is described in terms of expression frequencies 

between the sexes and then for the sex-pooled assemblage as a whole. 

They are then compared with dichotomized trait frequencies for inter-

regional groups (discussed in Chapter 3) in order to give an idea of where 

the Kellis assemblage fits within a broader geographical context. When 

available, the world minimum and maximum range for each trait is provided. 

The trait frequencies for the inter-regional populations and world ranges are 

taken from Scott and Turner (1997).This is followed by the results of the 

intracemetery analysis of sex differences and spatial patterning of traits. 

Finally, the results of the multivariate statistical analysis of biological 

distance for Kellis and comparative group dental trait frequencies are 

presented. 
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4.3 Description of Kellis permanent dentition morphological traits 

Tables 4.1 and 4.2 present the raw scores for all Kellis mandibular and 

maxillary dental traits recorded in the present study. The Kellis dental 

assemblage is discussed with reference to dichotomized world trait 

frequencies below. Not all traits recorded for the Kellis assemblage are 

discussed in this section as comparative data is not always available for 

particular traits. These data, broken down by sex category, are presented in 

Table 4.3. Note that for certain traits the ASU scale breakpoints are different 

from the ones used for the subsequent analysis of sex differences and for 

the multivariate analysis. This is due to differences between researchers in 

the way dichotomized trait expression frequencies are presented. The 

breakpoints for each trait are provided in the descriptions. Comparative data 

for Nubia and North Africa derives from Irish (2000). Comparative data and 

world trait frequency ranges for Western and Northern Europe derive from 

Scott and Turner (1997).  

 

4.3.1 Mandibular dental traits 

Fourth premolar lingual cusp variation (presence=2 or more lingual cusps) 

Two or more lingual cusps on the lower 4th premolar occur in 57.9% and 

76.9% of Kellis males (N=19) and females (N=13), respectively. When the 

total number of Kellis individuals (including unsexed individuals) observable 

for this trait is considered (N=46), the expression rate is 69.6%. Of the 

available comparative data, the Kellis assemblage is most closely related to 

North African populations, which has an expression rate of 72.6%. This 
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compares with a trait frequency of 93.3% for the Nubian group. The world 

range for this trait is not available. 

 

First molar anterior fovea (presence=ASU score 2-4) 

Well-developed anterior fovea on the lower first molars occur in 0.0% and 

33.3% of Kellis males (N=3) and females (N=3), respectively. When the total 

number of Kellis individuals observable for this trait is considered (N=31), the 

expression rate is 54.8%. This compares with trait frequencies of 37.9% and 

69.2% for the North African and Nubian groups, respectively. The world 

range for this trait is not available.  

 

Second molar Y-groove pattern 

The Y-groove pattern occurs on the lower second molar in 15.6% and 7.1% 

of Kellis males (N=45) and females (N=42), respectively. When the total 

number of Kellis individuals observable for this trait is considered (N=106), 

the expression rate is 11.5%. In comparison, this frequency is quite low 

when placed beside neighbouring groups from North Africa, Nubia and 

Western Europe with frequencies of 30.6%, 62.5% and 27.2%, respectively. 

The world range of expression for this trait is 7.6% to 71.9%. 

 

First molar hypoconulid absence (presence=4-cusps) 

4-cusped lower first molars occur in 10.0% and 8.6% of Kellis males (N=39) 

and females (N=36), respectively. When the total number of Kellis 

individuals observable for this trait is considered (N=107), the total 

expression rate is 6.5%. This compares with trait frequencies of 7.8%, 10.0% 
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and 10.0% for Western Europe, Northern Europe and North Africa, 

respectively. The world range for this trait is 0.0% to 10.0%. 

 

Second molar hypoconulid absence (presence=4-cusps) 

The absence of the hypoconulid (cusp 5) and the entoconulid (cusp 6) on the 

lower second molar occurs in 80.4% and 93.0% of Kellis males (N=46) and 

females (N=43), respectively. When the total number of Kellis individuals 

observable for this trait is considered (N=108), the expression rate is 85.2%. 

In comparison, Western and Northern Europeans have an expression rate of 

71.1% and 84.4%, respectively, while North Africans have an expression 

rate of 66.4%. The world range for this trait is 15.6% to 95.6%. 

 

First molar deflecting wrinkle (presence=moderate to strong expression) 

The presence of moderate to strong forms of the deflecting wrinkle on the 

lower first molar occurs in 66.7% of males (N=3) and 100% of females 

(N=1). Because this trait is extremely sensitive to occlusal attrition, it is 

typically observed only in younger individuals who cannot be assigned to 

either sex; in this instance, only three males and one female could be 

observed for the trait. As such, any interpretation of sex-based differences in 

the expression of the deflecting wrinkle should be taken with caution, given 

the extremely limited number of individuals involved. When the total number 

of individuals observable for this trait is considered (N=24), the expression 

rate becomes 62.5%. The frequency of this trait at Kellis is almost eight 

times higher than the North African group (8.2%), and more than doubles the 

rate for the Nubian group (30.8%). The expression rate for Western and 
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Northern Europeans is, 5.2% and 16.0%, respectively. The world range for 

this trait is 4.9% to 39.5%.  

 

First molar protostylid (presence=pit, groove and cusp forms) 

 The presence of a pit or cusp form of the protostylid on the mesiobuccal 

cusp of the lower first molar occurs in 43.8% and 41.7% of Kellis males 

(N=31) and females (N=25), respectively. When the total number of Kellis 

individuals observable for this trait is considered (N=86), the expression rate 

is 43.0%. This compares with trait frequencies of 32.5% and 29.2% for the 

North African and Nubian groups, respectively. The world range for this trait 

is not available. Expression of the protostylid in the Kellis assemblage is 

overwhelmingly confined to pit forms (ASU grade 1); cusp forms (ASU grade 

4+) are not observable. 

 

First molar cusp 6 (presence=any expression of cusp 6) 

A sixth cusp on the lower first molars occurs in 12.8% and 17.1% of Kellis 

males (N=38) and females (N=36), respectively. When the total number of 

Kellis individuals observable for this trait is considered (N= 106), the 

expression rate is 16.0%. This compares with trait frequencies of 8.3%, 

16.9%, 7.7% and 31.3% for the Western European, Northern European, 

North African and Nubian groups, respectively. The world range for this trait 

is 4.7% to 61.7%. 
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First molar cusp 7 (presence=small to large-sized cusp) 

A seventh cusp on the lower first molars occurs in 10.0% and 5.4% of Kellis 

males (N=40) and females (N=37), respectively. When the total number of 

Kellis individuals observable for this trait is considered (N=110), the 

expression rate is 9.1%. This compares with trait frequencies of 5.1% and 

9.7% for the North African and Nubian groups, respectively. The world range 

for this trait is 3.1% to 43.7%. Cusp 7 occurs in high frequencies in Sub-

Saharan African populations (Scott and Turner 1997), to the extent that it is 

considered one of several key traits in the Sub-Saharan African Dental 

Complex (Irish 1997, 1998a). 

 

Canine root number (presence=2 roots) 

Two-rooted lower canines occur in 7.3% and 6.7% of Kellis males (N=55) 

and females (N=75), respectively. When the total number of Kellis 

individuals observable for this trait is considered (N=146), the expression 

rate is 6.2%. This compares with trait frequencies of 5.7%, 6.1%, 2.3% and 

0.0% for the Western European, Northern European, North African and 

Nubian groups, respectively. The world range for this trait is 0.0% to 6.1%. 

 

Third premolar Tome’s root (presence=ASU grade 3-5) 

The presence of deeply grooved or bifurcated roots on the lower third 

premolars is observable in 18.5% and 10.4% of Kellis males (N=54) and 

females (N=67), respectively. When the total number of Kellis individuals 

observable for this trait is considered (N=137), the expression rate is 14.6%. 

This compares with trait frequencies of 5.9%, 6.6%, 8.6% and 52.4% for the 
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Western European, Northern European, North African and Nubian groups, 

respectively. The world range for this trait is 0.0% to 38.7%. 

 

First molar root number (presence=three roots) 

Three-rooted lower first molars occur in 0.0% and 2.7% of Kellis males 

(N=39) and females (N=37), respectively. When the total number of Kellis 

individuals observable for this trait is considered (N=99), the expression rate 

is 1.0%. This compares with trait frequencies of 0.6%, 0.0%, 1.2% and 

13.0% for the Western European, Northern European, North African and 

Nubian groups, respectively. The world range for this trait is 0.0% to 31.1%.  

 

Second molar root number (presence=one root) 

Single-rooted lower second molars occur in 5.6% and 12.9% of Kellis males 

(N=36) and females (N=31), respectively. When the total number of Kellis 

individuals observable for this trait is considered (N= 80), the expression rate 

is 7.5%. This compares with trait frequencies of 28.0%, 20.8%, 11.7% and 

16.3%, for the Western European, Northern European, North African and 

Nubian groups, respectively. The world range for this trait is 3.6% to 39.8%. 

 

4.3.2 Maxillary traits 

Central incisor winging (presence=bilateral winging) 

Central incisor winging occurs in 0% and 3.3% of Kellis males (N=42) and 

females (N=60), respectively. For all individuals observable (N=121), the trait 

occurs in 1.7% of Kellis assemblage. This compares with trait frequencies of 

7.2%, 4.7%, 7.5% and 29.6% for the Western European, Northern 
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European, North African and Nubian groups, respectively. The world range 

for this trait is 4.2% to 50.0%. 

 

Shovel-shaped central incisors (presence=trace- to barrel-shaped 

shovelling) 

Shovel-shaping of the upper central incisors occurs in 18.8% and 24.3% of 

Kellis males (N=32) and females (N=37), respectively. When the total 

number of Kellis individuals observable for this trait is considered (N=91), the 

expression rate is 19.8%. It is important to note, however, that the level of 

trait expression in the Kellis assemblage does not exceed the slight semi-

shovelling stage (ASU grade 3). The Kellis assemblage compares with trait 

frequencies of 45.8% and 19.5% for the Nubian and North African groups, 

respectively. The world range for this trait is not available at the breakpoint 

used here. 

 

Central incisor double-shovelling (presence=trace to extreme double-

shovelling) 

Double-shovelling of the upper central incisors does not occur in any Kellis 

individual observable for the trait (N=103). This compares with trait 

frequencies of 3.8%, 5.0%, 8.6% and 4.3% for the Western European, 

Northern European and North African groups, respectively. The world range 

of expression for double-shovelling is 0.0% to 70.5%. 
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Lateral incisor interruption grooves (presence=total frequency) 

The presence of interruption grooves on the upper lateral incisors occurs in 

17.5% and 22.6% of Kellis males (N=40) and females (N=53), respectively. 

When the total number of Kellis individuals observable for this trait is 

considered (N=109), the expression rate is 20.2%. This compares with trait 

frequencies of 42.0%, 30.0%, 36.1% and 16.0% for the Western European, 

Northern European, North African and Nubian groups, respectively. The 

world range for this trait is 10.4% to 65.0%. 

 

Lateral incisor tuberculum dentale (presence=trace to pronounced ridging) 

The presence of trace to pronounced ridging on the upper lateral incisors 

occurs in 8.8% and 10.0% of Kellis males (N=34) and females (N=40), 

respectively. When the total number of Kellis individuals observable for this 

trait is considered (N=92), the expression rate is 12.0%. This compares with 

trait frequencies of 38.8% and 38.9% for the North African and Nubian 

groups, respectively. The world range for this trait is not available for the 

breakpoint used here.  

 

Canine mesial ridge “Bushman canine” (presence=mesiolingual ridge is 

larger than distolingual) 

The presence of a mesiolingual ridge which is larger than the distolingual 

ridge on the upper canine crown surface occurs in 0.0% and 3.1% of Kellis 

males ((N=30) and females (N=32), respectively. When the total number of 

Kellis individuals observable for this trait is considered (N=78), the 

expression rate is 1.3%. This compares with trait frequencies of 4.3%, 0.0%, 
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6.1% and 20.0% for the Western European, Northern European, North 

African and Nubian groups, respectively. The trait occurs in much higher 

frequencies in Sub-Saharan groups (Irish 1997; Scott and Turner 1997). The 

world range for this trait is 0.0% to 35.1%. 

 

Canine distal accessory ridge (presence=weak to pronounced ridge) 

The presence of a weak to pronounced distal accessory ridge on the upper 

canines occurs in 33.3% and 25.0% of Kellis males (N=12) and females 

(N=12), respectively. When the total number of Kellis individuals observable 

for this trait is considered (N=38), the expression rate is 31.6%. This 

compares with trait frequencies of 17.9% and 88.9% for the North African 

and Nubian groups, respectively. The world range for this trait is not 

available. 

 

Second molar hypocone absence (presence=3-cusped molars) 

The absence of the hypocone (resulting in 3-cusped molars) on the upper 

second molars occurs in 13.5% and 14.0% of Kellis males (N=37) and 

females (N=50), respectively. When the total number of Kellis individuals 

observable for this trait is considered (N=108), the expression rate is 16.7%. 

This compares with trait frequencies of 24.7%, 19.2% and 10.6% for the 

Western European, Northern European and North African groups, 

respectively. The world range for this trait is 3.3% to 30.6%. 
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First molar cusp 5 (presence=total frequency of occurrence) 

The presence of cusp 5 (metaconule) on the upper first molar occurs in 

31.0% and 19.0% in Kellis males (N=29) and females (N=42), respectively. 

When the total number of Kellis individuals observable for this trait is 

considered (N=105), the expression rate is 31.4%. This compares with trait 

frequencies of 11.8%, 26.4% and 18.5% for the Western European, Northern 

European and North African groups, respectively. The world range for this 

trait is 10.4% to 62.5%. 

 

First molar Carabelli’s cusp (presence=tubercle and cusp forms only) 

The presence of tubercle and cusp forms of Carabelli’s trait on the upper first 

molars occurs in 44.4% and 56.5% of Kellis males (N=27) and females 

(N=23), respectively. When the total number of Kellis individuals observable 

for this trait is considered (N=82), the expression rate is 42.7%. This 

compares with trait frequencies of 27.3%, 18.1% and 20.0% for the Western 

European, Northern European and North African groups, respectively. The 

world range for this trait is 1.9% to 36.0%. As can be seen from the 

comparative data, the frequency of cusp and tubercle forms of Carabelli’s 

trait in the Kellis population is extremely high.  

 

Third molar parastyle (presence=total frequency of occurrence) 

The accessory cusp known as the parastyle on upper third molars occurs in 

0.0% and 2.6% of Kellis males (N=27) and females (N=39), respectively. 

When the total number of individuals observable for the trait (N=70) is taken 

into account, the rate of occurrence is 1.4%. This compares with trait 
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frequencies of 1.2% and 0.0% for the North African and Nubian groups, 

respectively. The world range for this trait is not available. 

 

First molar enamel extensions (presence=medium to lengthy-sized 

extensions) 

Medium- to lengthy-sized enamel extensions on the upper first molars do not 

occur in any Kellis individuals observable for the trait (N=120). This 

compares with trait frequencies of 3.8%, 2.2% and 6.8% for the Western 

European, Northern European and North African groups, respectively. The 

world range for this trait is 0.0% to 54.6%. 

 

Third premolar root number (presence=two-rooted third premolars) 

The presence of two-rooted upper third premolars occurs in 60.0% and 

42.6% of Kellis males (N=50) and females (N=61), respectively. When the 

total number of Kellis individuals observable for this trait is considered 

(N=126), the expression rate is 50.0%. This compares with trait frequencies 

of 40.7%, 45.9%, 57.1% and 72.7% for the Western European, Northern 

European, North African and Nubian groups, respectively. The world range 

for this trait is 4.9% to 66.7%. 

 

Second molar root number (presence=three-rooted second molars) 

The presence of three-rooted upper second molars occurs in 84.6% and 

72.9% of Kellis males (N=39) and females (N=48), respectively. When the 

total number of individuals observable for this trait is considered (N=99), the 

expression rate is 77.8%. This compares with trait frequencies of 57.4%, 
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61.2%, 78.6% and 73.0% for the Western European, Northern European, 

North African and Nubian groups, respectively. The world range for this trait 

is 37.4% to 84.5%. 

 

Premolar odontomes (presence=total frequency of occurrence) 

Odontomes on the upper and lower third and fourth premolars do not occur 

in those Kellis individuals observable for the trait (N=107). This compares 

with trait frequencies of 0.8%, 0.0%, 0.2% and 0.0% for the Western 

European, Northern European, North African and Nubian groups, 

respectively. The world range for this trait is 0.0% to 6.5% (Scott and Turner 

1997).  

 

Third molar congenital absence 

Congenital absence of the upper third molars occurs in 2.1% and 7.1% of 

Kellis males (N=47) and females (N=56), respectively. When the total 

number of Kellis individuals observable for this trait is considered (N=116), 

the expression rate is 5.2%. This compares with trait frequencies of 15.2% 

and 0.0% for the North African and Nubian groups, respectively. Figures for 

Western and Northern Europeans are not available. The world range for this 

trait is also not available. 

 

4.4 Intracemetery analysis 

4.4.1 Kellis inter-sex variation 

Chi-square and Fisher’s Exact tests were calculated in order to test for 

significant differences between male and female trait frequencies for the 
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combined (K2 and TS) Kellis assemblage (see Appendix II for full list). Only 

one trait, congenital absence of the mandibular third molar, showed a 

significant difference (Fisher’s Exact Test P=0.049) between the sexes. 9% 

(4/46) of females display this trait, compared with 0% (0/50) of males. No 

other statistically significant differences (P ≤ 0.05) were found between the 

sexes, although maxillary third premolar (UP3) root number (Fisher’s Exact 

Test P=0.063), mandibular second molar (LM2) cusp number (Fisher’s Exact 

Test P=0.082) and maxillary canine (UC) tuberculum dentale (Fisher’s Exact 

Test P=0.099) approached the significance threshold. 43% (26/60) of Kellis 

females exhibit two-rooted maxillary third premolars, while for males the rate 

of expression is 61% (30/49). Five or more cusps on the mandibular second 

molar appear in 7% (3/42) of Kellis females, while males have an expression 

rate of 20% (9/45). Tuberculum dentale in maxillary canines occurs in 24% 

(9/38) of Kellis females and 42% (15/36) of Kellis males. Other researchers 

have shown statistically significant sex differences for maxillary third 

premolar root number (Irish 1997; Ullinger 2005). As with the Kellis 

assemblage, these studies have revealed that females have a greater 

predilection for reduced root numbers than males. 

 

Additionally, the Mean Measure of Divergence statistic for Kellis males 

versus females was calculated using all 29 dental traits and again for only 

the 20 traits used in the comparative analysis (Table 4.4). See the 

methodology chapter for details regarding trait selection. In both cases, the 

resulting MMD values (0.000) demonstrate that the two groups are not 

significantly different from one another.  
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Because there are few significant differences between the sexes in terms of 

trait expression, data for males and females are combined for intra- and 

inter-site comparative analyses. A lack of significant differences between 

male and female trait expression are typical in morphological dental studies 

and it is standard practice to pool the sexes, thereby maximizing sample 

sizes for inter-group comparative purposes (Irish 1997, 2006; Johnson and 

Lovell 1994; Scott and Turner 1997; Ullinger 2005).  

 

4.4.2 Spatial analysis: individual traits 

The distribution of ten low-occurring dental morphological traits is plotted by 

burial for the Kellis 2 cemetery in order to test for non-random spatial 

patterning which might indicate the presence of kin-groups. The rationale for 

selecting choosing these traits is discussed in the methodology chapter. 

Each trait is plotted separately (Figures 4.1-4.10) and discussed below. 

 

1) Mandibular 2nd molar Y-groove pattern (Figure 4.1) 

As seen in Figure 4.1, the trait appears to be distributed randomly. It is 

notable, however, that there is no occurrence of the Y-groove in the eastern 

cluster of burials surrounding Tomb 3.  

 

2) Mandibular 1st molar Cusp 6 (Figure 4.2) 

Again, the pattern of Cusp 6 distribution appears random at first glance. 

However, the trait seems to occur more frequently in the southern group of 

burials, while not at all in the eastern group of burials centred around Tomb 
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3. 

 

3) Mandibular 1st molar Cusp 7 (Figure 4.3) 

Eight of the ten occurrences of Cusp 7 are distributed among the southern 

and western group of burials, while only once among the north group and 

once among the eastern group.  

 

4) Mandibular 1st molars: 4 cusps (Figure 4.4) 

Four-cusped mandibular molars occur most frequently among the western 

and southern burials. There are two instances of the trait among the northern 

burials, while the trait does not occur at all among the eastern group of 

burials surrounding Tomb 3. 

 

5) Mandibular 2nd molars: 5 or more cusps (Figure 4.5) 

Five or more cusps on the mandibular second molar occur most frequently 

among the northern group of burials. The trait occurs sporadically in the 

southern and eastern burials while only once in the western group. 

 

6) Maxillary 2nd molar hypocone reduction (Figure 4.6) 

Reduction or absence of the hypocone in maxillary second molars occurs 

most often among the western burials, followed by the southern burials. 

Seven individuals concentrated in a tight cluster around Tombs 1 and 2 

display the trait. This trait also appears randomly distributed throughout the 

northern and eastern areas of the cemetery to a lesser extent. 
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7) Maxillary 2nd molar metacone reduction (Figure 4.7) 

Reduction or absence of the metacone appears randomly distributed among 

burials with the cemetery, although the western group of burials has the 

lowest occurrence of the trait. 

 

8) Maxillary lateral incisor shovel-shaping (Figure 4.8) 

Distribution of this trait appears to be random, although there is a lower 

occurrence of shovel-shaped incisors among the western burial group.  

 

9) Maxillary lateral incisor interruption groove (Figure 4.9) 

Interruption grooves on the maxillary lateral incisors occur throughout the 

cemetery, with the exception of the eastern group of burials surrounding 

Tomb 3.  

 

10) Maxillary 3rd molar peg-shape (Figure 4.10) 

Peg-shaped maxillary third molars do not occur among the southern burials. 

The trait appears randomly distributed throughout the other areas of the 

cemetery. 

 

While most of these traits appear randomly distributed throughout the 

cemetery, some differences do occur spatially. The eastern area of the 

cemetery containing burials clustering around Tomb 3 lacks any occurrence 

of mandibular 1st molar Cusp 6, 4-cusped mandibular 1st molars and 

maxillary lateral incisor interruption grooves. The western group of burials 

which surround Tombs 1 and 2 have no occurrence of maxillary lateral 
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incisor shovelling and the lowest occurrence of 5-cusped mandibular 2nd 

molars. This area of the cemetery also has the highest occurrence of 

reduced or absent maxillary 2nd molar hypocone.  

 

It would appear, then, that certain areas of the cemetery are more variable in 

terms of trait occurrence than others. These areas can be roughly divided 

into four groups based on the observation of clusters of burials in the north, 

south, east and west of the excavation area. Chi-square and Likelihood 

Ratio analyses of trait frequency variation by cemetery area (see Appendix 

III for complete list) reveal that the most spatially variable traits are maxillary 

canine tuberculum dentale (P=0.009), maxillary central incisor shovelling 

(P=0.067), three-rooted maxillary second molars (P=0.078) and maxillary 

first molar Cusp 5 (metaconule) (P=0.085). Only the distribution of the 

tuberculum dentale, however, is statistically significant. These four traits are 

plotted in Figures 4.11-4.14. 

 

4.4.3 Spatial analysis: inter-sex variation 

As seen in the previous analysis of individual trait distribution, certain areas 

of the cemetery appear to have differential rates of expression for particular 

traits. An assumption can be made that these areas represent groups of 

closely-related individuals. As such, an alternate method of addressing inter-

sex trait variation within the Kellis 2 cemetery is to analyze variation in trait 

frequencies between males and females within these areas. In this method, 

chi-square and Fisher’s Exact tests are again used to check for significant 

differences. While there were few significant overall inter-sex differences in 
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trait frequencies that indicate a pattern of patrilocal post-marital residence at 

Kellis, when males and females are compared in this way, intra-cemetery 

spatial variation is observable (see Appendix IV for complete list of traits).  

 

In the northern group of burials there are no significant inter-sex differences 

in trait expression, but one trait does approach the threshold: mandibular 

third premolar Tome’s root, which occurs in 6% of females and 31% of males 

(Fisher’s Exact Test P=0.138). Among the eastern and western groups of 

burials there are also no significant differences between males and females. 

 

The southern group of burials, however, has the highest levels of inter-sex 

variability. As with the other groups, there are no significant differences; 

there are, however several traits which approach the threshold: maxillary 

interruption groove and central incisor shovelling, both of which have P 

values of 0.131 (Fisher’s Exact Test). In both cases, females have a higher 

rate of occurrence than males (interruption groove: females 55%, males 

11%; shovelling: females 56%, males 13%). Shovelling of the maxillary 

lateral incisor also has a Fisher’s Exact Test P value (0.132) which 

approaches significance. Again, females have a higher rate of occurrence 

than males (shovelling: females 75%, males 25%).  

 

4.4.4 Spatial analysis: combined traits 

The sex-combined dental trait frequencies for each burial group will now be 

compared with one another to see if any significant differences occur 

between them. In this method, the four groups are treated as if they were 
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separate assemblages and analysed for inter-group variation. The burials 

are divided into four groups (see Figure 4.15) which correspond roughly to 

the areas described above (red=North group, green=East group, blue=South 

group, brown=West group). The Mean Measure of Divergence statistic was 

used to generate a proximity matrix for the pairwise comparisons of the four 

groupings using 20 dental morphological traits (see Table 4.4 for the list of 

traits used). The MMD proximity matrix is presented in Table 4.5. While there 

are no statistically significant differences between any of the groupings, the 

East (green) and South (blue) groups are the most dissimilar with an MMD 

value of 0.073, markedly higher than any of the other pair-wise group 

comparisons. The East and West (brown) groups appear to be the most 

similar with a very low MMD value of 0.000.  

 

When the MMD values are plotted on a dendrogram using hierarchical 

clustering (Figure 4.16), the West and North groups cluster together as the 

most closely related, while the East group diverges from them at a slightly 

higher level. The South group occurs on a highly divergent branch from the 

other groups. Thus, it would seem that while the North, East and West 

groups appear similar in terms of dental morphology, the South group is 

morphologically distinctive. As with the previous analysis of intra-group inter-

sex differences, the southern area of the Kellis 2 cemetery is shown to be 

the most variable in terms of dental morphology. 
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4.5 Regional and inter-regional comparisons  

4.5.1 Descriptive comparisons 

When compared with world-wide dental trait frequency data for five maxillary 

and five mandibular permanent tooth-trait combinations (thirteen traits in 

total), the biological affinities of the Kellis assemblage become apparent. 

Table 4.6 presents this comparison, and includes the trait frequencies 

compiled by Scott and Turner (1997) from studies of several major 

geographic population groups including Western Europe, North Africa, West 

Africa, South Africa and Khoisan.  

 

The incidence (2%) of upper central incisor (UI1) shovelling in the Kellis 

assemblage is most comparable to the Western European group (3%). The 

frequency (19%) of interruption grooves on upper lateral incisors (UI2), 

however, places the Kellis assemblage closest to the Sub-Saharan groups 

(10-16%). Reduction of the maxillary second molar (UM2) hypocone occurs 

in 17% of the Kellis assemblage, a figure which falls between the Western 

European (25%) and North African (11%) groups. Cusp and tubercle forms 

(ASU 5-7) of Carabelli’s trait on maxillary first molars (UM1) occur in 43% of 

observable cases for the Kellis assemblage, a rate almost double that of the 

highest world population frequency (27%, Western Europe). 31% of Kellis 

upper first molars (UM1) exhibit 5 cusps (ASU 1-5). This trait places the 

Kellis assemblage closer to the Khoisan (35%) and South African (22%) 

groups than to North Africa (19%) or Western Europe (12%). Multi-rooted 

(ASU 2-3) maxillary third premolars (UP3) occur in the Kellis assemblage at 



170 
 

a rate of 50%, placing it between the Western European (41%) and North 

African (57%) groups. Only 6% of Kellis mandibular first molars (LM1) exhibit 

four cusps, an expression rate closest to Western Europe (8%) and North 

Africa (10%). Four-cusped mandibular second molars (LM2) occur in 85% of 

observable cases, again placing the Kellis assemblage nearest to the 

Western European (71%) and North African (66%) groups. Six-cusped lower 

first molars (LM1) are present in 16% of the Kellis population. The nearest 

group to Kellis for this trait is South Africa (19%). Seven-cusped lower first 

molars (LM1) occur in 9% of the Kellis population, compared with 9% and 

5% for the North African and Western European groups, respectively. The Y-

shaped groove pattern on lower second molars (LM2) occurs only in 12% of 

Kellis individuals, lower than any other group, but closest to the Western 

European group (27%). Three-rooted lower first molars (LM1) are rare in the 

Kellis assemblage (1%), an identical expression rate to Western Europe and 

North Africa, but also similar to West African (0%) and Khoisan groups (0%). 

Finally, one-rooted lower second molars (LM2) occur in 7% of the Kellis 

assemblage, placing it within the range of South and West African groups (4 

and 9%, respectively).  

 

As illustrated by this descriptive comparison of dental trait frequencies, the 

Kellis assemblage mainly exhibits a simplified, mass-reduced dentition 

characteristic of North African and Western European populations: an 

unsurprising conclusion given the geographical location of Kellis. It also 

indicates that there is little affinity with Sub-Saharan African groups. Most of 

the trait frequencies commonly associated with the “Sub-Saharan African 
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Dental Complex” (Irish 1997, 1998a), e.g. high incidences of Cusp 7, 

retained third molars, canine mesial ridge (“Bushman canine”), and second 

molar Y-groove pattern are not present in the Kellis assemblage.  

 

4.5.2 Trait selection for multivariate comparative study 

The dental data for Kellis will now be subjected to multivariate statistical 

analyses in order to provide a more detailed picture of the population’s 

phenetic relationship to regional and inter-regional groups. First, the Kellis 

assemblage is compared with 37 regional comparative groups using the 

dichotomized frequencies for twenty dental morphological traits. These traits 

were shown by Irish (2006) to have low inter-trait associations and sufficient 

inter-group variability. Table 4.4 provides a list of these traits along with the 

breakpoints used to establish trait presence or absence. The second set of 

multivariate analyses involves the thirteen traits used in the inter-regional 

comparisons with Western European, North African, West African, South 

African and Khoisan groups. These thirteen traits were also chosen because 

they have low inter-trait correlations and sufficient inter-group variability. This 

comparison uses a smaller set of traits because frequency data were not 

available for the complete range of morphological traits (Scott and Turner 

1997). Table 4.6 provides a list of the traits employed along with the 

breakpoints used to establish trait presence or absence. 

 

4.5.3 Twenty trait regional comparison  

4.5.3.1 Mean Measure of Divergence (MMD) 

Table 4.7 presents the MMD distance matrix generated from the pairwise 
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group comparisons between Kellis and the comparative groups. Low MMD 

values imply a phenetic similarity between pairwise groupings, while high 

values imply phenetic divergence. Italicized values represent significant 

differences between groups when the MMD value is greater than twice its 

standard deviation. Thus, the null hypothesis that the two samples in 

question are drawn from the same population (i.e. that they are phenetically 

identical) can be rejected at the 0.025 confidence level (Sjøvold 1977). 

 

Results of the MMD analysis indicate that there is a statistically significant 

difference between the Kellis assemblage and all but two of the comparative 

groups. The two groups which are not significantly different from Kellis are 

the Kabyle Berber (MMD=0.029) and Kharga Oasis (0.040) groups. Other 

groups which share low MMD values (≤ 0.100) with Kellis are the Abydos 

(0.051), Pharaonic Nubian (0.055), Algerian Shawia Berber (0.060), Thebes 

(0.062), Hierakonpolis (0.073), Badari (0.073), Naqada (0.078), Meroitic 

Nubian (0.081), Hawara (0.082), Giza (0.085) and Christian Nubian (0.085) 

assemblages. The Sub-Saharan African groups are among the most 

divergent from Kellis: Togo/Dahomey (0.348), Nigeria/Cameroon (0.295), 

Ethiopia (0.295), Gabon (0.224), Ghana (0.209), Kenya (0.207), Chad 

(0.176) and Congo (0.155). Other groups which are highly divergent from 

Kellis are the Gebel Ramlah (0.248), Greek Egyptian (0.200), Saqqara 

(0.197), Soleb Nubian (0.162) and Carthage (0.155) assemblages. 

 

When compared with roughly contemporaneous groups (i.e. Roman Hawara 

and El Hesa, Byzantine Kharga, Meroitic, X-Group and Christian Nubians), it 
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is notable that Kellis shares the closest affinity to the Byzantine Kharga 

Oasis assemblage, followed by the Meroitic Nubian, Roman Hawara and 

Christian Nubian assemblages. Kellis shares little affinity with the Roman El 

Hesa, and X-Group Nubian assemblages in terms of pairwise MMD values.  

 

In terms of geography, the Kellis assemblage’s nearest neighbour, Kharga 

Oasis, is also one of the most phenetically similar. Other sites which are near 

Kellis such as Abydos, Thebes, Badari, Hierakonpolis and Naqada, also 

share low MMD values, yet Gebel Ramlah and Qurneh, which are also 

nearby, do not. Strangely, the Kabyle Berber assemblage, which is the most 

phenetically similar to Kellis, is one of the furthest removed groups from the 

Dakhleh Oasis in terms of geographical distance. The Algerian Shawia 

Berber sample is also the fifth most similar group to Kellis. The Berbers, 

however, are the indigenous inhabitants of North Africa west of the Nile 

Valley and the phenetic similarities between them and the Kellis assemblage 

may offer support for the existence of Libyans (i.e. western Saharan peoples) 

in the Dakhleh Oasis. The Kabyle and Algerian groups share low and 

insignificant MMD values with most of the Egyptian and Nubian groups 

however; in some cases much lower than Kellis.  

