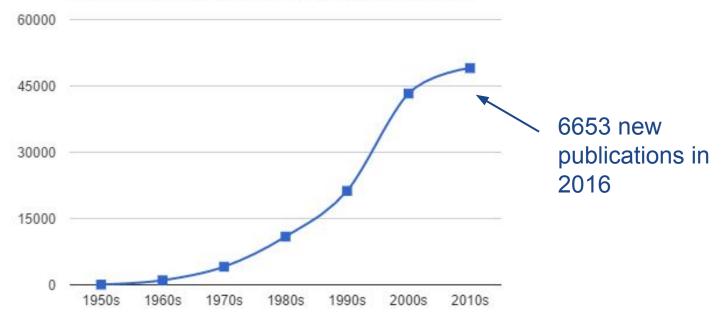
How to Read Less:

On the Benefit of Human-in-the-loop Incremental Learning for Systematic Literature Reviews

Zhe Yu zyu9@ncsu.edu

Ph.D. Written Preliminary Exam April 2017


Committee: Dr. Tim Menzies (advisor) Dr. Xipeng Shen Dr. William Enck

Computer Science

ai4se.net

Too Much to Read

2

Not Reading Enough

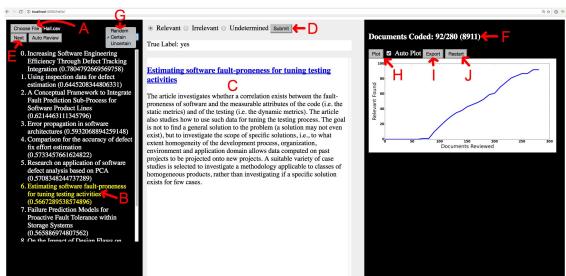
• 146 medical practises were rever ea winner 10 years.

- A lady was sentenced to death because her lawyer failed to find related hospital records in 1989.
- Software developers reinvent the core distributed software concepts and components.

Prasad, Vinay, et al. "A decade of reversal: an analysis of 146 contradicted medical practices." Mayo Clinic Proceedings. Vol. 88. No. 8. Elsevier, 2013. Bright, Stephen B. "Counsel for the poor: The death sentence not for the worst crime but for the worst lawyer." The Yale Law Journal 103.7 (1994): 1835-1883. Fayad, Mohamed E., et al. "Lessons learned building reusable OO frameworks for distributed software." Communications of the ACM 40.10 (1997): 85-87.

Done

- Apply human-in-the-loop method to facilitate SLRs
- FASTREAD, a better method than state-of-the-art
- Save 90% cost to retrieve 90% relevant studies
- A tool to implement FASTREAD


Opensource

Paper:

- Submitted to EMSE
- <u>arxiv</u>

Tool:

- <u>SeaCraft Zenodo</u>
- <u>Github</u>

Computer Science

Todo

- More data
- More detailed, real data

Massive data

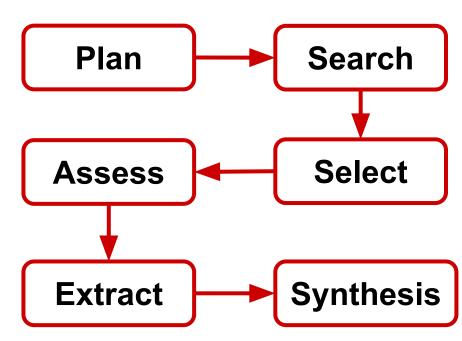
Outline

- Background
- Method
- Experiment
- Result
- Conclusion and Future works

7

Outline

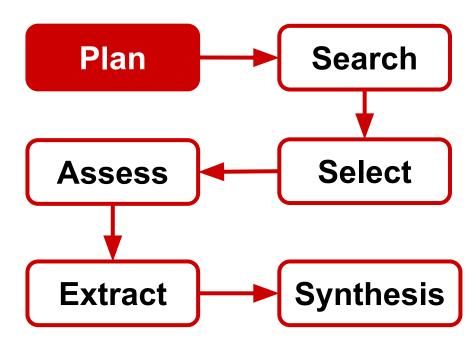
• Background


- Systematic Literature Review
- Primary Study Selection (Select)
- Method
- Experiment
- Result
- Conclusion and Future works

Computer Science

Systematic Literature Review (SLR)

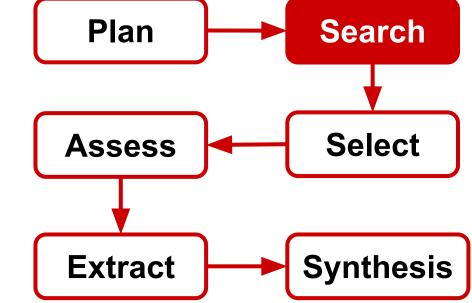
SLR: A systematic guide to review literature



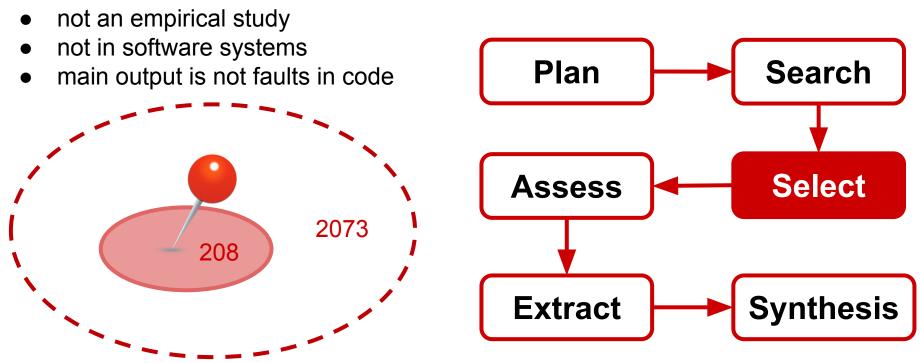
Kitchenham, Barbara A., Tore Dyba, and Magne Jorgensen. "Evidence-based software engineering." ICSE'04.

Defect Prediction Papers, from 2000 to 2010 [Hall'12]

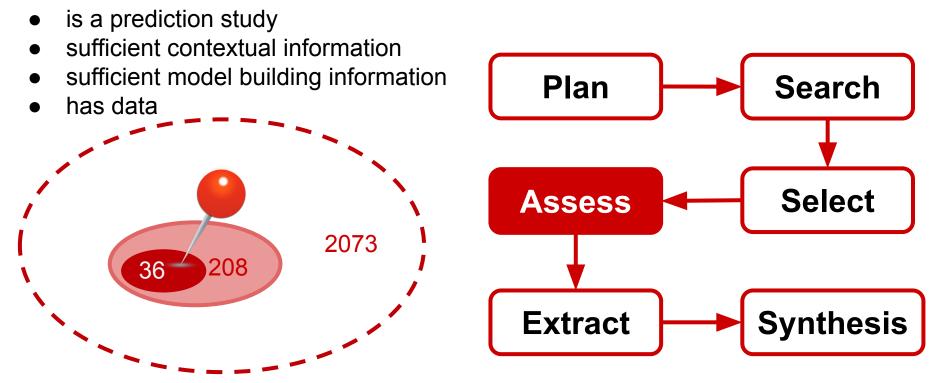
- Context
- Feature
- Modeling



Hall, Tracy, et al. "A systematic literature review on fault prediction performance in software engineering." TSE'12.


