

Project:

MNEMOSENE
(Grant Agreement number 780215)

“Computation-in-memory architecture based on resistive devices"

Funding Scheme: Research and Innovation Action

Call: ICT-31-2017 "Development of new approaches to scale functional performance of
information processing and storage substantially beyond the state-of-the-art

technologies with a focus on ultra-low power and high performance"

Date of the latest version of ANNEX I: 11/10/2017

D3.3– Refined CIM architecture

Project Coordinator (PC): Prof. Said Hamdioui

Technische Universiteit Delft - Department of Quantum and Computer
Engineering (TUD)

Tel.: (+31) 15 27 83643

Email: S.Hamdioui@tudelft.nl

Project website address: www.mnemosene.eu

Lead Partner for Deliverable: Eindhoven University of Technology (TUE)

Report Issue Date: 27/03/2020

Document History

 (Revisions – Amendments)

Version and date Changes

17/03/2020 Outline updated

24/03/2020 Draft prepared

27/03/2020 Final version

Dissemination Level

PU Public X

PP Restricted to other program participants (including the EC Services)

RE Restricted to a group specified by the consortium (including the EC Services)

CO Confidential, only for members of the consortium (including the EC)

mailto:S.Hamdioui@tudelft.nl
http://www.mnemosene.eu/

The MNEMOSENE project aims at demonstrating a new computation-in-memory (CIM) based on resistive
devices together with its required programming flow and interface. To develop the new architecture, the
following scientific and technical objectives will be targeted:

• Objective 1: Develop new algorithmic solutions for targeted applications for CIM architecture.

• Objective 2: Develop and design new mapping methods integrated in a framework for efficient
compilation of the new algorithms into CIM macro-level operations; each of these is mapped to a group
of CIM tiles.

• Objective 3: Develop a macro-architecture based on the integration of group of CIM tiles, including the
overall scheduling of the macro-level operation, data accesses, inter-tile communication, the
partitioning of the crossbar, etc.

• Objective 4: Develop and demonstrate the micro-architecture level of CIM tiles and their models,
including primitive logic and arithmetic operators, the mapping of such operators on the crossbar,
different circuit choices and the associated design trade-offs, etc.

• Objective 5: Design a simulator (based on calibrated models of memristor devices & building blocks)
and FPGA emulator for the new architecture (CIM device combined with conventional CPU) in order
demonstrate its superiority. Demonstrate the concept of CIM by performing measurements on
fabricated crossbar mounted on a PCB board.

A demonstrator will be produced and tested to show that the storage and processing can be integrated in the
same physical location to improve energy efficiency and also to show that the proposed accelerator is able to
achieve the following measurable targets (as compared with a general purpose multi-core platform) for the
considered applications:

• Improve the energy-delay product by factor of 100X to 1000X

• Improve the computational efficiency (#operations / total-energy) by factor of 10X to 100X

• Improve the performance density (# operations per area) by factor of 10X to 100X

LEGAL NOTICE

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use, which

might be made, of the following information.

The views expressed in this report are those of the authors and do not necessarily reflect those of the European

Commission.

© MNEMOSENE Consortium 2020

Table of Contents

1. Introduction .. 4

2. Background .. 6

 2.1 Memristors and Memristor Crossbars .. 6

 2.2 Memristor Crossbars Functions .. 6

3. Micro Architecture .. 8

 3.1 CIM Architecture ... 9

 3.2 Micro-Engine and Micro-ISA .. 10

4. PULP Macro Architecture .. 12

 4.1 PULP ... 12

 4.2 CIM Accelerator Interface .. 13

 4.3 CIM Unit Integration into CIM Accelerator ... 13

5. TTA Macro Architecture .. 15

 5.1 TTA and TCE .. 15

 5.2 CIM unit integration into TTA .. 16

 5.3 LoTTA .. 17

6. Experiments .. 18

 6.1 Experimental Setup ... 18

 6.2 Evaluation ... 18

7. Conclusion .. 23

8. References .. 24

1. Introduction

As the data, which is required to be processed, is growing at a galloping pace, the need for

brand-new processor architectures, which enjoy new paradigms of computing, becomes vital.

Existing processors are mostly based on the von-Neumann architecture, in which the

processing units and memory banks are placed apart from each other Figure 1.a. Therefore,

every time a data is needed to be processed, it must be fetched from memory, transferred to

the processor, and the produced result, again, must be transferred back to the memory to be

stored. Considering this behaviour and given the data which is needed to be processed is

significantly large, this paradigm not only elongates the process-time but also consumes a

significant amount of energy. Adding to the levels of the memory hierarchy and introducing

small-sized caches, close to the processing unit, have alleviated the problem (Figure 1.b).

Nonetheless, such techniques still fail to meet ever-increasing, performance and energy

requirements of the emerging applications, e.g. neural networks. Computation in-memory,

on the other hand, suggests processing the data at the very same site where it resides [14,

16, 18]. Eliminating a huge part of data transfers, CIM reduces the data bandwidth

constraints, decreases energy budget requirements, and improves the performance.

An approach to realize CIM is to exploit emerging non-volatile memories (NVM), e.g.,

resistive random access memory (ReRAM), phase change memory (PCM), and spin-

transfer torque magnetic random access memory (STT-MRAM) (Figure 1.d). These devices

offer promising features like compact realizations, ultra-low static power, and non-volatility

–eliminating the required energy to refresh cells– which makes them favourable candidates

to realize CIM. Being organized in a crossbar structure, they can operate as extremely dense

memory units. Employing the very same structure, several operations such as vector matrix

multiplication (VMM), and bulk Boolean bitwise operation (BBB), can be executed on them

exploiting their analogue behaviour. Although memristor based CIM is considered one of the

most promising options for the next generation of processors, the implications associated

with their deployment at the computer architecture level are rarely studied.

