
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Computational aspects of Generating
Catalan numbers

Bachelor Thesis

2020
Nikola Horníková

ii

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Computational aspects of Generating
Catalan numbers

Bachelor Thesis

Study Programme: Applied informatics
Field of Study: Applied informatics
Department: Department of applied informatics
Supervisor: doc. RNDr. Tatiana Jajcayová, PhD.

Bratislava, 2020
Nikola Horníková

iv

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Nikola Horníková
Študijný program: aplikovaná informatika (Jednoodborové štúdium, bakalársky

I. st., denná forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Computational Aspects of Generating Catalan Numbers
Výpočtové aspekty generovania Catalánových čísel

Anotácia:

Cieľ:

Vedúci: doc. RNDr. Tatiana Jajcayová, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 07.10.2019

Dátum schválenia: 08.10.2019 doc. RNDr. Damas Gruska, PhD.
garant študijného programu

študent vedúci práce

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Nikola Horníková
Study programme: Applied Computer Science (Single degree study, bachelor I.

deg., full time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Computational Aspects of Generating Catalan Numbers

Annotation: Catalan Numbers appear in various contexts in Computer science. The nth
Catalan number is given directly in terms of binomial coefficients, and the
recursive definition given by a non-linear recurrence relation is also known.
One of the mathematical objects to which the Catalan numbers are related are
so called Hankel matrices, and those, in turn, are used with Hidden Markov
models.

Aim:
The goal of the theses is to study this connection between the Catalan numbers
and Hidden Markov models. Possible means to achieve this is to connect various
different combinatorial problems in Informatics in which Catalan Numbers
appear, employ some knowledge of statistics and probability, understand
Hidden Markov models and design good tests and algorithms. This requires to
use “intelligent" approach to programming as the sequence of Catalan Numbers
grows very fast.

Supervisor: doc. RNDr. Tatiana Jajcayová, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 07.10.2019

Approved: 08.10.2019 doc. RNDr. Damas Gruska, PhD.
Guarantor of Study Programme

Student Supervisor

iii

Acknowledgments: I would like to thank my supervisor doc. RNDr. Tatiana
Jajcayová, PhD for her time, provided resources, consultations and valuable advice.

iv

Abstrakt

Cieľom tejto práce je pokúsiť sa nájsť prepojenie medzi Katalánskymi číslami a Skry-
tými Markovovými modelmi. Tento cieľ sme dosiahli skúmaním a študovaním Katalán-
skych čísel, Hankelových matíc, Markovových reťazcov, Markovových modelov, až
nakoniec Skrytých Markovových modelov. Rozhodli sme sa pre skúmanie tohto spo-
jenia pomocou modelovania Markovových modelov použitím nami naprogramovaných
algoritmov. Pomocou nich sme uskutočnili viacero experimentov a dostali sme rôzne
výsledky. Z výsledkov sme odvodili a opísali spojenie, ktoré sme našli. Naša práca a
jej výsledky sa dajú použiť ako vhodný odrazový mostík k ďalšiemu výskumu.

Kľúčové slová: Katalánske čísla, Hankelove matice, Skryté Markovove modely, pro-
gramovací jazyk Rust

v

Abstract

The goal of the thesis was to study this connection between the Catalan number sand
Hidden Markov models. We accomplished that by studying the Catalan numbers,
Hankel matrices, Markov chains, Markov models and finally Hidden Markov models.
To analyze the fields and explore the possible connection, we implemented algorithms
related to Hidden Markov models. We executed multiple experiments in order to
find the connection between the Catalan numbers and Hidden Markov models. The
experiments resulted in both successful and unsuccessful conclusions. We were able
to find and describe the found connection. We also provide a good starting point for
further research of the connection.