Search:

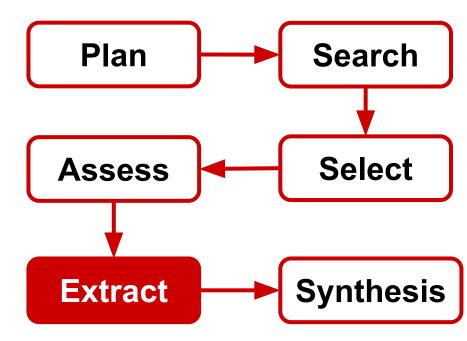
(Fault* OR bug* OR defect* OR errors OR corrections OR corrective OR fix*) in title only AND (Software) anywhere in study



2073

Exclude:

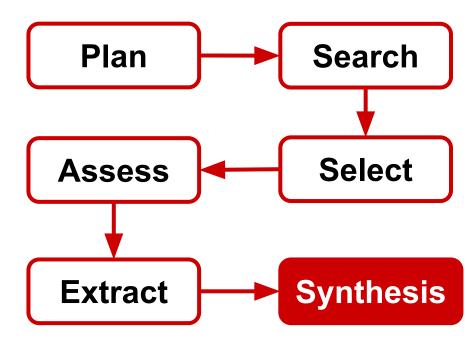
Assess:

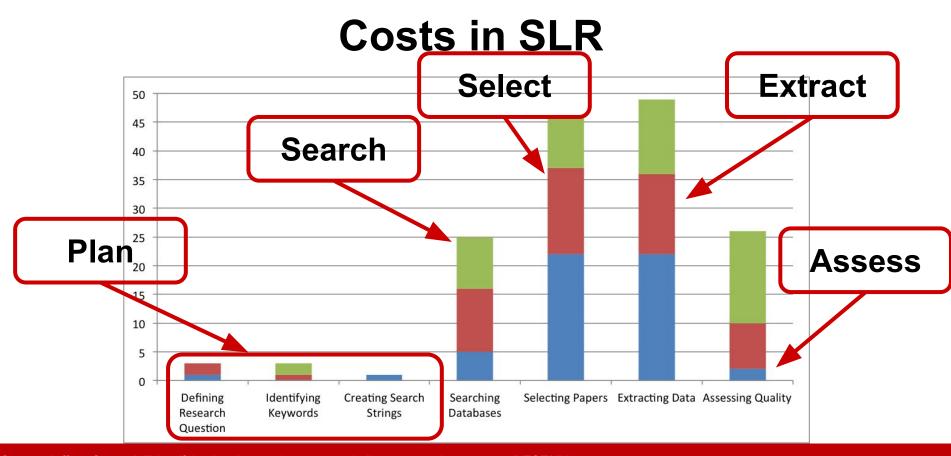

Hall, Tracy, et al. "A systematic literature review on fault prediction performance in software engineering." TSE'12.

NC STATE UNIVERSITY

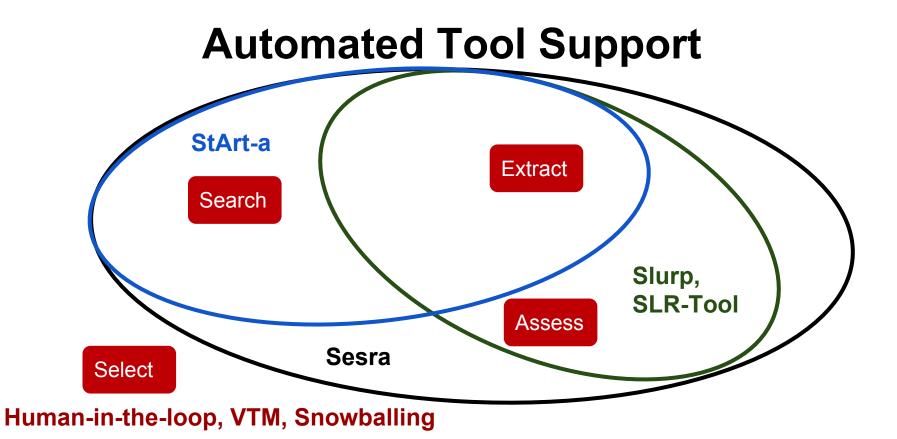
Extract:

- Context data
- Qualitative data
- Quantitative data




Hall, Tracy, et al. "A systematic literature review on fault prediction performance in software engineering." TSE'12.

Synthesis:

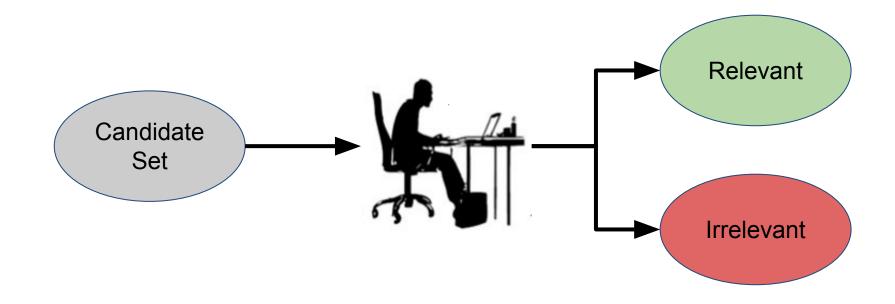

- What features are used most frequently? LOC, OO, etc.
- Which model works best? Naive Bayes, Decision Tree, Logistic Regression, etc.

Carver, Jeffrey C., et al. "Identifying barriers to the systematic literature review process." ESEM'13.

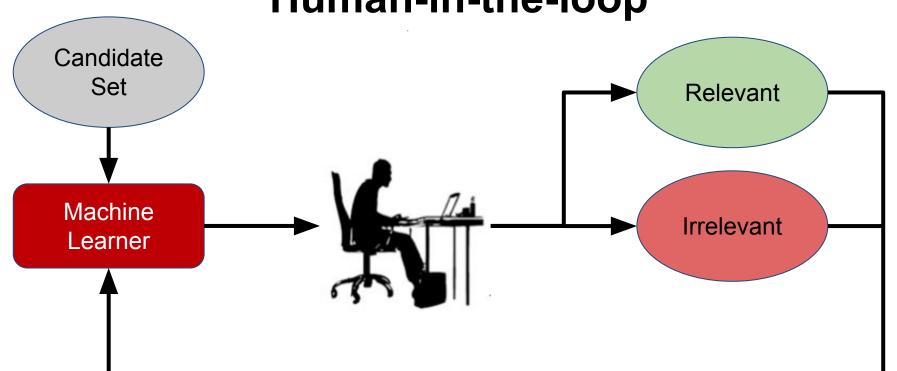
Marshall, Christopher, et al. "Tools to support systematic reviews in software engineering: a cross-domain survey using semi-structured interviews." EASE'15.

NC STATE UNIVERSITY

Outline


• Background

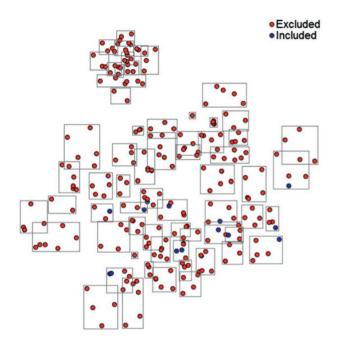
- Systematic Literature Review
- Primary Study Selection (Select)
- Method
- Experiment
- Result
- Conclusion and Future works

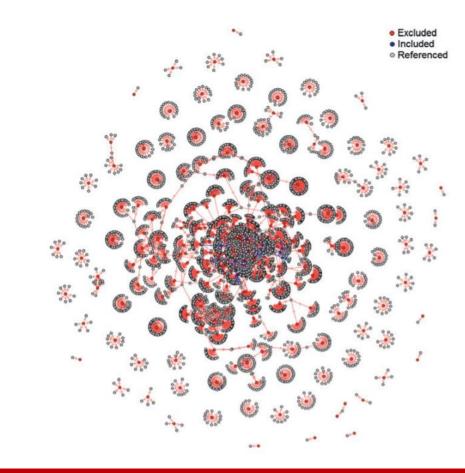


Computer Science

Select: Linear Review

Kitchenham, Barbara A., Tore Dyba, and Magne Jorgensen. "Evidence-based software engineering." ICSE'04.