In this document, we first start in section 2 with presenting background information on

memristors and memristor crossbar. Then, in Section 3, we introduce the micro-architecture

that consist of Micro-engine and Calculator. In section 4, PULP architecture, the CIM unit

deployment as an accelerator, and the necessary modification –applied to CIM unit— are

explained. Integration of CIM unit as an accelerator into PULP is interesting as PULP is a

reasonable representative for prevalent MPSoCs. By integration we can figure out if

memristor crossbars show promising results in commercialized architecture. In Section 5, CIM

is integrated as a functional unit into TTA, a data path aware architecture. The promise of

configuring data path in a fashion that minimizes the memory accesses motivated us to

consider integration into such architectures. In Section 6, the results that are obtained from

CIM integration into TTA are presented. Section 7 concludes the document.

Figure 1. a) Early computers, b) Multi-processor with multi-level caches, c) computation in memory

(DRAM), d) computation in memory (memristor) [20]

2. Background

For a good understanding a proper background is needed. This section presents the basics of

non-volatile memories, and their organization in a crossbar structure are presented.

2.1 Memristors and Memristor Crossbars

Device engineers have been seeking for alternative technology for the post-CMOS era since

the device scaling is reaching the atomic realm. Non-volatile memories, e.g. phase change

memories (PCM), resistive RAMs (ReRAM), are considered a promising instance of such

devices. Information maps to the conductance states of a device. The device retains its value

until it is (RE)SET by a voltage higher than its threshold voltage.

Being organized in an area-efficient crossbar structure, they can be exploited as dense blocks

of memories (Figure 4.a). To further increase the density –bits per area– multi-level cells are

used. The non-linear I-V characteristics of the memristors allow them to hold multiple

conductance states. In multi-level cells, multiple bits of information can be stored on a single

device with multi-conductance states. To fine-tune the conductance level, in a write-verify

scheme, pulses with different width (amplitude) are applied across the target device.

However, the non-linear characteristics of the device itself, and the sneak path current in a

crossbar –an undesired current that flows through the memory cells parallel to the desired

one– make it hard to use the device in practice. To make the programming stage more

controllable, the 1T1R structure (1-Transistor 1-Resistor) is proposed [26] (Figure 4.b). In the

1T1R structure, a transistor is placed in series with a memristor. Depending on the direction

in which the gates of the transistors are connected, row/column-wise, different

functionalities can be achieved. For instance, if the gates are connected horizontally, bulk bit-

wise operations (BBB) can be executed, but not hyper-dimensional computation (HDC) [8].

Whereas, if the gates are connected vertically, the platform is suitable for HDC and not BBB.

2.2 Memristor Crossbars Functions

Memristors, either individually or in a crossbar layout, have been employed for various use
cases. They have performed as physically unclonable functions [10], radiofrequency switches
[17], dot product engines [9], and memory blocks [7]. In this section, we focus on memristor
crossbar-based use-cases.

The most appealing feature of memristors is that they can perform vector-matrix

multiplication (VMM), which is the core operation of many applications especially neural

networks, in a single shot. To perform a VMM (𝑌1×𝑛 = 𝑊1 × 𝑋𝑚×𝑛), where W, X, and Y are

weight matrix, input vector, and output vector, respectively, several measures should be

taken (Figure 2.c). First, the elements of the weight matrix are mapped to the conductance

states of the crossbar cells. Then, elements of the input vector are encoded to the amplitude

or the length of pulses to be applied to rows. Note that the amplitude of the input voltages

should not exceed the threshold voltage of the device, as this destructs the stored

information. Next is to drive the input voltages into the word-lines while the bit-lines are

virtually grounded. According to Ohm’s law, a current equal to the product of input voltage

and the cell conductance flows through the device (𝐼𝑖𝑗 = 𝑉𝑖 × 𝐺𝑖𝑗). The currents, which are

resulted of all element-by-element multiplications, are accumulated and sensed

simultaneously at the end of active columns (𝐼𝑖 = ∑ 𝐼𝑖𝑗). Thanks to this attribute, memristor

crossbars are considered one of the most promising platforms to realize neuromorphic

computing architectures [2, 9, 19, 22]. It is worth mentioning that if the required analogue

peripheries –which drive the crossbar in the reverse direction– are available, it is possible to

do VMM on the transpose matrix using the very same crossbar [5].

Figure 2. a) Passive Crossbar, b) Active Crossbar (1T1R), c) Vector Matrix Multiplication

The other use-case, in which memristor crossbars have shown promising results, is in memory

bulk Boolean bitwise operation [13]. BBB is frequently performed in database queries and

DNA sequence alignment [18]. To perform a bitwise operation, reference [24] programs every

single bit of an operand to cells in a row. Then, by applying a read voltage to two desired rows,

where targeted operands are stored, currents flow in bit-lines. Currents are sensed using

scouting logic. The reference current of the sense amplifier is determined based on the

operation, i.e. AND, OR, XOR to be done. Comparing the sensed current with the reference

current(s), different Boolean operations can be realized.

Figure 3. In Memory Bulk Boolean Bitwise Operation

3. Micro Architecture

As memristor technologies are hardly available, to develop an architecture for processors

based on memristor crossbars we designed a simulator that replicates the behaviour of

memristor crossbars. The simulator also covers the operation of the peripheral mixed-signal

circuitry. We call this mixed-signal part “Calculator” (Figure 4.a). For the calculator to

communicate with other processing elements, we have expanded the simulator, by adding

necessary digital components, e.g. buffers, register files, controller. The added digital

components all together comprise the “Micro-engine” (Figure 4.a). In the following of this

section, first, the architecture of the CIM unit is illustrated; then, the proposed micro-ISA is

introduced; and in the end, the tasks of the controller are described.

Figure 4. Overall look of CIM unit. a) The tile structure, b) The Controller, FSM (only memory units

enable/disable signals are presented)

3.1 CIM Architecture

CIM tile, a cycle-accurate simulator that is developed in C++, replicates the function of a

memristor crossbar, the driving mixed-signal circuits, and necessary digital elements. The tile

includes two different domains, mixed-signal, the Calculator, and digital, the Micro-engine

(Fig. 2.a).