 

Average MMD values for the Kellis assemblage and regional groups are also 

instructive. The average MMD value for Kellis and the Upper Egyptian 

groups is 0.102. For Lower Egypt the average MMD value is 0.132. For the 

combined Egyptian groups, the MMD value is 0.114. For Kellis and the 

Upper Nubian groups the average MMD value is 0.137. For Lower Nubia the 
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value is 0.101. The average MMD value for all Nubian groups is 0.115. The 

Kellis and North African groups have an average MMD value of 0.104. 

Finally, the average MMD value for Kellis and the Sub-Saharan African 

groups is 0.247.  

 

While evaluating MMD values for significant differences are useful for 

providing a general impression of phenetic similarities between groups on a 

one-to-one basis, further statistical analysis based on the MMD values is 

required in order to better elucidate the overall biological affinities of the 

Kellis assemblage. Hierarchical cluster and multidimensional scaling 

analysis of the MMD values are presented next in order to facilitate this. 

 

4.5.3.2 Hierarchical cluster analysis of MMD values  

Hierarchical cluster analysis is used to compare MMD values for the Kellis 

assemblage and comparative groups. Ward’s linkage (Ward 1963) is the 

cluster method employed for this analysis. Figure 4.17 presents the 

dendrogram and it is immediately evident that there is a clear divide between 

the Sub-Saharan Africans and the Egyptian, Nubian and other North African 

groups. The Kellis assemblage clusters with the latter grouping. The 

exceptions to this geographic split are the Final Neolithic Upper Egyptian 

Gebel Ramlah group which clusters with the Sub-Saharan African groups, 

and the Ethiopian sample which clusters with several of the Nubian groups. 

While Irish (1993) includes the Chad group in the North African sample, 

Chadian peoples are typically classified as a Sub-Saharan population, so it 

is unsurprising that this group clusters with the other Sub-Saharan African 
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comparative groups.  

 

Within the North African cluster there are three major sub-clusters, the first 

and most divergent contains the Saqqara and Greek Egyptian assemblages. 

The second most divergent cluster contains a mix of Upper and Lower 

Egyptian groups (El-Hesa, Qurneh, Thebes, Kharga, Tarkhan, Giza, Lisht), 

along with the Carthage and Upper Nubian Soleb groups. The third largest 

and most tightly grouped North African sub-cluster is comprised of three sub-

clusters all diverging at the same level. The largest of the three contains the 

Upper Egyptian Predynastic Badari, Naqada, Hierakonpolis, Early Dynastic 

Abydos and Lower Egyptian Roman Hawara groups, along with the Kawa, 

C-Group and Pharaonic Nubian groups and the Algerian, Bedouin and 

Kabyle groups. The second sub-cluster contains the Kerma, Kush and A-

Group Nubians along with the east African Ethiopian assemblage. Finally, 

the Kellis assemblage joins the X-Group, Christian and Meroitic Nubian 

groups in the third sub-cluster. 

 

Based on the dendrogram, it is clear that the Kellis assemblage is more 

phenetically similar to the Egyptian, Nubian and North African groups than to 

the Sub-Saharan African groups. Within the North African range of 

comparative groups, the Kellis assemblage has the closest affinity to the 

most recent Nubian groups (i.e. X-Group, Christian and Meroitic). The Kellis 

assemblage also shares a general affinity with other Nubian groups, as well 

as with the early Upper Egyptian and recent North African groups.  
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4.5.3.3 Multidimensional Scaling of MMD values 

The same MMD value distance matrix is used as the input (again in SPSS 

17) to produce multidimensional scaling plots in two and three dimensions. 

This method is similar to hierarchical clustering in that it produces plots 

which allow the observer to better visualize the relationships between 

groups. The MDS plots were generated using an interval level of 

measurement, which is deemed appropriate due to the large number of traits 

used in the analysis causing the MMD distance matrix to approximate 

continuous values (Irish 2006). The scaling model employed is Euclidean 

distance.  

 

Figures 4.18 and 4.19 present the MDS plots of the Kellis assemblage and 

comparative groups in two and three dimensions, respectively. Kruskal’s 

stress formula 1 value for the two-dimensional plot (Figure 4.18) is 0.21713, 

and the r2 value is 0.81687. For the three-dimensional plot (Figure 4.19), the 

stress value is 0.16608 and the r2 value is 0.85787. Kruskal’s stress formula 

1 value is a measure of the “goodness of fit” of the data; thus the lower the 

stress value, the better the fit (Kruskal and Wish 1978). The r2 value 

represents the proportion of variance of the scaled values accounted for by 

their corresponding distance values. In this case, 81.7% and 85.8% of the 

variation is explained by these distance values for the two dimensional and 

three dimensional plots, respectively. Based on these results, the three-

dimensional MDS plot provides a slightly better representation of the 

biological affinities of the Kellis assemblage than the two-dimensional plot. 
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Despite this, the two-dimensional plot is still useful as it is easier to interpret. 

 

As seen in Figures 4.18 and 4.19, the multidimensional scaling plots by and 

large recapitulate the results of the hierarchical cluster dendrogram 

presented previously. The Kellis assemblage is most closely linked with the 

X-Group, Christian and Meroitic Nubian groups as a result of sharing high 

positive values along the y-axis (dimension 2). Kellis is also near the El 

Hesa, Abydos, Naqada and Hierakonpolis groups. With the exception of 

Ethiopia, the Sub-Saharan African and Chad groups form a distinctly 

separate constellation of points that share the lowest values along the x-axis 

(dimension 1). Unlike the dendrogram produced by the hierarchical scaling 

analysis, Kellis appears as an outlier in these MDS plots. This is perhaps a 

truer representation of the Kellis assemblage’s relationship with the 

comparative groups as multidimensional scaling provides a broader view of 

multivariate data patterning than hierarchical cluster analysis (Drennan 

2009). The Saqqara and Greek Egyptian assemblages are also outliers 

which share the highest positive values along the x-axis. 

 

4.5.4 Thirteen trait inter-regional comparison 

4.5.4.1 Mean Measure of Divergence (MMD) 

A final set of comparisons is made using a broader set of comparative 

groups in order to place Kellis within an inter-regional context encompassing 

Europe, North and Sub-Saharan Africa. As before, the Mean Measure of 

Divergence statistic is employed to produce a distance matrix for each set of 

pairwise group comparisons and is presented in Table 4.8. From the matrix it 
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can be seen that there is a statistically significant difference between Kellis 

and all of the comparative groups. Kellis is most similar to the North African 

group, however (MMD=0.066), followed by the Western European and 

Khoisan groups (MMD=0.086). The groups with the greatest divergence from 

the Kellis assemblage are the West and South African groups (MMD=0.373 

and 0.233, respectively).  

 

4.5.4.2 Hierarchical cluster analysis of MMD values 

When the MMD values from the distance matrix are used to produce a 

hierarchical cluster dendrogram using Ward’s Method (Figure 4.20), two 

main branches of the dendrogram are apparent, with the Western European, 

North African and Kellis groups comprising one branch, and the Sub-

Saharan African groups comprising the other. Here it can also be seen that 

the Kellis, Western European and North African groups are tightly linked at 

the same level on the dendrogram. This implies that the three groups are 

equally related, although the North African group emerges as an 

intermediary between Western Europe and the Kellis assemblage, again 

suggesting a closer link between Kellis and North Africa. The Western 

European, North African and Kellis cluster are highly divergent from the Sub-

Saharan African cluster. 

 

4.5.4.3 Multidimensional scaling of MMD values  

Figure 4.21 presents the MDS plots of the Kellis and regional groups in two 

dimensions. A three-dimensional plot cannot be produced because there are 

not enough data points to allow for such a representation. Kruskal’s stress 
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formula 1 value is 0.11526, and the r2 value is 0.88998. The low stress value 

and high r2 value suggest this two-dimensional plot is an accurate 

representation of the data. 

 

The MDS plot serves to corroborate the previous analysis of significant group 

differences, as well as the hierarchical cluster plot of the MMD values. The 

Kellis, Western European and North African groups all share positive values 

along the x-axis, while the Sub-Saharan groups share negative values. This 

distribution pattern mirrors the divide between the two groups illustrated in 

the hierarchical cluster plot. However, while the Western European and 

North African groups share positive values, the Kellis group lies on the 

negative side of the y-axis. This suggests more of a distinction between the 

three groups than hinted at in the dendrogram. 
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Table 4.1. Raw scores for Kellis mandibular dental traits, with total number of individuals 
observable.  

Shovelling ASU Score   

Tooth 0 1 2 3 4 5 6 7 Total

LI1 97 3 1 0 0 0 0 0 101 

LI2 105 4 1 0 0 0 0 0 110 
 

Double Shovelling ASU Score 

Tooth 0 1 2 3 4 5 6 Total

LI1 107 0 0 0 0 0 0 107 

LI2 112 0 0 0 0 0 0 112 
 

Distal Accessory Ridge ASU Score   

Tooth 0 1 2 3 4 5 Total

LC 40 3 2 0 1 0 46 
 

Lingual Cusp ASU Score   

Tooth A 0 1 2 3 4 5 6 7 8 9 Total

LP3 9 40 6 2 4 4 4 1 0 0 0 70 

LP4 0 13 1 8 17 5 1 1 0 0 0 46 
 

Anterior Fovea ASU Score   

Tooth 0 1 2 3 4 Total

LM1 7 7 10 6 1 31 
 

Groove Pattern ASU Score   

Tooth Y + X Total

LM1 89 4 9 102 

LM2 13 68 25 106 
 

Cusp Number ASU Score   

Tooth 4 5 6 Total

LM1 7 83 17 107 

LM2 92 13 3 108 

LM3 44 26 7 77 
 

Deflecting Wrinkle ASU Score   

Tooth 0 1 2 3 Total

LM1 4 5 15 0 24 
 

Protostylid  ASU Score   

Tooth 0 1 2 3 4 5 6 7 Total

LM1 49 36 0 1 0 0 0 0 86 

LM2 58 33 0 0 0 0 0 0 91 

LM3 54 22 0 0 0 0 0 0 76 
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Cusp 5 ASU Score   

Tooth 0 1 2 3 4 5 Total

LM1 7 2 9 56 29 1 104 

LM2 92 1 7 7 0 0 107 

LM3 50 0 8 15 7 2 82 
 

Cusp 6 ASU Score   

Tooth 0 1 2 3 4 5 Total

LM1 89 3 11 3 0 0 106 

LM2 104 0 3 0 0 0 107 

LM3 74 1 4 2 0 0 81 
 
 

Cusp 7 ASU Score   

Tooth 0 1 1A 2 3 4 Total

LM1 94 2 4 5 4 1 110 

LM2 101 2 3 1 0 0 107 

LM3 74 2 0 2 1 2 81 
 

Root number ASU Score   

Tooth 1 2 Total

LC 137 9 146 
 

Tome's Root ASU Score   

Tooth 0 1 2 3 4 5 Total

LP3 98 7 12 20 0 0 137 
 

Root number ASU Score   

Tooth 1 2 3 Total

LM1 2 96 1 99 

LM2 6 74 0 80 

LM3 4 36 3 43 
 

Congenital Absence ASU Score   

Tooth 0 1 Total

LI1 164 0 164 

LI2 158 0 158 

LC 156 0 156 

LP3 153 0 153 

LP4 141 2 143 

LM1 153 0 153 

LM2 145 0 145 

LM3 108 4 112 
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Table 4.2. Raw scores for Kellis maxillary dental traits, with total number of individuals 
observable. 

Winging  ASU Score   

Tooth 1 2 3 4 Total

UI1 2 0 117 2 121 
 

 Shovelling ASU Score   

Tooth 0 1 2 3 4 5 6 7 Total

UI1 41 32 16 2 0 0 0 0 91 

UI2 33 27 21 9 0 0 0 0 90 

UC 65 13 9 0 0 0 0 0 87 
 

Labial Convexity ASU Score   

Tooth 0 1 2 3 4 Total

UI1 0 16 38 49 0 103 

UI2 0 1 3 24 73 101 
 

Double Shovelling ASU Score   

Tooth 0 1 2 3 4 5 6 Total

UI1 102 1 0 0 0 0 0 103 

UI2 100 1 1 0 0 0 0 102 

UC 104 1 2 1 0 0 0 108 
 

Interruption Groove ASU Score   

Tooth 0 M D MD Med. Total

UI1 112 1 0 0 4 117 

UI2 87 10 8 1 3 109 
 

Tuberculum Dentale ASU Score   

Tooth 0 1 2 3 4 5 6 Total

UI1 29 35 22 5 1 0 0 92 

UI2 64 17 5 1 1 3 1 92 

UC 50 10 4 2 1 19 4 90 
 

Mesial Ridge (Bushman Canine) ASU Score   

Tooth 0 1 2 3 Total

UC 77 1 0 0 78 
 

Distal Accessory Ridge ASU Score   

Tooth 0 1 2 3 4 5 Total

UC 18 8 9 3 0 0 38 
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Accessory Cusp ASU Score   

Tooth 0 1 Total

UP3 85 1 86 

UP4 81 0 81 
 

Tri-cusped Premolar ASU Score   

Tooth 0 1 Total

UP3 108 0 108 

UP4 109 0 109 
 

Distosagittal Ridge ASU Score   

Tooth 0 1 Total

UP3 104 0 104 
 

Metacone  ASU Score   

Tooth 0 1 2 3 3.5 4 5 Total

UM1 0 0 0 0 13 118 2 133 

UM2 0 2 2 8 57 43 0 112 

UM3 1 0 2 26 37 5 0 71 
 

Hypocone  ASU Score   

Tooth 0 1 2 3 3.5 4 5 Total

UM1 0 0 0 0 9 118 4 131 

UM2 11 7 9 23 43 14 1 108 

UM3 28 9 13 15 4 0 0 69 
 

Cusp 5 (Metaconule) ASU Score   

Tooth 0 1 2 3 4 5 Total

UM1 72 20 6 6 1 0 105 

UM2 75 10 9 3 2 0 99 

UM3 45 3 6 6 3 4 67 
 

Carabelli's Cusp ASU Score   

Tooth 0 1 2 3 4 5 6 7 Total

UM1 11 2 2 20 12 16 8 11 82 

UM2 88 0 5 2 0 0 1 0 96 

UM3 65 0 1 0 0 1 0 2 69 
 

Parastyle ASU Score   

Tooth 0 1 2 3 4 5 6 Total

UM1 107 1 0 0 0 0 0 108 

UM2 98 2 0 0 0 0 0 100 

UM3 69 1 0 0 0 0 0 70 
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Enamel Extensions ASU Score   

Tooth 0 1 2 3 Total

UP3 116 2 0 0 118 

UP4 113 1 0 0 114 

UM1 114 6 0 0 120 

UM2 93 2 1 2 98 

UM3 61 2 2 1 66 
 

Root Number ASU Score   

Tooth 1 2 3 4 Total

UP3 63 63 0   126 

UP4 109 13 0   122 

UM1 1 9 118 0 128 

UM2 7 15 76 1 99 

UM3 34 18 16 1 69 
 

Peg-Shaped Incisor ASU Score   

Tooth 0 1 Total

UI2 119 0 119 
 

Peg-Shaped Molar ASU Score   

Tooth 0 1 Total

UM3 80 4 84 
 

Odontome ASU Score   

Tooth 0 1 Total

UP3 107 0 107 

UP4 107 0 107 
 

Congenital Absence ASU Score   

Tooth 0 1 Total

UI2 161 1 162 

UP4 150 2 152 

UM3 110 6 116 
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Table 4.3. Selected trait scores (dichotomized) for Kellis dentition by sex category. 

Males  Females  Unsexed  Pooled 

Trait  n  %  n  %  n  %  n  % 

2+ lingual cusps (LP4)  19  57.9  13 76.9  14  78.6  46  69.9 

Anterior fovea (LM1)  3  0.0  3  33.3  25  64.0  31  54.8 

Y‐groove (LM2)  45  15.6  42 7.1  19  15.8  106  11.5 

4 cusps (LM1)  39  10.8  36 8.6  32  0.0  107  6.5 

4 cusps (LM2)  46  80.4  43 93.0  19  78.9  108  85.2 

Deflecting wrinkle (LM1)  3  66.7  1  100.0  20  60.0  24  62.5 

Protostylid (LM1)  31  43.8  25 41.7  30  43.3  86  43.0 

Cusp 6 (LM1)  38  12.8  36 17.1  32  18.8  106  16.0 

Cusp 7 (LM1)  40  10.0  37 5.4  33  12.1  110  9.1 

2‐rooted canines (LC)  55  7.3  75 6.7  16  0.0  146  6.2 

Tome's root (LP3)  54  18.5  67 10.4  16  18.6  137  14.6 

3 roots (LM1)  39  0.0  37 2.7  23  0.0  99  1.0 

1 root (LM2)  36  5.6  31 12.9  13  0.0  80  7.5 

Bilateral winging (UI1)  42  0.0  60 3.3  19  0.0  121  1.7 

Shovel shape (UI1)  32  18.8  37 24.3  22  13.6  91  19.8 

Double shovelling (UI1)  34  0.0  47 0.0  22  0.0  103  0.0 

Interruption groove (UI2)  40  17.5  53 22.6  16  18.8  109  20.2 

Tuberculum dentale ((UI2)  34  8.8  40 10.0  18  22.2  92  12.0 

Mesial ridge (UC)  30  0.0  32 3.2  16  0.0  78  1.3 

Distal accessory ridge (UC)  12  33.3  12 25.0  14  35.7  38  31.6 

3 cusps (UM2)  37  13.5  50 14.0  21  28.6  108  16.7 

Cusp 5 (UM1)  29  30.0  42 19.0  34  47.1  105  31.4 

Carabelli's cusp (UM1)  27  44.4  23 56.5  32  31.3  82  42.7 

Parastyle (UM3)  27  0.0  39 2.6  4  0.0  70  1.4 

Enamel extensions (UM1)  36  0.0  54 0.0  30  0.0  120  0.0 

2 roots (UP3)  50  60.0  61 42.6  15  46.7  126  50.0 

3 roots (UM2)  39  84.6  48 72.9  12  75.0  99  77.8 

Odontomes (UP3)  40  0.0  48 0.0  19  0.0  107  0.0 

Odontomes (UP4)  43  0.0  46 0.0  18  0.0  107  0.0 

Congenital absence (UM3)  47  2.1  56 7.1  13  7.7  116  5.2 
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Figure 4.1. Distribution of mandibular 2nd molar Y-groove trait. 
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Figure 4.2. Distribution of mandibular 1st molar Cusp 6 trait.
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Figure 4.3. Distribution of mandibular 1st molar Cusp 7 trait. 
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Figure 4.4. Distribution of 4-cusped mandibular 1st molar trait.
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Figure 4.5. Distribution of 5 or more cusps mandibular 2nd molar trait. 
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Figure 4.6. Distribution of reduced/absent maxillary 2nd molar hypocone trait. 
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Figure 4.7. Distribution of reduced/absent maxillary 2nd molar metacone trait. 
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Figure 4.8. Distribution of maxillary lateral incisor shovel-shaped trait. 
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Figure 4.9. Distribution of maxillary lateral incisor interruption groove trait. 
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Figure 4.10. Distribution of peg-shaped maxillary 3rd molar trait. 
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Figure 4.11. Distribution of maxillary canine tuberculum dentale trait. 
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Figure 4.12. Distribution of maxillary central incisor shovelling trait. 
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 Figure 4.13. Distribution of three-rooted maxillary 2nd molars. 
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 Figure 4.14. Distribution of maxillary 1st molar Cusp 5 (metaconule) trait.  
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Table 4.4. List of 20 traits used in MMD analysis and their breakpoints.  

 Trait Breakpoint 
1 Shovelling UI1  ASU 2–6 
2 Interruption Groove IU2  ASU + 
3 Tuberculum Dentale UI2  ASU 2–6 
4 Mesial Ridge UC  ASU 1–3 
5 Distal Accessory Ridge UC  ASU 2–5 
6 Hypocone UM2  ASU 3–5 
7 Cusp 5 UM1  ASU 2–5 
8 Carabelli’s Cusp UM1  ASU 2–7 
9 Enamel Extensions UM1  ASU 1–3 
10 Root # UP3  ASU 2+ 
11 Root # UM2  ASU 3+ 
12 Peg-reduced UI2  ASU=+ 
13 Congenital Absence UM3  ASU=0 
14 Lingual Cusp LP4  ASU 2–9 
15 Y-Groove LM2  ASU Y 
16 Cusp# LM2  ASU 5+ 
17 Protostylid LM1  ASU 1–6 
18 Cusp 7 LM1  ASU 2–4 
19 Tome's Root LP3  ASU 3–5 
20 Root # LM2  ASU 2+ 
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Figure 4.15. Map of Kellis 2 cemetery showing four burial subgroups (red=North group; 
green=East group; blue=South Group; brown=West group). 
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Table 4.5. MMD proximity matrix for Kellis 2 cemetery subgroups 

GROUP 
EAST 

(GREEN) 
WEST 

(BROWN)
NORTH
(RED) 

SOUTH
(BLUE) 

EAST 
(GREEN) 

0.000 
   

WEST 
(BROWN) 

0.000 0.000 
  

NORTH 
(RED) 

0.012 0.025 0.000 
 

SOUTH 
(BLUE) 

0.073 0.031 0.032 0.000 

 

 

 

 

 

Figure 4.16. Hierarchical cluster analysis (using Ward’s method) of Kellis 2 cemetery 
subgroup dental traits based on MMD values. 
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Table 4.6. Frequencies of commonly observed dental traits and sample sizes for Kellis and 
regional populations [comparative data taken from Scott and Turner (1997)] 
 
  

_______________________________Population___________________________________ 
 
 
Tooth Trait 

 
 

Kellis 2 

 
Western 
Europe 

 
North  
Africa 

 
West 
Africa 

 
South 
Africa 

 
Khoisan 
(Africa) 

 N % N % N % N % N % N % 
Shovelling UI1 91 2% 186 3% 194 8% 41 7% 220 9% 155 13% 
Interruption Grooves UI2 108 19% 224 42% 241 32% 48 10% 301 12% 83 16% 
Hypocone reduction UM2 108 17% 308 25% 446 11% 83 4% 531 7% 86 6% 
Carabelli’s UM1 82 43% 249 27% 200 20% 61 21% 246 11% 155 17% 
Cusp 5 UM1 105 31% 238 12% 357 19% 48 63% 439 22% 66 35% 
2-rooted UP3 126 50% 317 41% 468 57% 87 67% 386 61% 15 20% 
4 -cusped LM1 107 6% 217 8% 250 10% 47 0% 346 1% 133 1% 
4 -cusped LM2 108 85% 284 71% 381 66% 75 12% 370 30% 88 7% 
Cusp 6 LM1 106 16% 217 8% 352 8% 47 45% 362 19% 85 5% 
Cusp 7 LM1 110 9% 291 5% 414 9% 71 44% 385 27% 87 26% 
Y-groove LM2 106 12% 257 27% 402 31% 67 33% 392 46% 89 72% 
3-rooted LM1 99 1% 357 1% 337 1% 92 8% 240 0% 15 0% 
1-rooted LM2 80 7% 318 28% 333 12% 82 9% 225 4% 15 29% 
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Figure 4.17. Hierarchical cluster analysis (using Ward’s method) of Kellis (KEL) and 
comparative groups (see Table 3.1 for site codes) based on 20 trait MMD values (see Table 
4.3 for list of traits used).  
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Figure 4.18. Multidimensional Scaling (MDS) plot in three dimensions for Kellis (KEL) and 
comparative groups (see Table 3.1 for site codes) based on 20 trait MMD values (see Table 
4.3 for list of traits used).
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 Figure 4.19. Multidimensional Scaling (MDS) plot in three dimensions for Kellis (KEL) and 
comparative groups (see Table 3.1 for site codes) based on 20 trait MMD values (see Table 
4.3 for list of traits used). 
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Table 4.8. MMD distance matrix for Kellis 2 and regional population (based on 13 traits). 

  
Kellis 

Western 
Europe 

North 
Africa 

West 
Africa 

South 
Africa 

Khoisan 
(Africa) 

KEL 0.000           
WE 0.086  0.000         
NAF 0.066  0.040  0.000       
WAF 0.373  0.490  0.329  0.000     
SAF 0.233  0.243  0.118  0.124  0.000   
KHO 0.086  0.341  0.281  0.228  0.148  0.000 

 

 

 

 Figure 4.20. Hierarchical cluster analysis (using Ward’s Method) of Kellis and regional 
populations based on 13 trait MMD values. 
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Figure 4.21. Multidimensional Scaling (MDS) plot in two dimensions of Kellis and regional 
populations based on 13 trait MMD values. 
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Chapter 5 

Interpretation of Results and Discussion 

 

5.1 Intra-cemetery trait analysis 

The results of the intra-cemetery trait analysis presented in Chapter 4 allow 

us to address the first two hypotheses of the present study: 

1. Phenotypic variability between Kellis males and females will indicate 

post-marital residence status, whereby one sex is more mobile (marrying 

into the community from elsewhere) and the other stationary (resident to 

the community from birth).  

 

As patrilocal residency in Roman era Egypt was the norm (Bagnall and Frier 

1994), we would expect that females would be more phenotypically variable 

than resident males as they would be marrying into the community from 

elsewhere. Through the use of the MMD statistic, chi-square and Fisher’s 

Exact tests, however, it has been shown that there are few significant 

differences between Kellis males and females in terms of trait expression. 

Pairwise MMD values for males and females using all 29 traits and the 

reduced subset of 20 traits equal 0.000 in both instances. In the chi-square 

analysis only one trait, mandibular third molar congenital absence (P=0.049) 

showed a statistically significant difference between the sexes, while several 

others approached the significance threshold. Low levels of inter-sex trait 

variation are typical in dental morphological studies (Irish 1997, 2006; 

Johnson and Lovell 1994; Scott and Turner 1997; Ullinger 2005). Based on 

these results, the null hypothesis that Kellis males and females are drawn 
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from the same population cannot be rejected. Consequently, this could imply 

that the population of the oasis as a whole was largely homogenous, but 

until there are comparative data from other sites, no definitive statements 

can be made at this time.  

 

Alternatively, marriage partners may have been sought from within the Kellis 

community (endogamous marriage); this could be a likely explanation for the 

low levels of variability seen between males and females. There is ample 

evidence to support this interpretation, not just in terms of affinal endogamy, 

but especially of lineage endogamy (also known as consanguineous 

marriage); even today in Egypt, marriages often take place between 

members of an extended family, typically in the form of patrilateral cousin 

marriage, whereby first cousins on the father’s side are wed (Hafez et al. 

1983; Weinreb 2008). The practice of consanguineous marriage has the 

effect of maintaining kin-group solidarity and averting potential disputes over 

the breakup of familial estates through inheritance. Consanguineous 

marriages are common throughout the Middle East, although many scholars 

believe it is not strictly a product of Islamic culture but rather predates it, as 

in the case of Coptic and other Middle Eastern Christian sects in which the 

practice also occurs (Weinreb 2008). Certainly there is ample evidence from 

ancient Egypt, especially during the Greco-Roman period, that such 

marriages occurred with great frequency (Hopkins 1980; Lewis 1983; 

Middleton 1962), even extending to brother-sister marriages (Remijsen and 

Clarysse 2008; Rowlandson and Takahashi 2009; Scheidel 1996a,b, 1997). 
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Regardless of its nature, some form of endogamy at Kellis remains an 

attractive explanation for the low levels of inter-sex trait variability. 

 

Additional support for the interpretation of lineal endogamy comes from 

previous analyses of skeletal non-metric traits in the Kellis population. 

Scheidel (1996b) has shown that the offspring of closely related parents are 

prone to genetic (autosomal recessive) disorders a as result of increased 

homozygosity. Molto has argued for high levels of inbreeding at Kellis based 

on the re-occurrence of several rare genetic skeletal traits such as spina 

bifida occulta, precondylar tubercles of the occipital, infraorbital sutures and 

mylohyoid bridging in the mandible (Molto 2001; Molto et al. 2003). 

Interestingly, Hussien et al. (2009:623) report elevated levels (62.33%) of 

spina bifida occulta in a Greco-Roman skeletal assemblage from Bahariya 

Oasis which they also attribute to inbreeding as a result of geographic 

isolation. While rare dental morphological traits in the Kellis assemblage 

such as talon cusps, twinned incisors and odontomes are not observable, the 

unusually high rates of cusp and tubercle forms of Carabelli’s cusp (42.7%) 

and deflecting wrinkle expression (62.5%), along with low expressions of 

second molar Y-groove pattern (11.5%) may be the result of consanguinity. 

 

While the present and previous studies of biological variation in the Dakhleh 

Oasis characterize the population as largely homogenous and possibly 

inbred, Parr’s (2002) analysis of a subset (N=13) of Kellis 2 mitochondrial 

DNA suggests a relatively high level of maternal genetic diversity. Such 

diversity could be interpreted as evidence for patrilocal forms of postmarital 
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residence, whereby unrelated females are marrying into the Kellis community 

from elsewhere. We cannot be certain however, until the corresponding 

analysis of Y-chromosome DNA from Kellis males allows us to compare 

maternal versus paternal levels of genetic diversity. Despite this uncertainty, 

and the contradictory results generated by the morphological and molecular 

studies of biological variation at Kellis, I do not necessarily see a conflict 

between the two approaches. Ancient DNA studies obviously provide a much 

higher resolution of analysis when compared to morphological studies, and 

as dental trait frequencies cannot be reduced to gene frequencies, the 

results cannot be directly compared. At any rate, until the DNA sequencing of 

the entire assemblage is complete, Parr’s results must be treated with 

caution.  

 

2. Burials located closer together will share more dental traits than those 

located further apart. Such clustering of dental traits will represent kin 

group burial areas within the Kellis 2 cemetery. 

 

As seen in the individual trait maps in Chapter 4, there does appear to be 

some spatial variability in terms of trait expression within the Kellis 2 

cemetery. Some traits tend to occur at different rates within particular areas 

of the cemetery; for example, the individuals within the eastern group of 

burials have a complete absence of Cusp 6 on the lower first molars, as well 

as an absence of 4-cusped lower first molars and incisor interruption 

grooves. The eastern area also contains individuals with the lowest 

occurrence of the upper first molar metaconule, while the highest 
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occurrences are among individuals within the western and southern areas of 

the cemetery. Cusp 6 expression is also highest within the western and 

southern burials. It is difficult to say whether the apparently non-random 

distribution of some traits represents groups of closely related individuals as 

they do not cluster tightly together among directly adjacent graves in most 

cases; the exception is congenitally absent mandibular fourth premolars, 

which occur in two adjacent males (B.240 and B.242) . Thus, while it is not 

entirely possible to identify small groups of burials which share the same 

trait, it may be possible to define larger areas within the cemetery that 

contain phenetically similar individuals. 

 

Despite these apparent patterns, the results of this portion of the 

intracemetery analysis are not entirely convincing. This does not necessarily 

mean that kin-group burial clusters do not exist in the Kellis 2 cemetery; 

indeed, it is highly likely that they do exist given previous skeletal trait 

studies (Kron 2007; Molto 2002) and what is known about ancient Egyptian 

burial practices. It does imply, however, that mapping individual dental trait 

frequencies, as employed in the present study, may not be an effective 

means of detecting intracemetery kin-groups. Missing data for specific dental 

traits is one of the main problems in attempting this type of analysis. This is 

largely due to antemortem tooth loss, and dental wear. For specific traits, 

there simply were not enough observable cases among individuals to 

properly visualize their spatial distribution. Comparing multiple traits proved 

even more difficult because while several individuals may be observable for 

a particular trait, the same individuals may not be observable for additional 
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traits. The most important concern, however, is that the traits employed in 

the present study are not well-suited for the identification of closely-related 

individuals as they are not considered rare or genetically anomalous 

(Stojanowski and Schillaci 2006). 

 

Despite the problems with identifying spatial patterns for specific traits 

between individuals, when the Kellis 2 burials are divided into four sex-

combined groups (North, South, East and West) on the basis of location, 

some degree of biological variation within the cemetery becomes apparent. 

As seen in Chapter 4, there is a distinct, albeit insignificant, difference 

between the South and East groups in terms of MMD values (0.073). The 

East, North and West groups all share low MMD values. In addition, the East 

and West groups are more similar than they are to any of the other groups 

(MMD=0.000). These results are corroborated by the hierarchical cluster 

analysis which shows the West and North groups as closely related, while 

the South group diverges from the other three at a high level on the 

dendrogram. 

 

Chi-square and Fisher’s Exact tests of inter-group trait frequencies also 

reveals some interesting differences. Four traits: maxillary central incisor 

shovelling, maxillary second molar root number, mandibular canine root 

number and maxillary first molar Cusp 5, have P values which approach the 

significance threshold. Shovelling of the maxillary central incisors occurs at a 

rate of 8% and 9% for the West and East groups, respectively, while the 

South and North groups have an expression rate of 35% and 30%, 
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respectively. Three-rooted maxillary second molars occur in 100% of the 

East group burials, while the occurrence rate for the South, West and North 

groups are 86%, 77% and 67% respectively. The North group has a much 

higher expression rate (16%) for two-rooted mandibular canines when 

compared to the South (3%), West (3%) and East (4%) groups. Finally, Cusp 

5 occurs in 21% of West group individuals, 18% of East group individuals 

and 10% of South group individuals, while there is no occurrence of Cusp 5 

among the North group. 