Keywords: Catalan numbers, Hankel matrices, Hidden Markov models, Rust pro-
gramming language

vi

Contents

Introduction 1

1 The origin of Catalan numbers 3
1.1 History . 3

1.1.1 China . 3
1.1.2 Europe . 4
1.1.3 The rest of the world . 4

1.2 Modern times . 4
1.3 The name . 4

1.3.1 Eugene Charles Catalan . 4
1.3.2 The first mention . 5

1.4 The formulas . 5

2 Various encounters with Catalan numbers 7

3 Hankel matrices and Catalan numbers 15
3.1 Hankel matrices . 15
3.2 Hankel transform . 16
3.3 Catalan numbers step in . 16

3.3.1 Hankel transform of Catalan numbers in relation with other spe-
cific matrices . 17

4 Markov models 19
4.1 Markov chain . 19

4.1.1 Regular Markov chain . 19
4.1.2 Absorbing Markov chain . 21

4.2 Hidden Markov models . 21
4.2.1 Algorithms used with HMM . 25
4.2.2 Hidden Markov models and Hankel matrices 28

5 Implementation 29
5.1 Technologies . 29

vii

viii CONTENTS

5.1.1 The Rust programming language 29
5.1.2 Library ndarray . 30

5.2 Generating Catalan numbers . 31
5.2.1 From recurrent formula . 31
5.2.2 From Pascal triangle . 31
5.2.3 Using an iterator . 32
5.2.4 From the direct formula . 32

5.3 Matrix Operations . 33
5.3.1 Horizontal stacking . 33
5.3.2 Boolean masking . 34
5.3.3 Applying element-wise operation 35

5.4 Hidden Markov Model algorithms . 36

6 Experiments 37
6.1 Lattice paths of n R’s and n U’s . 38

6.1.1 Choosing the data to study the lattice paths 38
6.1.2 Experimenting with the lattice paths 38
6.1.3 The result of experimenting with the lattice paths 41

6.2 Arrangements of integers . 42
6.2.1 Choosing the data to study the arrangements of integers 42
6.2.2 Experimenting with the arrangements of integers 42
6.2.3 The result of experimenting with the arrangements 45

6.3 Complete rooted binary trees on 2n+ 1 vertices 45
6.3.1 Choosing the data to study such binary trees 45
6.3.2 Experimenting with such binary trees 46
6.3.3 The result of experimenting with such binary trees 50

6.4 Result . 50

Conclusion 51

Introduction

Catalan numbers are a ubiquitous number sequence that arises in numerous surpris-
ing situation. Fascinating, yet not as popular as Fibonacci numbers, they have been
studied for a long time and have appeared in various situations, related to various
fields. We decided to study those numbers, pay attention to the similarities of their
occurrences, and possibly find another one. One of the mathematical objects that the
Catalan numbers appear in are matrices, specifically Hankel matrices. We studied the
behaviour of Hankel matrices and its connection to the Catalan numbers.

During this study, we found out that the Hankel matrices are used with Hidden
Markov models due to its rank property. We found this statistical model to be dif-
ferent from structures in examples of Catalan numbers we already crossed. Thus we
decided to look for a connection between the Catalan numbers and Hidden Markov
models. Hidden Markov models required another look into a distinct field, statistics,
and probability. From Markov chains, through Markov models, we finally learnt about
Hidden Markov models.

We implemented algorithms to build those models, in order to examine its capability
to learn from data sets related to Catalan numbers. We chose Rust programming
language as the implementation language for the algorithms because of its multiple
benefits such as safety and speed. We implemented four algorithms related to Hidden
Markov models and encountered some deficiencies in the used libraries. To counter
them, we had to implement multiple functions mostly for matrix operations to be used
in the algorithms. There were many possibilities to choose the data set from, so we
decided to choose three examples of occurrences of the Catalan numbers to experiment
with. We ended up with various results, both successful and failed. In one or the other,
we studied the reasons behind them and provided an explanation.

1

2 Introduction

Chapter 1

The origin of Catalan numbers

In this chapter, we will discuss Catalan numbers’ history [11] [23], when and where
they were noticed first and the different approaches of different people who led to their
discovery. We will examine the increase of popularity in Catalan numbers throughout
the past 200 years.