In Calculator, various modules are defined to imitate the behaviour of every single analogue

component, i.e. the crossbar, analogue/digital converters (ADC), digital input modulators

(DIM), sample and holds (S&H). This modular design enables a designer to change the

configuration of the Calculator, e.g. crossbar size, number of ADC/DIMs, or add new modules

with a negligible effort.

DIMs and ADCs, at the edges of Calculator, are connected to digital buffers, i.e.

RS/WD/Output. DIMs convert the raw data into amplitude/width of pulses that are to drive

the crossbar. Crossbar results, if operation produces any, are converted to digital values by

ADCs and stored in Output buffer. Simple digital logics, present inside the Micro-engine, carry

out simple operations like weighted sum if desired. To instruct the CIM unit to carry out

different operations, we propose a micro-instruction set architecture (Error! Reference

source not found.). The micro-instructions promote the nano-instructions that are presented

in [4]. Although the nano-instructions offer full control over the tile, there is quite some room

to enhance them. For example, the process of fetching raw data into buffers requires the

whole buffer to be overwritten, even if only a few entries are supposed to change. The full

control offered by nano-architecture is not desirable as it comes with many dependencies

between instructions. This not only make the compilation complex, long, and inefficient but

may lead to unreliable code. Therefore, we designed a micro-ISA to avoid interfering with any

pre/post-processing stage inside the CIM unit, thus eliminating the chance of external error.

The controller (Figure 4.b) reads the operation parameters that are written into the

configuration register (Error! Reference source not found.) via SCR instruction and manage

the whole operation based on these registers.

3.2 Micro-Engine and Micro-ISA

To avoid long micro-ISA, that include several execution parameters, a configuration register

is introduced to hold these parameters (Error! Reference source not found.). The controller,

a mealy machine (FSM), conducts the correct execution of an instruction, e.g. filling buffers,

enabling/disabling the analogue elements, etc (Error! Reference source not found.). To carry

out an operation, first, the configuration should be filled using the set configuration register

(SCR) instructions. Based on the contents of the configuration register, the FSM calculates the

address of the buffers, aligns the data, triggers the operation, collects the crossbar output,

and post-processes the output (if needed). In the end, the FSM controls the process of sending

the final results out. As mentioned, the controller is a mealy machine that issues the control

signal based on received micro-instructions, configuration register contents, the state of the

FSM, and internal flags (Figure 4.b). The digital buffers, the configuration registers, and the

controller, all together, constitute the Micro-engine.

Table 1. Micro instructions

Class Mnemonic Description Operands

Initialization

SCR Set Configuration Register address, data

SRS Set Row Select buffer data

SWD Set Write Data buffer data

Compute STR Start operation, e.g. VMM -

Read ROUT Read results out -

Table 2. Configuration Registers. Controller conducts an operation based on the content of

configuration register

According to a prototype developed by IBM [12], to write a phase change memory (PCM), a

type of memristors, or to perform a VMM it takes 2.5μs, 1μs, respectively. Considering that

these delays are considerably long, we attempted to schedule some tasks into these very long

time slot. The data that is to be processed on the CIM unit is a vector. Hence, we propose to

add an extra set of buffers in the CIM unit (double buffering) to fetch the (n+1)th vector while

nth vector is being processed (Error! Reference source not found..b). To ensure that no data

is lost, we add an extra level to the controller that supervises the correct redirection of the

control signals. This approach of having a top layer in the controller enables us to perform the

operations that are targeted in [8].

Figure 5. CIM unit execution flow, a) without DB, b) with DB (Init., Compute and Read are three

classes of micro instructions in Table 1)

Register Index 0 1 2 3 4 5 6 7 8 9-15

Register content

St
ar

t
R

o
w

St
ar

t
C

o
lu

m
n

N
u

m
b

er
 o

f
R

o
w

s

N
u

m
b

er
 o

f
C

o
ls

In
p

u
t

P
re

ci
si

o
n

W
ei

gh
t

P
re

ci
si

o
n

O
u

tp
u

t
P

re
ci

si
o

n

Tr
u

n
ca

te
 B

it
s

O
p

er
at

io
n

R
es

er
ve

d

4. PULP Macro Architecture

In this section we first briefly introduce PULP. Then details of introducing an accelerator to

PULP is elaborated. In the end, the overview of the accelerator and the integration of CIM tile

is described.

4.1 PULP

Figure 6 depicts the architecture of PULP. The system is split into two different power/clock

domains: 1) The Cluster domain contains several general-purpose processing cores, CIM

Accelerators and shared memory. 2) The SoC domain on the other hand contains IO blocks

for communication with off-chip peripherals and external memory, a power management unit

and clock generators. All these components as well as the cluster domain is controlled by a

tiny processor, the so-called fabric controller.

Figure 6. PULP architecture

Fabric Controller: The fabric controller is responsible for orchestrating I/O peripherals the

external memory controller as well as the cluster. To process data on the high-performance

cluster the fabric controller can fork execution to the general-purpose cores within the cluster

and can dynamically adjust the clusters frequency for optimal performance and energy

efficiency.

Cluster Architecture: The cluster consists of several general-purpose processing elements

(PE) based on ETH’s RI5CY RV32IMF core and one or multiple CIM accelerators. All processing

elements share access to the tightly coupled data memory, a multi-banked software managed

scratchpad memory for data exchange between the processing elements. The DMA module

within the cluster can be programmed by the PEs to transfer data between the larger L2

memory in the SoC domain and an event unit provides the means for synchronization

between the processing elements. Each processing element is connected via two

interconnects: The peripheral interconnect is a low bandwidth bus based on AMBA APB1 used

for configuration of the DMA, event unit and most importantly the CIM accelerators. The

TCDM interconnect provides low latency and high-bandwidth access to the shared TCDM

memory and is based on the so-called Logarithmic Interconnect, a forest of arbitration trees

providing parallel single cycle access to the multi-banked memory with transparent

arbitration in the case of bank conflicts between different processing elements.