 

While morphological differences between the sexes are not observable in the 

combined Kellis townsite and cemetery assemblages, when inter-sex 

differences within the four cemetery spatial groups are analyzed, some 

interesting observations emerge. While no significant differences emerge, 

Fisher’s Exact tests of several traits do approach the significance threshold 

within certain areas of the cemetery. The southern group of burials has the 

highest level of inter-sex variability; the maxillary central incisor (UI1) has a P 

value of 0.131, while two traits on the maxillary lateral incisor (UI2), 

interruption grooves and shovelling have P values of 0.131 and 0.132, 

respectively. Maxillary second molar Carabelli’s cusp also has a P value of 

0.154. Females have higher rates of occurrence than males for all of these 

traits. For the northern area of the cemetery, mandibular third premolar 

Tome’s root (P=0.138) shows the greatest levels of inter-sex variability, with 

males having a higher rate of expression for the trait. The western and 

eastern groups show the lowest levels of inter-sex variation.  
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While the results are far from definitive, and the small sample sizes are 

statistically problematic, the southern area seems to be comprised of a 

morphologically distinctive subset of burials within the Kellis 2 cemetery 

based on the sex-combined MMD, chi-square and Fisher’s Exact tests, as 

well as the inter-sex intra-group analysis. The question becomes whether or 

not this group represents a genetically related cluster of individuals (i.e. a 

kin-group burial area) distinctive from other groups, or perhaps an area 

reserved for individuals who were not native to Kellis. The higher levels of 

inter-sex morphological variation within this group of individuals suggest that 

only this particular area of the Kellis 2 cemetery shows any evidence for 

exogamy. Interestingly, one of the male burials belonging to this group, 

B.116, has previously been identified as non-native to the oasis on the basis 

of oxygen and nitrogen isotope analysis and may have originated from a less 

arid environment such as the Nile Valley or Nubia (Dupras and Schwarcz 

2001). This individual suffered from leprosy, and may have been exiled from 

elsewhere in Egypt to the oasis. References to social and political outcasts 

being exiled to the oases during the Greco-Roman period can be found in 

many ancient texts (e.g. Nestorius). An analysis of the mitochondrial DNA of 

B.116 also supports the non-native ancestry of this individual by 

demonstrating a lack of shared maternal genetic characteristics with any of 

the 13 other Kellis 2 individuals analyzed (Parr et al. 1998). Additionally, in 

an earlier study of diet using carbon and nitrogen isotopes, Dupras (1999) 

highlighted seven out of 116 individuals with δN15 levels one standard 

deviation below the mean and one individual (B.116) with δN15 levels two 

standard deviations below the mean for the Kellis 2 cemetery. These 
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individuals have also been interpreted as having arrived in the oasis from a 

less arid environment. Of these eight individuals, five are adult males, two 

are adult females and one is a child. Three of the males (B.111, B.116 and 

B.132) and one female (B.165) are from the southern group of burials, again 

suggesting that this area of the cemetery is distinctive. Unfortunately, it is not 

possible to determine with any precision the geographic origins of these 

individuals. 

 

Perhaps, then, it is males who are the more mobile sex within the Kellis 

assemblage. While papyrological evidence suggests regular contact with the 

Nile Valley, with oasis males often travelling to and residing in the valley for 

the purposes of trade, females were less likely to attempt the arduous 

journey across the desert (Gardner et al. 1999; Worp 1995). It seems that 

the transfer of people between the two regions was primarily unidirectional, 

as there would be more opportunity for underemployed Kellis males to earn a 

living in the bustling cities of Middle Egypt, whereas fewer Nile Valley 

residents would find life in the remote oasis region appealing. Indeed, little 

has changed in modern Egypt, where urban centres continue to act as a 

magnet for rural inhabitants seeking new opportunities. However, if people 

from the Nile Valley or further abroad were to travel to the oasis, it does 

seems more likely that they would be male than female. This analysis must 

be pursued further.  

 

An alternative explanation is that the South group represents a temporally 

distinct area of the cemetery, in which case, genetic drift may account for the 
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differences observed between groups. The lack of reconciliation between the 

radiocarbon dates (50-450 AD) and the archaeological evidence (4th century 

AD only) for the dating of the cemetery exacerbates this question. If the 

radiocarbon dates based on human bone collagen are accurate – and they 

appear to be, given the number of samples tested (see discussion on page 

30) - the temporal explanation becomes feasible, although it does not 

necessarily discount the kin-group/non-native hypothesis either. If the 

archaeologically-based time span for the cemetery is accepted however, the 

kin-group explanation becomes more likely, as there would not be enough 

time for genetic drift to affect trait frequencies. For the moment, the 

differences between the South group and the other three groups cannot 

easily be explained until a better handle on the chronology of the Kellis 

cemetery is achieved and further comparative groups are found from within 

the oasis. 

 

5.2 Inter-regional trait comparisons 

Based on the results of the inter-regional analysis of dental trait frequencies, 

the final two hypotheses of the present study can be addressed. 

 

3. The Dakhleh Oasis (Kellis) assemblage will share genotypic/phenotypic 

features with Nile Valley groups as a result of cultural, political and 

economic ties between the two regions beginning in the Neolithic period. 

 

As shown in Chapter 4, the Kellis assemblage shares some degree of 

phenetic similarity with the Egyptian comparative groups, although the only 
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Egyptian group that shares a statistically insignificant Mean Measure of 

Divergence value with Kellis is the Kharga Oasis assemblage (MMD=0.040). 

Other Egyptian groups which share low MMD values with Kellis are the Early 

Dynastic Abydos, Middle Kingdom Thebes and Predynastic Hierakonpolis, 

Badari and Naqada groups. As seen in the hierarchical cluster dendrogram, 

the Kellis assemblage forms part of a series of sub-clusters which include the 

Egyptian Naqada, Hierakonpolis, Abydos, Badari and Hawara groups, along 

with the Nubian and North African groups. When all of the comparative 

groups are plotted with the Kellis assemblage using multidimensional 

scaling, the closest Egyptian groups are the El Hesa, Abydos, Hierakonpolis, 

Naqada and Thebes groups. In both plot types, however, the Kellis 

assemblage is more closely linked with the later Nubian groups than with the 

Egyptian groups.  

 

Thus, Hypothesis 3 cannot be refuted: the Kellis sample does share 

phenotypic characteristics with some Nile Valley groups. Given the textual 

and archaeological evidence for political, cultural and economic ties between 

the Dakhleh Oasis and the Nile Valley throughout the Pharaonic period, this 

should come as no surprise. The similarities with the Upper Egyptian 

Predynastic and Early Dynastic groups may indicate a common ancestry; 

this is supported by recent archaeological evidence which suggests that 

Neolithic cultures from the Western Desert made substantial contributions to 

the emergence of state level society in the Nile Valley, especially in Upper 

Egypt (Hassan 1986, 1988; Hendrickx and Vermeersch 2000; Kobusiewicz 
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et al. 2004; Kuper 2002; McDonald 1998; Midant-Reynes 2000; Wendorf and 

Schild 2002).  

 

Despite certain shared characteristics however, it is clear from the 

multidimensional scaling plots that the Kellis assemblage remains relatively 

distinct from most of the Egyptian groups, which tend to cluster centrally. 

This is likely due to the isolated nature of the Dakhleh Oasis itself, separated 

from the Nile Valley by an inhospitable stretch of desert. While contact 

between the valley and the oasis has occurred for thousands of years, there 

is little evidence for large scale gene flow between the two regions. The 

arrival of Pharaonic Egyptians to Dakhleh in the Late Old Kingdom need not 

have required large numbers of newcomers, and there is no evidence that 

the indigenous population was replaced. Unlike Kharga Oasis, which is 

known to have had several Roman-era military outposts (Giddy 1987), the 

Dakhleh Oasis had less strategic importance to the State, and there is little to 

suggest the large-scale transfer of troops or administrators. Indeed, while 

non-Egyptian administrators and other representatives of the Roman Empire 

were certainly present in the major Egyptian centres, they were probably not 

a substantial presence (Peacock 2000); in rural areas, local elites typically 

acted as intermediaries between the State and its subjects (Bagnall 2003). 

Recently, however, archaeological evidence for the existence of a Roman 

castrum (fort) has been discovered beneath Qasr, a town in the Dakhleh 

Oasis; this fort is also alluded to on an ostrakon recovered from the nearby 

site of Amheida (ancient “Trimithis”) (Bagnall and Ruffini 2012).  This almost 

certainly means that individuals from outside the oasis were present, but in 
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what number and for how long we cannot be certain. Despite this finding, 

however, the phenetic similarities between the Kellis assemblage and the 

earliest Egyptian groups suggest that the late Neolithic may have been the 

most significant period for population movement between the two regions 

and, based on the archaeological evidence, this movement was primarily 

from west to east, i.e. from the desert to the valley, as a result of the 

increasing aridification of the Sahara (Hassan 1986, 1988; Midant-Reynes 

2000; Wendorf and Schild 1980). Since then, the oasis population, as 

characterized by the Kellis assemblage, appears to have diverged from Nile 

Valley groups as a result of genetic drift. The results of the present and 

previous intracemetery analyses suggesting a high level of homogeneity and 

inbreeding within the Dakhleh Oasis may also explain the phenetic 

distinctiveness of the Kellis assemblage in relation to Nile Valley groups.  

 

While ample comparative data for the Nile Valley and Nubia exist, there are 

as yet no dental morphological trait data available for ancient Libyan (i.e. 

Meshwesh/Berber) populations. The presence of Libyans in the oasis is first 

alluded to by depictions in 18th Dynasty Nile Valley tombs of the inhabitants 

of the southern oases as foreigners paying tribute (Winnicki 2009:30). Later, 

during the 25th Dynasty, inscriptions on the smaller Dakhleh stela in the 

possession of the Ashmolean Museum make specific reference to Libyan 

tribes residing in the oasis (Janssen 1968). In addition, the authors of a 

compilation of personal names found in Greco-Roman texts from Kharga and 

Dakhleh suggest that some names may derive from Berber or other non- 

Egyptian/Greek languages (Salomons and Worp 2009). Because of the 
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Dakhleh Oasis’ proximity and links, both ethnically and economically, to 

Libya, especially with Kufra Oasis (Förster 2007; Giddy 1987; Kuper 2001), it 

is highly likely that the Kellis population would share at least some 

genotypical/phenotypical relationships with these groups. In lieu of ancient 

dental morphological trait data for Western Saharan populations, frequencies 

for several recent North African groups from Morocco, Algeria, Tunisia, Libya 

and Chad as well as from ancient Carthage have been used in order to test 

this relationship. Of all the comparative groups used in the present study, the 

Kellis assemblage shares the lowest MMD value with the Kabyle Berber 

group (MMD=0.029), and the fifth-lowest MMD value with the Algerian 

Shawia Berber group (MMD=0.060). While it is tempting to see this as 

confirmation of the presence of Libyans in the Dakhleh oasis, the Kabyle and 

Algerian Berber groups share a high degree of phenetic similarity with the 

majority of Egyptian and Nubian groups. The Bedouin Arab group, and the 

Carthaginian group to a lesser extent, also shares a degree of phenetic 

similarity with the Egyptian groups. This, instead, points to the overall 

phenetic similarities between post-Pleistocene Egyptian, Nubian and 

Western Saharan populations observed by Irish, which he characterizes as a 

“North African Dental Trait Complex” (Irish 1998c,d, 2000). The Chad group 

is highly divergent from the Kellis, Egyptian and Nubian groups, having 

instead more phenetic similarities with the Sub-Saharan African groups, and 

to a lesser extent the Kabyle Berber and Bedouin Arab groups. When the 

Kellis assemblage is plotted with all of the comparative groups using 

hierarchical clustering and multidimensional scaling, it becomes clear that 

the North African groups have more in common with the Egyptian groups 



224 
 

than they do with Kellis. Again, inbreeding and limited gene flow are potential 

explanations for the distinctiveness of the Kellis assemblage. 

 

4. The Kellis sample will contain a Nubian/Sub-Saharan phenotypic 

component as a result of north-south gene flow. 

 

Despite claims by Dzierżykray-Rogalski (1980:72) that the southern oases of 

Egypt were inhabited by “Negroid” populations, the multivariate analyses of 

comparative trait frequencies have shown that there is no phenotypic 

similarity between Kellis and the Sub-Saharan comparative groups used in 

the present study. This is reflected in Mean Measure of Divergence values 

which are highest between Kellis and the Sub-Saharan groups (in addition to 

the Neolithic Nubian Gebel Ramlah assemblage). While Dzierżykray-

Rogalski characterizes the Late and Ptolemaic Period skeletal remains found 

at Qila’ el-Dabbeh as belonging to a “Europoid” typology (1980:72), or to a 

“race blanche orientale” (1983:53), he interprets this as evidence for the 

presence of a ruling elite coming from northern Egypt, rather than accept the 

possibility that these remains might be representative of the oasis population 

as a whole. These results, however, should not be taken as definitive proof 

of a lack of Sub-Saharan genetic input in the Dakhleh Oasis, only that no link 

could be established using the current comparative data sets. Genetic 

studies have demonstrated shared characteristics between Egyptian and 

East African populations (e.g. Fox 1997; Keita 2005; Manni et al. 2002), 

while a number of previous biological distance studies have noted a Sub-
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Saharan African component in Predynastic Upper Egyptian skeletal 

assemblages (e.g. Hillson 1978; Keita 1990; Strouhal 1971).  

 

As discussed previously (Chapter 2), however, it is not the aim of this study 

to place the population of the Dakhleh Oasis within a “Caucasoid” or 

“Negroid” typology. Such broad-based, essentialist categorizations are no 

longer considered a valid approach to the study of human variation (Ousley 

et al. 2009; Relethford 2009) and are insufficient for understanding and 

reconstructing the complicated history of population movements between 

Egypt, North and Sub-Saharan Africa and the Near East. In addition, there is 

sufficiently large enough phenotypic variation within Sub-Saharan African 

and Western Eurasian populations as to render terms such as “Negroid”, 

“Europoid” and “Caucasoid” entirely meaningless. 

 

While there are no apparent affinities with the Sub-Saharan African groups 

used in the present study, there is evidence for phenetic similarities between 

the Kellis assemblage and several Nubian groups. Despite statistically 

significant differences in MMD values for Kellis and the Nubian groups, when 

the values are plotted using hierarchical clustering and multidimensional 

scaling, the Kellis assemblage is consistently linked with the most recent 

Nubian assemblages: Meroitic, X-Group and Christian. In the hierarchical 

cluster plot, Kellis and these three groups form a separate sub-cluster within 

the larger cluster containing Upper Egyptians, North Africans and Nubians. 

The phenetic similarities between Kellis and these groups are also reflected 

by their spatial proximity in the multidimensional scaling plots. Thus, only the 
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first part of Hypothesis 4 cannot be refuted: the existence of phenetic 

similarities between the Kellis assemblage and roughly contemporaneous 

Nubian groups.  

 

There does appear to be an arbitrary divide in the minds of some 

researchers that Egypt and Nubia represent two distinct entities, both 

culturally and biologically, with the two regions often treated separately in 

scholarly works. Certainly there have been periods throughout the history 

(and prehistory) of the Nile Valley region where Egyptian and Nubian 

cultures have diverged, but there is equal evidence for cultural exchange and 

co-evolution, especially during the Predynastic period, as well as the New 

Kingdom and Third Intermediate Period (Bianchi 2004; O’Connor 1993; 

Smith 1998; Taylor 2000; Wilkinson 1999). From a bioarchaeological 

perspective, studies of strontium, oxygen and carbon isotopes in a New 

Kingdom skeletal assemblage from Tombos in Lower Nubia have provided 

evidence of ethnic Egyptian and Nubian peoples living together peacefully 

(Buzon et al. 2007; Buzon and Bowen 2010). In terms of population 

structure, numerous biological distance studies of ancient Egyptian and 

Nubian skeletal remains have demonstrated a clear phenetic overlap 

between the two groups (Berry and Berry 1972; Billy 1977; Brace et al. 1993; 

Buzon 2006; Godde 2009; Irish 1993). DNA evidence also supports this 

interpretation (Hassan et al. 2008; Krings et al. 1999; Lucotte and Mercier 

2003). This overlap is best described in terms of a north-south clinal 

distribution, with the Nile Valley acting as a corridor for the exchange of 

genes in both directions (Brace et al. 1993; Krings et al. 1999). As such, it 



227 
 

should not come as a surprise that the Kellis assemblage shares phenetic 

similarities with both Egyptian and Nubian groups. However, while 

documentary evidence from Late Roman Kellis indicates strong economic 

ties with the Nile Valley, specifically Middle Egypt, there are fewer references 

to regions further south, and none at all to Nubia (Gardner et al. 1999; Worp 

1995). As such, the nature of the phenetic associations with Nubia remains 

unclear. Although Nubians may have trickled into the southern oasis regions 

over thousands of years, the closer level of association with the latest Nubian 

groups, i.e. Meroitic, X-Group and Christian, implies that gene flow between 

the two regions was higher in the Late Dynastic and Greco-Roman periods 

than in earlier times. Such findings are in accordance with Roe’s (2005) 

suggestion that contact between the southern oases and Nubia via the Darb 

el-Arbein occurred more often during the 4th century AD than in previous 

periods when travel along the Nile predominated. 

 

In Aleš Hrdlička’s (1912) study of the modern inhabitants of Kharga oasis, he 

describes the population as relatively indistinguishable from contemporary 

Nile Valley populations. Sub-Saharan African admixture is noted but 

attributed to the Arab slave trade and thus deemed to be a relatively recent 

phenomenon. Comparisons of mitochondrial DNA from Roman era mummies 

and modern inhabitants appear to present a similar scenario for the Dakhleh 

oasis by demonstrating a post-Roman era increase in the frequency of Sub-

Saharan genetic markers in the modern population (Graver et al. 2001). 

Based on observations of 2nd-5th century AD mummies from the necropolis at 

Bagawat, Hrdlička believed that, apart from recent Sub-Saharan admixture, 
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there was little difference between the ancient and modern peoples of 

Kharga oasis. He also speculates that the inhabitants of Kharga oasis may 

be descended from Libyan or Berber peoples (Hrdlička 1912:5), which 

implies the same could be true for the inhabitants of Dakhleh. 

 

Average MMD values for the Kellis assemblage and separate regional 

groups provide another way of placing the Dakhleh Oasis population within a 

regional context. Seen from this perspective, the Kellis assemblage is most 

closely related to the Lower Nubian and Upper Egyptian groups, with low 

average MMD values of 0.101 and 0.102, respectively. This is followed by 

the North African groups, with an average MMD value of 0.104. The lack of 

phenetic similarities with the Sub-Saharan African groups is again 

demonstrated by an average MMD value of 0.247. 

 

The results of the comparison of thirteen dental trait frequencies between the 

Kellis assemblage and Western European, North African and Sub-Saharan 

African groups also demonstrates the closest affinities to the North African 

(MMD=0.066) and, to a lesser extent, Western European group. The 

hierarchical cluster plot for these groups shows Kellis, North Africa and 

Western Europe forming a tightly grouped branch which diverges from the 

three Sub-Saharan African groups at a very high level on the dendrogram.  

 

5.2.1 Isolation by distance 

While the Kellis assemblage shares a statistically insignificant MMD value 

with the Kharga Oasis group, its closest neighbour in terms of geography 
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and time period, the two groups do not cluster together when the values are 

plotted. The Kharga assemblage shares even lower and insignificant MMD 

values with the majority of the North African groups and this may be due to 

small sample size. The Kellis assemblage also shares the lowest MMD value 

with the Kabyle Berber group, which diverges greatly in time and space from 

the Dakhleh Oasis group. It is clear from the MMD values that the Kellis 

assemblage’s relationship with the regional comparative groups does not 

always fit a simple isolation-by-distance model. In such a model, where the 

temporal dimension is controlled, a positive correlation should exist for 

phenetic and geographic distances between populations (Konigsberg 1990; 

Wright 1943); i.e. populations that are geographically closer together should 

share more phenotypic characteristics than populations which are further 

apart. In the present study, the temporal dimension cannot easily be 

controlled due to the lack of sufficient contemporary comparative 

assemblages. In a craniometric study of archaeological skeletal material, 

Zakrzewski (2007) has also shown that an isolation-by-distance model is not 

appropriate for explaining biological affinities among ancient Egyptian 

populations. However, the results of a comparison of Y-chromosome 

variation between modern Egyptians, North Africans, Sub-Saharan Africans, 

Europeans and Middle Eastern populations suggest a high degree of genetic 

continuity between them and do support an isolation-by-distance model 

(Manni et al. 2002).  

 

In the case of the Dakhleh Oasis, its geographically isolated nature - more 

akin to an island than part of a contiguous inhabited landscape - may also 
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render an isolation-by-distance model unsuitable in the present study. While 

the desert has certainly acted as a barrier to the large-scale movement of 

people between the oases and the Nile Valley - much as the sea would act 

as a barrier between an island and the mainland - textual and archaeological 

evidence make it abundantly clear that the Dakhleh Oasis was well-

integrated into the Egyptian (and later Greco-Roman) cultural and economic 

sphere from a very early period. As well as ideas and items of trade, such 

integration would also have facilitated the exchange of people, and thus 

genes, although this may not have occurred on a large scale and is likely to 

have ebbed and flowed in accordance with the prevailing political and 

economic situation in the Nile Valley. Despite this, the Late Roman skeletal 

assemblage from Kellis, especially as characterized in the MDS plots, remain 

distinctive in comparison to skeletal assemblages from the Nile Valley and 

Nubia. In an “island model” of population genetics, high levels of gene flow 

should tend to make subpopulations more similar (Wright 1931), but this is 

clearly not the case with the assemblages from Dakhleh Oasis and the Nile 

Valley. At this stage, however, the effect over time of such genetic 

exchanges on the ancient population of Dakhleh cannot be gauged in the 

absence of pre-Greco-Roman comparative material from within the oasis. 

 

Given the complicated nature of population movements throughout Egypt’s 

history, we should not expect an easy fit between simplified population 

genetics models and data derived from incomplete archaeological 

assemblages. As Konigsberg (1990) acknowledges, there are many 

problems associated with attempting to apply such models to ancient 
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populations; for example, we cannot determine effective population sizes or 

migration rates with any precision. Such models also do not take into 

account historical contingencies and the often non-rational choices made by 

human beings. 

 

5.3 Conclusions 

As represented by dental morphological traits, the skeletal assemblage from 

Late Roman Kellis can be characterized as phenotypically homogenous, with 

low overall levels of inter-sex trait variation. This is most likely due to 

endogamous mate selection, both affinal and lineal. Previous studies of 

skeletal nonmetric traits and unusually high frequencies for certain dental 

traits in the Kellis assemblage support this interpretation, although genetic 

founder effects must also be considered as a potential explanation. When 

trait variation is analyzed among spatially defined groups of individuals within 

the cemetery, however, significant differences between the sexes are 

observable, especially in the southern area. When the sex-combined trait 

frequencies for these four spatially defined areas of the cemetery are 

compared, the southern area of the cemetery again appears notably distinct 

from the rest of the site. The previous detection of several individuals in this 

area with non-native isotopic signatures may indicate that this region of the 

cemetery was reserved for outsiders to the community. Further analysis is 

required, however, before definitive conclusions can be made.  

 

The results of the qualitative and quantitative dental trait frequency 

comparisons between Kellis and regional comparative groups lead to an 
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unequivocal conclusion: that the individuals interred at Kellis share more 

phenotypic characteristics with North African (and European) populations 

than with any of the Sub-Saharan groups used in the comparative analyses. 

It is unsurprising that the Kellis group should be most closely related to other 

North African populations, as Egypt is part of North Africa. Nubians are 

typically considered a North African population group as well, although they 

also share phenetic similarities with Sub-Saharan populations (Irish 1993, 

1997, 2005). The Kellis assemblage’s relatively close association with 

Europe is also not terribly surprising, given the long history of contact 

between North Africa and Europe via the Mediterranean and the Levant. 

Numerous biological distance and DNA studies have also demonstrated a 

close link between the two regions (e.g. Brace et al. 1993; Fadhlaoui-Zid et 

al. 2011; Irish and Guatelli-Steinberg 2003; Kujanová et al. 2009). The lack 

of discernible biological affinities with Sub-Saharan populations is interesting, 

given the location of the Dakhleh Oasis and its connections with other parts 

of the Sahara. Within northeast Africa, the Kellis assemblage has the closest 

affinities with the most recent Nubian groups, as well as the Predynastic and 

Early Dynastic Upper Egyptian groups. This suggests that gene flow 

between Egypt and the Dakhleh Oasis was higher in the Neolithic and 

Predynastic periods than in later periods, while gene flow between Dakhleh 

and Nubia has occurred more recently. Despite these phenetic similarities, 

the Kellis assemblage remains relatively distinct from the majority of the 

comparative groups. This is demonstrated by the high number of significantly 

different pair-wise MMD values and is especially clear in the 

multidimensional scaling plots, where Kellis appears as an outlier from the 
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central cluster of comparative groups. As other studies have demonstrated, 

founder effects and genetic drift within populations inhabiting 

isolated/peripheral areas appear to be the cause of such intraregional 

discontinuity (e.g. Hanihara et al. 2003). 

 

5.4 Implications for Egyptology 

The results of the intra-cemetery and inter-regional analyses of dental 

morphological trait variation have a number of implications for the study of 

the Dakhleh Oasis and its relations with Egypt and beyond. For the first time, 

it is possible to demonstrate that the Late Roman population of the oasis, 

while sharing phenetic similarities with other North African populations, 

remained relatively distinct from its neighbours as a result of its isolated 

location. The long and arduous nature of the journey between Dakhleh and 

the Nile Valley has likely inhibited gene-flow between the two regions. The 

close associations between the Kellis assemblage and Predynastic and Early 

Dynastic Upper Egyptian groups suggests that the greatest amount of gene-

flow between the oasis and the Nile Valley probably occurred in the late 

Neolithic. Gene-flow between Dakhleh and Nubia, as reflected in similarities 

between the Meroitic, X-Group and Christian groups, however, appears to 

have occurred more recently.  

 

Textual evidence demonstrates close ties between oasis residents and the 

cities of Middle Egypt during the Roman period, with males moving more 

freely between regions than females as a result of their involvement in the 

caravan trade. The presence of non-natives at Kellis is suggested by an area 
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within the Kellis 2 cemetery containing individuals with distinctive dental trait 

frequencies. However, this interpretation is tentative and must be treated 

with caution until more analysis is conducted. The presence of outsiders is 

almost guaranteed given the network of trade routes linking the Dakhleh 

Oasis and the wider region during the Greco-Roman period and the 

existence of a military garrison at Qasr; the number of outsiders, however, 

remains unknown, and their effect on the overall population structure is 

unclear. 

 

5.5 Proposals for future work 

In order to improve and expand on the work conducted in the present study, 

it would be greatly beneficial to obtain comparative dental samples, both 

synchronic and diachronic, from within the Dakhleh Oasis in order to 

compare them with the Kellis skeletal assemblage. At the moment, we 

cannot be certain that the skeletal assemblage from Kellis is typical of the 

larger Dakhleh Oasis population. There are numerous sites contemporary 

with Kellis - some larger, some smaller – which have yet to provide 

comparative skeletal data. For example, Amheida (ancient “Trimithis”), a 

particularly large site associated with a nearby Roman garrison, would be 

especially interesting to study as it is more likely than Kellis to have 

harboured a sizeable number of non-indigenous inhabitants. Contemporary 

(i.e. Roman-era) samples from within Dakhleh would permit a better 

understanding of the overall oasis population structure during this period, 

and whether or not the levels of phenotypic homogeneity observed at Kellis 

are representative. The addition of skeletal samples from pre-Roman periods 
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would also provide insight into the nature of the apparent population growth 

witnessed in the oasis during the Greco-Roman period, and to what extent 

this increase reflects an influx of newcomers to the region. A diachronic 

approach would also address the issue of in situ evolution versus gene flow 

between the Dakhleh Oasis and regions further afield. 

 

The Kellis 2 cemetery is very large, and excavations to date have focused 

primarily on a single, localized area to the exclusion of other parts of the site. 

Further excavations, employing a proper sampling strategy, are required in 

order to obtain a more representative skeletal sample. This would also aim to 

cover the entire use-history of the cemetery, something that cannot be 

controlled for at the moment (i.e. we cannot be certain of the temporal 

dimension at Kellis, especially as the stratigraphy at Kellis is not vertical but 

horizontal – i.e. graves do not intercut one another). Although the issue of 

representativeness is a common problem in biological distance studies using 

archaeologically-derived material, it especially hampers the interpretation of 

intracemetery morphological variability, as well as influencing the results of 

inter-site comparisons.  

 

Another avenue for biological distance research at Kellis is the use of 

Geographic Information Systems (GIS) to map the spatial distribution of 

dental and skeletal morphological traits within the Kellis 2 cemetery. GIS 

software such as ArcGIS and MapInfo, in combination with other programs 

like PASSaGE (Pattern Analysis, Spatial Statistics, and Geographic 

Exegesis), can provide a much higher level of analytical detail than the 
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methods currently used. These programs however, especially GIS, require a 

great deal of training in order properly utilize them, and for this reason they 

were not employed in the present study.   
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Appendix I: Kellis 2 (K2) vs Kellis Townsite Burials (TS) dental trait 
frequencies 
 
Premolar Lingual Cusp LP4 * Location 

Crosstab 

   Location  

   K2 TS Total 

PMLC LP4 0 Count 10 4 14 

Expected Count 12.2 1.8 14.0 

1 Count 30 2 32 

Expected Count 27.8 4.2 32.0 

 Total Count 40 6 46 

Expected Count 40.0 6.0 46.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 4.278a 1 .039   
Continuity Correctionb 2.537 1 .111   
Likelihood Ratio 3.909 1 .048   
Fisher's Exact Test    .060 .060

N of Valid Cases 46     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.83. 

b. Computed only for a 2x2 table 
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Molar Groove Pattern UM2 * Location 
Crosstab 

   Location  

   K2 TS Total 

MGP UM2 0 Count 85 8 93 

Expected Count 84.2 8.8 93.0 

1 Count 11 2 13 

Expected Count 11.8 1.2 13.0 

 Total Count 96 10 106 

Expected Count 96.0 10.0 106.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .614a 1 .433   
Continuity Correctionb .077 1 .782   
Likelihood Ratio .538 1 .463   
Fisher's Exact Test    .354 .354

N of Valid Cases 106     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 1.23. 

b. Computed only for a 2x2 table 

 



265 
 

Molar Cusp # UM2 * Location 
Crosstab 

   Location  

   K2 TS Total 

MC# UM2 0 Count 83 9 92 

Expected Count 84.3 7.7 92.0 

1 Count 16 0 16 

Expected Count 14.7 1.3 16.0 

 Total Count 99 9 108 

Expected Count 99.0 9.0 108.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.708a 1 .191   
Continuity Correctionb .667 1 .414   
Likelihood Ratio 3.025 1 .082   
Fisher's Exact Test    .350 .222

N of Valid Cases 108     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 1.33. 

b. Computed only for a 2x2 table 
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Protostylid UM1 * Location 
Crosstab 

   Location  

   K2 TS Total 

Protostylid UM1 0 Count 44 5 49 

Expected Count 43.3 5.7 49.0 

1 Count 32 5 37 

Expected Count 32.7 4.3 37.0 

 Total Count 76 10 86 

Expected Count 76.0 10.0 86.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .225a 1 .635   
Continuity Correctionb .018 1 .893   
Likelihood Ratio .223 1 .637   
Fisher's Exact Test    .739 .442

N of Valid Cases 86     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 4.30. 

b. Computed only for a 2x2 table 
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Cusp 7 UM1 * Location 
Crosstab 

   Location  

   K2 TS Total 

C7 UM1 0 Count 91 9 100 

Expected Count 90.9 9.1 100.0 

1 Count 9 1 10 

Expected Count 9.1 .9 10.0 

 Total Count 100 10 110 

Expected Count 100.0 10.0 110.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .011a 1 .916   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .011 1 .918   
Fisher's Exact Test    1.000 .631

N of Valid Cases 110     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is .91. 

b. Computed only for a 2x2 table 
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Tome’s Root LP3 * Location 
Crosstab 

   Location  

   K2 TS Total 

TR LP3 0 Count 110 7 117 

Expected Count 110.2 6.8 117.0 

1 Count 19 1 20 

Expected Count 18.8 1.2 20.0 

 Total Count 129 8 137 

Expected Count 129.0 8.0 137.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .030a 1 .862   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .031 1 .860   
Fisher's Exact Test    1.000 .670

N of Valid Cases 137     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 1.17. 

b. Computed only for a 2x2 table 
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Molar Root # LM2 * Location 
Crosstab 

   Location  

   K2 TS Total 

MR# LM2 0 Count 4 1 5 

Expected Count 4.9 .1 5.0 

1 Count 75 0 75 

Expected Count 74.1 .9 75.0 

 Total Count 79 1 80 

Expected Count 79.0 1.0 80.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 15.190a 1 .000   
Continuity Correctionb 3.308 1 .069   
Likelihood Ratio 5.747 1 .017   
Fisher's Exact Test    .062 .062

N of Valid Cases 80     
a. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .06. 

b. Computed only for a 2x2 table 
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Shovelling UI1 * Location 
Crosstab 

   Location  

   K2 TS Total 

shovel UI1 0 Count 67 6 73 

Expected Count 68.2 4.8 73.0 

1 Count 18 0 18 

Expected Count 16.8 1.2 18.0 

 Total Count 85 6 91 

Expected Count 85.0 6.0 91.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.584a 1 .208   
Continuity Correctionb .530 1 .466   
Likelihood Ratio 2.747 1 .097   
Fisher's Exact Test    .594 .255

N of Valid Cases 91     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.19. 

b. Computed only for a 2x2 table 
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Interruption Groove UI2 * Location 
Crosstab 

   Location  

   K2 TS Total 

IG UI2 0 Count 84 3 87 

Expected Count 80.6 6.4 87.0 

1 Count 17 5 22 

Expected Count 20.4 1.6 22.0 

 Total Count 101 8 109 

Expected Count 101.0 8.0 109.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 9.597a 1 .002   
Continuity Correctionb 6.971 1 .008   
Likelihood Ratio 7.507 1 .006   
Fisher's Exact Test    .008 .008

N of Valid Cases 109     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 1.61. 

b. Computed only for a 2x2 table 
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Tuberculum dentale UI2 * Location 
Crosstab 

   Location  

   K2 TS Total 

TD UI2 0 Count 75 6 81 

Expected Count 74.8 6.2 81.0 

1 Count 10 1 11 

Expected Count 10.2 .8 11.0 

 Total Count 85 7 92 

Expected Count 85.0 7.0 92.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .039a 1 .843   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .037 1 .847   
Fisher's Exact Test    1.000 .603

N of Valid Cases 92     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is .84. 

b. Computed only for a 2x2 table 
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Mesial Ridge UC * Location 
Crosstab 