We will also talk about the process of how the Catalan numbers got their name
and will point out various people of high importance in mathematics that contributed
to either of the aforementioned events.

1.1 History

The Catalan numbers have appeared in many disguises since the 18th century. By being
camouflaged, yet commonly present around, they arise in many different departments
of mathematics and other fields. As a result, the Catalan numbers been rediscovered
multiple times in various parts of the world.

1.1.1 China

Even though they were not known by the name we know them today, the first mention
of the Catalan numbers goes back to the 18th century to China. It came to light
that they were first used by a Mongolian mathematician Ming Antu, born in 1692. He
published a book in 1730 called Quick Methods for Accurate Values of Circle Segments,
in which he describes multiple trigonometric identities and power series, some of which
are associated with the Catalan numbers. The book was examined by Luo Jianjin
in 1988. Luo Jianjin noticed the occurrence of Catalan numbers in trigonometric
expansions discussed in Ming Antu’s book and pointed it out.

3

4 CHAPTER 1. THE ORIGIN OF CATALAN NUMBERS

1.1.2 Europe

In the second half of the 18th century, around the year 1750, Euler was spending time
looking for a number of ways to triangulate a polygon. He expressed his thoughts in a
letter to Christian Goldbach in 1751. Goldbach, inspired by the idea, replied to Euler
with a quadratic formula which according to him could be used to calculate the wanted
numbers. Thanks to that, Euler derived the wanted formula from a binomial formula
which he recalled from his earlier works. Euler thus composed a formula for calculating
the number of ways to triangulate a polygon of n sides, which is one of the examples,
where Catalan numbers arise.

Euler mentioned this problem to Johann Andreas von Segner too. Despite their
rivalry, their cooperation resulted in Segner’s work in which he derives and proves the
recurrence relation. However, there was a mistake in this formula. Before publishing
the work, Euler corrected it and published it as his own work.

1.1.3 The rest of the world

During the following 150 years, the Catalan numbers were discussed in various parts of
the world. For example, Russians found ways to prove the Euler’s formula differently.
English provided other examples where Catalan number arise and studied the Euler’s
work.

1.2 Modern times

It had taken 80 years to prove the Euler formula and many more to find out and connect
different examples to Catalan numbers. They are not so popular as some other number
sequences such as the Fibonacci or Bernoulli ones, however, the interest in them is still
growing. There are already numerous examples of them, which we will discuss in the
following chapter, and they have still been appearing in more and more situations.

1.3 The name

1.3.1 Eugene Charles Catalan

Eugene Charles Catalan was born in 1814 in Belgium, however, he studied in Paris and
contributed to the studies of the Catalan numbers in France. Catalan was interested
in the work of his teachers who studied the number of triangulations of a polygon.
Based on that, he obtained the standard formula for the nth Catalan number. He
discovered many examples of where the Catalan numbers arise and found a one-to-
one correspondence between them, for example, the number of different products of

1.4. THE FORMULAS 5

n variables and the number of bracket sequences, discussed in chapter 2. Catalan
also studied and published a work on divisibility of the Catalan numbers. He was
also the first one to define the ballot numbers, a number of ways in which the votes
could be counted so that the winner was always ahead in an election held between two
candidates.

1.3.2 The first mention

As a result of their chaotic history, there are many theories of how the Catalan numbers
got their name. They did not have a specific name for a long time and were addressed
as Euler numbers, Segner numbers, and Euler–Segner numbers. However, these names
did not catch on. In 1968 an American combinatorialist John Riordan called these
numbers the Catalan numbers and with his monograph, the name for the numbers
became popular [27].