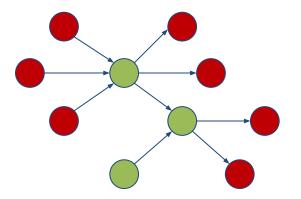



Human-in-the-loop

Sheng, Provost, Ipeirotis. 2008. "Get another label? improving data quality and data mining using multiple, noisy labelers", KDD '08 Wallace, Byron C., et al. "Semi-automated screening of biomedical citations for systematic reviews." BMC bioinformatics 11.1 (2010): 55. Cormack, Gordon V., and Maura R. Grossman. "Evaluation of machine-learning protocols for technology-assisted review in electronic discovery." SIGIR'14.

NC STATE UNIVERSITY

Visual Text Mining


Felizardo, Katia R., et al. " visual analysis approach to validate the selection review of primary studies" Information and Software Technology 54.10 (2012): 1079-1091.

Snowballing

Forward: Papers cite the known one.

Backward: The known one's references

Kitchenham, Barbara A., Tore Dyba, and Magne Jorgensen. "Evidence-based software engineering." ICSE'04. Wohlin, Claes. "Guidelines for snowballing in systematic literature studies and a replication in software engineering." EASE'14.

Wohlin, Claes. "Guidelines for snowballing in systematic literature studies and a replication in software engineering." EASE'14. Felizardo, Katia R., et al. "visual analysis approach to validate the selection review of primary studies" Information and Software Technology 54.10 (2012): 1079-1091. Wallace, Byron C., et al. "Semi-automated screening of biomedical citations for systematic reviews." BMC bioinformatics 11.1 (2010): 55. Cormack, Gordon V., and Maura R. Grossman. "Evaluation of machine-learning protocols for technology-assisted review in electronic discovery." SIGIR'14.

	Machine Learning?	
Snowballing	no	
VTM	Unsupervised Learning	
Human-in-the- loop	Active Learning	

Wohlin, Claes. "Guidelines for snowballing in systematic literature studies and a replication in software engineering." EASE'14. Felizardo, Katia R., et al. " visual analysis approach to validate the selection review of primary studies" Information and Software Technology 54.10 (2012): 1079-1091. Wallace, Byron C., et al. "Semi-automated screening of biomedical citations for systematic reviews." BMC bioinformatics 11.1 (2010): 55. Cormack, Gordon V., and Maura R. Grossman. "Evaluation of machine-learning protocols for technology-assisted review in electronic discovery." SIGIR'14.

	Machine Learning?	Require initial papers?	
Snowballing	no	yes	
VTM	Unsupervised Learning	no	
Human-in-the- loop	Active Learning	no	

Wohlin, Claes. "Guidelines for snowballing in systematic literature studies and a replication in software engineering." EASE'14. Felizardo, Katia R., et al. "visual analysis approach to validate the selection review of primary studies" Information and Software Technology 54.10 (2012): 1079-1091. Wallace, Byron C., et al. "Semi-automated screening of biomedical citations for systematic reviews." BMC bioinformatics 11.1 (2010): 55. Cormack, Gordon V., and Maura R. Grossman. "Evaluation of machine-learning protocols for technology-assisted review in electronic discovery." SIGIR'14.

	Machine Learning?	Require initial papers?	Easy to Validate?	
Snowballing	no	yes	yes	
VTM	Unsupervised Learning	no	no	
Human-in-the- loop			yes	

Wohlin, Claes. "Guidelines for snowballing in systematic literature studies and a replication in software engineering." EASE'14. Felizardo, Katia R., et al. "visual analysis approach to validate the selection review of primary studies" Information and Software Technology 54.10 (2012): 1079-1091. Wallace, Byron C., et al. "Semi-automated screening of biomedical citations for systematic reviews." BMC bioinformatics 11.1 (2010): 55. Cormack, Gordon V., and Maura R. Grossman. "Evaluation of machine-learning protocols for technology-assisted review in electronic discovery." SIGIR'14.

	Machine Learning?	Require initial papers?	Easy to Validate?	Scale up?
Snowballing	no	yes	yes	?
VTM	Unsupervised Learning	no	no	?
Human-in-the- loop	Active Learning	no	yes	yes

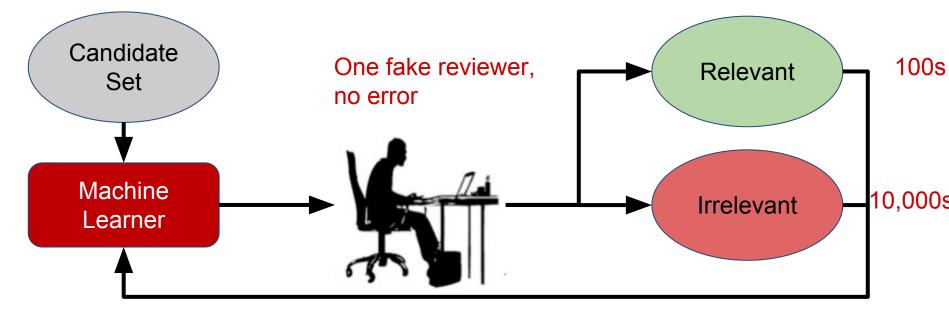
Wohlin, Claes. "Guidelines for snowballing in systematic literature studies and a replication in software engineering." EASE'14. Felizardo, Katia R., et al. " visual analysis approach to validate the selection review of primary studies" Information and Software Technology 54.10 (2012): 1079-1091. Wallace, Byron C., et al. "Semi-automated screening of biomedical citations for systematic reviews." BMC bioinformatics 11.1 (2010): 55. Cormack, Gordon V., and Maura R. Grossman. "Evaluation of machine-learning protocols for technology-assisted review in electronic discovery." SIGIR'14.

	Machine Learning?	Require initial papers?	Easy to Validate?	Scale up?	Tested on SE data?
Snowballing	no	yes	yes	?	yes
VTM	Unsupervised Learning	no	no	?	yes
Human-in-the- loop	Active Learning	no	yes	yes	no

Wohlin, Claes. "Guidelines for snowballing in systematic literature studies and a replication in software engineering." EASE'14. Felizardo, Katia R., et al. "visual analysis approach to validate the selection review of primary studies" Information and Software Technology 54.10 (2012): 1079-1091. Wallace, Byron C., et al. "Semi-automated screening of biomedical citations for systematic reviews." BMC bioinformatics 11.1 (2010): 55. Cormack, Gordon V., and Maura R. Grossman. "Evaluation of machine-learning protocols for technology-assisted review in electronic discovery." SIGIR'14.

Outline

- Background
- Method
 - Problem Statement
 - State-of-the-art Methods
 - Algorithm Code
- Experiment
- Result
- Conclusion and Future works



Computer Science

NC STATE UNIVERSITY

Title+Abstract, unlabeled, 10,000s

Problem Statement

Wallace, Byron C., et al. "Semi-automated screening of biomedical citations for systematic reviews." BMC bioinformatics 11.1 (2010): 55. Cormack, Gordon V., and Maura R. Grossman. "Evaluation of machine-learning protocols for technology-assisted review in electronic discovery." SIGIR'14. Hall, Tracy, et al. "A systematic literature review on fault prediction performance in software engineering." TSE'12.

NC STATE UNIVERSITY

Outline

- Background
- Method
 - Problem Statement
 - State-of-the-art Methods
 - Algorithm Code
- Experiment
- Result
- Conclusion and Future works

Computer Science

State-of-the-art

Medicine:

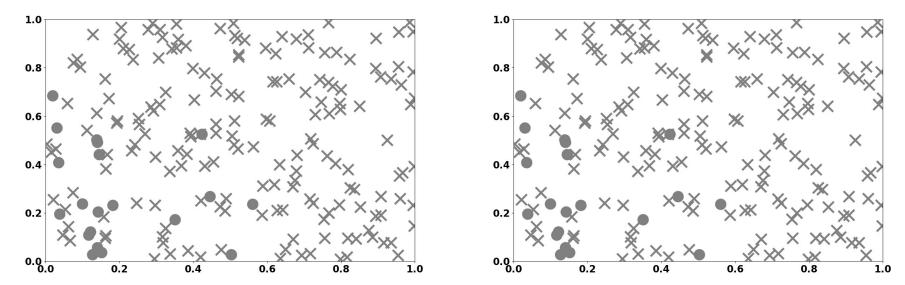
[Wallace'10] Core algorithm stays unchanged in subsequent works.