   Location  

   K2 TS Total 

M. Ridge UC 0 Count 70 7 77 

Expected Count 70.1 6.9 77.0 

1 Count 1 0 1 

Expected Count .9 .1 1.0 

 Total Count 71 7 78 

Expected Count 71.0 7.0 78.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .100a 1 .752   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .189 1 .663   
Fisher's Exact Test    1.000 .910

N of Valid Cases 78     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .09. 

b. Computed only for a 2x2 table 
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Distal Accessory Ridge UC * Location 
Crosstab 

   Location  

   K2 TS Total 

DAR UC 0 Count 22 4 26 

Expected Count 22.6 3.4 26.0 

1 Count 11 1 12 

Expected Count 10.4 1.6 12.0 

 Total Count 33 5 38 

Expected Count 33.0 5.0 38.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .357a 1 .550   
Continuity Correctionb .007 1 .935   
Likelihood Ratio .384 1 .536   
Fisher's Exact Test    1.000 .488

N of Valid Cases 38     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.58. 

b. Computed only for a 2x2 table 
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Hypocone UM2 * Location 
Crosstab 

   Location  

   K2 TS Total 

Hypocone UM2 0 Count 25 2 27 

Expected Count 23.5 3.5 27.0 

1 Count 69 12 81 

Expected Count 70.5 10.5 81.0 

 Total Count 94 14 108 

Expected Count 94.0 14.0 108.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .985a 1 .321   
Continuity Correctionb .438 1 .508   
Likelihood Ratio 1.092 1 .296   
Fisher's Exact Test    .510 .263

N of Valid Cases 108     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 3.50. 

b. Computed only for a 2x2 table 
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Cusp 5 UM1 * Location 
Crosstab 

   Location  

   K2 TS Total 

cusp 5 UM1 0 Count 85 7 92 

Expected Count 84.1 7.9 92.0 

1 Count 11 2 13 

Expected Count 11.9 1.1 13.0 

 Total Count 96 9 105 

Expected Count 96.0 9.0 105.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .879a 1 .349   
Continuity Correctionb .167 1 .683   
Likelihood Ratio .749 1 .387   
Fisher's Exact Test    .308 .308

N of Valid Cases 105     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 1.11. 

b. Computed only for a 2x2 table 

 
 



277 
 

Carabelli’s Cusp UM1 * Location 
Crosstab 

   Location  

   K2 TS Total 

Carabelli UM1 0 Count 6 7 13 

Expected Count 11.3 1.7 13.0 

1 Count 65 4 69 

Expected Count 59.7 9.3 69.0 

 Total Count 71 11 82 

Expected Count 71.0 11.0 82.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 21.743a 1 .000   
Continuity Correctionb 17.803 1 .000   
Likelihood Ratio 16.157 1 .000   
Fisher's Exact Test    .000 .000

N of Valid Cases 82     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 1.74. 

b. Computed only for a 2x2 table 

 
 



278 
 

Enamel Extensions UM1 * Location 
Crosstab 

   Location  

   K2 TS Total 

EE UM1 0 Count 102 12 114 

Expected Count 102.6 11.4 114.0 

1 Count 6 0 6 

Expected Count 5.4 .6 6.0 

 Total Count 108 12 120 

Expected Count 108.0 12.0 120.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .702a 1 .402   
Continuity Correctionb .019 1 .889   
Likelihood Ratio 1.299 1 .254   
Fisher's Exact Test    1.000 .524

N of Valid Cases 120     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is .60. 

b. Computed only for a 2x2 table 
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Premolar Root # UP3 * Location 
Crosstab 

   Location  

   K2 TS Total 

PMR# UP3 0 Count 58 5 63 

Expected Count 59.5 3.5 63.0 

1 Count 61 2 63 

Expected Count 59.5 3.5 63.0 

 Total Count 119 7 126 

Expected Count 119.0 7.0 126.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.361a 1 .243   
Continuity Correctionb .605 1 .437   
Likelihood Ratio 1.404 1 .236   
Fisher's Exact Test    .440 .220

N of Valid Cases 126     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 3.50. 

b. Computed only for a 2x2 table 
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Molar Root # UM2 * Location 
Crosstab 

   Location  

   K2 TS Total 

MR# UM2 0 Count 21 1 22 

Expected Count 21.3 .7 22.0 

1 Count 75 2 77 

Expected Count 74.7 2.3 77.0 

 Total Count 96 3 99 

Expected Count 96.0 3.0 99.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .221a 1 .638   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .201 1 .654   
Fisher's Exact Test    .534 .534

N of Valid Cases 99     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .67. 

b. Computed only for a 2x2 table 
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Peg-shaped Molar UM3 * Location 
Crosstab 

   Location  

   K2 TS Total 

Peg.Mol. UM3 0 Count 69 11 80 

Expected Count 69.5 10.5 80.0 

1 Count 4 0 4 

Expected Count 3.5 .5 4.0 

 Total Count 73 11 84 

Expected Count 73.0 11.0 84.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .633a 1 .426   
Continuity Correctionb .001 1 .971   
Likelihood Ratio 1.153 1 .283   
Fisher's Exact Test    1.000 .564

N of Valid Cases 84     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .52. 

b. Computed only for a 2x2 table 

 
 



282 
 

Congenital Absence UM3 * Location 
Crosstab 

   Location  

   K2 TS Total 

CA UM3 0 Count 98 12 110 

Expected Count 98.6 11.4 110.0 

1 Count 6 0 6 

Expected Count 5.4 .6 6.0 

 Total Count 104 12 116 

Expected Count 104.0 12.0 116.0 

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .730a 1 .393   
Continuity Correctionb .028 1 .868   
Likelihood Ratio 1.348 1 .246   
Fisher's Exact Test    1.000 .511

N of Valid Cases 116     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is .62. 

b. Computed only for a 2x2 table 
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Appendix II: Combined (K2 + TS) Kellis male vs female 
dichotomized trait frequencies with Chi-Square analysis 
 
Shovelling LI1 * Sex 

Crosstab 

   Sex  

   F M Total 

Shovelling_LI1 0 Count 40 36 76 

Expected Count 40.5 35.5 76.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 41 36 77 

Expected Count 41.0 36.0 77.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .890a 1 .346   

Continuity Correctionb .000 1 1.000   

Likelihood Ratio 1.272 1 .259   

Fisher's Exact Test    1.000 .532

N of Valid Cases 77     

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .47. 

b. Computed only for a 2x2 table 

 
Shovelling LI2 * Sex 

Crosstab 

   Sex  

   F M Total 

Shovelling_LI2 0 Count 45 39 84 

Expected Count 45.5 38.5 84.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 46 39 85 

Expected Count 46.0 39.0 85.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .858a 1 .354   

Continuity Correctionb .000 1 1.000   

Likelihood Ratio 1.238 1 .266   

Fisher's Exact Test    1.000 .541

N of Valid Cases 85     

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .46. 

b. Computed only for a 2x2 table 
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Distal Accessory Ridge LC * Sex 
Crosstab 

   Sex  

   F M Total 

DAR_LC 0 Count 17 16 33 

Expected Count 17.5 15.5 33.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 18 16 34 

Expected Count 18.0 16.0 34.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .916a 1 .339   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.299 1 .254   
Fisher's Exact Test    1.000 .529

N of Valid Cases 34     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .47. 

b. Computed only for a 2x2 table 

 
Lingual cusp LP3 * Sex 

Crosstab 

   Sex  

   F M Total 

PMLC_LP3 0 Count 18 25 43 

Expected Count 17.5 25.5 43.0 

1 Count 4 7 11 

Expected Count 4.5 6.5 11.0 

 Total Count 22 32 54 

Expected Count 22.0 32.0 54.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .110a 1 .741   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .111 1 .739   
Fisher's Exact Test    1.000 .510

N of Valid Cases 54     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 4.48. 

b. Computed only for a 2x2 table 
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Lingual cusp LP4 * Sex 
Crosstab 

   Sex  

   F M Total 

PMLC_LP4 0 Count 3 8 11 

Expected Count 4.5 6.5 11.0 

1 Count 10 11 21 

Expected Count 8.5 12.5 21.0 

 Total Count 13 19 32 

Expected Count 13.0 19.0 32.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.239a 1 .266   
Continuity Correctionb .539 1 .463   
Likelihood Ratio 1.274 1 .259   
Fisher's Exact Test    .450 .233

N of Valid Cases 32     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 4.47. 

b. Computed only for a 2x2 table 

 
Anterior fovea LM1 * Sex 

Crosstab 

   Sex  

   F M Total 

AF_LM1 0 Count 2 3 5 

Expected Count 2.5 2.5 5.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 3 3 6 

Expected Count 3.0 3.0 6.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.200a 1 .273   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.588 1 .208   
Fisher's Exact Test    1.000 .500

N of Valid Cases 6     
a. 4 cells (100.0%) have expected count less than 5. The minimum expected count is .50. 

b. Computed only for a 2x2 table 
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Y-groove LM1 * Sex 
Crosstab 

   Sex  

   F M Total 

Ygroove_LM1 0 Count 4 5 9 

Expected Count 4.2 4.8 9.0 

1 Count 28 31 59 

Expected Count 27.8 31.2 59.0 

 Total Count 32 36 68 

Expected Count 32.0 36.0 68.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .028a 1 .866   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .029 1 .866   
Fisher's Exact Test    1.000 .577

N of Valid Cases 68     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 4.24. 

b. Computed only for a 2x2 table 

 
Y-groove LM2 * Sex 

Crosstab 

   Sex  

   F M Total 

Ygroove_LM2 0 Count 38 37 75 

Expected Count 36.2 38.8 75.0 

1 Count 3 7 10 

Expected Count 4.8 5.2 10.0 

 Total Count 41 44 85 

Expected Count 41.0 44.0 85.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.509a 1 .219   
Continuity Correctionb .795 1 .373   
Likelihood Ratio 1.553 1 .213   
Fisher's Exact Test    .316 .187

N of Valid Cases 85     
a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 4.82. 

b. Computed only for a 2x2 table 
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4-cusped LM1 * Sex 
Crosstab 

   Sex  

   F M Total 

4 cusps_LM1 0 Count 32 34 66 

Expected Count 31.6 34.4 66.0 

1 Count 3 4 7 

Expected Count 3.4 3.6 7.0 

 Total Count 35 38 73 

Expected Count 35.0 38.0 73.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .080a 1 .777   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .081 1 .776   
Fisher's Exact Test    1.000 .547

N of Valid Cases 73     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 3.36. 

b. Computed only for a 2x2 table 

 
 
5 or more cusps LM2 * Sex 

Crosstab 

   Sex  

   F M Total 

5 or more cusps_LM2 0 Count 39 36 75 

Expected Count 36.2 38.8 75.0 

1 Count 3 9 12 

Expected Count 5.8 6.2 12.0 

 Total Count 42 45 87 

Expected Count 42.0 45.0 87.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 3.020a 1 .082   
Continuity Correctionb 2.036 1 .154   
Likelihood Ratio 3.156 1 .076   
Fisher's Exact Test    .120 .075

N of Valid Cases 87     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.79. 

b. Computed only for a 2x2 table 
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Deflecting wrinkle LM1 * Sex 
Crosstab 

   Sex  

   F M Total 

DW_LM1 0 Count 0 1 1 

Expected Count .3 .8 1.0 

1 Count 1 2 3 

Expected Count .8 2.3 3.0 

 Total Count 1 3 4 

Expected Count 1.0 3.0 4.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .444a 1 .505   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .680 1 .410   
Fisher's Exact Test    1.000 .750

N of Valid Cases 4     
a. 4 cells (100.0%) have expected count less than 5. The minimum expected count is .25. 

b. Computed only for a 2x2 table 

 
Protostylid LM1 * Sex 

Crosstab 

   Sex  

   F M Total 

Protostylid_LM1 0 Count 13 18 31 

Expected Count 13.5 17.5 31.0 

1 Count 11 13 24 

Expected Count 10.5 13.5 24.0 

 Total Count 24 31 55 

Expected Count 24.0 31.0 55.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .084a 1 .773   
Continuity Correctionb .000 1 .988   
Likelihood Ratio .084 1 .773   
Fisher's Exact Test    .791 .493

N of Valid Cases 55     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 10.47. 

b. Computed only for a 2x2 table 
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Protostylid LM2 * Sex 
Crosstab 

   Sex  

   F M Total 

Protostylid_LM2 0 Count 21 25 46 

Expected Count 21.7 24.3 46.0 

1 Count 13 13 26 

Expected Count 12.3 13.7 26.0 

 Total Count 34 38 72 

Expected Count 34.0 38.0 72.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .126a 1 .723   
Continuity Correctionb .012 1 .913   
Likelihood Ratio .126 1 .723   
Fisher's Exact Test    .808 .456

N of Valid Cases 72     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 12.28. 

b. Computed only for a 2x2 table 

 
Cusp 6 LM1 * Sex 

Crosstab 

   Sex  

   F M Total 

C6_LM1 0 Count 31 32 63 

Expected Count 30.6 32.4 63.0 

1 Count 4 5 9 

Expected Count 4.4 4.6 9.0 

 Total Count 35 37 72 

Expected Count 35.0 37.0 72.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .071a 1 .789   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .072 1 .789   
Fisher's Exact Test    1.000 .536

N of Valid Cases 72     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 4.38. 

b. Computed only for a 2x2 table 
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Cusp 6 LM2 * Sex 
Crosstab 

   Sex  

   F M Total 

C6_LM2 0 Count 42 42 84 

Expected Count 41.0 43.0 84.0 

1 Count 0 2 2 

Expected Count 1.0 1.0 2.0 

 Total Count 42 44 86 

Expected Count 42.0 44.0 86.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.955a 1 .162   
Continuity Correctionb .466 1 .495   
Likelihood Ratio 2.726 1 .099   
Fisher's Exact Test    .494 .259

N of Valid Cases 86     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .98. 

b. Computed only for a 2x2 table 

 
Cusp 7 LM1 * Sex 

Crosstab 

   Sex  

   F M Total 

C7_LM1 0 Count 34 34 68 

Expected Count 32.6 35.4 68.0 

1 Count 2 5 7 

Expected Count 3.4 3.6 7.0 

 Total Count 36 39 75 

Expected Count 36.0 39.0 75.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.168a 1 .280   
Continuity Correctionb .467 1 .494   
Likelihood Ratio 1.208 1 .272   
Fisher's Exact Test    .433 .250

N of Valid Cases 75     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 3.36. 

b. Computed only for a 2x2 table 
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Cusp 7 LM2 * Sex 
Crosstab 

   Sex  

   F M Total 

C7_LM2 0 Count 43 42 85 

Expected Count 42.0 43.0 85.0 

1 Count 0 2 2 

Expected Count 1.0 1.0 2.0 

 Total Count 43 44 87 

Expected Count 43.0 44.0 87.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 2.001a 1 .157   
Continuity Correctionb .489 1 .485   
Likelihood Ratio 2.773 1 .096   
Fisher's Exact Test    .494 .253

N of Valid Cases 87     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .99. 

b. Computed only for a 2x2 table 

 
2-rooted LC * Sex 

Crosstab 

   Sex  

   F M Total 

2roots_LC 0 Count 65 44 109 

Expected Count 63.5 45.5 109.0 

1 Count 9 9 18 

Expected Count 10.5 7.5 18.0 

 Total Count 74 53 127 

Expected Count 74.0 53.0 127.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .590a 1 .443   
Continuity Correctionb .260 1 .610   
Likelihood Ratio .583 1 .445   
Fisher's Exact Test    .452 .303

N of Valid Cases 127     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 7.51. 

b. Computed only for a 2x2 table 
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Tome’s root LP3 * Sex 
Crosstab 

   Sex  

   F M Total 

TR_LP3 0 Count 59 42 101 

Expected Count 56.5 44.5 101.0 

1 Count 7 10 17 

Expected Count 9.5 7.5 17.0 

 Total Count 66 52 118 

Expected Count 66.0 52.0 118.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.754a 1 .185   
Continuity Correctionb 1.125 1 .289   
Likelihood Ratio 1.742 1 .187   
Fisher's Exact Test    .199 .145

N of Valid Cases 118     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 7.49. 

b. Computed only for a 2x2 table 

 
3-rooted LM1 * Sex 

Crosstab 

   Sex  

   F M Total 

3root_LM1 0 Count 36 37 73 

Expected Count 36.5 36.5 73.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 37 37 74 

Expected Count 37.0 37.0 74.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.014a 1 .314   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.400 1 .237   
Fisher's Exact Test    1.000 .500

N of Valid Cases 74     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .50. 

b. Computed only for a 2x2 table 
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2-rooted LM2 * Sex 
Crosstab 

   Sex  

   F M Total 

2root_LM2 0 Count 4 2 6 

Expected Count 2.8 3.2 6.0 

1 Count 27 33 60 

Expected Count 28.2 31.8 60.0 

 Total Count 31 35 66 

Expected Count 31.0 35.0 66.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.028a 1 .311   
Continuity Correctionb .342 1 .559   
Likelihood Ratio 1.038 1 .308   
Fisher's Exact Test    .408 .280

N of Valid Cases 66     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.82. 

b. Computed only for a 2x2 table 

 
Congenital absence LP4 * Sex 

Crosstab 

   Sex  

   F M Total 

CA_LP4 0 Count 67 55 122 

Expected Count 65.9 56.1 122.0 

1 Count 0 2 2 

Expected Count 1.1 .9 2.0 

 Total Count 67 57 124 

Expected Count 67.0 57.0 124.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 2.389a 1 .122   
Continuity Correctionb .690 1 .406   
Likelihood Ratio 3.147 1 .076   
Fisher's Exact Test    .209 .209

N of Valid Cases 124     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .92. 

b. Computed only for a 2x2 table 
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Congenital absence LM3 * Sex 
Crosstab 

   Sex  

   F M Total 

CA_LM3 0 Count 42 50 92 

Expected Count 44.1 47.9 92.0 

1 Count 4 0 4 

Expected Count 1.9 2.1 4.0 

 Total Count 46 50 96 

Expected Count 46.0 50.0 96.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 4.537a 1 .033   
Continuity Correctionb 2.620 1 .105   
Likelihood Ratio 6.075 1 .014   
Fisher's Exact Test    .049 .049

N of Valid Cases 96     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.92. 

b. Computed only for a 2x2 table 

 
Winging UI1 * Sex 

Crosstab 

   Sex  

   F M Total 

Winging_UI1 0 Count 57 42 99 

Expected Count 57.8 41.2 99.0 

1 Count 2 0 2 

Expected Count 1.2 .8 2.0 

 Total Count 59 42 101 

Expected Count 59.0 42.0 101.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.452a 1 .228   
Continuity Correctionb .231 1 .631   
Likelihood Ratio 2.179 1 .140   
Fisher's Exact Test    .509 .339

N of Valid Cases 101     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .83. 

b. Computed only for a 2x2 table 
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Shoveling UC * Sex 
Crosstab 

   Sex  

   F M Total 

Shovel_UC 0 Count 32 30 62 

Expected Count 31.4 30.6 62.0 

1 Count 3 4 7 

Expected Count 3.6 3.4 7.0 

 Total Count 35 34 69 

Expected Count 35.0 34.0 69.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .193a 1 .660   
Continuity Correctionb .002 1 .968   
Likelihood Ratio .193 1 .660   
Fisher's Exact Test    .710 .483

N of Valid Cases 69     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 3.45. 

b. Computed only for a 2x2 table 

 
Shoveling UI2 * Sex 

Crosstab 

   Sex  

   F M Total 

Shovel_UI2 0 Count 21 24 45 

Expected Count 22.2 22.8 45.0 

1 Count 14 12 26 

Expected Count 12.8 13.2 26.0 

 Total Count 35 36 71 

Expected Count 35.0 36.0 71.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .340a 1 .560   
Continuity Correctionb .113 1 .736   
Likelihood Ratio .340 1 .560   
Fisher's Exact Test    .627 .368

N of Valid Cases 71     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 12.82. 

b. Computed only for a 2x2 table 
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Shoveling UI1 * Sex 
Crosstab 

   Sex  

   F M Total 

Shovel_UI1 0 Count 27 26 53 

Expected Count 28.1 24.9 53.0 

1 Count 9 6 15 

Expected Count 7.9 7.1 15.0 

 Total Count 36 32 68 

Expected Count 36.0 32.0 68.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .385a 1 .535   
Continuity Correctionb .107 1 .743   
Likelihood Ratio .388 1 .534   
Fisher's Exact Test    .573 .373

N of Valid Cases 68     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 7.06. 

b. Computed only for a 2x2 table 

 
Labial convexity UI2 * Sex 

Crosstab 

   Sex  

   F M Total 

Lab.Co._UI2 0 Count 0 1 1 

Expected Count .5 .5 1.0 

1 Count 45 38 83 

Expected Count 44.5 38.5 83.0 

 Total Count 45 39 84 

Expected Count 45.0 39.0 84.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.168a 1 .280   
Continuity Correctionb .005 1 .943   
Likelihood Ratio 1.548 1 .213   
Fisher's Exact Test    .464 .464

N of Valid Cases 84     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .46. 

b. Computed only for a 2x2 table 
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Labial convexity UI1 * Sex 
Crosstab 

   Sex  

   F M Total 

Lab.Co._UI1 0 Count 5 8 13 

Expected Count 7.5 5.5 13.0 

1 Count 42 27 69 

Expected Count 39.5 29.5 69.0 

 Total Count 47 35 82 

Expected Count 47.0 35.0 82.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 2.245a 1 .134   
Continuity Correctionb 1.423 1 .233   
Likelihood Ratio 2.223 1 .136   
Fisher's Exact Test    .221 .117

N of Valid Cases 82     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.55. 

b. Computed only for a 2x2 table 

 
 
Double Shovelling UC * Sex 

Crosstab 

   Sex  

   F M Total 

Dbl.Shov._UC 0 Count 49 39 88 

Expected Count 47.9 40.1 88.0 

1 Count 0 2 2 

Expected Count 1.1 .9 2.0 

 Total Count 49 41 90 

Expected Count 49.0 41.0 90.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 2.445a 1 .118   
Continuity Correctionb .715 1 .398   
Likelihood Ratio 3.199 1 .074   
Fisher's Exact Test    .205 .205

N of Valid Cases 90     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .91. 

b. Computed only for a 2x2 table 
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Double Shovelling UI2 * Sex 
Crosstab 

   Sex  

   F M Total 

Dbl.Shov._UI2 0 Count 44 39 83 

Expected Count 43.5 39.5 83.0 

1 Count 0 1 1 

Expected Count .5 .5 1.0 

 Total Count 44 40 84 

Expected Count 44.0 40.0 84.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.113a 1 .291   
Continuity Correctionb .002 1 .962   
Likelihood Ratio 1.497 1 .221   
Fisher's Exact Test    .476 .476

N of Valid Cases 84     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .48. 

b. Computed only for a 2x2 table 

 
 
Interruption groove UI2 * Sex 

Crosstab 

   Sex  

   F M Total 

IG_UI2 0 Count 40 33 73 

Expected Count 41.3 31.7 73.0 

1 Count 12 7 19 

Expected Count 10.7 8.3 19.0 

 Total Count 52 40 92 

Expected Count 52.0 40.0 92.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .429a 1 .512   
Continuity Correctionb .156 1 .693   
Likelihood Ratio .434 1 .510   
Fisher's Exact Test    .608 .349

N of Valid Cases 92     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.26. 

b. Computed only for a 2x2 table 
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Interruption groove UI1 * Sex 
Crosstab 

   Sex  

   F M Total 

IG_UI1 0 Count 54 39 93 

Expected Count 53.3 39.7 93.0 

1 Count 1 2 3 

Expected Count 1.7 1.3 3.0 

 Total Count 55 41 96 

Expected Count 55.0 41.0 96.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .726a 1 .394   
Continuity Correctionb .067 1 .795   
Likelihood Ratio .721 1 .396   
Fisher's Exact Test    .574 .390

N of Valid Cases 96     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.28. 

b. Computed only for a 2x2 table 

 
 
Tuberculum dentale UC * Sex 

Crosstab 

   Sex  

   F M Total 

TD_UC 0 Count 29 21 50 

Expected Count 25.7 24.3 50.0 

1 Count 9 15 24 

Expected Count 12.3 11.7 24.0 

 Total Count 38 36 74 

Expected Count 38.0 36.0 74.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 2.728a 1 .099   
Continuity Correctionb 1.969 1 .161   
Likelihood Ratio 2.747 1 .097   
Fisher's Exact Test    .137 .080

N of Valid Cases 74     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 11.68. 

b. Computed only for a 2x2 table 
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Tuberculum dentale UI2 * Sex 
Crosstab 

   Sex  

   F M Total 

TD_UI2 0 Count 35 31 66 

Expected Count 35.3 30.7 66.0 

1 Count 4 3 7 

Expected Count 3.7 3.3 7.0 

 Total Count 39 34 73 

Expected Count 39.0 34.0 73.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .043a 1 .836   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .043 1 .835   
Fisher's Exact Test    1.000 .578

N of Valid Cases 73     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 3.26. 

b. Computed only for a 2x2 table 

 
 
Tuberculum dentale UI1 * Sex 

Crosstab 

   Sex  

   F M Total 

TD_UI1 0 Count 27 26 53 

Expected Count 27.6 25.4 53.0 

1 Count 10 8 18 

Expected Count 9.4 8.6 18.0 

 Total Count 37 34 71 

Expected Count 37.0 34.0 71.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .115a 1 .735   
Continuity Correctionb .004 1 .948   
Likelihood Ratio .115 1 .735   
Fisher's Exact Test    .790 .475

N of Valid Cases 71     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.62. 

b. Computed only for a 2x2 table 
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Mesial ridge UC * Sex 
Crosstab 

   Sex  

   F M Total 

M.Ridge_UC 0 Count 31 29 60 

Expected Count 31.5 28.5 60.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 32 29 61 

Expected Count 32.0 29.0 61.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .921a 1 .337   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.305 1 .253   
Fisher's Exact Test    1.000 .525

N of Valid Cases 61     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .48. 

b. Computed only for a 2x2 table 

 
 
Distal accessory ridge UC * Sex 

Crosstab 

   Sex  

   F M Total 

DAR_UC 0 Count 9 8 17 

Expected Count 8.5 8.5 17.0 

1 Count 3 4 7 

Expected Count 3.5 3.5 7.0 

 Total Count 12 12 24 

Expected Count 12.0 12.0 24.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .202a 1 .653   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .202 1 .653   
Fisher's Exact Test    1.000 .500

N of Valid Cases 24     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 3.50. 

b. Computed only for a 2x2 table 
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Metacone UM2 * Sex 
Crosstab 

   Sex  

   F M Total 

Metacone_UM2 0 Count 2 0 2 

Expected Count 1.1 .9 2.0 

1 Count 47 40 87 

Expected Count 47.9 39.1 87.0 

 Total Count 49 40 89 

Expected Count 49.0 40.0 89.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.670a 1 .196   
Continuity Correctionb .329 1 .566   
Likelihood Ratio 2.425 1 .119   
Fisher's Exact Test    .499 .300

N of Valid Cases 89     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .90. 

b. Computed only for a 2x2 table 

 
 
Hypocone UM2 * Sex 

Crosstab 

   Sex  

   F M Total 

Hypocone_UM2 0 Count 12 8 20 

Expected Count 11.5 8.5 20.0 

1 Count 37 28 65 

Expected Count 37.5 27.5 65.0 

 Total Count 49 36 85 

Expected Count 49.0 36.0 85.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .059a 1 .808   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .060 1 .807   
Fisher's Exact Test    1.000 .509

N of Valid Cases 85     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.47. 

b. Computed only for a 2x2 table 

  



303 
 

Cusp 5 (metaconule) UM2 * Sex 
Crosstab 

   Sex  

   F M Total 

Cusp5_UM2 0 Count 37 30 67 

Expected Count 37.0 30.0 67.0 

1 Count 5 4 9 

Expected Count 5.0 4.0 9.0 

 Total Count 42 34 76 

Expected Count 42.0 34.0 76.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .000a 1 .985   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .000 1 .985   
Fisher's Exact Test    1.000 .635

N of Valid Cases 76     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 4.03. 

b. Computed only for a 2x2 table 

 
 
Cusp 5 (metaconule) UM1 * Sex 

Crosstab 

   Sex  

   F M Total 

Cusp5_UM1 0 Count 37 25 62 

Expected Count 36.8 25.2 62.0 

1 Count 4 3 7 

Expected Count 4.2 2.8 7.0 

 Total Count 41 28 69 

Expected Count 41.0 28.0 69.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .017a 1 .897   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .017 1 .897   
Fisher's Exact Test    1.000 .600

N of Valid Cases 69     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.84. 

b. Computed only for a 2x2 table 
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Carabelli’s cusp UM2 * Sex 
Crosstab 

   Sex  

   F M Total 

Carabelli_UM2 0 Count 39 29 68 

Expected Count 40.1 27.9 68.0 

1 Count 4 1 5 

Expected Count 2.9 2.1 5.0 

 Total Count 43 30 73 

Expected Count 43.0 30.0 73.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .987a 1 .321   
Continuity Correctionb .273 1 .601   
Likelihood Ratio 1.076 1 .300   
Fisher's Exact Test    .643 .311

N of Valid Cases 73     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.05. 

b. Computed only for a 2x2 table 

 
Carabelli’s cusp UM1 * Sex 

Crosstab 

   Sex  

   F M Total 

Carabelli_UM1 0 Count 2 6 8 

Expected Count 3.8 4.2 8.0 

1 Count 21 20 41 

Expected Count 19.2 21.8 41.0 

 Total Count 23 26 49 

Expected Count 23.0 26.0 49.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.848a 1 .174   
Continuity Correctionb .945 1 .331   
Likelihood Ratio 1.934 1 .164   
Fisher's Exact Test    .254 .166

N of Valid Cases 49     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 3.76. 

b. Computed only for a 2x2 table 
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Parastyle UM3 * Sex 
Crosstab 

   Sex  

   F M Total 

Parastyle_UM3 0 Count 37 27 64 

Expected Count 37.4 26.6 64.0 

1 Count 1 0 1 

Expected Count .6 .4 1.0 

 Total Count 38 27 65 

Expected Count 38.0 27.0 65.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .722a 1 .396   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.085 1 .298   
Fisher's Exact Test    1.000 .585

N of Valid Cases 65     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .42. 

b. Computed only for a 2x2 table 

 
 
Parastyle UM2 * Sex 

Crosstab 

   Sex  

   F M Total 

Parastyle_UM2 0 Count 45 35 80 

Expected Count 44.4 35.6 80.0 

1 Count 0 1 1 

Expected Count .6 .4 1.0 

 Total Count 45 36 81 

Expected Count 45.0 36.0 81.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.266a 1 .261   
Continuity Correctionb .013 1 .910   
Likelihood Ratio 1.638 1 .201   
Fisher's Exact Test    .444 .444

N of Valid Cases 81     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .44. 

b. Computed only for a 2x2 table 
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Parastyle UM1 * Sex 
Crosstab 

   Sex  

   F M Total 

Parastyle_UM1 0 Count 41 34 75 

Expected Count 41.4 33.6 75.0 

1 Count 1 0 1 

Expected Count .6 .4 1.0 

 Total Count 42 34 76 

Expected Count 42.0 34.0 76.0 

 
Chi-Square Tests 

 Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided) 

Pearson Chi-Square .820a 1 .365   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.197 1 .274   
Fisher's Exact Test    1.000 .553 

N of Valid Cases 76     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .45. 

b. Computed only for a 2x2 table 

 
Enamel extensions UM3 * Sex 

Crosstab 

   Sex  

   F M Total 

EE_UM3 0 Count 32 27 59 

Expected Count 32.3 26.7 59.0 

1 Count 3 2 5 

Expected Count 2.7 2.3 5.0 

 Total Count 35 29 64 

Expected Count 35.0 29.0 64.0 

 
Chi-Square Tests 

 Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided) 

Pearson Chi-Square .062a 1 .804   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .062 1 .803   
Fisher's Exact Test    1.000 .590 

N of Valid Cases 64     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.27. 

b. Computed only for a 2x2 table 
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Enamel extensions UM2 * Sex 
Crosstab 

   Sex  

   F M Total 

EE_UM2 0 Count 41 35 76 

Expected Count 42.8 33.3 76.0 

1 Count 4 0 4 

Expected Count 2.3 1.8 4.0 

 Total Count 45 35 80 

Expected Count 45.0 35.0 80.0 

 
Chi-Square Tests 

 Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

Pearson Chi-Square 3.275a 1 .070   
Continuity Correctionb 1.671 1 .196   
Likelihood Ratio 4.766 1 .029   
Fisher's Exact Test    .127 .094

N of Valid Cases 80     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.75. 

b. Computed only for a 2x2 table 

 
 
Enamel extensions UM1 * Sex 

Crosstab 

   Sex  

   F M Total 

EE_UM1 0 Count 49 35 84 

Expected Count 50.0 34.0 84.0 

1 Count 4 1 5 

Expected Count 3.0 2.0 5.0 

 Total Count 53 36 89 

Expected Count 53.0 36.0 89.0 

 
Chi-Square Tests 

 Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided) 

Pearson Chi-Square .920a 1 .338   
Continuity Correctionb .240 1 .624   
Likelihood Ratio 1.004 1 .316   
Fisher's Exact Test    .644 .323 

N of Valid Cases 89     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.02. 

b. Computed only for a 2x2 table 
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Enamel extensions UP3 * Sex 
Crosstab 

   Sex  

   F M Total 

EE_UP3 0 Count 52 46 98 

Expected Count 52.5 45.5 98.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 53 46 99 

Expected Count 53.0 46.0 99.0 

 
Chi-Square Tests 

 Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided) 

Pearson Chi-Square .877a 1 .349   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.259 1 .262   
Fisher's Exact Test    1.000 .535 

N of Valid Cases 99     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .46. 

b. Computed only for a 2x2 table 

 
 
2-rooted UP4 * Sex 

Crosstab 

   Sex  

   F M Total 

2root_UP4 0 Count 55 41 96 

Expected Count 53.3 42.7 96.0 

1 Count 5 7 12 

Expected Count 6.7 5.3 12.0 

 Total Count 60 48 108 

Expected Count 60.0 48.0 108.0 

 
 

Chi-Square Tests 

 Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

Pearson Chi-Square 1.055a 1 .304   
Continuity Correctionb .517 1 .472   
Likelihood Ratio 1.048 1 .306   
Fisher's Exact Test    .364 .235

N of Valid Cases 108     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.33. 

b. Computed only for a 2x2 table 
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2-rooted UP3 * Sex 
Crosstab 

   Sex  

   F M Total 

2root_UP1 0 Count 34 19 53 

Expected Count 29.2 23.8 53.0 

1 Count 26 30 56 

Expected Count 30.8 25.2 56.0 

 Total Count 60 49 109 

Expected Count 60.0 49.0 109.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 3.456a 1 .063   
Continuity Correctionb 2.777 1 .096   
Likelihood Ratio 3.478 1 .062   
Fisher's Exact Test    .083 .048

N of Valid Cases 109     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 23.83. 

b. Computed only for a 2x2 table 

 
3-rooted UM2 * Sex 

Crosstab 

   Sex  

   F M Total 

3root_UM2 0 Count 12 6 18 

Expected Count 9.8 8.2 18.0 

1 Count 35 33 68 

Expected Count 37.2 30.8 68.0 

 Total Count 47 39 86 

Expected Count 47.0 39.0 86.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.326a 1 .249   
Continuity Correctionb .784 1 .376   
Likelihood Ratio 1.352 1 .245   
Fisher's Exact Test    .295 .189

N of Valid Cases 86     
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 8.16. 

b. Computed only for a 2x2 table 
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3-rooted UM1 * Sex 
Crosstab 

   Sex  

   F M Total 

3root_UM1 0 Count 4 2 6 

Expected Count 3.4 2.6 6.0 

1 Count 54 43 97 

Expected Count 54.6 42.4 97.0 

 Total Count 58 45 103 

Expected Count 58.0 45.0 103.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .278a 1 .598   
Continuity Correctionb .011 1 .918   
Likelihood Ratio .285 1 .594   
Fisher's Exact Test    .694 .466

N of Valid Cases 103     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.62. 

b. Computed only for a 2x2 table 

 
Peg-shaped UM3 * Sex 

Crosstab 

   Sex  

   F M Total 

Peg_UM3 0 Count 39 32 71 

Expected Count 38.8 32.2 71.0 

1 Count 2 2 4 

Expected Count 2.2 1.8 4.0 

 Total Count 41 34 75 

Expected Count 41.0 34.0 75.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .037a 1 .847   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .037 1 .848   
Fisher's Exact Test    1.000 .618

N of Valid Cases 75     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.81. 

b. Computed only for a 2x2 table 
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Congenital absence UM3 * Sex 
Crosstab 

   Sex  

   F M Total 

CA_UM3 0 Count 51 46 97 

Expected Count 52.3 44.7 97.0 

1 Count 4 1 5 

Expected Count 2.7 2.3 5.0 

 Total Count 55 47 102 

Expected Count 55.0 47.0 102.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square 1.439a 1 .230   
Continuity Correctionb .547 1 .460   
Likelihood Ratio 1.557 1 .212   
Fisher's Exact Test    .370 .234

N of Valid Cases 102     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.30. 

b. Computed only for a 2x2 table 

 
 
Congenital absence UP4 * Sex 

Crosstab 

   Sex  

   F M Total 

CA_UP4 0 Count 72 57 129 

Expected Count 71.9 57.1 129.0 

1 Count 1 1 2 

Expected Count 1.1 .9 2.0 

 Total Count 73 58 131 

Expected Count 73.0 58.0 131.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .027a 1 .870   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .027 1 .870   
Fisher's Exact Test    1.000 .691

N of Valid Cases 131     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .89. 

b. Computed only for a 2x2 table 
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Congenital absence UI2 * Sex 
Crosstab 

   Sex  

   F M Total 

CA_UI2 0 Count 73 59 132 

Expected Count 73.4 58.6 132.0 

1 Count 1 0 1 

Expected Count .6 .4 1.0 

 Total Count 74 59 133 

Expected Count 74.0 59.0 133.0 

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson Chi-Square .803a 1 .370   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.179 1 .278   
Fisher's Exact Test    1.000 .556

N of Valid Cases 133     
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .44. 

b. Computed only for a 2x2 table 
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Appendix III: Kellis 2 cemetery groups dichotomized trait 
frequencies with Chi-Square analysis 
 
Shovelling LI1 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Shovelling_LI1 0 Count 19 26 15 28 88

Expected Count 18.8 25.7 14.8 28.7 88.0

1 Count 0 0 0 1 1

Expected Count .2 .3 .2 .3 1.0

 Total Count 19 26 15 29 89

Expected Count 19.0 26.0 15.0 29.0 89.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.092a 3 .553

Likelihood Ratio 2.266 3 .519

N of Valid Cases 89   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .17. 