4.2 CIM Accelerator Interface

TCDM Interface: CIM accelerators are connected to external L1/L2 shared memory by means

of a simple memory protocol, using a request/grant handshake. The protocol used is called

Tightly Coupled Data Memory (TCDM) protocol, and it is the same as the one used by cores

and DMAs operating on memories. It supports neither multiple outstanding transactions nor

bursts, as the accelerators are designed to be closely coupled to memories. The TCDM

protocol is used to connect a master to a slave.

Peripheral Interface: To enable the control of the CIM Accelerators, they typically expose a

slave port to the peripheral system interconnect. The slave port follows an extension of the

TCDM protocol which we can call PERIPH. The PERIPH protocol is the same exposed by most

peripherals in a PULP system and used by the GP cores to communicate with them. The

PERIPH protocol is distinguished by the TCDM protocol by the id and r_id side channels. They

are used in load operations issued through a PERIPH interface: the id identifies the master

during the request phase, is buffered by the slave peripherals and accompanies the response

phase as r_id. In this way, multiple masters can distinguish which traffic is related to

themselves.

4.3 CIM Unit Integration into CIM Accelerator

The CIM accelerator comprises some load/store units –to calculate the address of

input/output data and to interact with TCDM interface, as well as a CIM unit. The controller

of the CIM unit should change slightly to carry out an operation without keeping the core

busy. Hereunder it is explained what the CIM tile would look like after applying the

modifications:

1) To interface with the Peripheral Interconnect for configuration access by the general-

purpose core(s), it should have a 4-bit address port and a 32-bit read/write port. These

ports are used by the core(s) to read/write any address in the configuration register

of the CIM unit. A similar configuration register is required for the load/store unit(s).

2) A 32-bit data stream input and 32-bit data stream output needs to be added with the

means to stall accelerator in the presence of memory contention in the scratchpad

memory. The load/store units will translate between the stream-based data-path of

the CIM-tile and the transaction-based data-path of the TCDM interconnect.

3) To keep core(s) free as much as possible, the core(s) will program the CIM unit, and

the load/store units and trigger the operation as soon as the units are configured.

Therefore, the configuration register would be extended according to Table 3.

Load/store units will interact with the TCDM interconnect to fetch/store data into

TCDM memory bank according to the linear memory access scheme configured by the

core via the Peripheral Interconnect.

4) A handshaking protocol would be devised to replace SRS, SWD, and ROUT micro-

instructions in Table 1. This is required to ensure a valid data is on the CIM unit I/O

port.

Table 3. CIM unit configuration register in PULP

Register Index 0 1 2 3 4 5 6 7 8 9 10 11-15

Register content

St
ar

t
R

o
w

St
ar

t
C

o
lu

m
n

N
u

m
b

er
 o

f
R

o
w

s

N
u

m
b

er
 o

f
C

o
ls

In
p

u
t

P
re

ci
si

o
n

W
ei

gh
t

P
re

ci
si

o
n

O
u

tp
u

t
P

re
ci

si
o

n

Tr
u

n
ca

te
 B

it
s

O
p

er
at

io
n

St
at

u
s

Tr
ig

ge
r

O
p

er
at

io
n

R
es

er
ve

d

5. TTA Macro Architecture

In this section, first, Transport Triggered Architectures (TTAs) are introduced. It is followed by

describing TTA Co-design Environment (TCE), an open-source toolset that allows adding

special functional units like the CIM unit to the architecture. Then, the details of the CIM

special functional unit (CIM-SFU) integration into TTA architecture is explained. Lastly, Low-

power TTA (LoTTA) [15], a processor core based on TTA that is developed for energy-efficient

execution of always-on applications, is described.

5.1 TTA and TCE

Transport Triggered Architectures are a class of Exposed Data Path Architectures (EDAPs),

where the data path of the processor instance is exposed to the programmer. Fine-grain

control over data path allows compile-time bypassing of data between processing-elements,

i.e. software bypassing, without dependency checking hardware circuitry, which improves

energy-efficiency. Furthermore, static scheduling of instructions on EDAPs open up new

optimization possibilities on the software as well as on the hardware side. With a data path

aware compiler, a) the register file data-bandwidth requirements of EDAPs do not need to

satisfy the worst-case design requirements of the execution pipeline (FUs) and thereby

relaxes the read/write port requirements of RF design and improves scalability over VLIWs,

b) the interconnection network can be customized for an application/domain to prioritize the

most-used data path over rarely used one to avoid excessive redundant connections, and c)

the EDAPs specific optimization at soft-ware level, such as the ability to directly forward data

from one FU to another(software bypassing), and eliminating a result move to RF when all the

uses of the result are software bypassed (dead result elimination) to avoid costlier RF access.

The above described primary optimizations allow EDAPs to reach high energy-efficiency

without compromising programmability.

Compared to traditional operation triggered architectures, where operation triggers data

path activity, the TTA instruction represents the data transports (TTA data-move) and the

computations are triggered as a side effect of the data-move. Functional Units of TTA

comprise one or more operand ports and optional result ports that can communicate data

over the interconnect network. In TTAs, one of the operation ports of FUs is a fixed as special

port named “trigger-port”. A data-move to trigger-port starts the execution of an operation

on FUs. Figure 7 (bottom) depicts an example of a TTA processor instance with three

communication resources (bus network) and one CIM unit as an added special functional unit

(CIM-SFU). The trigger-port of the FUs are marked as “T”. The CIM-SFU is the functional model

of the CIM unit with CIM-ISA defined in the section 3. The Figure 7 (top) shows a TTA program

for simple increment operation (i.e. a=a+ 4) on the processor instance [15] to illustrate a

programming model of the TTAs. Three buses in the instance imply that three data transport

can happen in parallel during each clock cycle. Therefore, both operands move (a and 4) can

happen in parallel for the considered example and the whole operation takes two cycles in

total as shown by the color-coded data moves. The data move 4→ALU1.add.in1t triggers

execution of an add operation in the ALU unit with operands on input ports in1t and in2 at

cycle-1. At cycle-2, the result of the add operation (assuming add latency is one cycle) is

written back to RF.