1.4 The formulas

There are many ways to calculate the Catalan numbers; recursively, directly, from the
Pascal triangle [17], some other numbers sequences, and so on [11]. We implemented
some of the approaches of how the Catalan numbers can be calculated in chapter 5
and described their complexity. In this section, we briefly provide the direct formula
and the recursive formula, just to give the reader the idea of how the Catalan numbers
look like. The first few terms of the sequence are:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845...

Wee see that the Catalan numbers are a sequence with exponential growth [12].
The only prime Catalan numbers are Cn = 2 and C3 = 5 [11]. The number Cn is
proved [11] to be odd if and only if n is a Mersenne number. Mersenne numbers are a
sequence defined as Mn = 2n − 1 [21].

The recursive definition

Cn = C0Cn−1 + C1Cn−2 + ...+ Cn−2C1 + Cn+1C0

which is equal to
n∑
k=1

Ck−1Cn−k

where
C0 = 1

.

6 CHAPTER 1. THE ORIGIN OF CATALAN NUMBERS

The direct formula

The Catalan numbers can be computed directly as follows:

Cn =
1

n+ 1

(
2n

n

)
=

(2n!)

(n+ 1)!n!
=

(
2n

n

)
−
(

2n

n+ 1

)
The origin of this formula is derived in the first example provided in the following
chapter 2.

Chapter 2

Various encounters with Catalan
numbers

We collected some examples [11] [10] [5] of various situations where the Catalan num-
bers arise and we will present them to show the reader the diversity of unexpected
occurrences of these numbers. We will not provide the proof for the given examples,
those can be found in the literature listed in the bibliography. We will focus on em-
phasizing the presence of the Catalan numbers in different fields of mathematics and
computer science and showing how they all connect.

Even though the Catalan numbers appear in many combinatorial problems, they
also arise in many other surprising situations. Despite the variety of examples, they all
end up with the same sequence of Catalan numbers. Therefore, there can be created
a one-to-one correspondence between the enumerations considered in examples where
the Catalan numbers arise, which might or might not be so clear at first sight. To
help the reader see the connection between the unexpected occurrences, we order the
examples among which a bijection is more transparent.

Lattice paths of n R’s and n U’s

Consider an n× n grid, on which you want to count the number of paths that start at
(0, 0) and end at (n, n) and never rise above the line y = x (figure 2.1).

You are only allowed to go up, so to make an U move, or to go right, so to make
an R move. One of the valid paths is for example the path shown in figure 2.2.

The RU paths are sequences of R’s and U’s. The sequence of the path in the figure
2.2 would be RURURURURURURU . Such paths follow a rule that the number of
U’s never exceeds the number of R’s (we never go more up than we go to the right,
otherwise we would get above the line y = x). To calculate the number of these paths,
we calculate the number of all paths and subtract the number of wrong ones, the paths
that rise above the line y = x.

7

8 CHAPTER 2. VARIOUS ENCOUNTERS WITH CATALAN NUMBERS

y = x

(0,0)

(n,n)

Figure 2.1: Line y = x on n× n grid

(0,0)

(n,n)

Figure 2.2: An example of a valid RU path

For an n× n grid, the number of ways to get from (0, 0) to (n, n) is the number of
arrangements of n R’s and n U’s, which is

(
2n
n

)
.

Now let us calculate the "wrong paths". To do so, take any path of n R’s and n U’s
that goes above the line y = x, starts at (0, 0) and ends at (n, n). Take a sequence of
n R’s and n U’s such that the number of U’s exceeds the number of R’s at some point.
Now, starting from the point where the path crossed the line y = x for the first time,
swap R’s and U’s. Doing so, you will always end up in the point (n − 1, n + 1). By
calculating the number of paths of n−1 R’s and n+1 U’s starting at (0, 0) and ending
at (n− 1, n+ 1), we get the number of paths consisting of n R’s and n U’s starting at
(0, 0) and ending at (n, n) that go above the line y = x, which is

(
2n
n−1

)
.

Therefore, the number of paths that start at (0, 0) and ends at (n, n) and never rise
above the line y = x is

(
2n
n

)
−
(

2n
n−1

)
, which is one of the formulas to calculate the nth

Catalan number already mentioned in chapter 1.