 
Shovelling LI2 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Shovelling_LI2 0 Count 23 27 15 29 94

Expected Count 22.8 26.7 14.8 29.7 94.0

1 Count 0 0 0 1 1

Expected Count .2 .3 .2 .3 1.0

 Total Count 23 27 15 30 95

Expected Count 23.0 27.0 15.0 30.0 95.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.190a 3 .534

Likelihood Ratio 2.329 3 .507

N of Valid Cases 95   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .16. 
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Distal accessory ridge LC * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

DAR_LC 0 Count 13 10 6 10 39

Expected Count 13.0 10.2 5.6 10.2 39.0

1 Count 1 1 0 1 3

Expected Count 1.0 .8 .4 .8 3.0

 Total Count 14 11 6 11 42

Expected Count 14.0 11.0 6.0 11.0 42.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square .587a 3 .899

Likelihood Ratio 1.006 3 .800

N of Valid Cases 42   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .43. 

 
 
Lingual cusp LP3 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

PMLC_LP3 0 Count 15 14 8 9 46

Expected Count 15.1 13.5 6.3 11.1 46.0

1 Count 4 3 0 5 12

Expected Count 3.9 3.5 1.7 2.9 12.0

 Total Count 19 17 8 14 58

Expected Count 19.0 17.0 8.0 14.0 58.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 4.110a 3 .250

Likelihood Ratio 5.489 3 .139

N of Valid Cases 58   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.66. 

 
 



315 
 

Lingual cusp LP4 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

PMLC_LP4 0 Count 6 2 0 2 10

Expected Count 3.5 3.3 1.0 2.3 10.0

1 Count 8 11 4 7 30

Expected Count 10.5 9.8 3.0 6.8 30.0

 Total Count 14 13 4 9 40

Expected Count 14.0 13.0 4.0 9.0 40.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 4.392a 3 .222

Likelihood Ratio 5.168 3 .160

N of Valid Cases 40   
a. 5 cells (62.5%) have expected count less than 5. The minimum 
expected count is 1.00. 

 
 
Anterior fovea LM1 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

AF_LM1 0 Count 4 5 1 3 13

Expected Count 4.5 4.0 .9 3.6 13.0

1 Count 6 4 1 5 16

Expected Count 5.5 5.0 1.1 4.4 16.0

 Total Count 10 9 2 8 29

Expected Count 10.0 9.0 2.0 8.0 29.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square .708a 3 .871

Likelihood Ratio .708 3 .871

N of Valid Cases 29   
a. 7 cells (87.5%) have expected count less than 5. The minimum 
expected count is .90. 
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Y-groove LM1 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

Ygroove_LM1 0 Count 6 2 1 2 11

Expected Count 3.1 2.9 1.3 3.6 11.0

1 Count 20 22 10 28 80

Expected Count 22.9 21.1 9.7 26.4 80.0

 Total Count 26 24 11 30 91

Expected Count 26.0 24.0 11.0 30.0 91.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 4.196a 3 .241

Likelihood Ratio 3.842 3 .279

N of Valid Cases 91   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.33. 

 
 
Y-groove LM2 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Ygroove_LM2 0 Count 21 19 17 26 83

Expected Count 22.1 19.4 15.0 26.5 83.0

1 Count 4 3 0 4 11

Expected Count 2.9 2.6 2.0 3.5 11.0

 Total Count 25 22 17 30 94

Expected Count 25.0 22.0 17.0 30.0 94.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.857a 3 .414

Likelihood Ratio 4.789 3 .188

N of Valid Cases 94   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.99. 
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4 cusped LM1 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

4 cusps_LM1 0 Count 24 23 12 30 89

Expected Count 23.4 24.4 11.2 30.0 89.0

1 Count 1 3 0 2 6

Expected Count 1.6 1.6 .8 2.0 6.0

 Total Count 25 26 12 32 95

Expected Count 25.0 26.0 12.0 32.0 95.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.234a 3 .525

Likelihood Ratio 2.802 3 .423

N of Valid Cases 95   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .76. 

 
 
5 or more cusps LM2 * GROUP 

Crosstab

   GROUP  

   South West East North Total 

5 or more  
cusps_LM2 

0 Count 22 19 15 25 81

Expected Count 20.9 17.5 15.9 26.7 81.0

1 Count 3 2 4 7 16

Expected Count 4.1 3.5 3.1 5.3 16.0

 Total Count 25 21 19 32 97

Expected Count 25.0 21.0 19.0 32.0 97.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.067a 3 .559

Likelihood Ratio 2.138 3 .544

N of Valid Cases 97   
a. 3 cells (37.5%) have expected count less than 5. The minimum 
expected count is 3.13. 
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Deflecting wrinkle LM1 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

DW_LM1 0 Count 1 4 1 2 8

Expected Count 2.8 2.4 .3 2.4 8.0

1 Count 7 3 0 5 15

Expected Count 5.2 4.6 .7 4.6 15.0

 Total Count 8 7 1 7 23

Expected Count 8.0 7.0 1.0 7.0 23.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 5.288a 3 .152

Likelihood Ratio 5.755 3 .124

N of Valid Cases 23   
a. 7 cells (87.5%) have expected count less than 5. The minimum 
expected count is .35. 

 
 
Protostylid LM1 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Protostylid_LM1 0 Count 16 9 4 13 42

Expected Count 13.6 11.4 4.0 13.1 42.0

1 Count 8 11 3 10 32

Expected Count 10.4 8.6 3.0 9.9 32.0

 Total Count 24 20 7 23 74

Expected Count 24.0 20.0 7.0 23.0 74.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.088a 3 .554

Likelihood Ratio 2.099 3 .552

N of Valid Cases 74   
a. 2 cells (25.0%) have expected count less than 5. The minimum 
expected count is 3.03. 
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Protostylid LM2 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

Protostylid_LM2 0 Count 14 11 9 16 50

Expected Count 13.3 11.4 9.5 15.8 50.0

1 Count 7 7 6 9 29

Expected Count 7.7 6.6 5.5 9.2 29.0

 Total Count 21 18 15 25 79

Expected Count 21.0 18.0 15.0 25.0 79.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square .215a 3 .975

Likelihood Ratio .216 3 .975

N of Valid Cases 79   
a. 0 cells (.0%) have expected count less than 5. The minimum 
expected count is 5.51. 

 
 
Cusp 6 LM1 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

C6_LM1 0 Count 21 23 10 28 82

Expected Count 23.3 21.6 10.4 26.8 82.0

1 Count 6 2 2 3 13

Expected Count 3.7 3.4 1.6 4.2 13.0

 Total Count 27 25 12 31 95

Expected Count 27.0 25.0 12.0 31.0 95.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.862a 3 .413

Likelihood Ratio 2.778 3 .427

N of Valid Cases 95   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.64. 

 
 



320 
 

Cusp 6 LM2 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

C6_LM2 0 Count 24 20 19 31 94

Expected Count 24.2 20.4 18.4 31.0 94.0

1 Count 1 1 0 1 3

Expected Count .8 .6 .6 1.0 3.0

 Total Count 25 21 19 32 97

Expected Count 25.0 21.0 19.0 32.0 97.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square .870a 3 .833

Likelihood Ratio 1.425 3 .700

N of Valid Cases 97   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .59. 

 
 
Cusp 7 LM1 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

C7_LM1 0 Count 23 24 11 30 88

Expected Count 24.5 24.5 10.9 28.1 88.0

1 Count 4 3 1 1 9

Expected Count 2.5 2.5 1.1 2.9 9.0

 Total Count 27 27 12 31 97

Expected Count 27.0 27.0 12.0 31.0 97.0

 
 

Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.453a 3 .484

Likelihood Ratio 2.724 3 .436

N of Valid Cases 97   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.11. 
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Cusp 7 LM2 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

C7_LM2 0 Count 24 21 19 31 95

Expected Count 24.7 20.8 18.8 30.7 95.0

1 Count 1 0 0 0 1

Expected Count .3 .2 .2 .3 1.0

 Total Count 25 21 19 31 96

Expected Count 25.0 21.0 19.0 31.0 96.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.870a 3 .412

Likelihood Ratio 2.721 3 .437

N of Valid Cases 96   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .20. 

 
 
2-rooted LC * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

2roots_LC 0 Count 29 37 25 32 123

Expected Count 28.0 35.4 24.2 35.4 123.0

1 Count 1 1 1 6 9

Expected Count 2.0 2.6 1.8 2.6 9.0

 Total Count 30 38 26 38 132

Expected Count 30.0 38.0 26.0 38.0 132.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 6.797a 3 .079

Likelihood Ratio 6.069 3 .108

N of Valid Cases 132   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.77. 
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Tome’s root LP3 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

TR_LP3 0 Count 28 27 21 31 107

Expected Count 25.5 28.9 21.2 31.4 107.0

1 Count 2 7 4 6 19

Expected Count 4.5 5.1 3.8 5.6 19.0

 Total Count 30 34 25 37 126

Expected Count 30.0 34.0 25.0 37.0 126.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.518a 3 .472

Likelihood Ratio 2.816 3 .421

N of Valid Cases 126   
a. 2 cells (25.0%) have expected count less than 5. The minimum 
expected count is 3.77. 

 
 
3-rooted LM1 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

3root_LM1 0 Count 24 25 11 32 92

Expected Count 23.7 25.7 10.9 31.7 92.0

1 Count 0 1 0 0 1

Expected Count .3 .3 .1 .3 1.0

 Total Count 24 26 11 32 93

Expected Count 24.0 26.0 11.0 32.0 93.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.605a 3 .457

Likelihood Ratio 2.577 3 .462

N of Valid Cases 93   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .12. 
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2-rooted LM2 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

2root_LM2 0 Count 2 0 0 3 5

Expected Count 1.2 1.2 .8 1.9 5.0

1 Count 16 18 12 27 73

Expected Count 16.8 16.8 11.2 28.1 73.0

 Total Count 18 18 12 30 78

Expected Count 18.0 18.0 12.0 30.0 78.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 3.362a 3 .339

Likelihood Ratio 5.082 3 .166

N of Valid Cases 78   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .77. 

 
 
Congenital absence LP4 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

CA_LP4 0 Count 27 35 25 37 124

Expected Count 26.6 36.4 24.6 36.4 124.0

1 Count 0 2 0 0 2

Expected Count .4 .6 .4 .6 2.0

 Total Count 27 37 25 37 126

Expected Count 27.0 37.0 25.0 37.0 126.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 4.888a 3 .180

Likelihood Ratio 4.980 3 .173

N of Valid Cases 126   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .40. 
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Congenital absence LM3 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

CA_LM3 0 Count 22 26 23 28 99

Expected Count 22.3 25.2 23.3 28.1 99.0

1 Count 1 0 1 1 3

Expected Count .7 .8 .7 .9 3.0

 Total Count 23 26 24 29 102

Expected Count 23.0 26.0 24.0 29.0 102.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 1.100a 3 .777

Likelihood Ratio 1.829 3 .609

N of Valid Cases 102   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .68. 

 
 
Winging UI1 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Winging_UI1 0 Count 18 28 21 39 106

Expected Count 17.7 27.5 21.6 39.3 106.0

1 Count 0 0 1 1 2

Expected Count .3 .5 .4 .7 2.0

 Total Count 18 28 22 40 108

Expected Count 18.0 28.0 22.0 40.0 108.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 1.839a 3 .607

Likelihood Ratio 2.430 3 .488

N of Valid Cases 108   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .33. 
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Shovelling UC * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

Shovel_UC 0 Count 13 26 10 19 68

Expected Count 13.2 28.3 8.8 17.7 68.0

1 Count 2 6 0 1 9

Expected Count 1.8 3.7 1.2 2.3 9.0

 Total Count 15 32 10 20 77

Expected Count 15.0 32.0 10.0 20.0 77.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 3.776a 3 .287

Likelihood Ratio 4.937 3 .176

N of Valid Cases 77   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.17. 

 
 
Shovelling UI2 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Shovel_UI2 0 Count 10 17 7 19 53

Expected Count 11.6 14.9 7.8 18.7 53.0

1 Count 8 6 5 10 29

Expected Count 6.4 8.1 4.2 10.3 29.0

 Total Count 18 23 12 29 82

Expected Count 18.0 23.0 12.0 29.0 82.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 1.734a 3 .629

Likelihood Ratio 1.751 3 .626

N of Valid Cases 82   
a. 1 cells (12.5%) have expected count less than 5. The minimum 
expected count is 4.24. 
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Shovelling UI1 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

Shovel_UI1 0 Count 13 24 10 19 66

Expected Count 15.7 20.4 8.6 21.2 66.0

1 Count 7 2 1 8 18

Expected Count 4.3 5.6 2.4 5.8 18.0

 Total Count 20 26 11 27 84

Expected Count 20.0 26.0 11.0 27.0 84.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 7.175a 3 .067

Likelihood Ratio 7.772 3 .051

N of Valid Cases 84   
a. 2 cells (25.0%) have expected count less than 5. The minimum 
expected count is 2.36. 

 
 
Labial Convexity UI2 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Lab.Co._UI2 0 Count 1 0 0 0 1

Expected Count .2 .3 .2 .4 1.0

1 Count 19 23 16 32 90

Expected Count 19.8 22.7 15.8 31.6 90.0

 Total Count 20 23 16 32 91

Expected Count 20.0 23.0 16.0 32.0 91.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 3.589a 3 .309

Likelihood Ratio 3.070 3 .381

N of Valid Cases 91   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .18. 
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Labial convexity UI1 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

Lab.Co._UI1 0 Count 6 1 1 3 11

Expected Count 2.5 2.9 2.0 3.6 11.0

1 Count 15 24 16 28 83

Expected Count 18.5 22.1 15.0 27.4 83.0

 Total Count 21 25 17 31 94

Expected Count 21.0 25.0 17.0 31.0 94.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 7.899a 3 .048

Likelihood Ratio 7.015 3 .071

N of Valid Cases 94   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.99. 

 
 
Double Shovelling UC * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Dbl.Shov._UC 0 Count 21 32 12 29 94

Expected Count 21.3 32.9 11.6 28.1 94.0

1 Count 1 2 0 0 3

Expected Count .7 1.1 .4 .9 3.0

 Total Count 22 34 12 29 97

Expected Count 22.0 34.0 12.0 29.0 97.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.346a 3 .504

Likelihood Ratio 3.414 3 .332

N of Valid Cases 97   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .37. 

 
 



328 
 

Double Shovelling UI2 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

Dbl.Shov._UI2 0 Count 19 24 16 32 91

Expected Count 19.8 23.7 15.8 31.7 91.0

1 Count 1 0 0 0 1

Expected Count .2 .3 .2 .3 1.0

 Total Count 20 24 16 32 92

Expected Count 20.0 24.0 16.0 32.0 92.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 3.640a 3 .303

Likelihood Ratio 3.092 3 .378

N of Valid Cases 92   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .17. 

 
 
Interruption groove UI2 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

IG_UI2 0 Count 13 20 18 32 83

Expected Count 15.8 20.8 16.6 29.9 83.0

1 Count 6 5 2 4 17

Expected Count 3.2 4.3 3.4 6.1 17.0

 Total Count 19 25 20 36 100

Expected Count 19.0 25.0 20.0 36.0 100.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 4.601a 3 .203

Likelihood Ratio 4.339 3 .227

N of Valid Cases 100   
a. 3 cells (37.5%) have expected count less than 5. The minimum 
expected count is 3.23. 
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Interruption groove UI1 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

IG_UI1 0 Count 18 28 22 36 104

Expected Count 20.0 27.7 21.0 35.3 104.0

1 Count 3 1 0 1 5

Expected Count 1.0 1.3 1.0 1.7 5.0

 Total Count 21 29 22 37 109

Expected Count 21.0 29.0 22.0 37.0 109.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 5.957a 3 .114

Likelihood Ratio 5.467 3 .141

N of Valid Cases 109   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .96. 

 
 
Tuberculum dentale UC * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

TD_UC 0 Count 13 21 11 9 54

Expected Count 10.7 20.7 8.0 14.7 54.0

1 Count 3 10 1 13 27

Expected Count 5.3 10.3 4.0 7.3 27.0

 Total Count 16 31 12 22 81

Expected Count 16.0 31.0 12.0 22.0 81.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 11.491a 3 .009

Likelihood Ratio 12.036 3 .007

N of Valid Cases 81   
a. 1 cells (12.5%) have expected count less than 5. The minimum 
expected count is 4.00. 
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Tuberculum dentale UI2 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

TD_UI2 0 Count 15 21 14 24 74

Expected Count 15.9 21.1 12.3 24.7 74.0

1 Count 3 3 0 4 10

Expected Count 2.1 2.9 1.7 3.3 10.0

 Total Count 18 24 14 28 84

Expected Count 18.0 24.0 14.0 28.0 84.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.441a 3 .486

Likelihood Ratio 4.052 3 .256

N of Valid Cases 84   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.67. 

 
 
Tuberculum dentale UI1 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

TD_UI1 0 Count 12 15 13 17 57

Expected Count 11.5 15.6 10.2 19.7 57.0

1 Count 5 8 2 12 27

Expected Count 5.5 7.4 4.8 9.3 27.0

 Total Count 17 23 15 29 84

Expected Count 17.0 23.0 15.0 29.0 84.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 3.699a 3 .296

Likelihood Ratio 4.061 3 .255

N of Valid Cases 84   
a. 1 cells (12.5%) have expected count less than 5. The minimum 
expected count is 4.82. 
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Canine Mesial Ridge UC * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

M.Ridge_UC 0 Count 16 20 9 24 69

Expected Count 15.8 20.7 8.9 23.7 69.0

1 Count 0 1 0 0 1

Expected Count .2 .3 .1 .3 1.0

 Total Count 16 21 9 24 70

Expected Count 16.0 21.0 9.0 24.0 70.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.367a 3 .500

Likelihood Ratio 2.442 3 .486

N of Valid Cases 70   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .13. 

 
 
Distal Accessory Ridge UC * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

DAR_UC 0 Count 5 7 3 7 22

Expected Count 6.7 7.3 2.0 6.0 22.0

1 Count 5 4 0 2 11

Expected Count 3.3 3.7 1.0 3.0 11.0

 Total Count 10 11 3 9 33

Expected Count 10.0 11.0 3.0 9.0 33.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 3.295a 3 .348

Likelihood Ratio 4.192 3 .241

N of Valid Cases 33   
a. 5 cells (62.5%) have expected count less than 5. The minimum 
expected count is 1.00. 
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Metacone UM2 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

Metacone_UM2 0 Count 1 0 1 2 4

Expected Count .9 1.3 .7 1.2 4.0

1 Count 20 30 15 27 92

Expected Count 20.1 28.8 15.3 27.8 92.0

 Total Count 21 30 16 29 96

Expected Count 21.0 30.0 16.0 29.0 96.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.038a 3 .565

Likelihood Ratio 3.178 3 .365

N of Valid Cases 96   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .67. 

 
 
Hypocone UM2 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Hypocone_UM2 0 Count 7 9 3 5 24

Expected Count 5.5 7.3 3.9 7.3 24.0

1 Count 14 19 12 23 68

Expected Count 15.5 20.7 11.1 20.7 68.0

 Total Count 21 28 15 28 92

Expected Count 21.0 28.0 15.0 28.0 92.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.376a 3 .498

Likelihood Ratio 2.423 3 .489

N of Valid Cases 92   
a. 1 cells (12.5%) have expected count less than 5. The minimum 
expected count is 3.91. 
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Cusp 5 (metaconule) UM2 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

Cusp5_UM2 0 Count 18 24 13 21 76

Expected Count 18.8 23.2 11.6 22.4 76.0

1 Count 3 2 0 4 9

Expected Count 2.2 2.8 1.4 2.6 9.0

 Total Count 21 26 13 25 85

Expected Count 21.0 26.0 13.0 25.0 85.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.846a 3 .416

Likelihood Ratio 4.119 3 .249

N of Valid Cases 85   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.38. 

 
 
Cusp 5 (metaconule) UM1 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Cusp5_UM1 0 Count 18 23 14 28 83

Expected Count 17.7 25.6 15.0 24.7 83.0

1 Count 2 6 3 0 11

Expected Count 2.3 3.4 2.0 3.3 11.0

 Total Count 20 29 17 28 94

Expected Count 20.0 29.0 17.0 28.0 94.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 6.615a 3 .085

Likelihood Ratio 9.442 3 .024

N of Valid Cases 94   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.99. 
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Carabelli’s cusp UM2 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

Carabelli_UM2 0 Count 18 25 12 20 75

Expected Count 18.5 24.1 11.1 21.3 75.0

1 Count 2 1 0 3 6

Expected Count 1.5 1.9 .9 1.7 6.0

 Total Count 20 26 12 23 81

Expected Count 20.0 26.0 12.0 23.0 81.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.702a 3 .440

Likelihood Ratio 3.484 3 .323

N of Valid Cases 81   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .89. 

 
 
Carabelli’s cusp UM1 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Carabelli_UM1 0 Count 3 1 1 1 6

Expected Count 1.1 1.9 1.3 1.7 6.0

1 Count 10 21 14 19 64

Expected Count 11.9 20.1 13.7 18.3 64.0

 Total Count 13 22 15 20 70

Expected Count 13.0 22.0 15.0 20.0 70.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 4.340a 3 .227

Likelihood Ratio 3.481 3 .323

N of Valid Cases 70   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.11. 
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Parastyle UM2 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

Parastyle_UM2 0 Count 21 27 13 22 83

Expected Count 20.5 28.3 12.7 21.5 83.0

1 Count 0 2 0 0 2

Expected Count .5 .7 .3 .5 2.0

 Total Count 21 29 13 22 85

Expected Count 21.0 29.0 13.0 22.0 85.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 3.955a 3 .266

Likelihood Ratio 4.395 3 .222

N of Valid Cases 85   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .31. 

 
 
Parastyle UM1 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Parastyle_UM1 0 Count 22 30 19 24 95

Expected Count 21.8 30.7 18.8 23.8 95.0

1 Count 0 1 0 0 1

Expected Count .2 .3 .2 .3 1.0

 Total Count 22 31 19 24 96

Expected Count 22.0 31.0 19.0 24.0 96.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.119a 3 .548

Likelihood Ratio 2.283 3 .516

N of Valid Cases 96   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .20. 
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Enamel extensions UM3 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

EE_UM3 0 Count 9 12 11 19 51

Expected Count 9.1 11.8 11.8 18.2 51.0

1 Count 1 1 2 1 5

Expected Count .9 1.2 1.2 1.8 5.0

 Total Count 10 13 13 20 56

Expected Count 10.0 13.0 13.0 20.0 56.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 1.085a 3 .781

Likelihood Ratio 1.043 3 .791

N of Valid Cases 56   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .89. 

 
 
Enamel extensions UM2 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

EE_UM2 0 Count 19 23 13 25 80

Expected Count 17.9 24.5 13.2 24.5 80.0

1 Count 0 3 1 1 5

Expected Count 1.1 1.5 .8 1.5 5.0

 Total Count 19 26 14 26 85

Expected Count 19.0 26.0 14.0 26.0 85.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.925a 3 .403

Likelihood Ratio 3.753 3 .289

N of Valid Cases 85   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .82. 
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Enamel extensions UM1 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

EE_UM1 0 Count 23 27 21 30 101

Expected Count 22.7 27.4 20.8 30.2 101.0

1 Count 1 2 1 2 6

Expected Count 1.3 1.6 1.2 1.8 6.0

 Total Count 24 29 22 32 107

Expected Count 24.0 29.0 22.0 32.0 107.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square .257a 3 .968

Likelihood Ratio .262 3 .967

N of Valid Cases 107   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.23. 

 
 
Enamel extensions UP4 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

EE_UP4 0 Count 20 28 19 33 100

Expected Count 19.8 28.7 18.8 32.7 100.0

1 Count 0 1 0 0 1

Expected Count .2 .3 .2 .3 1.0

 Total Count 20 29 19 33 101

Expected Count 20.0 29.0 19.0 33.0 101.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.508a 3 .474

Likelihood Ratio 2.521 3 .472

N of Valid Cases 101   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .19. 
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Enamel extensions UP3 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

EE_UP3 0 Count 23 29 17 33 102

Expected Count 22.6 29.4 17.7 32.4 102.0

1 Count 0 1 1 0 2

Expected Count .4 .6 .3 .6 2.0

 Total Count 23 30 18 33 104

Expected Count 23.0 30.0 18.0 33.0 104.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.674a 3 .445

Likelihood Ratio 3.273 3 .351

N of Valid Cases 104   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .35. 

 
 
2-rooted UP4 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

2root_UP4 0 Count 24 29 19 27 99

Expected Count 22.3 31.2 17.8 27.6 99.0

1 Count 1 6 1 4 12

Expected Count 2.7 3.8 2.2 3.4 12.0

 Total Count 25 35 20 31 111

Expected Count 25.0 35.0 20.0 31.0 111.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 3.499a 3 .321

Likelihood Ratio 3.795 3 .285

N of Valid Cases 111   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 2.16. 
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2-rooted UP3 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

2root_UP3 0 Count 13 12 14 17 56

Expected Count 13.4 15.8 10.5 16.3 56.0

1 Count 15 21 8 17 61

Expected Count 14.6 17.2 11.5 17.7 61.0

 Total Count 28 33 22 34 117

Expected Count 28.0 33.0 22.0 34.0 117.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 4.027a 3 .259

Likelihood Ratio 4.072 3 .254

N of Valid Cases 117   
a. 0 cells (.0%) have expected count less than 5. The minimum 
expected count is 10.53. 

 
 
3-rooted UM2 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

3root_UM2 0 Count 3 7 0 10 20

Expected Count 4.4 6.5 2.7 6.3 20.0

1 Count 18 24 13 20 75

Expected Count 16.6 24.5 10.3 23.7 75.0

 Total Count 21 31 13 30 95

Expected Count 21.0 31.0 13.0 30.0 95.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 6.811a 3 .078

Likelihood Ratio 9.250 3 .026

N of Valid Cases 95   
a. 2 cells (25.0%) have expected count less than 5. The minimum 
expected count is 2.74. 
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3-rooted UM1 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

3root_UM1 0 Count 3 4 0 2 9

Expected Count 2.2 2.9 1.5 2.5 9.0

1 Count 27 35 20 32 114

Expected Count 27.8 36.1 18.5 31.5 114.0

 Total Count 30 39 20 34 123

Expected Count 30.0 39.0 20.0 34.0 123.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.497a 3 .476

Likelihood Ratio 3.883 3 .274

N of Valid Cases 123   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.46. 

 
 
Peg-shaped UM3 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

Peg_UM3 0 Count 12 14 14 28 68

Expected Count 11.3 15.1 14.2 27.4 68.0

1 Count 0 2 1 1 4

Expected Count .7 .9 .8 1.6 4.0

 Total Count 12 16 15 29 72

Expected Count 12.0 16.0 15.0 29.0 72.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 2.457a 3 .483

Likelihood Ratio 2.792 3 .425

N of Valid Cases 72   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .67. 
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Congenital absence UM3 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

CA_UM3 0 Count 18 28 17 34 97

Expected Count 18.8 28.3 17.0 33.0 97.0

1 Count 2 2 1 1 6

Expected Count 1.2 1.7 1.0 2.0 6.0

 Total Count 20 30 18 35 103

Expected Count 20.0 30.0 18.0 35.0 103.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 1.239a 3 .744

Likelihood Ratio 1.254 3 .740

N of Valid Cases 103   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is 1.05. 

 
 
Congenital absence UP4 * GROUP 

Crosstab 

   GROUP  

   South West East North Total 

CA_UP4 0 Count 29 42 24 40 135

Expected Count 28.8 41.7 24.8 39.7 135.0

1 Count 0 0 1 0 1

Expected Count .2 .3 .2 .3 1.0

 Total Count 29 42 25 40 136

Expected Count 29.0 42.0 25.0 40.0 136.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 4.473a 3 .215

Likelihood Ratio 3.421 3 .331

N of Valid Cases 136   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .18. 
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Congenital absence UI2 * GROUP 
Crosstab 

   GROUP  

   South West East North Total 

CA_UI2 0 Count 32 45 26 43 146

Expected Count 32.8 44.7 25.8 42.7 146.0

1 Count 1 0 0 0 1

Expected Count .2 .3 .2 .3 1.0

 Total Count 33 45 26 43 147

Expected Count 33.0 45.0 26.0 43.0 147.0

 
Chi-Square Tests 

 
Value df 

Asymp. Sig. 
(2-sided) 

Pearson Chi-Square 3.478a 3 .324

Likelihood Ratio 3.012 3 .390

N of Valid Cases 147   
a. 4 cells (50.0%) have expected count less than 5. The minimum 
expected count is .18. 
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Appendix IV: Kellis 2 males and females by group with Chi-square 
analysis 
 
 
Shovelling LI1 * Sex * GROUP 

Crosstab 

GROUP 

Sex  
F M Total 

South Shovelling_LI1 0 Count 8 8 16

Expected Count 8.0 8.0 16.0

 Total Count 8 8 16

Expected Count 8.0 8.0 16.0

West Shovelling_LI1 0 Count 10 10 20

Expected Count 10.0 10.0 20.0

 Total Count 10 10 20

Expected Count 10.0 10.0 20.0

East Shovelling_LI1 0 Count 9 4 13

Expected Count 9.0 4.0 13.0

 Total Count 9 4 13

Expected Count 9.0 4.0 13.0

North Shovelling_LI1 0 Count 10 9 19

Expected Count 10.5 8.5 19.0

1 Count 1 0 1

Expected Count .6 .5 1.0

 Total Count 11 9 20

Expected Count 11.0 9.0 20.0

 
Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 16    

West Pearson Chi-Square .a    
N of Valid Cases 20    

East Pearson Chi-Square .a    
N of Valid Cases 13    

North Pearson Chi-Square .861b 1 .353   
Continuity Correctionc .000 1 1.000   
Likelihood Ratio 1.239 1 .266   
Fisher's Exact Test   1.000 .550

N of Valid Cases 20    
a. No statistics are computed because Shovelling_LI1 is a constant. 