A mature open-source toolset, TTA Co-design Environment (TCE), enables users to design and

freely customize TTAs for their purpose. It includes a re-targetable instruction-set compiler,

cycle-accurate ISA simulator, RTL generator, and support for adding special compute-units for

dedicated functions. TTAs are an ideal candidate for energy-efficient application-specific

instruction-set processors (ASIPs), and a sensible choice for prototyping experimental

platforms such as CIM Tile.

Figure 7. TTA based processors overview. LoTTA (Top). LoTTA+1×CIM (Bottom)

5.2 CIM unit integration into TTA

 As pointed out before in Section 3, the latency of the CIM computations (VMM, Write, etc.)

is much higher than the regular operations on the traditional FUs such as ALU, MUL, etc. This

gives rise to two main requirements for CIM-SFU design, 1) A multi-cycle FU model to

hide the latency of the CIM-SFU from other units, and 2) Pipelined FU model to separate

the CIM compute unit (Calculator) from the TTA interface (operand and result port) to hide

data-latency with the double-buffering concept (Error! Reference source not found..b). The

semi-virtual time latching model of the FUs in the TCE allows multi-cycle, pipelined TTA-SFU

model possible in the TCE tool-set. Figure 4.a depicts the designed CIM-SFU. The CIM-SFU is

modelled as a three-stage pipeline with the first-stage the first-stage fetching the input data,

the second stage covering the core CIM mixed-signal computation logic (Calculator), and the

third stage sending the results out (Error! Reference source not found..a). The pipeline of the

SFU is controlled by a trigger move i.e. when the trigger move happens, the operands (input1t

and optional input2−n) are latched to the Micro-engine and the opcode is issued to the

controller of the Micro-engine. The FSM, then, issues necessary control signals for the rest of

the components. Calculator, which is modelled cycle-accurately, produces the result on the

output buffer once the operation latency is elapsed for the triggered operation. The data on

the output buffer is then serialized to the output port via an explicit trigger commands to

controller. The architecture template of the TCE requires that each operation in the FU to

have a deterministic latency such that the resulting read for the operation can be scheduled

at compile time.

5.3 LoTTA

 Low-power TTA (LoTTA) [15] is a processor core aimed for always-on processing and efficient

execution of both signal processing and control-oriented programs. The core used for

evaluations in this paper is a variant of the original work. Functional units of the core and its

interconnection network are presented in Figure 7.a.

6. Experiments

In this section, we present the effects of adding CIM unit in a quantitative manner. To do so,

we employ LoTTA, without a CIM-SFU, as a base setup. Then, CIM-SFU(s) are added to LoTTA

to explore its effect on various parameters such as performance, energy, and area. For

evaluation, we used gemm as well as deep learning LeNet kernels.

6.1 Experimental Setup

The energy and area estimations for the LoTTA core are obtained after synthesis with

Synopsys Design Compiler, version 2016.12. A 28 nm process is used at 0.95 V operating

voltage and 25°C temperature process corner. For power consumption analysis, switching

activity information files (SAIFs) are generated with ModelSim 10.5.

The weight to be mapped on NVM crossbar are 8-bit values which are mapped on IBM’s 4-bit

PCM [11]. To mimic an 8-bit weight with 4-bit cells, two columns are used, one for four MSBs

and the other for four LSBs. The final result is computed by a weighted sum of MSB and LSB

columns in the digital logic block. The models for the crossbar and mixed-signal circuitry are

from [11] and [19].

Table 4. CIM and LoTTA Configuration

Crossbar Parameter Value

Memristor Technology

Cell precision

Compute and Write Latency/8-bit

Compute Energy/8-bit

Write Energy/8-bit

Area (128×128)

IBM PCM

8-bit (implemented by 2×(4-bit) PCMs)

1 µs and 2.5 µs

200 fJ (2x100 fJ/4-bit PCM)

200 pJ (2x100 pJ/4-bit PCM)

50 µm2

Peripheral Circuitry Energy Area

Mixed Signal

Micro-engine (Digital)

2.1 nJ/cycle (@1.2GHz)

64.8 pJ/byte

1252 µm2

865 µm2

6.2 Evaluation

As mentioned earlier, we evaluated gemm and LeNet kernels. For gemm, we studied the

impact of different input and matrix sizes. For LeNet, we evaluated performance, accuracy,

energy, as well as area for different crossbar sizes.

gemm: To evaluate how memristor crossbars perform on VMM, we implemented the gemm

kernel on a crossbar of size 256×256. Figure 8.a shows that by increasing the number of input

vectors the speedup increases from 1.2X to 3.9X for basic CIM unit without double buffering.

This was expected since the computation dominates the initial overhead of programming the

crossbar. Increasing the number of the rows of the weight matrix, i.e. the columns of the input

matrix, it is observed that although the speed-up increases, the improvement rate is less

significant compared to the previous case (Figure 8.b). This happens as the number of cycles

required to program the crossbar dominates the overall execution time. Considering these

two experiments, and the fact that memristors still suffer from low endurance, the read/write

ratio shall be taken into account to assess if it is reasonable to use a memristor crossbar or

not. Lastly, in Figure 8.c we observe that increasing the number of weight matrix columns

increases the speed-up rate of LoTTA+CIM over LoTTA.