Strings of n 0’s and n 1’s

Let us look at words over a binary alphabet {0, 1}. We want to count the number of
sequences, such that the number of 0’s never exceeds the number of 1’s. There is a
clear bijection to the previous example by replacing the R’s with 1’s and U’s with 0’s.

Arrangement of n 1’s and n -1’s

In this example, we want to count the number of arrangements of 1’s and -1’s so that
all partial sums are non-negative. Therefore we are counting the sequences of 1’s and
-1’s in which the number of -1’s never exceeds the number of 1’s. Otherwise, some
partial sum would be negative.

9

Ballot votes

As mentioned in the first chapter, the ballot numbers are numbers that describe how
votes could be counted so that the winner is always ahead in an election held between
two candidates. This idea can be used to enumerate many other examples of a situation
of competition of two figures, such that one is always in the lead.

Balanced strings of n left and n right parentheses

This problem is once again related to creating words of 2 symbols, so we are starting to
see a pattern here. We have the same number of left and right parentheses, so we know
that each opening parentheses will have a closing one if it comes after it. Therefore,
if a string has a balanced number of parentheses, the number of left parentheses never
exceeds the number of right ones (because the closing parenthesis would not match any
opening one).

The arrangement of integers

Consider an arrangement of integers such as 1, 2, 3, ...2n− 1, 2n so that:

• the odd integers occur in increasing order,

• and the even integers occur in increasing order,

• and 2k − 1 appears before 2k for all 1 ≤ k ≤ n

By replacing the odd numbers with 1’s and the even numbers with -1’s, we create a
bijection to one of the previous problems.

Dyck paths

Dyck paths are paths on an n×n grid such that we can only move on diagonals, either
from bottom left to the upper right or from the upper left to the bottom right, the path
has a length of 2× n and it never drops below the x-axis. Dyck paths are the simplest
occurrence of the Catalan numbers in examples with paths. There are many types of
paths on a grid that under some conditions result in the Catalan numbers. For example
Motzkin paths that never drop below the x-axis, Dyck or Motzkin paths with peaks or
valleys. They, however, discover many more occurrences of the Catalan numbers, such
as examples with Pairwise disjoint collections which are worth mentioning.

Young Tableaux

Young tableau is an object used to represent algebraic structures in a linear way. We
will focus on Young diagram, which is 2 × n cells divided into n columns and 2 rows.

10 CHAPTER 2. VARIOUS ENCOUNTERS WITH CATALAN NUMBERS

We will be placing integers from 1 to n so that the entries in each row are in ascending
order and for each of the n columns the entry in the first row is smaller than the entry
in the second row. The number of ways to do so are the Catalan numbers, even though
this example might seem distinct from the previous one. However, there is a simple
one-to-one correspondence to the Dyck paths.

Compositions of an integer i

Consider having a pair of two compositions of the integer i: a1 + a2 + ... + an and
b1 + b2 + ... + bn so that each partial consequent sum of m a’s is greater or equal to
a partial consequent sum of m b’s, where 0 < m ≤ n. To create a bijection to Dyck
paths, we draw a1 D steps, b1 D* steps ... an D steps, bn D* steps.

Arcs

Let us have n vertices lying on a horizontal line and being connected by arcs so that:

• each arc connect two vertices above the horizontal line,

• and each vertex is part of just one arc,

• and no two of the arcs intersect.

To create a bijection, each time we encounter the start of an arc we write down 1 and
when we encounter it again we write -1. This way we end up with a sequences of 1’s
and -1’s, in which the number of -1’s never exceeds the number of 1’s (because the
starting point of an arc must come before its’ ending point). This example was already
seen.