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .45. 

c. Computed only for a 2x2 table 
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Shovelling LI2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Shovelling_LI2 0 Count 9 9 18

Expected Count 9.0 9.0 18.0

 Total Count 9 9 18

Expected Count 9.0 9.0 18.0

West Shovelling_LI2 0 Count 11 11 22

Expected Count 11.0 11.0 22.0

 Total Count 11 11 22

Expected Count 11.0 11.0 22.0

East Shovelling_LI2 0 Count 10 4 14

Expected Count 10.0 4.0 14.0

 Total Count 10 4 14

Expected Count 10.0 4.0 14.0

North Shovelling_LI2 0 Count 11 9 20

Expected Count 11.4 8.6 20.0

1 Count 1 0 1

Expected Count .6 .4 1.0

 Total Count 12 9 21

Expected Count 12.0 9.0 21.0

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 18    

West Pearson Chi-Square .a    
N of Valid Cases 22    

East Pearson Chi-Square .a    
N of Valid Cases 14    

North Pearson Chi-Square .788b 1 .375   
Continuity Correctionc .000 1 1.000   
Likelihood Ratio 1.157 1 .282   
Fisher's Exact Test   1.000 .571

N of Valid Cases 21    
a. No statistics are computed because Shovelling_LI2 is a constant. 

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .43. 

c. Computed only for a 2x2 table 
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Double Shovelling LI1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South dbl shovel_LI1 0 Count 9 11 20

Expected Count 9.0 11.0 20.0

 Total Count 9 11 20

Expected Count 9.0 11.0 20.0

West dbl shovel_LI1 0 Count 11 10 21

Expected Count 11.0 10.0 21.0

 Total Count 11 10 21

Expected Count 11.0 10.0 21.0

East dbl shovel_LI1 0 Count 9 4 13

Expected Count 9.0 4.0 13.0

 Total Count 9 4 13

Expected Count 9.0 4.0 13.0

North dbl shovel_LI1 0 Count 11 9 20

Expected Count 11.0 9.0 20.0

 Total Count 11 9 20

Expected Count 11.0 9.0 20.0

 
 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 20

West Pearson Chi-Square .a

N of Valid Cases 21

East Pearson Chi-Square .a

N of Valid Cases 13

North Pearson Chi-Square .a

N of Valid Cases 20

a. No statistics are computed because dbl 
shovel_LI1 is a constant. 
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Double Shovelling LI2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South dbl shovel_LI2 0 Count 9 9 18

Expected Count 9.0 9.0 18.0

 Total Count 9 9 18

Expected Count 9.0 9.0 18.0

West dbl shovel_LI2 0 Count 13 12 25

Expected Count 13.0 12.0 25.0

 Total Count 13 12 25

Expected Count 13.0 12.0 25.0

East dbl shovel_LI2 0 Count 10 4 14

Expected Count 10.0 4.0 14.0

 Total Count 10 4 14

Expected Count 10.0 4.0 14.0

North dbl shovel_LI2 0 Count 12 8 20

Expected Count 12.0 8.0 20.0

 Total Count 12 8 20

Expected Count 12.0 8.0 20.0

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 18

West Pearson Chi-Square .a

N of Valid Cases 25

East Pearson Chi-Square .a

N of Valid Cases 14

North Pearson Chi-Square .a

N of Valid Cases 20

a. No statistics are computed because dbl 
shovel_LI2 is a constant. 
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Distal accessory ridge LC * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South DAR_LC 0 Count 5 6 11 

Expected Count 5.5 5.5 11.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 6 6 12 

Expected Count 6.0 6.0 12.0 

West DAR_LC 0 Count 3 4 7 

Expected Count 3.0 4.0 7.0 

 Total Count 3 4 7 

Expected Count 3.0 4.0 7.0 

East DAR_LC 0 Count 4 1 5 

Expected Count 4.0 1.0 5.0 

 Total Count 4 1 5 

Expected Count 4.0 1.0 5.0 

North DAR_LC 0 Count 3 3 6 

Expected Count 3.0 3.0 6.0 

 Total Count 3 3 6 

Expected Count 3.0 3.0 6.0 

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.091a 1 .296   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.477 1 .224   
Fisher's Exact Test   1.000 .500

N of Valid Cases 12    
West Pearson Chi-Square .c    

N of Valid Cases 7    
East Pearson Chi-Square .c    

N of Valid Cases 5    
North Pearson Chi-Square .c    

N of Valid Cases 6    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .50. 

b. Computed only for a 2x2 table 

c. No statistics are computed because DAR_LC is a constant. 
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Lingual cusp LP3 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South PMLC_LP3 0 Count 6 7 13 

Expected Count 5.7 7.3 13.0 

1 Count 1 2 3 

Expected Count 1.3 1.7 3.0 

 Total Count 7 9 16 

Expected Count 7.0 9.0 16.0 

West PMLC_LP3 0 Count 4 7 11 

Expected Count 3.9 7.1 11.0 

1 Count 1 2 3 

Expected Count 1.1 1.9 3.0 

 Total Count 5 9 14 

Expected Count 5.0 9.0 14.0 

East PMLC_LP3 0 Count 4 3 7 

Expected Count 4.0 3.0 7.0 

 Total Count 4 3 7 

Expected Count 4.0 3.0 7.0 

North PMLC_LP3 0 Count 1 3 4 

Expected Count 1.1 2.9 4.0 

1 Count 1 2 3 

Expected Count .9 2.1 3.0 

 Total Count 2 5 7 

Expected Count 2.0 5.0 7.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .163a 1 .687   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .166 1 .684   
Fisher's Exact Test   1.000 .600

N of Valid Cases 16    
West Pearson Chi-Square .009c 1 .923   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .009 1 .922   
Fisher's Exact Test   1.000 .725

N of Valid Cases 14    
East Pearson Chi-Square .d    

N of Valid Cases 7    
North Pearson Chi-Square .058e 1 .809   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .058 1 .810   
Fisher's Exact Test   1.000 .714

N of Valid Cases 7    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.31. 

b. Computed only for a 2x2 table 

c. 3 cells (75.0%) have expected count less than 5. The minimum expected count is 1.07. 

d. No statistics are computed because PMLC_LP3 is a constant. 

e. 4 cells (100.0%) have expected count less than 5. The minimum expected count is .86. 
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Lingual cusp LP4 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South PMLC_LP4 0 Count 2 4 6 

Expected Count 3.0 3.0 6.0 

1 Count 4 2 6 

Expected Count 3.0 3.0 6.0 

 Total Count 6 6 12 

Expected Count 6.0 6.0 12.0 

West PMLC_LP4 0 Count 0 1 1 

Expected Count .3 .7 1.0 

1 Count 3 5 8 

Expected Count 2.7 5.3 8.0 

 Total Count 3 6 9 

Expected Count 3.0 6.0 9.0 

East PMLC_LP4 1 Count 2 1 3 

Expected Count 2.0 1.0 3.0 

 Total Count 2 1 3 

Expected Count 2.0 1.0 3.0 

North PMLC_LP4 1 Count 1 1 2 

Expected Count 1.0 1.0 2.0 

 Total Count 1 1 2 

Expected Count 1.0 1.0 2.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.333a 1 .248   
Continuity Correctionb .333 1 .564   
Likelihood Ratio 1.359 1 .244   
Fisher's Exact Test   .567 .284

N of Valid Cases 12    
West Pearson Chi-Square .563c 1 .453   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .872 1 .350   
Fisher's Exact Test   1.000 .667

N of Valid Cases 9    
East Pearson Chi-Square .d    

N of Valid Cases 3    
North Pearson Chi-Square .d    

N of Valid Cases 2    
a. 4 cells (100.0%) have expected count less than 5. The minimum expected count is 3.00. 

b. Computed only for a 2x2 table 

c. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .33. 

d. No statistics are computed because PMLC_LP4 is a constant. 
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Anterior fovea LM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South AF_LM1 0 Count 1 2 3 

Expected Count 1.5 1.5 3.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 2 2 4 

Expected Count 2.0 2.0 4.0 

West AF_LM1 0 Count 1  1 

Expected Count 1.0  1.0 

 Total Count 1  1 

Expected Count 1.0  1.0 

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.333a 1 .248   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.726 1 .189   
Fisher's Exact Test   1.000 .500

N of Valid Cases 4    
West Pearson Chi-Square .c    

N of Valid Cases 1    
a. 4 cells (100.0%) have expected count less than 5. The minimum expected count is .50. 

b. Computed only for a 2x2 table 

c. No statistics are computed because AF_LM1 and Sex are constants. 
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Y-groove LM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Ygroove_LM1 0 Count 3 3 6

Expected Count 2.7 3.3 6.0

1 Count 6 8 14

Expected Count 6.3 7.7 14.0

 Total Count 9 11 20

Expected Count 9.0 11.0 20.0

West Ygroove_LM1 0 Count 0 1 1

Expected Count .4 .6 1.0

1 Count 6 7 13

Expected Count 5.6 7.4 13.0

 Total Count 6 8 14

Expected Count 6.0 8.0 14.0

East Ygroove_LM1 1 Count 6 2 8

Expected Count 6.0 2.0 8.0

 Total Count 6 2 8

Expected Count 6.0 2.0 8.0

North Ygroove_LM1 1 Count 7 11 18

Expected Count 7.0 11.0 18.0

 Total Count 7 11 18

Expected Count 7.0 11.0 18.0
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .087a 1 .769   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .086 1 .769   
Fisher's Exact Test   1.000 .574

N of Valid Cases 20    
West Pearson Chi-Square .808c 1 .369   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.177 1 .278   
Fisher's Exact Test   1.000 .571

N of Valid Cases 14    
East Pearson Chi-Square .d    

N of Valid Cases 8    
North Pearson Chi-Square .d    

N of Valid Cases 18    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.70. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .43. 

d. No statistics are computed because Ygroove_LM1 is a constant. 

 
 
  



355 
 

Y-groove LM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Ygroove_LM2 0 Count 8 11 19

Expected Count 7.8 11.2 19.0

1 Count 1 2 3

Expected Count 1.2 1.8 3.0

 Total Count 9 13 22

Expected Count 9.0 13.0 22.0

West Ygroove_LM2 0 Count 7 7 14

Expected Count 6.6 7.4 14.0

1 Count 1 2 3

Expected Count 1.4 1.6 3.0

 Total Count 8 9 17

Expected Count 8.0 9.0 17.0

East Ygroove_LM2 0 Count 10 5 15

Expected Count 10.0 5.0 15.0

 Total Count 10 5 15

Expected Count 10.0 5.0 15.0

North Ygroove_LM2 0 Count 11 9 20

Expected Count 10.0 10.0 20.0

1 Count 0 2 2

Expected Count 1.0 1.0 2.0

 Total Count 11 11 22

Expected Count 11.0 11.0 22.0
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .082a 1 .774   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .084 1 .772   
Fisher's Exact Test   1.000 .642

N of Valid Cases 22    
West Pearson Chi-Square .275c 1 .600   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .281 1 .596   
Fisher's Exact Test   1.000 .547

N of Valid Cases 17    
East Pearson Chi-Square .d    

N of Valid Cases 15    
North Pearson Chi-Square 2.200e 1 .138   

Continuity Correctionb .550 1 .458   
Likelihood Ratio 2.973 1 .085   
Fisher's Exact Test   .476 .238

N of Valid Cases 22    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.23. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.41. 

d. No statistics are computed because Ygroove_LM2 is a constant. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.00. 
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4 cusped LM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South 4 cusps_LM1 0 Count 8 10 18

Expected Count 8.5 9.5 18.0

1 Count 1 0 1

Expected Count .5 .5 1.0

 Total Count 9 10 19

Expected Count 9.0 10.0 19.0

West 4 cusps_LM1 0 Count 5 8 13

Expected Count 4.9 8.1 13.0

1 Count 1 2 3

Expected Count 1.1 1.9 3.0

 Total Count 6 10 16

Expected Count 6.0 10.0 16.0

East 4 cusps_LM1 0 Count 7 2 9

Expected Count 7.0 2.0 9.0

 Total Count 7 2 9

Expected Count 7.0 2.0 9.0

North 4 cusps_LM1 0 Count 8 10 18

Expected Count 8.1 9.9 18.0

1 Count 1 1 2

Expected Count .9 1.1 2.0

 Total Count 9 11 20

Expected Count 9.0 11.0 20.0
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.173a 1 .279   
Continuity Correctionb .003 1 .957   
Likelihood Ratio 1.556 1 .212   
Fisher's Exact Test   .474 .474

N of Valid Cases 19    
West Pearson Chi-Square .027c 1 .869   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .028 1 .868   
Fisher's Exact Test   1.000 .696

N of Valid Cases 16    
East Pearson Chi-Square .d    

N of Valid Cases 9    
North Pearson Chi-Square .022e 1 .881   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .022 1 .881   
Fisher's Exact Test   1.000 .711

N of Valid Cases 20    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .47. 

b. Computed only for a 2x2 table 

c. 3 cells (75.0%) have expected count less than 5. The minimum expected count is 1.13. 

d. No statistics are computed because 4 cusps_LM1 is a constant. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .90. 
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5 or more cusps LM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South 5 or more cusps_LM2 0 Count 9 10 19

Expected Count 7.8 11.2 19.0

1 Count 0 3 3

Expected Count 1.2 1.8 3.0

 Total Count 9 13 22

Expected Count 9.0 13.0 22.0

West 5 or more cusps_LM2 0 Count 6 8 14

Expected Count 6.1 7.9 14.0

1 Count 1 1 2

Expected Count .9 1.1 2.0

 Total Count 7 9 16

Expected Count 7.0 9.0 16.0

East 5 or more cusps_LM2 0 Count 10 4 14

Expected Count 9.1 4.9 14.0

1 Count 1 2 3

Expected Count 1.9 1.1 3.0

 Total Count 11 6 17

Expected Count 11.0 6.0 17.0

North 5 or more cusps_LM2 0 Count 11 8 19

Expected Count 9.9 9.1 19.0

1 Count 1 3 4

Expected Count 2.1 1.9 4.0

 Total Count 12 11 23

Expected Count 12.0 11.0 23.0
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 2.405a 1 .121   
Continuity Correctionb .845 1 .358   
Likelihood Ratio 3.480 1 .062   
Fisher's Exact Test   .240 .186

N of Valid Cases 22    
West Pearson Chi-Square .036c 1 .849   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .036 1 .849   
Fisher's Exact Test   1.000 .700

N of Valid Cases 16    
East Pearson Chi-Square 1.570d 1 .210   

Continuity Correctionb .345 1 .557   
Likelihood Ratio 1.504 1 .220   
Fisher's Exact Test   .515 .272

N of Valid Cases 17    
North Pearson Chi-Square 1.433e 1 .231   

Continuity Correctionb .418 1 .518   
Likelihood Ratio 1.479 1 .224   
Fisher's Exact Test   .317 .261

N of Valid Cases 23    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.23. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .88. 

d. 3 cells (75.0%) have expected count less than 5. The minimum expected count is 1.06. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.91. 
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Deflecting wrinkle LM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South DW_LM1 1 Count  2 2 

Expected Count  2.0 2.0 

 Total Count  2 2 

Expected Count  2.0 2.0 

North DW_LM1 1 Count 1  1 

Expected Count 1.0  1.0 

 Total Count 1  1 

Expected Count 1.0  1.0 

 
Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 2

North Pearson Chi-Square .a

N of Valid Cases 1

a. No statistics are computed because 
DW_LM1 and Sex are constants. 
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Protostylid LM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Protostylid_LM1 0 Count 4 9 13

Expected Count 5.1 7.9 13.0

1 Count 3 2 5

Expected Count 1.9 3.1 5.0

 Total Count 7 11 18

Expected Count 7.0 11.0 18.0

West Protostylid_LM1 0 Count 3 2 5

Expected Count 2.5 2.5 5.0

1 Count 3 4 7

Expected Count 3.5 3.5 7.0

 Total Count 6 6 12

Expected Count 6.0 6.0 12.0

East Protostylid_LM1 0 Count 2 0 2

Expected Count 1.5 .5 2.0

1 Count 1 1 2

Expected Count 1.5 .5 2.0

 Total Count 3 1 4

Expected Count 3.0 1.0 4.0

North Protostylid_LM1 0 Count 2 5 7

Expected Count 2.3 4.7 7.0

1 Count 2 3 5

Expected Count 1.7 3.3 5.0

 Total Count 4 8 12

Expected Count 4.0 8.0 12.0
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.298a 1 .255   
Continuity Correctionb .360 1 .549   
Likelihood Ratio 1.279 1 .258   
Fisher's Exact Test   .326 .272

N of Valid Cases 18    
West Pearson Chi-Square .343c 1 .558   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .345 1 .557   
Fisher's Exact Test   1.000 .500

N of Valid Cases 12    
East Pearson Chi-Square 1.333d 1 .248   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.726 1 .189   
Fisher's Exact Test   1.000 .500

N of Valid Cases 4    
North Pearson Chi-Square .171e 1 .679   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .170 1 .680   
Fisher's Exact Test   1.000 .576

N of Valid Cases 12    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.94. 

b. Computed only for a 2x2 table 

c. 4 cells (100.0%) have expected count less than 5. The minimum expected count is 2.50. 

d. 4 cells (100.0%) have expected count less than 5. The minimum expected count is .50. 

e. 4 cells (100.0%) have expected count less than 5. The minimum expected count is 1.67. 
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Protostylid LM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Protostylid_LM2 0 Count 6 7 13

Expected Count 5.5 7.5 13.0

1 Count 2 4 6

Expected Count 2.5 3.5 6.0

 Total Count 8 11 19

Expected Count 8.0 11.0 19.0

West Protostylid_LM2 0 Count 3 6 9

Expected Count 3.2 5.8 9.0

1 Count 2 3 5

Expected Count 1.8 3.2 5.0

 Total Count 5 9 14

Expected Count 5.0 9.0 14.0

East Protostylid_LM2 0 Count 4 4 8

Expected Count 4.9 3.1 8.0

1 Count 4 1 5

Expected Count 3.1 1.9 5.0

 Total Count 8 5 13

Expected Count 8.0 5.0 13.0

North Protostylid_LM2 0 Count 6 4 10

Expected Count 5.9 4.1 10.0

1 Count 4 3 7

Expected Count 4.1 2.9 7.0

 Total Count 10 7 17

Expected Count 10.0 7.0 17.0
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .277a 1 .599   
Continuity Correctionb .001 1 .979   
Likelihood Ratio .281 1 .596   
Fisher's Exact Test   1.000 .494

N of Valid Cases 19    
West Pearson Chi-Square .062c 1 .803   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .062 1 .804   
Fisher's Exact Test   1.000 .622

N of Valid Cases 14    
East Pearson Chi-Square 1.170d 1 .279   

Continuity Correctionb .246 1 .620   
Likelihood Ratio 1.229 1 .268   
Fisher's Exact Test   .565 .315

N of Valid Cases 13    
North Pearson Chi-Square .014e 1 .906   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .014 1 .906   
Fisher's Exact Test   1.000 .646

N of Valid Cases 17    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.53. 

b. Computed only for a 2x2 table 

c. 3 cells (75.0%) have expected count less than 5. The minimum expected count is 1.79. 

d. 4 cells (100.0%) have expected count less than 5. The minimum expected count is 1.92. 

e. 3 cells (75.0%) have expected count less than 5. The minimum expected count is 2.88. 
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Cusp 6 LM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South C6_LM1 0 Count 8 8 16 

Expected Count 6.9 9.1 16.0 

1 Count 1 4 5 

Expected Count 2.1 2.9 5.0 

 Total Count 9 12 21 

Expected Count 9.0 12.0 21.0 

West C6_LM1 0 Count 6 8 14 

Expected Count 6.5 7.5 14.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 7 8 15 

Expected Count 7.0 8.0 15.0 

East C6_LM1 0 Count 5 2 7 

Expected Count 5.4 1.6 7.0 

1 Count 2 0 2 

Expected Count 1.6 .4 2.0 

 Total Count 7 2 9 

Expected Count 7.0 2.0 9.0 

North C6_LM1 0 Count 8 10 18 

Expected Count 7.6 10.4 18.0 

1 Count 0 1 1 

Expected Count .4 .6 1.0 

 Total Count 8 11 19 

Expected Count 8.0 11.0 19.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.400a 1 .237   
Continuity Correctionb .443 1 .506   
Likelihood Ratio 1.497 1 .221   
Fisher's Exact Test   .338 .258

N of Valid Cases 21    
West Pearson Chi-Square 1.224c 1 .268   

Continuity Correctionb .005 1 .945   
Likelihood Ratio 1.606 1 .205   
Fisher's Exact Test   .467 .467

N of Valid Cases 15    
East Pearson Chi-Square .735d 1 .391   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.159 1 .282   
Fisher's Exact Test   1.000 .583

N of Valid Cases 9    
North Pearson Chi-Square .768e 1 .381   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.133 1 .287   
Fisher's Exact Test   1.000 .579

N of Valid Cases 19    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.14. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .47. 

d. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .44. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .42. 
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Cusp 6 LM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South C6_LM2 0 Count 9 12 21 

Expected Count 8.6 12.4 21.0 

1 Count 0 1 1 

Expected Count .4 .6 1.0 

 Total Count 9 13 22 

Expected Count 9.0 13.0 22.0 

West C6_LM2 0 Count 7 8 15 

Expected Count 6.6 8.4 15.0 

1 Count 0 1 1 

Expected Count .4 .6 1.0 

 Total Count 7 9 16 

Expected Count 7.0 9.0 16.0 

East C6_LM2 0 Count 11 6 17 

Expected Count 11.0 6.0 17.0 

 Total Count 11 6 17 

Expected Count 11.0 6.0 17.0 

North C6_LM2 0 Count 12 11 23 

Expected Count 12.0 11.0 23.0 

 Total Count 12 11 23 

Expected Count 12.0 11.0 23.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .725a 1 .394   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.085 1 .298   
Fisher's Exact Test   1.000 .591

N of Valid Cases 22    
West Pearson Chi-Square .830c 1 .362   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.202 1 .273   
Fisher's Exact Test   1.000 .563

N of Valid Cases 16    
East Pearson Chi-Square .d    

N of Valid Cases 17    
North Pearson Chi-Square .d    

N of Valid Cases 23    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .41. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .44. 

d. No statistics are computed because C6_LM2 is a constant. 

 
 
  



370 
 

Cusp 7 LM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South C7_LM1 0 Count 8 10 18 

Expected Count 7.7 10.3 18.0 

1 Count 1 2 3 

Expected Count 1.3 1.7 3.0 

 Total Count 9 12 21 

Expected Count 9.0 12.0 21.0 

West C7_LM1 0 Count 8 8 16 

Expected Count 7.5 8.5 16.0 

1 Count 0 1 1 

Expected Count .5 .5 1.0 

 Total Count 8 9 17 

Expected Count 8.0 9.0 17.0 

East C7_LM1 0 Count 7 2 9 

Expected Count 7.0 2.0 9.0 

 Total Count 7 2 9 

Expected Count 7.0 2.0 9.0 

North C7_LM1 0 Count 8 10 18 

Expected Count 7.6 10.4 18.0 

1 Count 0 1 1 

Expected Count .4 .6 1.0 

 Total Count 8 11 19 

Expected Count 8.0 11.0 19.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .130a 1 .719   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .132 1 .716   
Fisher's Exact Test   1.000 .612

N of Valid Cases 21    
West Pearson Chi-Square .944c 1 .331   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.327 1 .249   
Fisher's Exact Test   1.000 .529

N of Valid Cases 17    
East Pearson Chi-Square .d    

N of Valid Cases 9    
North Pearson Chi-Square .768e 1 .381   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.133 1 .287   
Fisher's Exact Test   1.000 .579

N of Valid Cases 19    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.29. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .47. 

d. No statistics are computed because C7_LM1 is a constant. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .42. 
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Cusp 7 LM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South C7_LM2 0 Count 9 12 21 

Expected Count 8.6 12.4 21.0 

1 Count 0 1 1 

Expected Count .4 .6 1.0 

 Total Count 9 13 22 

Expected Count 9.0 13.0 22.0 

West C7_LM2 0 Count 8 9 17 

Expected Count 8.0 9.0 17.0 

 Total Count 8 9 17 

Expected Count 8.0 9.0 17.0 

East C7_LM2 0 Count 11 6 17 

Expected Count 11.0 6.0 17.0 

 Total Count 11 6 17 

Expected Count 11.0 6.0 17.0 

North C7_LM2 0 Count 12 11 23 

Expected Count 12.0 11.0 23.0 

 Total Count 12 11 23 

Expected Count 12.0 11.0 23.0 

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .725a 1 .394   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.085 1 .298   
Fisher's Exact Test   1.000 .591

N of Valid Cases 22    
West Pearson Chi-Square .c    

N of Valid Cases 17    
East Pearson Chi-Square .c    

N of Valid Cases 17    
North Pearson Chi-Square .c    

N of Valid Cases 23    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .41. 

b. Computed only for a 2x2 table 

c. No statistics are computed because C7_LM2 is a constant. 
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2-rooted LC * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South 2roots_LC 0 Count 15 12 27 

Expected Count 14.5 12.5 27.0 

1 Count 0 1 1 

Expected Count .5 .5 1.0 

 Total Count 15 13 28 

Expected Count 15.0 13.0 28.0 

West 2roots_LC 0 Count 18 14 32 

Expected Count 17.5 14.5 32.0 

1 Count 0 1 1 

Expected Count .5 .5 1.0 

 Total Count 18 15 33 

Expected Count 18.0 15.0 33.0 

East 2roots_LC 0 Count 16 8 24 

Expected Count 16.3 7.7 24.0 

1 Count 1 0 1 

Expected Count .7 .3 1.0 

 Total Count 17 8 25 

Expected Count 17.0 8.0 25.0 

North 2roots_LC 0 Count 16 10 26 

Expected Count 16.3 9.8 26.0 

1 Count 4 2 6 

Expected Count 3.8 2.3 6.0 

 Total Count 20 12 32 

Expected Count 20.0 12.0 32.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.197a 1 .274   
Continuity Correctionb .005 1 .942   
Likelihood Ratio 1.577 1 .209   
Fisher's Exact Test   .464 .464

N of Valid Cases 28    
West Pearson Chi-Square 1.237c 1 .266   

Continuity Correctionb .009 1 .926   
Likelihood Ratio 1.615 1 .204   
Fisher's Exact Test   .455 .455

N of Valid Cases 33    
East Pearson Chi-Square .490d 1 .484   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .791 1 .374   
Fisher's Exact Test   1.000 .680

N of Valid Cases 25    
North Pearson Chi-Square .055e 1 .815   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .055 1 .814   
Fisher's Exact Test   1.000 .601

N of Valid Cases 32    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .46. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .45. 

d. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .32. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.25. 
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Tome’s root LP3 * Sex * GROUP 
 
 

Crosstab 

GROUP 

Sex  
F M Total 

South TR_LP3 0 Count 14 12 26 

Expected Count 14.4 11.6 26.0 

1 Count 1 0 1 

Expected Count .6 .4 1.0 

 Total Count 15 12 27 

Expected Count 15.0 12.0 27.0 

West TR_LP3 0 Count 13 10 23 

Expected Count 11.5 11.5 23.0 

1 Count 2 5 7 

Expected Count 3.5 3.5 7.0 

 Total Count 15 15 30 

Expected Count 15.0 15.0 30.0 

East TR_LP3 0 Count 13 8 21 

Expected Count 14.0 7.0 21.0 

1 Count 3 0 3 

Expected Count 2.0 1.0 3.0 

 Total Count 16 8 24 

Expected Count 16.0 8.0 24.0 

North TR_LP3 0 Count 16 9 25 

Expected Count 14.2 10.8 25.0 

1 Count 1 4 5 

Expected Count 2.8 2.2 5.0 

 Total Count 17 13 30 

Expected Count 17.0 13.0 30.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .831a 1 .362   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.206 1 .272   
Fisher's Exact Test   1.000 .556

N of Valid Cases 27    
West Pearson Chi-Square 1.677c 1 .195   

Continuity Correctionb .745 1 .388   
Likelihood Ratio 1.721 1 .190   
Fisher's Exact Test   .390 .195

N of Valid Cases 30    
East Pearson Chi-Square 1.714d 1 .190   

Continuity Correctionb .429 1 .513   
Likelihood Ratio 2.642 1 .104   
Fisher's Exact Test   .526 .277

N of Valid Cases 24    
North Pearson Chi-Square 3.285e 1 .070   

Continuity Correctionb 1.738 1 .187   
Likelihood Ratio 3.379 1 .066   
Fisher's Exact Test   .138 .094

N of Valid Cases 30    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .44. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 3.50. 

d. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.00. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.17. 
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3-rooted LM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South 3root_LM1 0 Count 10 10 20 

Expected Count 10.0 10.0 20.0 

 Total Count 10 10 20 

Expected Count 10.0 10.0 20.0 

West 3root_LM1 0 Count 7 11 18 

Expected Count 7.6 10.4 18.0 

1 Count 1 0 1 

Expected Count .4 .6 1.0 

 Total Count 8 11 19 

Expected Count 8.0 11.0 19.0 

East 3root_LM1 0 Count 6 3 9 

Expected Count 6.0 3.0 9.0 

 Total Count 6 3 9 

Expected Count 6.0 3.0 9.0 

North 3root_LM1 0 Count 10 12 22 

Expected Count 10.0 12.0 22.0 

 Total Count 10 12 22 

Expected Count 10.0 12.0 22.0 

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 20    

West Pearson Chi-Square 1.451b 1 .228   
Continuity Correctionc .027 1 .870   
Likelihood Ratio 1.807 1 .179   
Fisher's Exact Test   .421 .421

N of Valid Cases 19    
East Pearson Chi-Square .a    

N of Valid Cases 9    
North Pearson Chi-Square .a    

N of Valid Cases 22    
a. No statistics are computed because 3root_LM1 is a constant. 

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .42. 

c. Computed only for a 2x2 table 

 
 
  



378 
 

2-rooted LM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South 2root_LM2 0 Count 1 1 2 

Expected Count 1.0 1.0 2.0 

1 Count 7 7 14 

Expected Count 7.0 7.0 14.0 

 Total Count 8 8 16 

Expected Count 8.0 8.0 16.0 

West 2root_LM2 1 Count 6 11 17 

Expected Count 6.0 11.0 17.0 

 Total Count 6 11 17 

Expected Count 6.0 11.0 17.0 

East 2root_LM2 1 Count 6 4 10 

Expected Count 6.0 4.0 10.0 

 Total Count 6 4 10 

Expected Count 6.0 4.0 10.0 

North 2root_LM2 0 Count 2 1 3 

Expected Count 1.4 1.6 3.0 

1 Count 8 11 19 

Expected Count 8.6 10.4 19.0 

 Total Count 10 12 22 

Expected Count 10.0 12.0 22.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .000a 1 1.000   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .000 1 1.000   
Fisher's Exact Test   1.000 .767

N of Valid Cases 16    
West Pearson Chi-Square .c    

N of Valid Cases 17    
East Pearson Chi-Square .c    

N of Valid Cases 10    
North Pearson Chi-Square .630d 1 .427   

Continuity Correctionb .029 1 .865   
Likelihood Ratio .633 1 .426   
Fisher's Exact Test   .571 .429

N of Valid Cases 22    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.00. 

b. Computed only for a 2x2 table 

c. No statistics are computed because 2root_LM2 is a constant. 

d. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.36. 
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Congenital absence LI1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South CA_LI1 0 Count 16 14 30 

Expected Count 16.0 14.0 30.0 

 Total Count 16 14 30 

Expected Count 16.0 14.0 30.0 

West CA_LI1 0 Count 18 17 35 

Expected Count 18.0 17.0 35.0 

 Total Count 18 17 35 

Expected Count 18.0 17.0 35.0 

East CA_LI1 0 Count 17 8 25 

Expected Count 17.0 8.0 25.0 

 Total Count 17 8 25 

Expected Count 17.0 8.0 25.0 

North CA_LI1 0 Count 19 13 32 

Expected Count 19.0 13.0 32.0 

 Total Count 19 13 32 

Expected Count 19.0 13.0 32.0 

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 30

West Pearson Chi-Square .a

N of Valid Cases 35

East Pearson Chi-Square .a

N of Valid Cases 25

North Pearson Chi-Square .a

N of Valid Cases 32

a. No statistics are computed because CA_LI1 
is a constant. 
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Congenital absence LI2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South CA_LI2 0 Count 16 13 29 

Expected Count 16.0 13.0 29.0 

 Total Count 16 13 29 

Expected Count 16.0 13.0 29.0 

West CA_LI2 0 Count 18 17 35 

Expected Count 18.0 17.0 35.0 

 Total Count 18 17 35 

Expected Count 18.0 17.0 35.0 

East CA_LI2 0 Count 17 8 25 

Expected Count 17.0 8.0 25.0 

 Total Count 17 8 25 

Expected Count 17.0 8.0 25.0 

North CA_LI2 0 Count 19 13 32 

Expected Count 19.0 13.0 32.0 

 Total Count 19 13 32 

Expected Count 19.0 13.0 32.0 

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 29

West Pearson Chi-Square .a

N of Valid Cases 35

East Pearson Chi-Square .a

N of Valid Cases 25

North Pearson Chi-Square .a

N of Valid Cases 32

a. No statistics are computed because CA_LI2 
is a constant. 
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Congenital absence LC * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South CA_LC 0 Count 16 13 29 

Expected Count 16.0 13.0 29.0 

 Total Count 16 13 29 

Expected Count 16.0 13.0 29.0 

West CA_LC 0 Count 19 17 36 

Expected Count 19.0 17.0 36.0 

 Total Count 19 17 36 

Expected Count 19.0 17.0 36.0 

East CA_LC 0 Count 17 8 25 

Expected Count 17.0 8.0 25.0 

 Total Count 17 8 25 

Expected Count 17.0 8.0 25.0 

North CA_LC 0 Count 19 13 32 

Expected Count 19.0 13.0 32.0 

 Total Count 19 13 32 

Expected Count 19.0 13.0 32.0 

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 29

West Pearson Chi-Square .a

N of Valid Cases 36

East Pearson Chi-Square .a

N of Valid Cases 25

North Pearson Chi-Square .a

N of Valid Cases 32

a. No statistics are computed because CA_LC is 
a constant. 
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Congenital absence LP3 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South CA_LP3 0 Count 16 13 29 

Expected Count 16.0 13.0 29.0 

 Total Count 16 13 29 

Expected Count 16.0 13.0 29.0 

West CA_LP3 0 Count 19 17 36 

Expected Count 19.0 17.0 36.0 

 Total Count 19 17 36 

Expected Count 19.0 17.0 36.0 

East CA_LP3 0 Count 17 8 25 

Expected Count 17.0 8.0 25.0 

 Total Count 17 8 25 

Expected Count 17.0 8.0 25.0 

North CA_LP3 0 Count 18 13 31 

Expected Count 18.0 13.0 31.0 

 Total Count 18 13 31 

Expected Count 18.0 13.0 31.0 

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 29

West Pearson Chi-Square .a

N of Valid Cases 36

East Pearson Chi-Square .a

N of Valid Cases 25

North Pearson Chi-Square .a

N of Valid Cases 31

a. No statistics are computed because CA_LP1 
is a constant. 
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Congenital absence LP4 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South CA_LP4 0 Count 12 13 25 

Expected Count 12.0 13.0 25.0 

 Total Count 12 13 25 

Expected Count 12.0 13.0 25.0 

West CA_LP4 0 Count 16 15 31 

Expected Count 15.0 16.0 31.0 

1 Count 0 2 2 

Expected Count 1.0 1.0 2.0 

 Total Count 16 17 33 

Expected Count 16.0 17.0 33.0 

East CA_LP4 0 Count 16 8 24 

Expected Count 16.0 8.0 24.0 

 Total Count 16 8 24 

Expected Count 16.0 8.0 24.0 

North CA_LP4 0 Count 17 13 30 

Expected Count 17.0 13.0 30.0 

 Total Count 17 13 30 

Expected Count 17.0 13.0 30.0 

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 25    

West Pearson Chi-Square 2.004b 1 .157   
Continuity Correctionc .470 1 .493   
Likelihood Ratio 2.775 1 .096   
Fisher's Exact Test   .485 .258

N of Valid Cases 33    
East Pearson Chi-Square .a    

N of Valid Cases 24    
North Pearson Chi-Square .a    

N of Valid Cases 30    
a. No statistics are computed because CA_LP2 is a constant. 