Double Buffering: Figure 8.a shows that although by deploying double buffering performance

improves compared to non-DB, relative speedup goes down from 1.02X to 1.01X. This

happens since the size of input vector is too small, thus, a limited number of instructions can

be scheduled to a VMM execution period (Compute stage in Error! Reference source not

found..) However, in Figure 8.c we observe that as the number of columns of weight matrix

increases the relative speedup caused by deployment of DB goes from 1.02X to 1.10X. This

happens since the size of the vector to be loaded and programmed on the memristor crossbar

grows; therefore, more instructions can be scheduled to a write execution period.

(a) Varying Input Vectors

(b) Varying Weight Matrix Rows

(c) Varying Weight Matrix Columns

Figure 8. Performance for gemm kernel

LeNet: To assess the suitability of memristor based CIMs for deep learning applications, we

implemented the LeNet architecture on LoTTA and LoTTA+CIM unit(s). The LeNet architecture

comprises both convolutional as well as fully connected neural network layers that makes it

a perfect data-intensive application instance to study with respect to implications associated

with deploying memristor crossbars in a full-blown system. One of the challenges that

memristor crossbars should address is the possibility that the weight matrix exceeds the

memristor crossbar in size, i.e., either in the number of columns or rows. If the number of

columns of the weight matrix is bigger than that of the actual memristor crossbar, the only

measure that should be taken is to divide the weight matrix over M CIM units, where 𝑀 =

 ⌈
𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝑐𝑜𝑙

𝑀𝑒𝑚𝑟𝑖𝑠𝑡𝑜𝑟𝐶𝑟𝑜𝑠𝑠𝑏𝑎𝑟𝑐𝑜𝑙
⌉, or to divide the task over time and use a CIM unit M times. The second

solution is not quite desirable due to the low endurance of memristors. Obviously, the RS

buffer in each and every CIM unit has to hold the exact same data. Since columns results are

independent, they can be handled without any dependency. In case the number of rows of

the weight matrix is bigger than that of the actual memristor crossbar, like in the previous

case, either N CIM units are required, where 𝑁 = ⌈
𝑊𝑒𝑖𝑔ℎ𝑀𝑎𝑡𝑟𝑖𝑥𝑟𝑜𝑤

𝑀𝑒𝑚𝑟𝑖𝑠𝑡𝑜𝑟𝐶𝑟𝑜𝑠𝑠𝑏𝑎𝑟𝑟𝑜𝑤
⌉, or the operation

should be carried out in N time steps with one CIM unit. Unlike the previous case the results

of each part are only partial results and should be accumulated to produce the final result. To

study this, we assume various sizes for the memristor crossbar. The biggest memristor

crossbar has 512 rows and the smallest has 128. The number of columns of all the layers of

LeNet are always smaller than the matrix size. Considering that the weight matrix of the

second and the third layers of LeNet after unrolling are 150 and 400 rows, respectively, these

layers should be either distributed temporally, if the resources are limited, or spatially, if

enough CIM units are available. Figure 9 shows the results of various implementations. Using

only one CIM unit, even one that is big enough to map a whole layer to the crossbar,

performance is worse than any other implementation with multiple CIM units due to

parallelism. Distributing weights matrix amongst several CIM units saves quite a few cycles

while programming the crossbar, since this is the most time-consuming step of performing an

operation on a memristor crossbar. The reason that the implementation with two units of

size 256×256 yields worse results compared to the one with two crossbars of size 128×128 is

that we map a whole layer to one crossbar if it was possible. This is important as splitting

weight degrades the accuracy (Figure 10). As can be seen in Figure 9, we have mapped the

architecture for the DB version as well. The best performance is achieved when the four CIM

units that are deployed in the design, do the calculation in parallel.

Figure 9. Performance comparison of architectures for LeNet deep neural network

Accuracy: The error sources that we have spotted are two folds; 1) MSB and LSB columns are

truncated by the DC offset of the ADC before being summed up together; therefore, the

expected carry bit from the addition of the lower bits is lost, 2) The saturation voltage

of ADC clips the high/low voltages. In case a crossbar is distributed amongst several CIM

units or it is multiplexed in time, a partial sum may exceed the saturation voltage while other

partial sums do not reach the saturation voltage. If all parts were together this would be a

saturated result while in the distributed case partial sums produce a different result. In a

mathematical terminology ∑ 𝑓(𝑥𝑖
𝑗
) ≠ 𝑓(∑ 𝑥𝑖

𝑗
), where 𝑓 is a non-linear function –

characteristics of ADC– and 𝑥𝑖
𝑗
 is the output of ith column of jth CIM crossbar. Looking at Figure

10, we observe that splitting the weight matrix in different manners results in different errors.

As an instance, for crossbar(s) of size 128×128, although the inputs are the same, just by

splitting the second layer weight differently different number of faulty errors with different

averages are reported (see blue, yellow, and orange bars in the figure). Although these errors

degrade the final result, due to the resilient nature of LeNet the input images are still classified

correctly. To address the degradation of the results, itis required to retrain the network with

crossbar size being taken into account.

a) Sum of absolute errors normalized

by the maximum value

b) Percentage of faulty outputs

Figure 10 . Errors in results using basic weight without retraining

Energy and Area: One of the most important concerns in the deployment of CIM units is their
analogue nature which requires data conversion that can be costly. Although digital/analogue
converters (DACs) are relatively cheap, in terms of energy/area, analogue/digital converters
(ADCs) can be extremely costly– more than 500X more power hungry and more than 7000X
bulkier compared to DACs [19]. One of the techniques that is commonly used to reduce the
energy/area overhead is to share an ADC amongst several columns. To do so, sample and
hold circuits (S&Hs) are introduced between the ADC and crossbar. With such modifications
the required energy budget falls into a reasonable scale. Table 5 shows that in the best case
up to 69% energy reduction can be achieved, while area is increased by 80%. Looking at EDPA
–energy, delay, area product–we observe that in almost all cases, except for a crossbar of size
512×256, the double buffered version performs better than all other implementation in the
basic CIM unit. Also, it is spotted that in the DB version the 2×(128×128) yields the best EDAP,
while in the basic version the best EDAP is obtained by 4×(128×128).