Legal: [Cormack'14] Still state-of-the-art in legal domain.

NC STATE UNIVERSITY

Outline

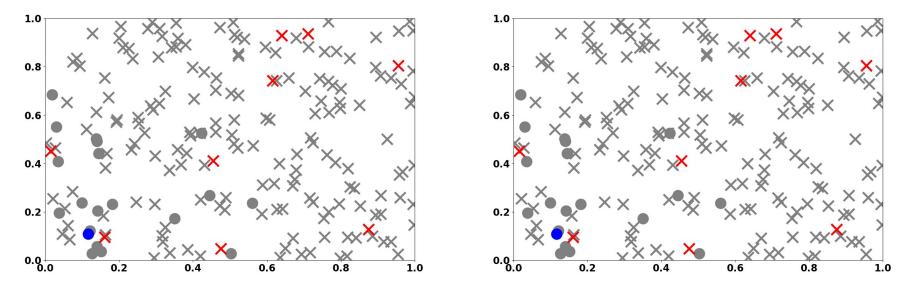
- Motivation and Background
- Method
 - Problem Statement
 - State-of-the-art
 - Algorithm Code
- Experiment
- Result
- Conclusion and Future works



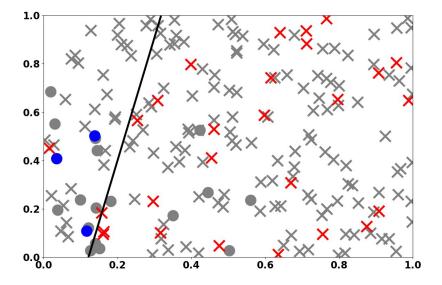
Computer Science

Initial Candidates

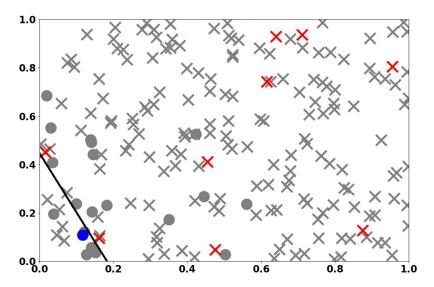
Wallace'10 (0/0)


Cormack'14 (0/0)

Random Sampling

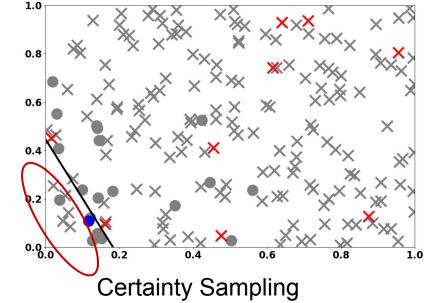

Wallace'10 (1/10)

Cormack'14 (1/10)



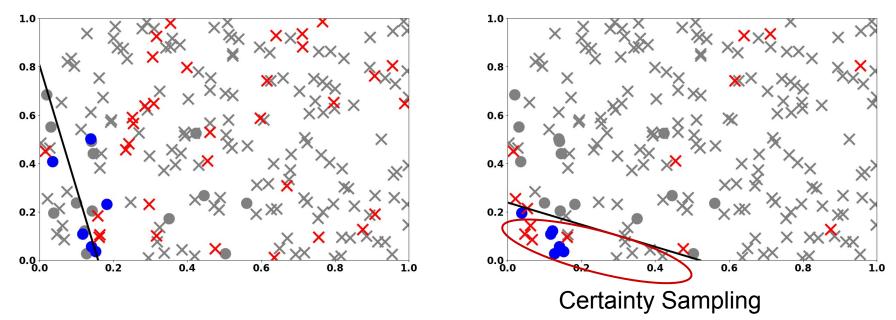
Start Point

Wallace'10 (3/30)


Cormack'14 (1/10)

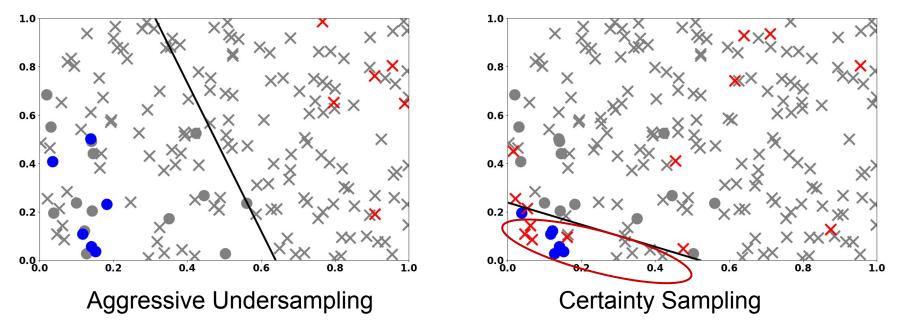
Query Strategy

Wallace'10 (3/30) 1.0 1.0 0.8 0.8 0.6 0.6 X 0.4 0.4 0.2 0.0** 0.0 0.0∔ 0.0 0.2 0.4 0.6 0.8 1.0 **Uncertainty Sampling**


Cormack'14 (1/10)

Data Balancing

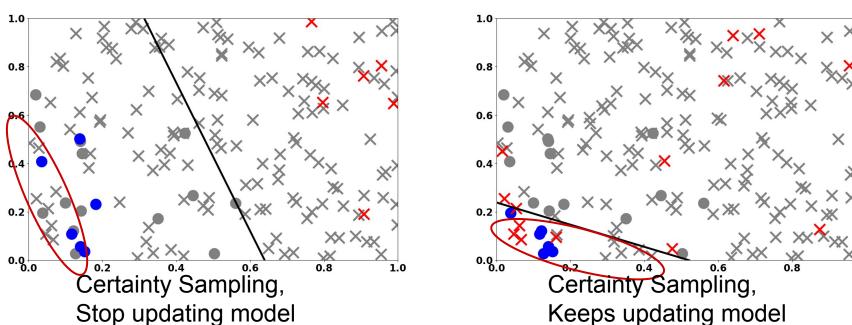
Wallace'10 (6/40)


Cormack'14 (6/20)

Data Balancing

Wallace'10 (6/40)

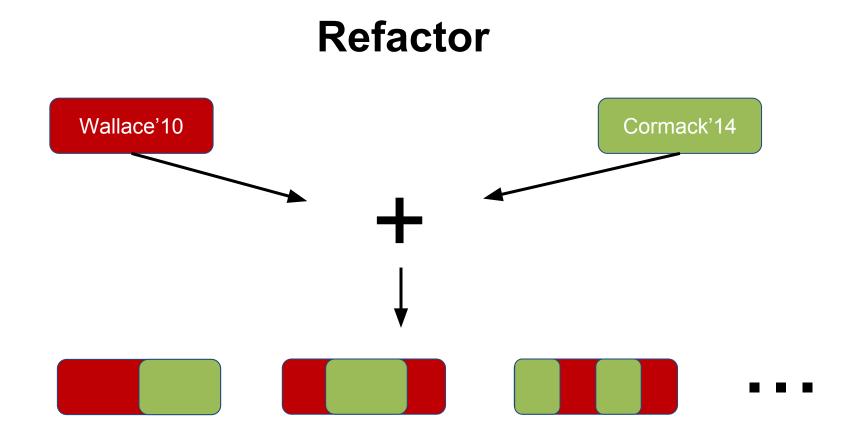
Cormack'14 (6/20)


Continuity

Cormack'14 (6/20)

Wallace'10 (6/40)