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .97. 

c. Computed only for a 2x2 table 
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Congenital absence LM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South CA_LM1 0 Count 13 14 27 

Expected Count 13.0 14.0 27.0 

 Total Count 13 14 27 

Expected Count 13.0 14.0 27.0 

West CA_LM1 0 Count 15 15 30 

Expected Count 15.0 15.0 30.0 

 Total Count 15 15 30 

Expected Count 15.0 15.0 30.0 

East CA_LM1 0 Count 14 7 21 

Expected Count 14.0 7.0 21.0 

 Total Count 14 7 21 

Expected Count 14.0 7.0 21.0 

North CA_LM1 0 Count 14 13 27 

Expected Count 14.0 13.0 27.0 

 Total Count 14 13 27 

Expected Count 14.0 13.0 27.0 

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 27

West Pearson Chi-Square .a

N of Valid Cases 30

East Pearson Chi-Square .a

N of Valid Cases 21

North Pearson Chi-Square .a

N of Valid Cases 27

a. No statistics are computed because CA_LM1 
is a constant. 
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Congenital absence LM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South CA_LM2 0 Count 13 13 26 

Expected Count 13.0 13.0 26.0 

 Total Count 13 13 26 

Expected Count 13.0 13.0 26.0 

West CA_LM2 0 Count 14 15 29 

Expected Count 14.0 15.0 29.0 

 Total Count 14 15 29 

Expected Count 14.0 15.0 29.0 

East CA_LM2 0 Count 13 7 20 

Expected Count 13.0 7.0 20.0 

 Total Count 13 7 20 

Expected Count 13.0 7.0 20.0 

North CA_LM2 0 Count 13 13 26 

Expected Count 13.0 13.0 26.0 

 Total Count 13 13 26 

Expected Count 13.0 13.0 26.0 

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 26

West Pearson Chi-Square .a

N of Valid Cases 29

East Pearson Chi-Square .a

N of Valid Cases 20

North Pearson Chi-Square .a

N of Valid Cases 26

a. No statistics are computed because CA_LM2 
is a constant. 
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Congenital absence LM3 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South CA_LM3 0 Count 9 11 20 

Expected Count 9.5 10.5 20.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 10 11 21 

Expected Count 10.0 11.0 21.0 

West CA_LM3 0 Count 8 15 23 

Expected Count 8.0 15.0 23.0 

 Total Count 8 15 23 

Expected Count 8.0 15.0 23.0 

East CA_LM3 0 Count 13 8 21 

Expected Count 13.4 7.6 21.0 

1 Count 1 0 1 

Expected Count .6 .4 1.0 

 Total Count 14 8 22 

Expected Count 14.0 8.0 22.0 

North CA_LM3 0 Count 10 11 21 

Expected Count 10.5 10.5 21.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 11 11 22 

Expected Count 11.0 11.0 22.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.155a 1 .283   
Continuity Correctionb .002 1 .961   
Likelihood Ratio 1.539 1 .215   
Fisher's Exact Test   .476 .476

N of Valid Cases 21    
West Pearson Chi-Square .c    

N of Valid Cases 23    
East Pearson Chi-Square .599d 1 .439   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .931 1 .335   
Fisher's Exact Test   1.000 .636

N of Valid Cases 22    
North Pearson Chi-Square 1.048e 1 .306   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.434 1 .231   
Fisher's Exact Test   1.000 .500

N of Valid Cases 22    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .48. 

b. Computed only for a 2x2 table 

c. No statistics are computed because CA_LM3 is a constant. 

d. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .36. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .50. 
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Winging UI1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Winging_UI1 0 Count 8 8 16

Expected Count 8.0 8.0 16.0

 Total Count 8 8 16

Expected Count 8.0 8.0 16.0

West Winging_UI1 0 Count 15 8 23

Expected Count 15.0 8.0 23.0

 Total Count 15 8 23

Expected Count 15.0 8.0 23.0

East Winging_UI1 0 Count 13 7 20

Expected Count 13.3 6.7 20.0

1 Count 1 0 1

Expected Count .7 .3 1.0

 Total Count 14 7 21

Expected Count 14.0 7.0 21.0

North Winging_UI1 0 Count 17 13 30

Expected Count 17.4 12.6 30.0

1 Count 1 0 1

Expected Count .6 .4 1.0

 Total Count 18 13 31

Expected Count 18.0 13.0 31.0
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 16    

West Pearson Chi-Square .a    
N of Valid Cases 23    

East Pearson Chi-Square .525b 1 .469   
Continuity Correctionc .000 1 1.000   
Likelihood Ratio .836 1 .361   
Fisher's Exact Test   1.000 .667

N of Valid Cases 21    
North Pearson Chi-Square .746d 1 .388   

Continuity Correctionc .000 1 1.000   
Likelihood Ratio 1.111 1 .292   
Fisher's Exact Test   1.000 .581

N of Valid Cases 31    
a. No statistics are computed because Winging_UI1 is a constant. 

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .33. 

c. Computed only for a 2x2 table 

d. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .42. 
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Shovelling UC * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Shovel_UC 0 Count 5 6 11 

Expected Count 5.9 5.1 11.0 

1 Count 2 0 2 

Expected Count 1.1 .9 2.0 

 Total Count 7 6 13 

Expected Count 7.0 6.0 13.0 

West Shovel_UC 0 Count 14 9 23 

Expected Count 12.8 10.2 23.0 

1 Count 1 3 4 

Expected Count 2.2 1.8 4.0 

 Total Count 15 12 27 

Expected Count 15.0 12.0 27.0 

East Shovel_UC 0 Count 6 3 9 

Expected Count 6.0 3.0 9.0 

 Total Count 6 3 9 

Expected Count 6.0 3.0 9.0 

North Shovel_UC 0 Count 5 7 12 

Expected Count 4.6 7.4 12.0 

1 Count 0 1 1 

Expected Count .4 .6 1.0 

 Total Count 5 8 13 

Expected Count 5.0 8.0 13.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 2.026a 1 .155   
Continuity Correctionb .426 1 .514   
Likelihood Ratio 2.787 1 .095   
Fisher's Exact Test   .462 .269

N of Valid Cases 13    
West Pearson Chi-Square 1.776c 1 .183   

Continuity Correctionb .620 1 .431   
Likelihood Ratio 1.808 1 .179   
Fisher's Exact Test   .294 .216

N of Valid Cases 27    
East Pearson Chi-Square .d    

N of Valid Cases 9    
North Pearson Chi-Square .677e 1 .411   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.023 1 .312   
Fisher's Exact Test   1.000 .615

N of Valid Cases 13    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .92. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.78. 

d. No statistics are computed because Shovel_UC is a constant. 

e. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .38. 
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Shovelling UI2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Shovel_UI2 0 Count 2 6 8 

Expected Count 4.0 4.0 8.0 

1 Count 6 2 8 

Expected Count 4.0 4.0 8.0 

 Total Count 8 8 16 

Expected Count 8.0 8.0 16.0 

West Shovel_UI2 0 Count 8 6 14 

Expected Count 7.0 7.0 14.0 

1 Count 1 3 4 

Expected Count 2.0 2.0 4.0 

 Total Count 9 9 18 

Expected Count 9.0 9.0 18.0 

East Shovel_UI2 0 Count 4 2 6 

Expected Count 3.8 2.2 6.0 

1 Count 3 2 5 

Expected Count 3.2 1.8 5.0 

 Total Count 7 4 11 

Expected Count 7.0 4.0 11.0 

North Shovel_UI2 0 Count 7 5 12 

Expected Count 6.6 5.4 12.0 

1 Count 4 4 8 

Expected Count 4.4 3.6 8.0 

 Total Count 11 9 20 

Expected Count 11.0 9.0 20.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 4.000a 1 .046   
Continuity Correctionb 2.250 1 .134   
Likelihood Ratio 4.186 1 .041   
Fisher's Exact Test   .132 .066

N of Valid Cases 16    
West Pearson Chi-Square 1.286c 1 .257   

Continuity Correctionb .321 1 .571   
Likelihood Ratio 1.333 1 .248   
Fisher's Exact Test   .576 .288

N of Valid Cases 18    
East Pearson Chi-Square .052d 1 .819   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .052 1 .819   
Fisher's Exact Test   1.000 .652

N of Valid Cases 11    
North Pearson Chi-Square .135e 1 .714   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .135 1 .714   
Fisher's Exact Test   1.000 .535

N of Valid Cases 20    
a. 4 cells (100.0%) have expected count less than 5. The minimum expected count is 4.00. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.00. 

d. 4 cells (100.0%) have expected count less than 5. The minimum expected count is 1.82. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 3.60. 
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Shovelling UI1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Shovel_UI1 0 Count 4 7 11 

Expected Count 5.8 5.2 11.0 

1 Count 5 1 6 

Expected Count 3.2 2.8 6.0 

 Total Count 9 8 17 

Expected Count 9.0 8.0 17.0 

West Shovel_UI1 0 Count 10 6 16 

Expected Count 10.7 5.3 16.0 

1 Count 2 0 2 

Expected Count 1.3 .7 2.0 

 Total Count 12 6 18 

Expected Count 12.0 6.0 18.0 

East Shovel_UI1 0 Count 5 4 9 

Expected Count 4.5 4.5 9.0 

1 Count 0 1 1 

Expected Count .5 .5 1.0 

 Total Count 5 5 10 

Expected Count 5.0 5.0 10.0 

North Shovel_UI1 0 Count 8 4 12 

Expected Count 6.7 5.3 12.0 

1 Count 2 4 6 

Expected Count 3.3 2.7 6.0 

 Total Count 10 8 18 

Expected Count 10.0 8.0 18.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 3.438a 1 .064   
Continuity Correctionb 1.811 1 .178   
Likelihood Ratio 3.681 1 .055   
Fisher's Exact Test   .131 .088

N of Valid Cases 17    
West Pearson Chi-Square 1.125c 1 .289   

Continuity Correctionb .070 1 .791   
Likelihood Ratio 1.744 1 .187   
Fisher's Exact Test   .529 .431

N of Valid Cases 18    
East Pearson Chi-Square 1.111d 1 .292   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.498 1 .221   
Fisher's Exact Test   1.000 .500

N of Valid Cases 10    
North Pearson Chi-Square 1.800e 1 .180   

Continuity Correctionb .703 1 .402   
Likelihood Ratio 1.816 1 .178   
Fisher's Exact Test   .321 .201

N of Valid Cases 18    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.82. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .67. 

d. 4 cells (100.0%) have expected count less than 5. The minimum expected count is .50. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.67. 
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Labial convexity UI2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Lab.Co._UI2 0 Count 0 1 1 

Expected Count .5 .5 1.0 

1 Count 9 8 17 

Expected Count 8.5 8.5 17.0 

 Total Count 9 9 18 

Expected Count 9.0 9.0 18.0 

West Lab.Co._UI2 1 Count 11 9 20 

Expected Count 11.0 9.0 20.0 

 Total Count 11 9 20 

Expected Count 11.0 9.0 20.0 

East Lab.Co._UI2 1 Count 11 4 15 

Expected Count 11.0 4.0 15.0 

 Total Count 11 4 15 

Expected Count 11.0 4.0 15.0 

North Lab.Co._UI2 1 Count 12 11 23 

Expected Count 12.0 11.0 23.0 

 Total Count 12 11 23 

Expected Count 12.0 11.0 23.0 

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.059a 1 .303   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.445 1 .229   
Fisher's Exact Test   1.000 .500

N of Valid Cases 18    
West Pearson Chi-Square .c    

N of Valid Cases 20    
East Pearson Chi-Square .c    

N of Valid Cases 15    
North Pearson Chi-Square .c    

N of Valid Cases 23    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .50. 

b. Computed only for a 2x2 table 

c. No statistics are computed because Lab.Co._UI2 is a constant. 
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Labial convexity UI1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Lab.Co._UI1 0 Count 4 1 5 

Expected Count 2.5 2.5 5.0 

1 Count 5 8 13 

Expected Count 6.5 6.5 13.0 

 Total Count 9 9 18 

Expected Count 9.0 9.0 18.0 

West Lab.Co._UI1 1 Count 12 7 19 

Expected Count 12.0 7.0 19.0 

 Total Count 12 7 19 

Expected Count 12.0 7.0 19.0 

East Lab.Co._UI1 0 Count 0 1 1 

Expected Count .7 .3 1.0 

1 Count 11 4 15 

Expected Count 10.3 4.7 15.0 

 Total Count 11 5 16 

Expected Count 11.0 5.0 16.0 

North Lab.Co._UI1 0 Count 1 2 3 

Expected Count 1.8 1.2 3.0 

1 Count 12 7 19 

Expected Count 11.2 7.8 19.0 

 Total Count 13 9 22 

Expected Count 13.0 9.0 22.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 2.492a 1 .114   
Continuity Correctionb 1.108 1 .293   
Likelihood Ratio 2.626 1 .105   
Fisher's Exact Test   .294 .147

N of Valid Cases 18    
West Pearson Chi-Square .c    

N of Valid Cases 19    
East Pearson Chi-Square 2.347d 1 .126   

Continuity Correctionb .175 1 .676   
Likelihood Ratio 2.477 1 .115   
Fisher's Exact Test   .313 .313

N of Valid Cases 16    
North Pearson Chi-Square .953e 1 .329   

Continuity Correctionb .119 1 .730   
Likelihood Ratio .940 1 .332   
Fisher's Exact Test   .544 .358

N of Valid Cases 22    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.50. 

b. Computed only for a 2x2 table 

c. No statistics are computed because Lab.Co._UI1 is a constant. 

d. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .31. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.23. 
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Double Shovelling UC * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Dbl.Shov._UC 0 Count 11 8 19

Expected Count 10.5 8.5 19.0

1 Count 0 1 1

Expected Count .6 .5 1.0

 Total Count 11 9 20

Expected Count 11.0 9.0 20.0

West Dbl.Shov._UC 0 Count 17 11 28

Expected Count 16.4 11.6 28.0

1 Count 0 1 1

Expected Count .6 .4 1.0

 Total Count 17 12 29

Expected Count 17.0 12.0 29.0

East Dbl.Shov._UC 0 Count 8 3 11

Expected Count 8.0 3.0 11.0

 Total Count 8 3 11

Expected Count 8.0 3.0 11.0

North Dbl.Shov._UC 0 Count 10 12 22

Expected Count 10.0 12.0 22.0

 Total Count 10 12 22

Expected Count 10.0 12.0 22.0
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.287a 1 .257   
Continuity Correctionb .011 1 .918   
Likelihood Ratio 1.662 1 .197   
Fisher's Exact Test   .450 .450

N of Valid Cases 20    
West Pearson Chi-Square 1.467c 1 .226   

Continuity Correctionb .032 1 .859   
Likelihood Ratio 1.816 1 .178   
Fisher's Exact Test   .414 .414

N of Valid Cases 29    
East Pearson Chi-Square .d    

N of Valid Cases 11    
North Pearson Chi-Square .d    

N of Valid Cases 22    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .45. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .41. 

d. No statistics are computed because Dbl.Shov._UC is a constant. 
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Double Shovelling UI2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Dbl.Shov._UI2 0 Count 9 8 17

Expected Count 8.5 8.5 17.0

1 Count 0 1 1

Expected Count .5 .5 1.0

 Total Count 9 9 18

Expected Count 9.0 9.0 18.0

West Dbl.Shov._UI2 0 Count 11 9 20

Expected Count 11.0 9.0 20.0

 Total Count 11 9 20

Expected Count 11.0 9.0 20.0

East Dbl.Shov._UI2 0 Count 10 5 15

Expected Count 10.0 5.0 15.0

 Total Count 10 5 15

Expected Count 10.0 5.0 15.0

North Dbl.Shov._UI2 0 Count 12 11 23

Expected Count 12.0 11.0 23.0

 Total Count 12 11 23

Expected Count 12.0 11.0 23.0

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.059a 1 .303   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.445 1 .229   
Fisher's Exact Test   1.000 .500

N of Valid Cases 18    
West Pearson Chi-Square .c    

N of Valid Cases 20    
East Pearson Chi-Square .c    

N of Valid Cases 15    
North Pearson Chi-Square .c    

N of Valid Cases 23    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .50. 

b. Computed only for a 2x2 table 

c. No statistics are computed because Dbl.Shov._UI2 is a constant. 
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Double Shovelling UI1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Dbl.Shov._UI1 0 Count 9 9 18

Expected Count 9.0 9.0 18.0

 Total Count 9 9 18

Expected Count 9.0 9.0 18.0

West Dbl.Shov._UI1 0 Count 13 7 20

Expected Count 13.0 7.0 20.0

 Total Count 13 7 20

Expected Count 13.0 7.0 20.0

East Dbl.Shov._UI1 0 Count 9 5 14

Expected Count 9.0 5.0 14.0

 Total Count 9 5 14

Expected Count 9.0 5.0 14.0

North Dbl.Shov._UI1 0 Count 13 8 21

Expected Count 13.0 8.0 21.0

 Total Count 13 8 21

Expected Count 13.0 8.0 21.0

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 18

West Pearson Chi-Square .a

N of Valid Cases 20

East Pearson Chi-Square .a

N of Valid Cases 14

North Pearson Chi-Square .a

N of Valid Cases 21

a. No statistics are computed because 
Dbl.Shov._UI1 is a constant. 
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Interruption groove UI2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South IG_UI2 0 Count 4 8 12 

Expected Count 6.0 6.0 12.0 

1 Count 5 1 6 

Expected Count 3.0 3.0 6.0 

 Total Count 9 9 18 

Expected Count 9.0 9.0 18.0 

West IG_UI2 0 Count 9 8 17 

Expected Count 9.7 7.3 17.0 

1 Count 3 1 4 

Expected Count 2.3 1.7 4.0 

 Total Count 12 9 21 

Expected Count 12.0 9.0 21.0 

East IG_UI2 0 Count 12 5 17 

Expected Count 12.5 4.5 17.0 

1 Count 2 0 2 

Expected Count 1.5 .5 2.0 

 Total Count 14 5 19 

Expected Count 14.0 5.0 19.0 

North IG_UI2 0 Count 14 10 24 

Expected Count 13.3 10.7 24.0 

1 Count 1 2 3 

Expected Count 1.7 1.3 3.0 

 Total Count 15 12 27 

Expected Count 15.0 12.0 27.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 4.000a 1 .046   
Continuity Correctionb 2.250 1 .134   
Likelihood Ratio 4.270 1 .039   
Fisher's Exact Test   .131 .066

N of Valid Cases 18    
West Pearson Chi-Square .643c 1 .422   

Continuity Correctionb .058 1 .810   
Likelihood Ratio .675 1 .411   
Fisher's Exact Test   .603 .414

N of Valid Cases 21    
East Pearson Chi-Square .798d 1 .372   

Continuity Correctionb .002 1 .964   
Likelihood Ratio 1.304 1 .254   
Fisher's Exact Test   1.000 .532

N of Valid Cases 19    
North Pearson Chi-Square .675e 1 .411   

Continuity Correctionb .042 1 .837   
Likelihood Ratio .676 1 .411   
Fisher's Exact Test   .569 .414

N of Valid Cases 27    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 3.00. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.71. 

d. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .53. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.33. 
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Interruption groove UI1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South IG_UI1 0 Count 8 7 15 

Expected Count 7.5 7.5 15.0 

1 Count 1 2 3 

Expected Count 1.5 1.5 3.0 

 Total Count 9 9 18 

Expected Count 9.0 9.0 18.0 

West IG_UI1 0 Count 15 8 23 

Expected Count 15.0 8.0 23.0 

 Total Count 15 8 23 

Expected Count 15.0 8.0 23.0 

East IG_UI1 0 Count 14 7 21 

Expected Count 14.0 7.0 21.0 

 Total Count 14 7 21 

Expected Count 14.0 7.0 21.0 

North IG_UI1 0 Count 16 12 28 

Expected Count 16.0 12.0 28.0 

 Total Count 16 12 28 

Expected Count 16.0 12.0 28.0 

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .400a 1 .527   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .407 1 .524   
Fisher's Exact Test   1.000 .500

N of Valid Cases 18    
West Pearson Chi-Square .c    

N of Valid Cases 23    
East Pearson Chi-Square .c    

N of Valid Cases 21    
North Pearson Chi-Square .c    

N of Valid Cases 28    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.50. 

b. Computed only for a 2x2 table 

c. No statistics are computed because IG_UI1 is a constant. 
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Tuberculum dentale UC * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South TD_UC 0 Count 4 7 11 

Expected Count 4.7 6.3 11.0 

1 Count 2 1 3 

Expected Count 1.3 1.7 3.0 

 Total Count 6 8 14 

Expected Count 6.0 8.0 14.0 

West TD_UC 0 Count 12 7 19 

Expected Count 11.0 8.0 19.0 

1 Count 3 4 7 

Expected Count 4.0 3.0 7.0 

 Total Count 15 11 26 

Expected Count 15.0 11.0 26.0 

East TD_UC 0 Count 7 3 10 

Expected Count 7.3 2.7 10.0 

1 Count 1 0 1 

Expected Count .7 .3 1.0 

 Total Count 8 3 11 

Expected Count 8.0 3.0 11.0 

North TD_UC 0 Count 4 2 6 

Expected Count 2.6 3.4 6.0 

1 Count 3 7 10 

Expected Count 4.4 5.6 10.0 

 Total Count 7 9 16 

Expected Count 7.0 9.0 16.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .884a 1 .347   
Continuity Correctionb .080 1 .778   
Likelihood Ratio .882 1 .348   
Fisher's Exact Test   .538 .385

N of Valid Cases 14    
West Pearson Chi-Square .864c 1 .353   

Continuity Correctionb .232 1 .630   
Likelihood Ratio .857 1 .355   
Fisher's Exact Test   .407 .313

N of Valid Cases 26    
East Pearson Chi-Square .413d 1 .521   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .674 1 .412   
Fisher's Exact Test   1.000 .727

N of Valid Cases 11    
North Pearson Chi-Square 2.049e 1 .152   

Continuity Correctionb .830 1 .362   
Likelihood Ratio 2.075 1 .150   
Fisher's Exact Test   .302 .182

N of Valid Cases 16    
a. 3 cells (75.0%) have expected count less than 5. The minimum expected count is 1.29. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.96. 

d. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .27. 

e. 3 cells (75.0%) have expected count less than 5. The minimum expected count is 2.63. 
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Tuberculum dentale UI2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South TD_UI2 0 Count 6 7 13 

Expected Count 6.5 6.5 13.0 

1 Count 2 1 3 

Expected Count 1.5 1.5 3.0 

 Total Count 8 8 16 

Expected Count 8.0 8.0 16.0 

West TD_UI2 0 Count 10 8 18 

Expected Count 10.4 7.6 18.0 

1 Count 1 0 1 

Expected Count .6 .4 1.0 

 Total Count 11 8 19 

Expected Count 11.0 8.0 19.0 

East TD_UI2 0 Count 9 4 13 

Expected Count 9.0 4.0 13.0 

 Total Count 9 4 13 

Expected Count 9.0 4.0 13.0 

North TD_UI2 0 Count 9 8 17 

Expected Count 8.9 8.1 17.0 

1 Count 1 1 2 

Expected Count 1.1 .9 2.0 

 Total Count 10 9 19 

Expected Count 10.0 9.0 19.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .410a 1 .522   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .417 1 .519   
Fisher's Exact Test   1.000 .500

N of Valid Cases 16    
West Pearson Chi-Square .768c 1 .381   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.133 1 .287   
Fisher's Exact Test   1.000 .579

N of Valid Cases 19    
East Pearson Chi-Square .d    

N of Valid Cases 13    
North Pearson Chi-Square .006e 1 .937   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .006 1 .937   
Fisher's Exact Test   1.000 .737

N of Valid Cases 19    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.50. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .42. 

d. No statistics are computed because TD_UI2 is a constant. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .95. 
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Tuberculum dentale UI1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South TD_UI1 0 Count 4 6 10 

Expected Count 5.0 5.0 10.0 

1 Count 3 1 4 

Expected Count 2.0 2.0 4.0 

 Total Count 7 7 14 

Expected Count 7.0 7.0 14.0 

West TD_UI1 0 Count 10 4 14 

Expected Count 9.1 4.9 14.0 

1 Count 1 2 3 

Expected Count 1.9 1.1 3.0 

 Total Count 11 6 17 

Expected Count 11.0 6.0 17.0 

East TD_UI1 0 Count 7 5 12 

Expected Count 6.9 5.1 12.0 

1 Count 1 1 2 

Expected Count 1.1 .9 2.0 

 Total Count 8 6 14 

Expected Count 8.0 6.0 14.0 

North TD_UI1 0 Count 6 6 12 

Expected Count 6.6 5.4 12.0 

1 Count 5 3 8 

Expected Count 4.4 3.6 8.0 

 Total Count 11 9 20 

Expected Count 11.0 9.0 20.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.400a 1 .237   
Continuity Correctionb .350 1 .554   
Likelihood Ratio 1.449 1 .229   
Fisher's Exact Test   .559 .280

N of Valid Cases 14    
West Pearson Chi-Square 1.570c 1 .210   

Continuity Correctionb .345 1 .557   
Likelihood Ratio 1.504 1 .220   
Fisher's Exact Test   .515 .272

N of Valid Cases 17    
East Pearson Chi-Square .049d 1 .825   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .048 1 .826   
Fisher's Exact Test   1.000 .692

N of Valid Cases 14    
North Pearson Chi-Square .303e 1 .582   

Continuity Correctionb .008 1 .927   
Likelihood Ratio .305 1 .581   
Fisher's Exact Test   .670 .465

N of Valid Cases 20    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.00. 

b. Computed only for a 2x2 table 

c. 3 cells (75.0%) have expected count less than 5. The minimum expected count is 1.06. 

d. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .86. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 3.60. 
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Mesial ridge UC * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South M.Ridge_UC 0 Count 9 5 14 

Expected Count 9.0 5.0 14.0 

 Total Count 9 5 14 

Expected Count 9.0 5.0 14.0 

West M.Ridge_UC 0 Count 8 7 15 

Expected Count 8.4 6.6 15.0 

1 Count 1 0 1 

Expected Count .6 .4 1.0 

 Total Count 9 7 16 

Expected Count 9.0 7.0 16.0 

East M.Ridge_UC 0 Count 5 3 8 

Expected Count 5.0 3.0 8.0 

 Total Count 5 3 8 

Expected Count 5.0 3.0 8.0 

North M.Ridge_UC 0 Count 8 9 17 

Expected Count 8.0 9.0 17.0 

 Total Count 8 9 17 

Expected Count 8.0 9.0 17.0 

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 14    

West Pearson Chi-Square .830b 1 .362   
Continuity Correctionc .000 1 1.000   
Likelihood Ratio 1.202 1 .273   
Fisher's Exact Test   1.000 .563

N of Valid Cases 16    
East Pearson Chi-Square .a    

N of Valid Cases 8    
North Pearson Chi-Square .a    

N of Valid Cases 17    
a. No statistics are computed because M.Ridge_UC is a constant. 

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .44. 

c. Computed only for a 2x2 table 
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Distal accessory ridge UC * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South DAR_UC 0 Count 3 2 5 

Expected Count 3.1 1.9 5.0 

1 Count 2 1 3 

Expected Count 1.9 1.1 3.0 

 Total Count 5 3 8 

Expected Count 5.0 3.0 8.0 

West DAR_UC 0 Count 3 1 4 

Expected Count 2.7 1.3 4.0 

1 Count 1 1 2 

Expected Count 1.3 .7 2.0 

 Total Count 4 2 6 

Expected Count 4.0 2.0 6.0 

East DAR_UC 0 Count 1 1 2 

Expected Count 1.0 1.0 2.0 

 Total Count 1 1 2 

Expected Count 1.0 1.0 2.0 

North DAR_UC 0 Count 1 1 2 

Expected Count .7 1.3 2.0 

1 Count 0 1 1 

Expected Count .3 .7 1.0 

 Total Count 1 2 3 

Expected Count 1.0 2.0 3.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .036a 1 .850   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .036 1 .850   
Fisher's Exact Test   1.000 .714

N of Valid Cases 8    
West Pearson Chi-Square .375c 1 .540   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .367 1 .545   
Fisher's Exact Test   1.000 .600

N of Valid Cases 6    
East Pearson Chi-Square .d    

N of Valid Cases 2    
North Pearson Chi-Square .750e 1 .386   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.046 1 .306   
Fisher's Exact Test   1.000 .667

N of Valid Cases 3    
a. 4 cells (100.0%) have expected count less than 5. The minimum expected count is 1.13. 

b. Computed only for a 2x2 table 

c. 4 cells (100.0%) have expected count less than 5. The minimum expected count is .67. 

d. No statistics are computed because DAR_UC is a constant. 

e. 4 cells (100.0%) have expected count less than 5. The minimum expected count is .33. 