1 1 1 1-1 -1 -1 -1

Figure 2.3: Two ways to connect 4 vertices with 2 arcs

We listed the 2 ways (C2) to connect 4 vertices with 2 arcs respecting the afore-
mentioned conditions in the figure 2.3. The resulting sequences would be the labels of
the vertices from left to right. These are the sequences of 1’s and -1’s of length 4, such

11

that the number of -1’s never exceeds the number of 1’s.

There are many modifications of this arc example for instance:

• When we have n−2 vertices some of which may be isolated but no isolated vertex
may lie under an arc.

• When we have n − 2 vertices some of which may be isolated and they may lie
under an arc.

• When we have 2n−2 vertices on a horizontal line and we label them consecutively.
Then, for each arc that appears, the left endpoint is at an odd-numbered vertex
while the right one is at an even-numbered vertex.

Diagonalization of the polygon

This problem is closely related to triangulation of a polygon which is often associated
with computer graphics. Now we will talk about the number of ways to draw n − 1

diagonal in a polygon P of n+ 2 sides within its interior so that:

• no two diagonals intersect within the interior of P,

• and the diagonal partition of the interior of P into n triangles.

To create a bijection, we label the diagonals with the names of the sides of the polygon
and parenthesize them if necessary.

Non-decreasing sequences

Consider a non-decreasing sequence a1, a2, ..., an of positive integers where ai ≤ i for
all 1 ≤ i ≤ n. To create a bijection between these sequences and the aforementioned
arrangements of 1’s and -1’s, we create a sequence of n 1’s and n -1’s and for each
1, we write down the number of -1’s on the left. We end up with a new sequence
and by adding 1 to each element of the sequence, we create all wanted non-decreasing
sequences.

Complete rooted binary trees on 2n+ 1 vertices

Trees are frequently used data structures in computer science. A rooted tree is a tree
in which a node is singled out, called the root of the tree. A binary tree is a tree in
which each node has at most two children. There are many different kinds of trees and
their traversals. In this example, we have a complete binary tree and we traverse it by
going left (L) and then right (R) if the current node has children. The tree is complete,
so the number of L’s and R’s must be equal. We start with (L) and each node that

12 CHAPTER 2. VARIOUS ENCOUNTERS WITH CATALAN NUMBERS

has a left child must have a right child because the given tree is complete. Therefore
the number of R’s never exceeds the number of L’s.

Rooted ordered trees on n+ 1 vertices

A rooted ordered tree is a tree in which the nodes are somehow ordered. By a postorder
traversal of the tree, we write down 1 when we encounter a vertex for the first time
and we write -1 when we encounter it on the way back.

For instance, the tree in figure 2.4 would be traversed in postorder as follows:
0, 1, 2, 3, 4, 5, 6, 7, 8. The constructed sequence of 1’s and -1 would be 1(8), 1(5), 1(2), 1(1),
1(0),−1(0),−1(1),−1(2), 1(4), 1(3),−1(3),−1(4),−1(5), 1(7), 1(6),−1(6),−1(7),−1(8)
(the numbers in brackets corresponds to the labels of the vertices).

0

1

2

3

4

5

6

7

8

1

1

1

1

1

1

1

1

1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Figure 2.4: An example of a postorder traversal of a binary tree

Rooted ordered binary trees on n vertices

We want to calculate the number of different binary trees with n vertices. We select
one of the n vertices as the root. The substructures on left and right are then rooted
ordered binary trees on n − 1 vertices. We consider the division of the n − 1 vertices
between the two subtrees:

• 0 vertices on left, n− 1 vertices on right, so t0 × tn−1 possibilities

• 1 vertex on left, n− 2 vertices on right, so t1 × tn−2 possibilities

• i vertices on left, n− 1− i vertices on right, so ti × tn−1−i possibilities

• n− 1 vertices on left, 0 vertices on right, so tn−1 × t0 possibilities

13

There is a simple bijection to the Rooted ordered trees mentioned before by removing
the leaves from the trees from the former one.