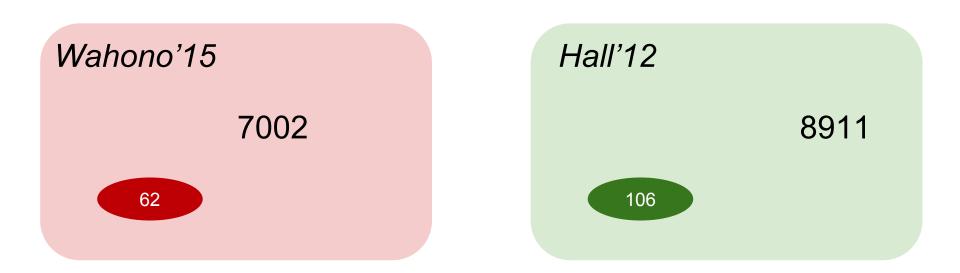
1.0


0.8

Wallace, Byron C., et al. "Semi-automated screening of biomedical citations for systematic reviews." BMC bioinformatics 11.1 (2010): 55. Cormack, Gordon V., and Maura R. Grossman. "Evaluation of machine-learning protocols for technology-assisted review in electronic discovery." SIGIR'14. 1.0

Algorithm Code

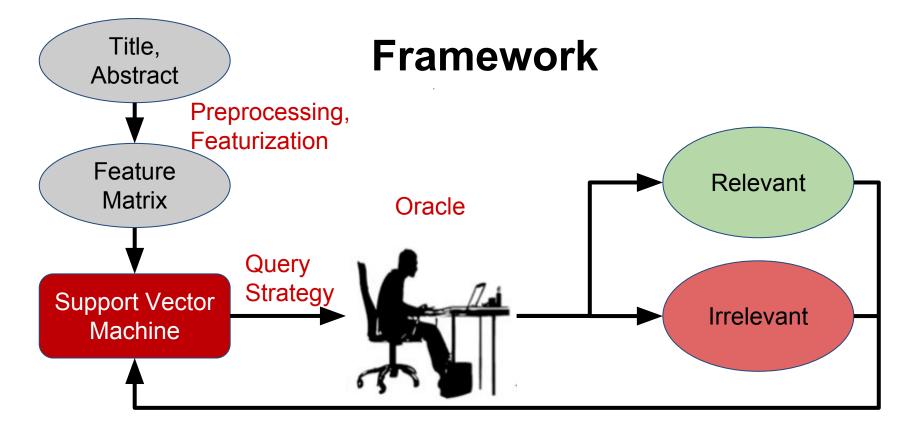
	Start point	Query Strategy	Continuity	Data Balancing
Wallace'10	late (P)	uncertainty sampling (U)	stop training (S)	aggressive undersampling (A)
Cormack'14	early (Ē)	certainty sampling (Ū)	non-stop (Ŝ)	none (Ā)


Outline

- Background
- Method
- Experiment
 - Data
 - Framework
 - Evaluation
- Result
- Conclusion and Future works

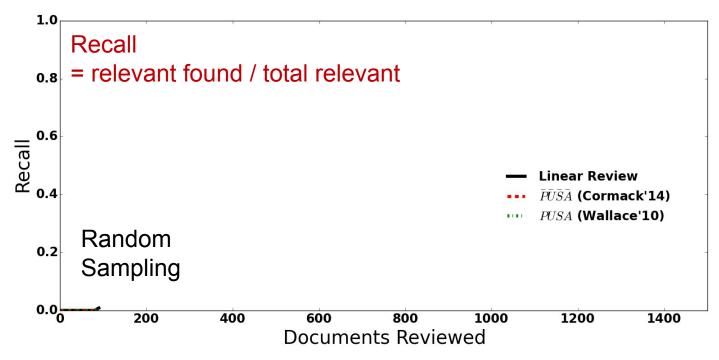
Computer Science

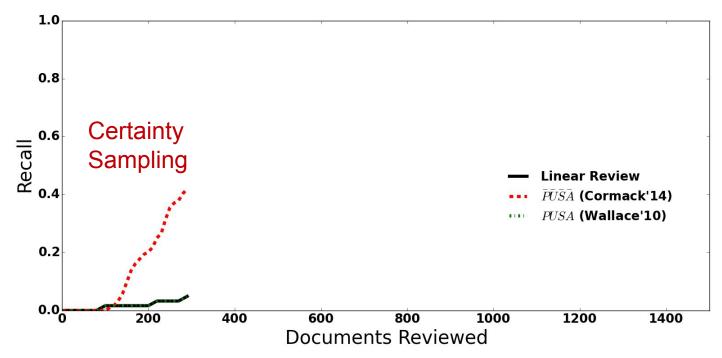
Data Sets

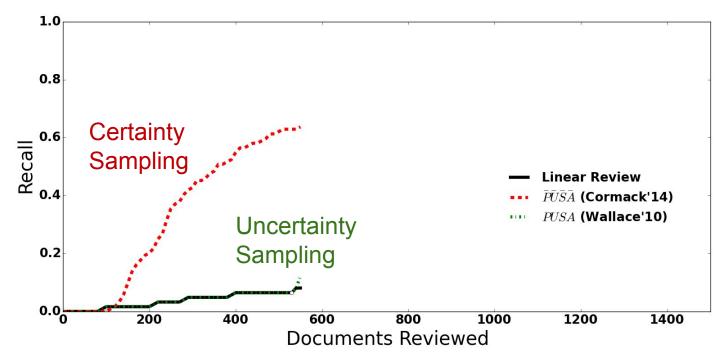

Wahono, Romi Satria. "A systematic literature review of software defect prediction: Research trends, datasets, methods and frameworks." JSE'15. Hall, Tracy, et al. "A systematic literature review on fault prediction performance in software engineering." TSE'12.

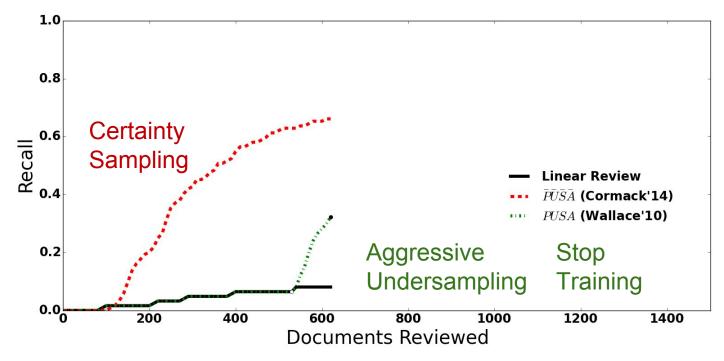
Outline

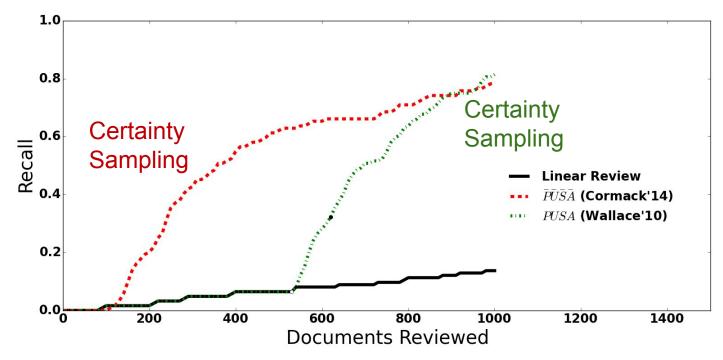
- Background
- Method
- Experiment
 - Data
 - Framework
 - Evaluation
- Result
- Conclusion and Future works

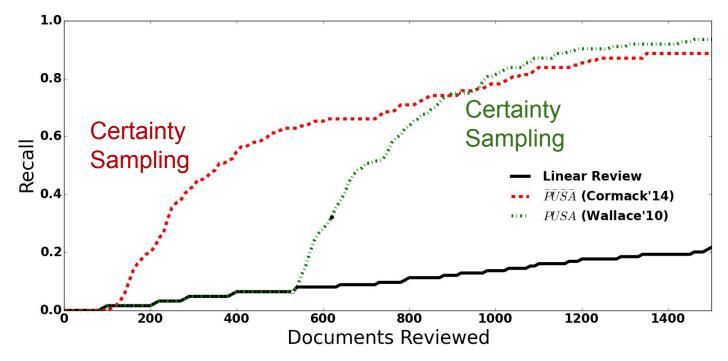

Wallace, Byron C., et al. "Semi-automated screening of biomedical citations for systematic reviews." BMC bioinformatics 11.1 (2010): 55. Cormack, Gordon V., and Maura R. Grossman. "Evaluation of machine-learning protocols for technology-assisted review in electronic discovery." SIGIR'14. Krishna, Rahul, et al. "The BigSE project: lessons learned from validating industrial text mining." BIGDSE'16.