Table 5 . Energy and area results for different CIM unit configurations

Core LoTTA
1×(128×128) 1×(512×512) 2×(128×128) 2×(256×256) 4×(128×128)
non-
DB

DB
non-
DB

DB
non-
DB

DB
non-
DB

DB
non-
DB

DB

Energy (mJ) 1.54 0.92 0.68 0.89 0.62 0.68 0.49 0.74 0.52 0.61 0.48

Area (µm2) 10009 12175 12460 17534 18674 13761 14331 16934 18074 16934 18074

EDAP (109) 13.25 5.66 7.61 3.43 4.97 3.36 3.07 3.88 1.86 2.65 2.18

7. Conclusion

In this deliverable, we presented a cycle-accurate simulator for a memristor based CIM unit

to scrutinize the challenges that are associated with their integration into a full system. The

simulator has two version: 1) one that offers a micro-ISA that allows a memristor crossbar to

be integrated into a transport triggered architecture, 2) one that is configured via its

configuration register and together with load/store units serves as an accelerator in PULP.

The integration not only enhances the crossbar with general-purpose functional units/load

store units to execute complex kernels but also enables us to study the challenges that are

associated with a memristor crossbar deployment in a full-blown system.

Deploying CIM unit(s) –in TTA— shows huge improvements in terms of performance and

energy, up to 3.9X speedup and 69% energy reduction. However, including CIM units has a

price. The extra units increase the overall area. In our examples, the area increases between

21% and 86%. In addition, accuracy of the results may degrade since the architecture is not

taken into account while the networks are trained. Hence, training should take the

architecture properties into account. Of course, it would elongate the training process [3].

The huge reduction of EDAP (up to 84%) is an extremely motivating point, though.

We expect that the integration of a CIM unit into PULP also result in a considerable energy

saving and performance improvement. Obviously, the area and accuracy penalty are expected

to be bigger here. However, as accelerators in PULP can only send data via TCDM memory

banks, the improvement that is gained in a multi-CIM unit implementation in TTA, where the

data-path can be specified in a wat that the units can pass data directly, is expected to be

smaller. In the other hand, the integration into PULP is quite interesting as PULP is far more

similar to commercialized classical MPSoCs thereby can help to understand the challenges

associated with deployment of CIM units as accelerators.

8. References

1. Ankit, A., Hajj, I.E., Chalamalasetti, S.R., Ndu, G., Foltin, M., Williams,R.S., Faraboschi, P.,

Hwu, W.m.W., Strachan, J.P., Roy, K., et al.: Puma: A programmable ultra-efficient memristor-

based accelerator for machine learning inference. In: Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages and Operating

Systems. p. 715–731. ASPLOS ’19, Association for Computing Machinery, New York, NY, USA (2019).

,https://doi.org/10.1145/3297858.3304049

2. Ansari, M., Fayyazi, A., Banagozar, A., Maleki, M.A., Kamal, M., Afzali-Kusha,A., Pedram, M.: Phax:

Physical characteristics aware ex-situ training framework for inverter-based memristive neuromorphic

circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37(8), 1602–

1613 (2017)

3. BanaGozar, A., Maleki, M.A., Kamal, M., Afzali-Kusha, A., Pedram, M.: Robust neuromorphic

computing in the presence of process variation. In: Design, Automation Test in Europe Conference

Exhibition (DATE), 2017. pp. 440–445 (March2017). https://doi.org/10.23919/DATE.2017.7927030

4. BanaGozar, A., Vadivel, K., Stuijk, S., Corporaal, H., Wong, S., Lebdeh, M.A., Yu, J., Hamdioui, S.:

Cim-sim: computation in memory simulator. In: Proceedings of the 22nd International Workshop on

Software and Compilers for Embedded Systems. pp. 1–4. ACM (2019)

5. Cai, F., Correll, J.M., Lee, S.H., Lim, Y., Bothra, V., Zhang, Z., Flynn, M.P., Lu, W.D.: A fully integrated

reprogrammable memristor–cmos system for efficient multiply–accumulate operations. Nature

Electronics 2(7), 290–299 (2019)

6. Chen, P.Y., Peng, X., Yu, S.: Neurosim+: An integrated device-to-algorithm framework for

benchmarking synaptic devices and array architectures. In: 2017 IEEE International Electron Devices

Meeting (IEDM). pp. 6–1. IEEE (2017)

7. Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., Xie, Y.: Prime: A novel processing-in-memory

architecture for neural network computation in reram-based main memory. In: Proceedings of the

43rd International Symposium on Computer Architecture. pp. 27–39. ISCA ’16, IEEE Press, Piscataway,

NJ, USA (2016).https://doi.org/10.1109/ISCA.2016.13, https://doi.org/10.1109/ISCA.2016.13

8. Hamdioui, S., Du Nguyen, H.A., Taouil, M., Sebastian, A., Gallo, M.L., Pande, S.,

Schaafsma, S., Catthoor, F., Das, S., Redondo, F.G., Karunaratne, G., Rahimi, A., Benini, L.:

Applications of computation-in-memory architectures based on memristive devices. In: 2019

Design, Automation Test in Europe Conference Exhibition (DATE). pp. 486–491 (March 2019).

https://doi.org/10.23919/DATE.2019.8715020

9. Hu, M., Strachan, J.P., Li, Z., Stanley, R., et al.: Dot-product engine as computing memory to

accelerate machine learning algorithms. In: 2016 17th International Symposium on Quality Electronic

Design (ISQED). pp. 374–379. IEEE (2016). https://doi.org/10.1109/ISQED.2016.7479230

https://doi.org/10.1145/3297858.3304049,https:/doi.org/10.1145/3297858.3304049
https://doi.org/10.23919/DATE.2017.7927030
https://doi.org/10.1109/ISCA.2016.13