Special rooted trees

Now we will look into the rooted trees in which every node to the right has a greater
number of children than his sibling on the left. We want to count the number of vertices
at level n − 1 in such tree. This occurrence of Catalan numbers and it’s bijection to
another example might appear a little bit forced, however, it is crucial as it deduces
other examples in which the Catalan numbers arise.

The bijection is done by creating a sequence from root to a leaf from the number of
children the node has. The sequences are the aforementioned non-decreasing sequences.

If we look into the paths from the root to leaves, we get sequences of numbers which
again occurs in results of other problems which therefore also results in the Catalan
numbers, for example, The tennis ball problem, or when we examine n nested for loops.

Cliques

Another popular data structure also used in computer science is a graph. A clique is
induced by a subsetW of set of vertices V , where for all (a, b) ∈ W the edge (b, a) ∈ W .
A maximal clique is a clique induced by the longest of such subsets of vertices. Now
we want to calculate the number of graphs with vertex set V = {1, 2, ..., n} where the
vertex set for each maximal clique is made up of a set of consecutive integers. We
create recursively all graphs as sequences so that with n = 1 we have only one option
(1), a graph of one vertex. Then, for n = 2, we either do only one step, add a vertex
(1,1), or we do two steps, add a vertex, and connect them (1,2). We continue and
create all trees recursively. The trees created are the same as the trees in the previous
example.

Stack

This data type serves as a collection of elements which follows a particular order in
which the operations push and pop are performed. The ways of reordering a sequence
with stack are also Catalan numbers. Each push operation is 1, each pop operation
is 0. The number of 0’s never exceeds the number of 1’s, because we cannot remove
elements from an empty stack.

14 CHAPTER 2. VARIOUS ENCOUNTERS WITH CATALAN NUMBERS

Chapter 3

Hankel matrices and Catalan numbers

As seen in the previous chapter, the Catalan numbers arise in many different situations.
Another fascinating aspect of the Catalan numbers is their interesting behaviour in
mathematical structures and objects. In this chapter, we provide a brief introduction
to Hankel matrices and how they relate to Catalan numbers.

3.1 Hankel matrices

Hankel matrix, also known as persymmetric matrix or catalecticant matrix, is a square
matrix in which each ascending skew-diagonal from left to right is constant. Alterna-
tively, a Hankel matrix

A =

c0 c1 c2 ... cn−1

c1 c2 c3 ... cn

c2 c3 c4 ... cn+1

...

cn−1 cn cn+1 ... c2n−2

 (3.1)

is a matrix (ai,j) in which for every r the entries on the diagonal i + j = r are the
same, for example ai,r−i = c× r for some c [28] as seen in 3.3.

Given an infinite sequence {an}∞n=0 , the Hankel matrix of this sequence is the infinite
matrix H, whose entry (i, j) is ai+j [8]. Using zero-based numbering, the described
matrix looks as follows:

H =

a0 a1 a2 ...

a1 a2 a3 ...

a2 a3 a4 ...

...

 (3.2)

15

16 CHAPTER 3. HANKEL MATRICES AND CATALAN NUMBERS

Then, generally, we will use the notation H(n), where n ≥ 0 is the upper-left
(n+ 1)× (n+ 1) submatrix of H.

For example:

H(0) =
(
a0

)
H(1) =

(
a0 a1

a1 a2

)

The aforementioned matrix A in equation 3.1 would therefore be a Hankel matrix
H(n− 1) of size n× n.

3.2 Hankel transform

We will denote hn to be the the determinant of the matrix H(n), so hn = det(H(n)).
The determinant of a matrix is a number that is defined only for square matrices, which
the Hankel matrix is. Determinants are mathematical objects that are often used in
the analysis of systems of linear equations.

The Hankel transform is a sequence of determinants of hankel matrices of a se-
quence. Formally, the sequence {hn}∞n=0 is a Hankel transform of a sequence {an}∞n=0.