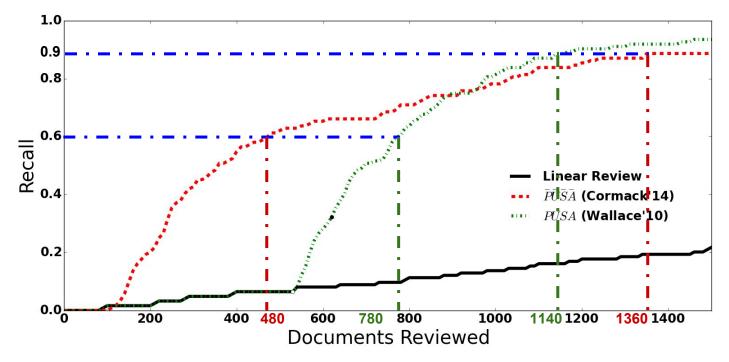

Outline

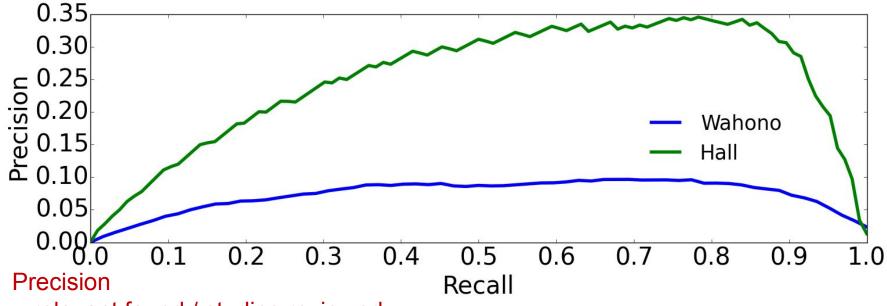

- Background
- Method
- Experiment
 - Data
 - Framework
 - Evaluation
- Result
- Conclusion and Future works

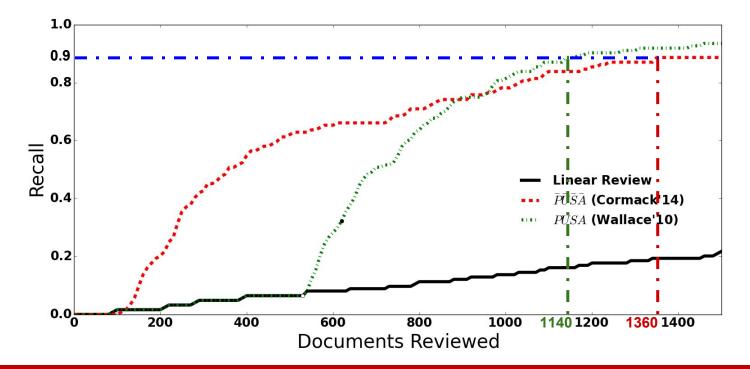



Computer Science









When to Stop

= relevant found / studies reviewed

X90 = studies reviewed to reach 90% recall

Research Questions

RQ1:

Can human-in-the-loop methods improve SE SLR?

RQ2:

Should we adopt state-of-the-art?

RQ3: How much can we save?

Computer Science

Research Questions

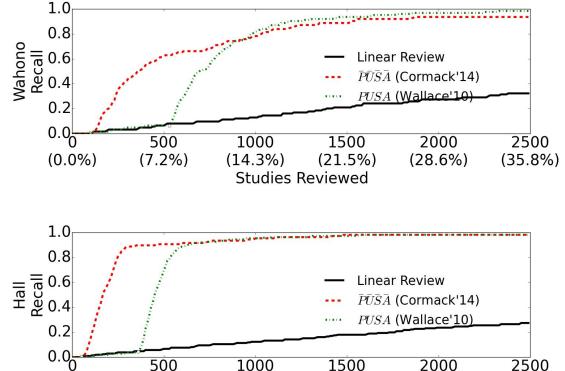
RQ1:

Can human-in-the-loop methods improve SE SLR?

RQ2: Should we adopt state-of-the-art?

RQ3: How much can we save?

Computer Science


Outline

- Background
- Method
- Experiment
- Result
 - Human-in-the-loop vs. linear review
 - FASTREAD vs. state-of-the-art
 - Cost Reduction
- Conclusion and Future works

Human-in-the-loop vs. Linear Review

(11.2%)

(16.9%)

Studies Reviewed

(22.5%)

(28.1%)

Computer Science

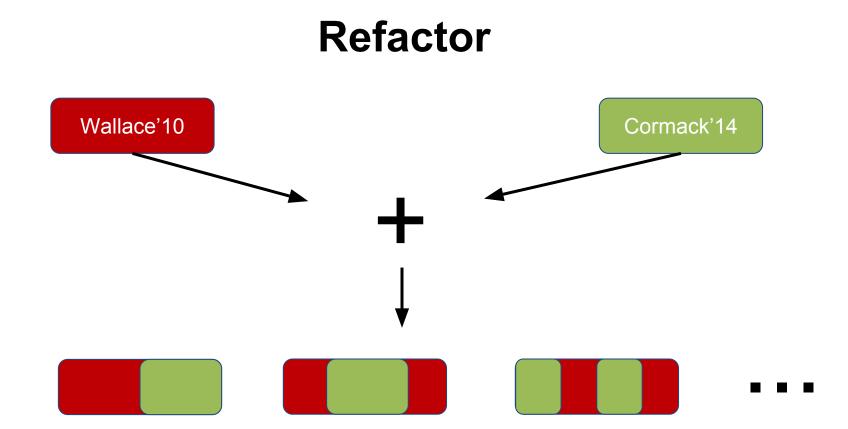
(5.6%)

(0.0%)

61

Research Questions

RQ1:

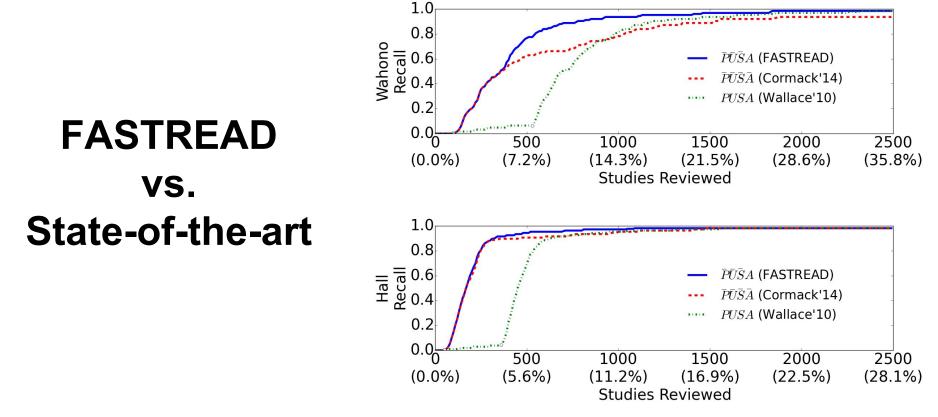

Can human-in-the-loop methods improve SE SLR? Yes

RQ2:

Should we adopt state-of-the-art?

RQ3: How much can we save?