 
 
  



416 
 

Metacone UM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Metacone_UM2 1 Count 7 11 18

Expected Count 7.0 11.0 18.0

 Total Count 7 11 18

Expected Count 7.0 11.0 18.0

West Metacone_UM2 1 Count 15 9 24

Expected Count 15.0 9.0 24.0

 Total Count 15 9 24

Expected Count 15.0 9.0 24.0

East Metacone_UM2 0 Count 1 0 1

Expected Count .7 .3 1.0

1 Count 9 5 14

Expected Count 9.3 4.7 14.0

 Total Count 10 5 15

Expected Count 10.0 5.0 15.0

North Metacone_UM2 0 Count 1 0 1

Expected Count .6 .5 1.0

1 Count 10 9 19

Expected Count 10.5 8.5 19.0

 Total Count 11 9 20

Expected Count 11.0 9.0 20.0
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 18    

West Pearson Chi-Square .a    
N of Valid Cases 24    

East Pearson Chi-Square .536b 1 .464   
Continuity Correctionc .000 1 1.000   
Likelihood Ratio .846 1 .358   
Fisher's Exact Test   1.000 .667

N of Valid Cases 15    
North Pearson Chi-Square .861d 1 .353   

Continuity Correctionc .000 1 1.000   
Likelihood Ratio 1.239 1 .266   
Fisher's Exact Test   1.000 .550

N of Valid Cases 20    
a. No statistics are computed because Metacone_UM2 is a constant. 

b. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .33. 

c. Computed only for a 2x2 table 

d. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .45. 
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Metacone UM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Metacone_UM1 1 Count 9 10 19

Expected Count 9.0 10.0 19.0

 Total Count 9 10 19

Expected Count 9.0 10.0 19.0

West Metacone_UM1 1 Count 11 11 22

Expected Count 11.0 11.0 22.0

 Total Count 11 11 22

Expected Count 11.0 11.0 22.0

East Metacone_UM1 1 Count 14 6 20

Expected Count 14.0 6.0 20.0

 Total Count 14 6 20

Expected Count 14.0 6.0 20.0

North Metacone_UM1 1 Count 18 7 25

Expected Count 18.0 7.0 25.0

 Total Count 18 7 25

Expected Count 18.0 7.0 25.0

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 19

West Pearson Chi-Square .a

N of Valid Cases 22

East Pearson Chi-Square .a

N of Valid Cases 20

North Pearson Chi-Square .a

N of Valid Cases 25

a. No statistics are computed because 
Metacone_UM1 is a constant. 
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Hypocone UM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Hypocone_UM2 0 Count 2 4 6

Expected Count 2.3 3.7 6.0

1 Count 5 7 12

Expected Count 4.7 7.3 12.0

 Total Count 7 11 18

Expected Count 7.0 11.0 18.0

West Hypocone_UM2 0 Count 4 3 7

Expected Count 4.8 2.2 7.0

1 Count 11 4 15

Expected Count 10.2 4.8 15.0

 Total Count 15 7 22

Expected Count 15.0 7.0 22.0

East Hypocone_UM2 0 Count 2 0 2

Expected Count 1.4 .6 2.0

1 Count 8 4 12

Expected Count 8.6 3.4 12.0

 Total Count 10 4 14

Expected Count 10.0 4.0 14.0

North Hypocone_UM2 0 Count 2 1 3

Expected Count 1.7 1.3 3.0

1 Count 9 7 16

Expected Count 9.3 6.7 16.0

 Total Count 11 8 19

Expected Count 11.0 8.0 19.0
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .117a 1 .732   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .118 1 .731   
Fisher's Exact Test   1.000 .572

N of Valid Cases 18    
West Pearson Chi-Square .577c 1 .448   

Continuity Correctionb .072 1 .789   
Likelihood Ratio .563 1 .453   
Fisher's Exact Test   .630 .387

N of Valid Cases 22    
East Pearson Chi-Square .933d 1 .334   

Continuity Correctionb .015 1 .904   
Likelihood Ratio 1.475 1 .225   
Fisher's Exact Test   1.000 .495

N of Valid Cases 14    
North Pearson Chi-Square .112e 1 .737   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .115 1 .735   
Fisher's Exact Test   1.000 .624

N of Valid Cases 19    
a. 3 cells (75.0%) have expected count less than 5. The minimum expected count is 2.33. 

b. Computed only for a 2x2 table 

c. 3 cells (75.0%) have expected count less than 5. The minimum expected count is 2.23. 

d. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .57. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.26. 
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Hypocone UM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Hypocone_UM1 1 Count 9 10 19

Expected Count 9.0 10.0 19.0

 Total Count 9 10 19

Expected Count 9.0 10.0 19.0

West Hypocone_UM1 1 Count 11 11 22

Expected Count 11.0 11.0 22.0

 Total Count 11 11 22

Expected Count 11.0 11.0 22.0

East Hypocone_UM1 1 Count 13 6 19

Expected Count 13.0 6.0 19.0

 Total Count 13 6 19

Expected Count 13.0 6.0 19.0

North Hypocone_UM1 1 Count 18 6 24

Expected Count 18.0 6.0 24.0

 Total Count 18 6 24

Expected Count 18.0 6.0 24.0

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 19

West Pearson Chi-Square .a

N of Valid Cases 22

East Pearson Chi-Square .a

N of Valid Cases 19

North Pearson Chi-Square .a

N of Valid Cases 24

a. No statistics are computed because 
Hypocone_UM1 is a constant. 
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Cusp 5 (metaconule) UM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Cusp5_UM2 0 Count 6 9 15 

Expected Count 5.8 9.2 15.0 

1 Count 1 2 3 

Expected Count 1.2 1.8 3.0 

 Total Count 7 11 18 

Expected Count 7.0 11.0 18.0 

West Cusp5_UM2 0 Count 11 8 19 

Expected Count 11.4 7.6 19.0 

1 Count 1 0 1 

Expected Count .6 .4 1.0 

 Total Count 12 8 20 

Expected Count 12.0 8.0 20.0 

East Cusp5_UM2 0 Count 8 4 12 

Expected Count 8.0 4.0 12.0 

 Total Count 8 4 12 

Expected Count 8.0 4.0 12.0 

North Cusp5_UM2 0 Count 8 6 14 

Expected Count 8.8 5.3 14.0 

1 Count 2 0 2 

Expected Count 1.3 .8 2.0 

 Total Count 10 6 16 

Expected Count 10.0 6.0 16.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .047a 1 .829   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .048 1 .827   
Fisher's Exact Test   1.000 .674

N of Valid Cases 18    
West Pearson Chi-Square .702c 1 .402   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.057 1 .304   
Fisher's Exact Test   1.000 .600

N of Valid Cases 20    
East Pearson Chi-Square .d    

N of Valid Cases 12    
North Pearson Chi-Square 1.371e 1 .242   

Continuity Correctionb .152 1 .696   
Likelihood Ratio 2.049 1 .152   
Fisher's Exact Test   .500 .375

N of Valid Cases 16    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.17. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .40. 

d. No statistics are computed because Cusp5_UM2 is a constant. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .75. 
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Cusp 5 (metaconule) UM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Cusp5_UM1 0 Count 4 10 14 

Expected Count 4.7 9.3 14.0 

1 Count 1 0 1 

Expected Count .3 .7 1.0 

 Total Count 5 10 15 

Expected Count 5.0 10.0 15.0 

West Cusp5_UM1 0 Count 7 7 14 

Expected Count 7.0 7.0 14.0 

1 Count 1 1 2 

Expected Count 1.0 1.0 2.0 

 Total Count 8 8 16 

Expected Count 8.0 8.0 16.0 

East Cusp5_UM1 0 Count 8 4 12 

Expected Count 8.0 4.0 12.0 

1 Count 2 1 3 

Expected Count 2.0 1.0 3.0 

 Total Count 10 5 15 

Expected Count 10.0 5.0 15.0 

North Cusp5_UM1 0 Count 14 2 16 

Expected Count 14.0 2.0 16.0 

 Total Count 14 2 16 

Expected Count 14.0 2.0 16.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 2.143a 1 .143   
Continuity Correctionb .134 1 .714   
Likelihood Ratio 2.344 1 .126   
Fisher's Exact Test   .333 .333

N of Valid Cases 15    
West Pearson Chi-Square .000c 1 1.000   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .000 1 1.000   
Fisher's Exact Test   1.000 .767

N of Valid Cases 16    
East Pearson Chi-Square .000d 1 1.000   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .000 1 1.000   
Fisher's Exact Test   1.000 .758

N of Valid Cases 15    
North Pearson Chi-Square .e    

N of Valid Cases 16    
a. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .33. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.00. 

d. 3 cells (75.0%) have expected count less than 5. The minimum expected count is 1.00. 

e. No statistics are computed because Cusp5_UM1 is a constant. 
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Carabelli’s cusp UM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Carabelli_UM2 0 Count 5 10 15

Expected Count 6.2 8.8 15.0

1 Count 2 0 2

Expected Count .8 1.2 2.0

 Total Count 7 10 17

Expected Count 7.0 10.0 17.0

West Carabelli_UM2 0 Count 14 6 20

Expected Count 14.0 6.0 20.0

 Total Count 14 6 20

Expected Count 14.0 6.0 20.0

East Carabelli_UM2 0 Count 8 3 11

Expected Count 8.0 3.0 11.0

 Total Count 8 3 11

Expected Count 8.0 3.0 11.0

North Carabelli_UM2 0 Count 8 4 12

Expected Count 7.7 4.3 12.0

1 Count 1 1 2

Expected Count 1.3 .7 2.0

 Total Count 9 5 14

Expected Count 9.0 5.0 14.0
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 3.238a 1 .072   
Continuity Correctionb 1.071 1 .301   
Likelihood Ratio 3.939 1 .047   
Fisher's Exact Test   .154 .154

N of Valid Cases 17    
West Pearson Chi-Square .c    

N of Valid Cases 20    
East Pearson Chi-Square .c    

N of Valid Cases 11    
North Pearson Chi-Square .207d 1 .649   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .200 1 .655   
Fisher's Exact Test   1.000 .604

N of Valid Cases 14    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .82. 

b. Computed only for a 2x2 table 

c. No statistics are computed because Carabelli_UM2 is a constant. 

d. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .71. 
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Carabelli’s cusp UM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Carabelli_UM1 0 Count 0 2 2

Expected Count .5 1.5 2.0

1 Count 2 4 6

Expected Count 1.5 4.5 6.0

 Total Count 2 6 8

Expected Count 2.0 6.0 8.0

West Carabelli_UM1 1 Count 4 6 10

Expected Count 4.0 6.0 10.0

 Total Count 4 6 10

Expected Count 4.0 6.0 10.0

East Carabelli_UM1 1 Count 8 5 13

Expected Count 8.0 5.0 13.0

 Total Count 8 5 13

Expected Count 8.0 5.0 13.0

North Carabelli_UM1 1 Count 6 3 9

Expected Count 6.0 3.0 9.0

 Total Count 6 3 9

Expected Count 6.0 3.0 9.0

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .889a 1 .346   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.359 1 .244   
Fisher's Exact Test   1.000 .536

N of Valid Cases 8    
West Pearson Chi-Square .c    

N of Valid Cases 10    
East Pearson Chi-Square .c    

N of Valid Cases 13    
North Pearson Chi-Square .c    

N of Valid Cases 9    
a. 4 cells (100.0%) have expected count less than 5. The minimum expected count is .50. 

b. Computed only for a 2x2 table 

c. No statistics are computed because Carabelli_UM1 is a constant. 
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Parastyle UM3 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Parastyle_UM3 0 Count 4 6 10

Expected Count 4.0 6.0 10.0

 Total Count 4 6 10

Expected Count 4.0 6.0 10.0

West Parastyle_UM3 0 Count 11 3 14

Expected Count 11.0 3.0 14.0

 Total Count 11 3 14

Expected Count 11.0 3.0 14.0

East Parastyle_UM3 0 Count 9 3 12

Expected Count 9.0 3.0 12.0

 Total Count 9 3 12

Expected Count 9.0 3.0 12.0

North Parastyle_UM3 0 Count 10 9 19

Expected Count 10.0 9.0 19.0

 Total Count 10 9 19

Expected Count 10.0 9.0 19.0

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 10

West Pearson Chi-Square .a

N of Valid Cases 14

East Pearson Chi-Square .a

N of Valid Cases 12

North Pearson Chi-Square .a

N of Valid Cases 19

a. No statistics are computed because 
Parastyle_UM3 is a constant. 
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Parastyle UM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Parastyle_UM2 0 Count 7 11 18

Expected Count 7.0 11.0 18.0

 Total Count 7 11 18

Expected Count 7.0 11.0 18.0

West Parastyle_UM2 0 Count 15 8 23

Expected Count 14.4 8.6 23.0

1 Count 0 1 1

Expected Count .6 .4 1.0

 Total Count 15 9 24

Expected Count 15.0 9.0 24.0

East Parastyle_UM2 0 Count 8 4 12

Expected Count 8.0 4.0 12.0

 Total Count 8 4 12

Expected Count 8.0 4.0 12.0

North Parastyle_UM2 0 Count 9 6 15

Expected Count 9.0 6.0 15.0

 Total Count 9 6 15

Expected Count 9.0 6.0 15.0

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 18    

West Pearson Chi-Square 1.739b 1 .187   
Continuity Correctionc .070 1 .792   
Likelihood Ratio 2.035 1 .154   
Fisher's Exact Test   .375 .375

N of Valid Cases 24    
East Pearson Chi-Square .a    

N of Valid Cases 12    
North Pearson Chi-Square .a    

N of Valid Cases 15    
a. No statistics are computed because Parastyle_UM2 is a constant. 

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .38. 

c. Computed only for a 2x2 table 
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Parastyle UM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Parastyle_UM1 0 Count 7 10 17

Expected Count 7.0 10.0 17.0

 Total Count 7 10 17

Expected Count 7.0 10.0 17.0

West Parastyle_UM1 0 Count 8 10 18

Expected Count 8.5 9.5 18.0

1 Count 1 0 1

Expected Count .5 .5 1.0

 Total Count 9 10 19

Expected Count 9.0 10.0 19.0

East Parastyle_UM1 0 Count 12 5 17

Expected Count 12.0 5.0 17.0

 Total Count 12 5 17

Expected Count 12.0 5.0 17.0

North Parastyle_UM1 0 Count 11 3 14

Expected Count 11.0 3.0 14.0

 Total Count 11 3 14

Expected Count 11.0 3.0 14.0

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 17    

West Pearson Chi-Square 1.173b 1 .279   
Continuity Correctionc .003 1 .957   
Likelihood Ratio 1.556 1 .212   
Fisher's Exact Test   .474 .474

N of Valid Cases 19    
East Pearson Chi-Square .a    

N of Valid Cases 17    
North Pearson Chi-Square .a    

N of Valid Cases 14    
a. No statistics are computed because Parastyle_UM1 is a constant. 

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .47. 

c. Computed only for a 2x2 table 
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Enamel extensions UM3 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South EE_UM3 0 Count 4 5 9 

Expected Count 3.6 5.4 9.0 

1 Count 0 1 1 

Expected Count .4 .6 1.0 

 Total Count 4 6 10 

Expected Count 4.0 6.0 10.0 

West EE_UM3 0 Count 8 4 12 

Expected Count 8.3 3.7 12.0 

1 Count 1 0 1 

Expected Count .7 .3 1.0 

 Total Count 9 4 13 

Expected Count 9.0 4.0 13.0 

East EE_UM3 0 Count 8 3 11 

Expected Count 7.6 3.4 11.0 

1 Count 1 1 2 

Expected Count 1.4 .6 2.0 

 Total Count 9 4 13 

Expected Count 9.0 4.0 13.0 

North EE_UM3 0 Count 9 10 19 

Expected Count 9.5 9.5 19.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 10 10 20 

Expected Count 10.0 10.0 20.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .741a 1 .389   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.095 1 .295   
Fisher's Exact Test   1.000 .600

N of Valid Cases 10    
West Pearson Chi-Square .481c 1 .488   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .772 1 .380   
Fisher's Exact Test   1.000 .692

N of Valid Cases 13    
East Pearson Chi-Square .410d 1 .522   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .385 1 .535   
Fisher's Exact Test   1.000 .538

N of Valid Cases 13    
North Pearson Chi-Square 1.053e 1 .305   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.439 1 .230   
Fisher's Exact Test   1.000 .500

N of Valid Cases 20    
a. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .40. 

b. Computed only for a 2x2 table 

c. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .31. 

d. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .62. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .50. 
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Enamel extensions UM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South EE_UM2 0 Count 7 10 17 

Expected Count 7.0 10.0 17.0 

 Total Count 7 10 17 

Expected Count 7.0 10.0 17.0 

West EE_UM2 0 Count 11 7 18 

Expected Count 12.0 6.0 18.0 

1 Count 3 0 3 

Expected Count 2.0 1.0 3.0 

 Total Count 14 7 21 

Expected Count 14.0 7.0 21.0 

East EE_UM2 0 Count 8 4 12 

Expected Count 8.3 3.7 12.0 

1 Count 1 0 1 

Expected Count .7 .3 1.0 

 Total Count 9 4 13 

Expected Count 9.0 4.0 13.0 

North EE_UM2 0 Count 11 8 19 

Expected Count 11.0 8.0 19.0 

 Total Count 11 8 19 

Expected Count 11.0 8.0 19.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 17    

West Pearson Chi-Square 1.750b 1 .186   
Continuity Correctionc .438 1 .508   
Likelihood Ratio 2.677 1 .102   
Fisher's Exact Test   .521 .274

N of Valid Cases 21    
East Pearson Chi-Square .481d 1 .488   

Continuity Correctionc .000 1 1.000   
Likelihood Ratio .772 1 .380   
Fisher's Exact Test   1.000 .692

N of Valid Cases 13    
North Pearson Chi-Square .a    

N of Valid Cases 19    
a. No statistics are computed because EE_UM2 is a constant. 

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.00. 

c. Computed only for a 2x2 table 

d. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .31. 
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Enamel extensions UM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South EE_UM1 0 Count 10 8 18 

Expected Count 9.5 8.5 18.0 

1 Count 0 1 1 

Expected Count .5 .5 1.0 

 Total Count 10 9 19 

Expected Count 10.0 9.0 19.0 

West EE_UM1 0 Count 7 9 16 

Expected Count 8.0 8.0 16.0 

1 Count 2 0 2 

Expected Count 1.0 1.0 2.0 

 Total Count 9 9 18 

Expected Count 9.0 9.0 18.0 

East EE_UM1 0 Count 13 6 19 

Expected Count 13.3 5.7 19.0 

1 Count 1 0 1 

Expected Count .7 .3 1.0 

 Total Count 14 6 20 

Expected Count 14.0 6.0 20.0 

North EE_UM1 0 Count 15 6 21 

Expected Count 15.3 5.7 21.0 

1 Count 1 0 1 

Expected Count .7 .3 1.0 

 Total Count 16 6 22 

Expected Count 16.0 6.0 22.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.173a 1 .279   
Continuity Correctionb .003 1 .957   
Likelihood Ratio 1.556 1 .212   
Fisher's Exact Test   .474 .474

N of Valid Cases 19    
West Pearson Chi-Square 2.250c 1 .134   

Continuity Correctionb .563 1 .453   
Likelihood Ratio 3.023 1 .082   
Fisher's Exact Test   .471 .235

N of Valid Cases 18    
East Pearson Chi-Square .451d 1 .502   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .736 1 .391   
Fisher's Exact Test   1.000 .700

N of Valid Cases 20    
North Pearson Chi-Square .393e 1 .531   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .655 1 .418   
Fisher's Exact Test   1.000 .727

N of Valid Cases 22    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .47. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.00. 

d. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .30. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .27. 
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Enamel extensions UP4 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South EE_UP4 0 Count 9 9 18 

Expected Count 9.0 9.0 18.0 

 Total Count 9 9 18 

Expected Count 9.0 9.0 18.0 

West EE_UP4 0 Count 13 12 25 

Expected Count 13.0 12.0 25.0 

 Total Count 13 12 25 

Expected Count 13.0 12.0 25.0 

East EE_UP4 0 Count 12 6 18 

Expected Count 12.0 6.0 18.0 

 Total Count 12 6 18 

Expected Count 12.0 6.0 18.0 

North EE_UP4 0 Count 15 12 27 

Expected Count 15.0 12.0 27.0 

 Total Count 15 12 27 

Expected Count 15.0 12.0 27.0 

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 18

West Pearson Chi-Square .a

N of Valid Cases 25

East Pearson Chi-Square .a

N of Valid Cases 18

North Pearson Chi-Square .a

N of Valid Cases 27

a. No statistics are computed because EE_UP2 
is a constant. 
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Enamel extension UP3 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South EE_UP3 0 Count 9 11 20 

Expected Count 9.0 11.0 20.0 

 Total Count 9 11 20 

Expected Count 9.0 11.0 20.0 

West EE_UP3 0 Count 15 10 25 

Expected Count 15.0 10.0 25.0 

 Total Count 15 10 25 

Expected Count 15.0 10.0 25.0 

East EE_UP3 0 Count 11 6 17 

Expected Count 11.3 5.7 17.0 

1 Count 1 0 1 

Expected Count .7 .3 1.0 

 Total Count 12 6 18 

Expected Count 12.0 6.0 18.0 

North EE_UP3 0 Count 12 13 25 

Expected Count 12.0 13.0 25.0 

 Total Count 12 13 25 

Expected Count 12.0 13.0 25.0 

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 20    

West Pearson Chi-Square .a    
N of Valid Cases 25    

East Pearson Chi-Square .529b 1 .467   
Continuity Correctionc .000 1 1.000   
Likelihood Ratio .840 1 .359   
Fisher's Exact Test   1.000 .667

N of Valid Cases 18    
North Pearson Chi-Square .a    

N of Valid Cases 25    
a. No statistics are computed because EE_UP1 is a constant. 

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .33. 

c. Computed only for a 2x2 table 
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2-rooted UP4 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South 2root_UP4 0 Count 12 10 22 

Expected Count 11.5 10.5 22.0 

1 Count 0 1 1 

Expected Count .5 .5 1.0 

 Total Count 12 11 23 

Expected Count 12.0 11.0 23.0 

West 2root_UP4 0 Count 15 11 26 

Expected Count 13.8 12.2 26.0 

1 Count 2 4 6 

Expected Count 3.2 2.8 6.0 

 Total Count 17 15 32 

Expected Count 17.0 15.0 32.0 

East 2root_UP4 0 Count 12 6 18 

Expected Count 12.3 5.7 18.0 

1 Count 1 0 1 

Expected Count .7 .3 1.0 

 Total Count 13 6 19 

Expected Count 13.0 6.0 19.0 

North 2root_UP4 0 Count 13 10 23 

Expected Count 13.3 9.7 23.0 

1 Count 2 1 3 

Expected Count 1.7 1.3 3.0 

 Total Count 15 11 26 

Expected Count 15.0 11.0 26.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.140a 1 .286   
Continuity Correctionb .002 1 .965   
Likelihood Ratio 1.525 1 .217   
Fisher's Exact Test   .478 .478

N of Valid Cases 23    
West Pearson Chi-Square 1.162c 1 .281   

Continuity Correctionb .389 1 .533   
Likelihood Ratio 1.172 1 .279   
Fisher's Exact Test   .383 .267

N of Valid Cases 32    
East Pearson Chi-Square .487d 1 .485   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .784 1 .376   
Fisher's Exact Test   1.000 .684

N of Valid Cases 19    
North Pearson Chi-Square .112e 1 .738   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .114 1 .735   
Fisher's Exact Test   1.000 .619

N of Valid Cases 26    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .48. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.81. 

d. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .32. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.27. 
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2-rooted UP3 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South 2root_UP3 0 Count 7 5 12 

Expected Count 5.8 6.2 12.0 

1 Count 5 8 13 

Expected Count 6.2 6.8 13.0 

 Total Count 12 13 25 

Expected Count 12.0 13.0 25.0 

West 2root_UP3 0 Count 7 3 10 

Expected Count 5.2 4.8 10.0 

1 Count 8 11 19 

Expected Count 9.8 9.2 19.0 

 Total Count 15 14 29 

Expected Count 15.0 14.0 29.0 

East 2root_UP3 0 Count 10 3 13 

Expected Count 9.3 3.7 13.0 

1 Count 5 3 8 

Expected Count 5.7 2.3 8.0 

 Total Count 15 6 21 

Expected Count 15.0 6.0 21.0 

North 2root_UP3 0 Count 8 6 14 

Expected Count 7.5 6.5 14.0 

1 Count 7 7 14 

Expected Count 7.5 6.5 14.0 

 Total Count 15 13 28 

Expected Count 15.0 13.0 28.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .987a 1 .320   
Continuity Correctionb .352 1 .553   
Likelihood Ratio .993 1 .319   
Fisher's Exact Test   .434 .277

N of Valid Cases 25    
West Pearson Chi-Square 2.042c 1 .153   

Continuity Correctionb 1.077 1 .299   
Likelihood Ratio 2.087 1 .149   
Fisher's Exact Test   .245 .150

N of Valid Cases 29    
East Pearson Chi-Square .505d 1 .477   

Continuity Correctionb .045 1 .831   
Likelihood Ratio .497 1 .481   
Fisher's Exact Test   .631 .410

N of Valid Cases 21    
North Pearson Chi-Square .144e 1 .705   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .144 1 .705   
Fisher's Exact Test   1.000 .500

N of Valid Cases 28    
a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.76. 

b. Computed only for a 2x2 table 

c. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 4.83. 

d. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.29. 

e. 0 cells (.0%) have expected count less than 5. The minimum expected count is 6.50. 
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3-rooted UM2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South 3root_UM2 0 Count 1 2 3 

Expected Count 1.4 1.6 3.0 

1 Count 8 8 16 

Expected Count 7.6 8.4 16.0 

 Total Count 9 10 19 

Expected Count 9.0 10.0 19.0 

West 3root_UM2 0 Count 4 1 5 

Expected Count 2.8 2.2 5.0 

1 Count 11 11 22 

Expected Count 12.2 9.8 22.0 

 Total Count 15 12 27 

Expected Count 15.0 12.0 27.0 

East 3root_UM2 1 Count 9 4 13 

Expected Count 9.0 4.0 13.0 

 Total Count 9 4 13 

Expected Count 9.0 4.0 13.0 

North 3root_UM2 0 Count 6 3 9 

Expected Count 4.5 4.5 9.0 

1 Count 6 9 15 

Expected Count 7.5 7.5 15.0 

 Total Count 12 12 24 

Expected Count 12.0 12.0 24.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .281a 1 .596   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .287 1 .592   
Fisher's Exact Test   1.000 .542

N of Valid Cases 19    
West Pearson Chi-Square 1.485c 1 .223   

Continuity Correctionb .519 1 .471   
Likelihood Ratio 1.593 1 .207   
Fisher's Exact Test   .342 .240

N of Valid Cases 27    
East Pearson Chi-Square .d    

N of Valid Cases 13    
North Pearson Chi-Square 1.600e 1 .206   

Continuity Correctionb .711 1 .399   
Likelihood Ratio 1.623 1 .203   
Fisher's Exact Test   .400 .200

N of Valid Cases 24    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.42. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.22. 

d. No statistics are computed because 3root_UM2 is a constant. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 4.50. 
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3-rooted UM1 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South 3root_UM1 0 Count 1 1 2 

Expected Count 1.0 1.0 2.0 

1 Count 11 12 23 

Expected Count 11.0 12.0 23.0 

 Total Count 12 13 25 

Expected Count 12.0 13.0 25.0 

West 3root_UM1 0 Count 1 0 1 

Expected Count .5 .5 1.0 

1 Count 14 13 27 

Expected Count 14.5 12.5 27.0 

 Total Count 15 13 28 

Expected Count 15.0 13.0 28.0 

East 3root_UM1 1 Count 12 8 20 

Expected Count 12.0 8.0 20.0 

 Total Count 12 8 20 

Expected Count 12.0 8.0 20.0 

North 3root_UM1 0 Count 1 1 2 

Expected Count 1.2 .8 2.0 

1 Count 15 10 25 

Expected Count 14.8 10.2 25.0 

 Total Count 16 11 27 

Expected Count 16.0 11.0 27.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .003a 1 .953   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .003 1 .953   
Fisher's Exact Test   1.000 .740

N of Valid Cases 25    
West Pearson Chi-Square .899c 1 .343   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.280 1 .258   
Fisher's Exact Test   1.000 .536

N of Valid Cases 28    
East Pearson Chi-Square .d    

N of Valid Cases 20    
North Pearson Chi-Square .077e 1 .782   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .075 1 .784   
Fisher's Exact Test   1.000 .658

N of Valid Cases 27    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .96. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .46. 

d. No statistics are computed because 3root_UM1 is a constant. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .81. 
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Peg-shaped UI2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Peg_UI2 0 Count 9 9 18 

Expected Count 9.0 9.0 18.0 

 Total Count 9 9 18 

Expected Count 9.0 9.0 18.0 

West Peg_UI2 0 Count 14 9 23 

Expected Count 14.0 9.0 23.0 

 Total Count 14 9 23 

Expected Count 14.0 9.0 23.0 

East Peg_UI2 0 Count 15 5 20 

Expected Count 15.0 5.0 20.0 

 Total Count 15 5 20 

Expected Count 15.0 5.0 20.0 

North Peg_UI2 0 Count 16 13 29 

Expected Count 16.0 13.0 29.0 

 Total Count 16 13 29 

Expected Count 16.0 13.0 29.0 

 
 

Chi-Square Tests 

GROUP Value 

South Pearson Chi-Square .a

N of Valid Cases 18

West Pearson Chi-Square .a

N of Valid Cases 23

East Pearson Chi-Square .a

N of Valid Cases 20

North Pearson Chi-Square .a

N of Valid Cases 29

a. No statistics are computed because Peg_UI2 
is a constant. 
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Peg-shaped UM3 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South Peg_UM3 0 Count 4 6 10 

Expected Count 4.0 6.0 10.0 

 Total Count 4 6 10 

Expected Count 4.0 6.0 10.0 

West Peg_UM3 0 Count 10 4 14 

Expected Count 9.6 4.4 14.0 

1 Count 1 1 2 

Expected Count 1.4 .6 2.0 

 Total Count 11 5 16 

Expected Count 11.0 5.0 16.0 

East Peg_UM3 0 Count 10 4 14 

Expected Count 9.3 4.7 14.0 

1 Count 0 1 1 

Expected Count .7 .3 1.0 

 Total Count 10 5 15 

Expected Count 10.0 5.0 15.0 

North Peg_UM3 0 Count 11 12 23 

Expected Count 11.5 11.5 23.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 12 12 24 

Expected Count 12.0 12.0 24.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 10    

West Pearson Chi-Square .374b 1 .541   
Continuity Correctionc .000 1 1.000   
Likelihood Ratio .351 1 .554   
Fisher's Exact Test   1.000 .542

N of Valid Cases 16    
East Pearson Chi-Square 2.143d 1 .143   

Continuity Correctionc .134 1 .714   
Likelihood Ratio 2.344 1 .126   
Fisher's Exact Test   .333 .333

N of Valid Cases 15    
North Pearson Chi-Square 1.043e 1 .307   

Continuity Correctionc .000 1 1.000   
Likelihood Ratio 1.430 1 .232   
Fisher's Exact Test   1.000 .500

N of Valid Cases 24    
a. No statistics are computed because Peg_UM3 is a constant. 

b. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .63. 

c. Computed only for a 2x2 table 

d. 3 cells (75.0%) have expected count less than 5. The minimum expected count is .33. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .50. 
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Congenital absence UM3 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South CA_UM3 0 Count 5 11 16 

Expected Count 5.3 10.7 16.0 

1 Count 1 1 2 

Expected Count .7 1.3 2.0 

 Total Count 6 12 18 

Expected Count 6.0 12.0 18.0 

West CA_UM3 0 Count 16 11 27 

Expected Count 16.4 10.6 27.0 

1 Count 1 0 1 

Expected Count .6 .4 1.0 

 Total Count 17 11 28 

Expected Count 17.0 11.0 28.0 

East CA_UM3 0 Count 11 6 17 

Expected Count 11.3 5.7 17.0 

1 Count 1 0 1 

Expected Count .7 .3 1.0 

 Total Count 12 6 18 

Expected Count 12.0 6.0 18.0 

North CA_UM3 0 Count 14 12 26 

Expected Count 14.4 11.6 26.0 

1 Count 1 0 1 

Expected Count .6 .4 1.0 

 Total Count 15 12 27 

Expected Count 15.0 12.0 27.0 
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Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .281a 1 .596   
Continuity Correctionb .000 1 1.000   
Likelihood Ratio .267 1 .605   
Fisher's Exact Test   1.000 .569

N of Valid Cases 18    
West Pearson Chi-Square .671c 1 .413   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.022 1 .312   
Fisher's Exact Test   1.000 .607

N of Valid Cases 28    
East Pearson Chi-Square .529d 1 .467   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio .840 1 .359   
Fisher's Exact Test   1.000 .667

N of Valid Cases 18    
North Pearson Chi-Square .831e 1 .362   

Continuity Correctionb .000 1 1.000   
Likelihood Ratio 1.206 1 .272   
Fisher's Exact Test   1.000 .556

N of Valid Cases 27    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .67. 

b. Computed only for a 2x2 table 

c. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .39. 

d. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .33. 

e. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .44. 
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Congenital absence UP4 * Sex * GROUP 

Crosstab 

GROUP 

Sex  
F M Total 

South CA_UP4 0 Count 13 14 27 

Expected Count 13.0 14.0 27.0 

 Total Count 13 14 27 

Expected Count 13.0 14.0 27.0 

West CA_UP4 0 Count 20 16 36 

Expected Count 20.0 16.0 36.0 

 Total Count 20 16 36 

Expected Count 20.0 16.0 36.0 

East CA_UP4 0 Count 15 8 23 

Expected Count 14.4 8.6 23.0 

1 Count 0 1 1 

Expected Count .6 .4 1.0 

 Total Count 15 9 24 

Expected Count 15.0 9.0 24.0 

North CA_UP4 0 Count 19 13 32 

Expected Count 19.0 13.0 32.0 

 Total Count 19 13 32 

Expected Count 19.0 13.0 32.0 

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square .a    
N of Valid Cases 27    

West Pearson Chi-Square .a    
N of Valid Cases 36    

East Pearson Chi-Square 1.739b 1 .187   
Continuity Correctionc .070 1 .792   
Likelihood Ratio 2.035 1 .154   
Fisher's Exact Test   .375 .375

N of Valid Cases 24    
North Pearson Chi-Square .a    

N of Valid Cases 32    
a. No statistics are computed because CA_UP4 is a constant. 

b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .38. 

c. Computed only for a 2x2 table 
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Congenital absence UI2 * Sex * GROUP 
Crosstab 

GROUP 

Sex  
F M Total 

South CA_UI2 0 Count 13 15 28 

Expected Count 13.5 14.5 28.0 

1 Count 1 0 1 

Expected Count .5 .5 1.0 

 Total Count 14 15 29 

Expected Count 14.0 15.0 29.0 

West CA_UI2 0 Count 20 16 36 

Expected Count 20.0 16.0 36.0 

 Total Count 20 16 36 

Expected Count 20.0 16.0 36.0 

East CA_UI2 0 Count 15 9 24 

Expected Count 15.0 9.0 24.0 

 Total Count 15 9 24 

Expected Count 15.0 9.0 24.0 

North CA_UI2 0 Count 20 13 33 

Expected Count 20.0 13.0 33.0 

 Total Count 20 13 33 

Expected Count 20.0 13.0 33.0 

 
 

Chi-Square Tests 

GROUP Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

South Pearson Chi-Square 1.110a 1 .292   
Continuity Correctionb .001 1 .972   
Likelihood Ratio 1.495 1 .221   
Fisher's Exact Test   .483 .483

N of Valid Cases 29    
West Pearson Chi-Square .c    

N of Valid Cases 36    
East Pearson Chi-Square .c    

N of Valid Cases 24    
North Pearson Chi-Square .c    

N of Valid Cases 33    
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .48. 

b. Computed only for a 2x2 table 

c. No statistics are computed because CA_UI2 is a constant. 

 
 