10. Jiang, H., Belkin, D., Savel’ev, S.E., Lin, S., Wang, Z., Li, Y., Joshi, S., Midya,R., Li, C., Rao, M., et

al.: A novel true random number generator based on a stochastic diffusive memristor. Nature

communications 8(1), 882 (2017)

11. Le Gallo, M., Sebastian, A., Cherubini, G., Giefers, H., Eleftheriou, E.: Compressed sensing with

approximate message passing using in-memory computing. IEEE Transactions on Electron Devices

65(10), 4304–4312 (2018)

12. Le Gallo, M., Sebastian, A., Mathis, R., Manica, M., Giefers, H., Tuma, T., Bekas,C., Curioni, A.,

Eleftheriou, E.: Mixed-precision in-memory computing. Nature Electronics 1(4), 246 (2018).

https://doi.org/10.1038/s41928-018-0054-8

13. Li, S., Xu, C., Zou, Q., Zhao, J., Lu, Y., Xie, Y.: Pinatubo: A processing-in-memoryarchitecture for

bulk bitwise operations in emerging non-volatile memories. In: 2016 53rd ACM/EDAC/IEEE Design

Automation Conference (DAC). pp. 1–6 (June2016). https://doi.org/10.1145/2897937.2898064

14. Mittal, S.: A survey of reram-based architectures for processing-in-memory and neural networks.

Machine learning and knowledge extraction 1(1), 75–114 (2018)

15. Multanen, J., Kultala, H., J ä äskel äinen, P., Viitanen, T., Tervo, A., Takala, J.:Lotta: Energy-efficient

processor for always-on applications. In: 2018 IEEE Inter-national Workshop on Signal Processing

Systems (SiPS). pp. 193–198. IEEE (2018)

16. Nair, R., Antao, S.F., Bertolli, C., Bose, P., Brunheroto, J.R., Chen, T., Cher, C.Y.,Costa, C.H., Doi, J.,

Evangelinos, C., et al.: Active memory cube: A processing-in-memory architecture for exascale

systems. IBM Journal of Research and Development 59(2/3), 17–1 (2015)

17. Pi, S., Ghadiri-Sadrabadi, M., Bardin, J.C., Xia, Q.: Nanoscale memristive radiofrequency switches.

Nature Communications 6, 7519 (2015)

18. Seshadri, V., Lee, D., Mullins, T., Hassan, H., Boroumand, A., Kim, J., Kozuch,M.A., Mutlu, O.,

Gibbons, P.B., Mowry, T.C.: Ambit: In-memory accelerator forbulk bitwise operations using

commodity dram technology. In: Proceedings of the50th Annual IEEE/ACM International Symposium

on Microarchitecture. pp. 273–287. ACM (2017)

19. Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P.,Hu, M., Williams,

R.S., Srikumar, V.: Isaac: A convolutional neural networkaccelerator with in-situ analog arithmetic

in crossbars. In: Proceedings of the 43rd International Symposium on Computer Architecture. pp. 14–

26. ISCA ’16, IEEE Press, Piscataway, NJ, USA (2016).

https://doi.org/10.1109/ISCA.2016.12,https://doi.org/10.1109/ISCA.2016.12

20. Singh, G., Chelini, L., Corda, S., Awan, A.J., Stuijk, S., Jordans, R., Corporaal, H., Boonstra, A.J.: A

review of near-memory computing architectures: Opportunities and challenges. In: 2018 21st

Euromicro Conference on Digital System Design (DSD). pp. 608–617. IEEE (2018)

https://doi.org/10.1038/s41928-018-0054-8
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1109/ISCA.2016.12,https:/doi.org/10.1109/ISCA.2016.12

21. Upadhyay, N.K., Jiang, H., Wang, Z., Asapu, S., Xia, Q., Joshua Yang, J.: Emerging memory devices

for neuromorphic computing. Advanced Materials Technologies 4(4), 1800589 (2019)

22. Wang, Z., Joshi, S., Savel’ev, S., Song, W., Midya, R., Li, Y., Rao, M., Yan, P., As-apu, S., Zhuo, Y., et

al.: Fully memristive neural networks for pattern classification with unsupervised learning. Nature

Electronics 1(2), 137 (2018)

23. Xia, L., Li, B., Tang, T., Gu, P., Chen, P.Y., Yu, S., Cao, Y.,Wang, Y., Xie, Y.,

Yang, H.: Mnsim: Simulation platform for memristor-based neuromorphic computing system.

vol. 37, pp. 1009–1022 (2018). https://doi.org/10.1109/TCAD.2017.2729466

24. Xie, L., Du Nguyen, H.A., Yu, J., Kaichouhi, A., Taouil, M., AlFailakawi, M., Ham-dioui, S.: Scouting

logic: A novel memristor-based logic design for resistive com-puting. In: 2017 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). pp. 176–181. IEEE (2017). https://doi.org/10.1109/ISVLSI.2017.39

25. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Naturenanotechnology

8(1), 13 (2013)

26. Zangeneh, M., Joshi, A.: Performance and energy models for memristor-based 1t1r rram

cell. In: Proceedings of the Great Lakes Symposium on VLSI. p. 9–14. GLSVLSI ’12,

Association for Computing Machinery, New York, NY, USA (2012).

https://doi.org/10.1145/2206781.2206786,https://doi.org/10.1145/2206781.2206786

27. Zidan, M.A., Jeong, Y., Shin, J.H., Du, C., Zhang, Z., Lu, W.D.: Field-programmable crossbar array

(fpca) for reconfigurable computing. IEEE Transactions on Multi-Scale Computing Systems 4(4), 698–

710 (Oct 2018). https://doi.org/10.1109/TMSCS.2017.2721160

https://doi.org/10.1109/ISVLSI.2017.39
https://doi.org/10.1145/2206781.2206786,https:/doi.org/10.1145/2206781.2206786