Computer Science


	Start point	Query Strategy	Continuity	Data Balancing
Wallace'10	late (P)	uncertainty sampling (U)	stop training (S)	aggressive undersampling (A)
Cormack'14	early (Ē)	certainty sampling (Ū)	non-stop (Ŝ)	none (Ā)
FASTREAD	early (Ē)	certainty sampling (Ū)	non-stop (Ŝ)	aggressive undersampling (A)

Outline

- Background
- Method
- Experiment
- Result
 - Human-in-the-loop vs. linear review
 - FASTREAD vs. state-of-the-art
 - Cost Reduction
- Conclusion and Future works

Computer Science

Research Questions

RQ1:

Can human-in-the-loop methods improve SE SLR? Yes

RQ2: Should we adopt state-of-the-art?

RQ3: How much can we save?

Computer Science

No

Outline

- Background
- Method
- Experiment
- Result
 - Human-in-the-loop vs. linear review
 - FASTREAD vs. state-of-the-art
 - Cost Reduction
- Conclusion and Future works

X90 = studies reviewed to reach 90% recall

Wahono:

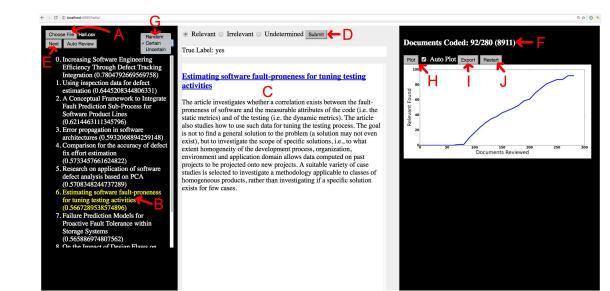
Review 680 (9.7%) to retrieve 90% relevant

Hall:

Review 310 (3.5%) to retrieve 90% relevant

Rank	Treatment	Median	IQR	Wahono
1	$\bar{P}\bar{U}\bar{S}A$ (FASTREAL	D) 680	130	•
1	$\bar{P}U\bar{S}A$	700	150	•
2	$\overline{P}USA$	840	350	•
2	$P\bar{U}\bar{S}A$	1060	320	•
2	$PU\bar{S}A$	1090	330	•
2	PUSA (Wallace'10	D) 114C	280	•
2	$\overline{P}US\overline{A}$	1340	140	•
2	PUSA (Cormack'	14) 1350	130	•
3	$P\bar{U}\bar{S}\bar{A}$	1640	370	•
3	$PU\bar{S}\bar{A}$	1640	380	•
4	$\overline{P}US\overline{A}$	2240	1440	
4	$PUS\bar{A}$	2490	770	-
5	Linear Review	6240	310	
5	Linear Review	0240	DIC	
Rank		Median	1000	Hall
resolutions	Treatment PUSA	and a second	1000	
Rank	Treatment	Median	IQR	•
Rank 1	Treatment PUSA	Median 290 300	IQR 70	•
Rank 1 1 1	Treatment PUSĀ PUSA	Median 290 300	IQR 70 70	• •
Rank 1 1 1 2 2	Treatment PUSĀ PUSA PŪSA (FASTREAL PUSA	Median 290 300 0) 310 320	IQR 70 70 30	• • •
Rank 1 1 1 2 2	Treatment PUSĀ PUSA PŪSA (FASTREAL PUSA	Median 290 300 0) 310 320	IQR 70 70 30 80	• • •
Rank 1 1 1 2 2 2 2 3	Treatment PUSĀ PUSA PŪSA (FASTREAL PUSA PŪSĀ (Cormack'1	Median 290 300 0) 310 320 4) 350	IQR 70 70 30 80 70	• • •
Rank 1 1 2 2 2 3	Treatment PUSĀ PUSA PUSA PUSA PUSĀ (Cormack'1 PUSĀ	Median 290 300 0) 310 320 4) 350 350 620	IQR 70 70 30 80 70 100	• • • •
Rank 1 1 1 2 2 2 2 3 3 3 3	Treatment PUSĀ PUSA PUSA PUSĀ PUSĀ PUSĀ PUSA PUSA (Wallace'10 PŪSA	Median 290 300 0) 310 320 4) 350 350 620	IQR 70 70 30 80 70 100 260	• • • • • • • • • • • • • • • • • • • •
Rank 1 1 1 2 2 2 3 3 3 3 3 3	Treatment PUŠĀ PŪŠA (FASTREAL PŪŠĀ (FASTREAL PŪŠĀ (Cormack'1 PUŠĀ PUŠĀ PUŠA PUŠA (Wallace'10 PŪŠĀ PŪŠĀ	Median 290 300 0) 310 320 4) 350 620 0) 630	IQR 70 70 30 80 70 100 260 270	• • • • •
Rank 1 1 1 2 2 2 3 3 3 3 3 3 3	Treatment PUŠĀ PUŠA PŪŠA (FASTREAL PUŠĀ PUŠĀ PUŠĀ PUŠA PUŠA PŪŠĀ PUŠĀ PŪŠĀ PUŠĀ PUŠĀ	Median 290 300 0) 310 320 4) 350 620 0) 630 660	IQR 70 70 30 80 70 100 260 270 340	• • • • • •
Rank 1 1 1 2 2 2 3 3 3 3 3 3	Treatment PUŠĀ PŪŠA (FASTREAL PŪŠĀ (FASTREAL PŪŠĀ (Cormack'1 PUŠĀ PUŠĀ PUŠA PUŠA (Wallace'10 PŪŠĀ PŪŠĀ	Median 290 300 0) 310 320 4) 350 620 0) 630 660 680	IQR 70 70 30 80 70 100 260 270 340 240	• • • • • •

X90 from 30 experiments


Resources

Data:

<u>SeaCraft Zenodo</u>

Tool:

- <u>SeaCraft Zenodo</u>
- <u>Github</u>

Computer Science

Outline

- Motivation and Background
- Method
- Experiment
- Result
- Conclusion and Future works

71

Conclusion

- Apply human-in-the-loop method to facilitate SLRs
- FASTREAD, a better method than state-of-the-art
- Save 90% cost to retrieve 90% relevant studies
- A tool to implement FASTREAD

Future Roadmap

Assumptions:

• no external domain

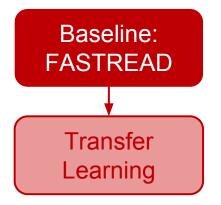
knowledge

- binary classification
- one reviewer, no error

Assumptions:

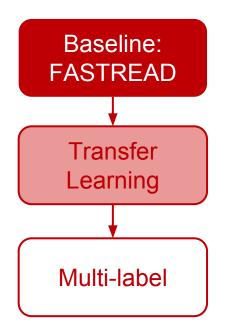
Baseline: FASTREAD

• no external domain


knowledge

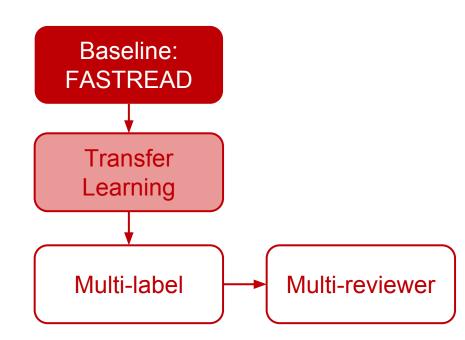
- binary classification
- one reviewer, no error

Computer Science

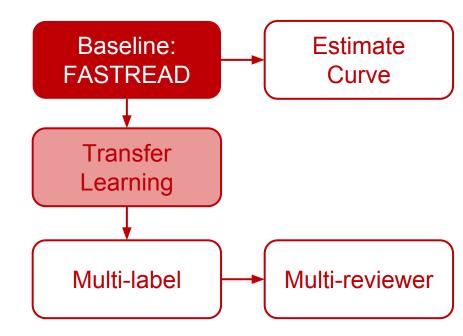

Assumptions:

- no external domain knowledge
- binary classification
- one reviewer, no error

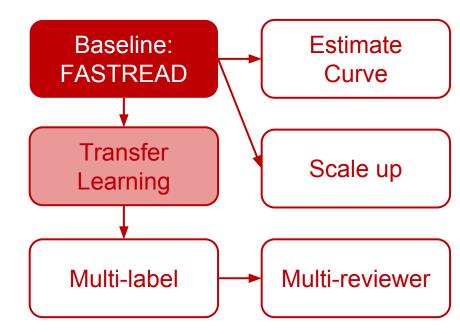
Assumptions:


- no external domain knowledge
- binary classification
- one reviewer, no error

75

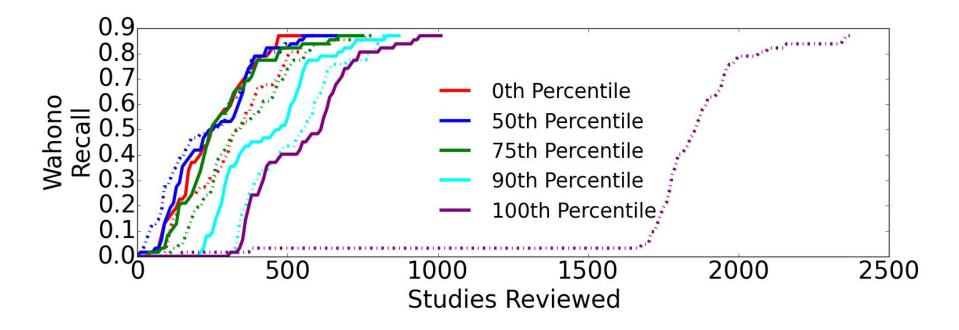

Assumptions:

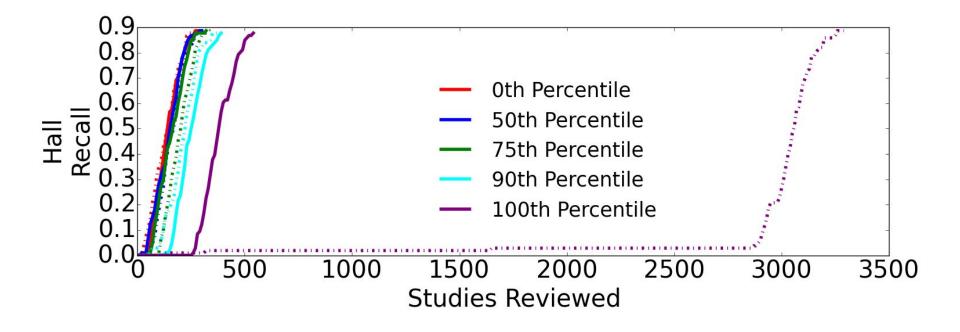
- no external domain knowledge
- binary classification
- one reviewer, no error

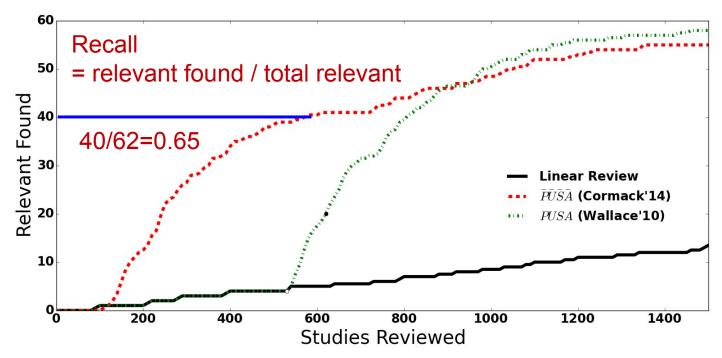

Assumptions:

- no external domain knowledge
- binary classification
- one reviewer, no error

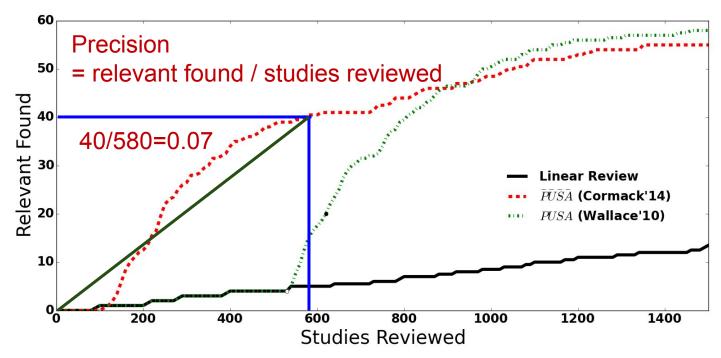
Assumptions:


- no external domain knowledge
- binary classification
- one reviewer, no error

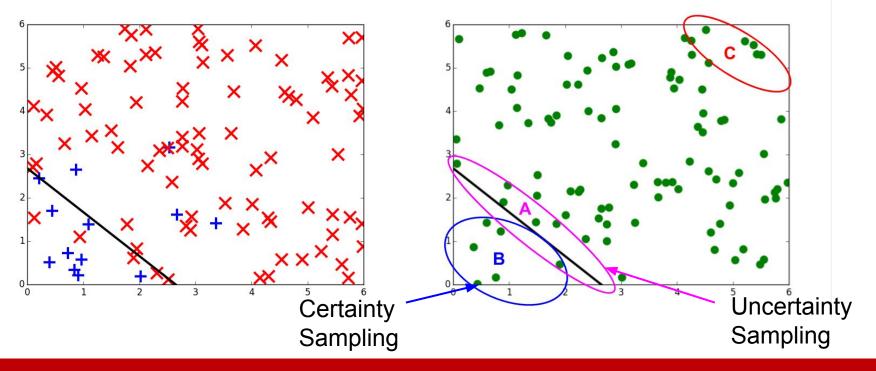

NC STATE UNIVERSITY


Back-up Slides

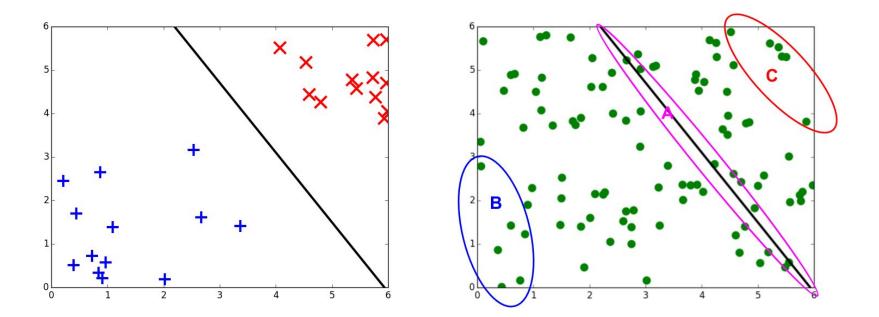
Back-up Slides



Evaluation


Wahono, Romi Satria. "A systematic literature review of software defect prediction: Research trends, datasets, methods and frameworks." JSE'15.

Evaluation



Wahono, Romi Satria. "A systematic literature review of software defect prediction: Research trends, datasets, methods and frameworks." JSE'15.

Query Strategy

Data Balancing

Data Sets

	Wahono		Hall	
	Stated	Retrieved	Stated	Retrieved
Initial List	2117	7002	2073	8911
Final List	72	62	136	106

Hall, Tracy, et al. "A systematic literature review on fault prediction performance in software engineering." TSE'12. Wahono, Romi Satria. "A systematic literature review of software defect prediction: Research trends, datasets, methods and frameworks." JSE'15.

NC STATE UNIVERSITY

Roadmap

Systematic literature reviews:

- Useful. Important.
 - In medicine, law, SE and elsewhere
- Expensive.

Cost Reduction

- Primary study selection= part of each reviews. Hard.
- Tools to make it easier?
 - Problems with state of the art

Human-in-the-loop Incremental Learning

- Used in other domains.
- Q: Useful in SE?
- A1: Yes.
- A2: Can be used to tailor a even better SE method.

NC STATE UNIVERSITY