3.3 Catalan numbers step in

The Catalan numbers and their behaviour in Hankel matrices with applied Hankel
transform is already a subject of many papers, the results of which we describe in this
section. Not only were studied the Hankel transforms of the whole sequence, but also
the Hankel transforms of the sequence of the Catalan numbers without the first n terms.

The Hankel matrix of the sequence of the Catalan numbers looks as follows:

A =

1 1 2 5 14 ...

1 2 5 14 42 ...

2 5 14 42 132 ...

5 14 42 132 429 ...

14 42 132 429 1430 ...

...

(3.3)

Desainte-Catherine and Viennot found the determinant of Hankel matrices of the
Catalan numbers to be

∏
1≤i≤j≤k

i+j+2×n
i+j

[18].

3.3. CATALAN NUMBERS STEP IN 17

As proved by Mays and Wojciechowski [20], the Hankel transform of the sequence
of Catalan numbers obtained by removing the first element of the sequence, number
1, is a sequence of 1’s. Moreover, the application of Hankel transform to the sequence
with two terms emitted, 1 and 1, results in the sequence {n+2}∞n=0. They also proved
that by removing the first three elements, namely 1, 1 and 2, we get the sequence

{(n+ 2)(n+ 3)(2× n+ 5)

6
}∞n=0.

Another amusing proof [4], written by Cvetković, Rajković, and Ivković, is that
the Hankel transform of the sequence of the sum of two consecutive Catalan numbers,
{cn + cn+1} is a sequence of every other Fibonacci number.

3.3.1 Hankel transform of Catalan numbers in relation with

other specific matrices

Consider a Hankel matrix of the matrix of the Catalan numbers C{k} = {ci+j+k},
with the first k elements of the sequence emitted. Let us have LU decomposition of a
matrix A (3.3).

The LU decomposition of a matrix A is the LUP decomposition of a non-singular
square matrix, where A = L×U×P (matrix product), in which the matrix L represents
the lower triangular matrix of the matrix A, U represents the upper triangular matrix
of the matrix A and P represents a special kind of permutation matrix, In, called
identity matrix. Hence, P is absent and A = L× U [3].

Let us define the lower triangle of the matrix A as Li,j = (−1)i+j ×
(
i+j
i−j

)
. Then,

because U = LT , Ui,j = (−1)i+j ×
(
i+j
j−i

)
. As proved by Dougherty, French, Sader-

holm, and Qian [8], the matrix product LC{0}U is an identity matrix. Moreover,
LC{k}Ui,j =

(
2k

k+i−j

)
, where i+ j ≥ k ≥ 0.

18 CHAPTER 3. HANKEL MATRICES AND CATALAN NUMBERS

Chapter 4

Markov models

Even though the Catalan numbers do not have a direct connection with Markov models,
they both have a common mathematical structure, the Hankel matrix introduced in
chapter 3. In order to understand the connection between them, we provide a brief
introduction to Markov chains and more specifically the Hidden Markov models.

4.1 Markov chain

Markov chain is a stochastic model describing a sequence of states that evolves ran-
domly in time and remembers its past state only by its most recent value [22]. Markov
chain a discrete-time process and its continuous-time version is called Markov process.
Markov process is a stochastic process that satisfies the Markov property. A stochastic
process is said to hold Markov property when the past has no bearing on the future,
so it is memoryless.

4.1.1 Regular Markov chain

A Markov chain is regular, if its transition matrix is regular, which means that some
power of the matrix has only positive entries [31]. Let us describe the vocabulary used
with Markov chains in this simple made-up example:

Imagine a coffee company called A, and all other coffee companies represented by
A′. Now consider an advertising plan for company A, whose goal is to have as many
customers as possible. Their advertising plan is supposed to be really successful and
its predicted results are given by how the percentage of customers of either of the com-
panies changes after a week. The probability that a customer who buys coffee from
company A will continue purchasing it from this company is 0.8. Then, because the
actions are mutually exclusive, the probability that a customer who buys coffee from
company A will start purchasing coffee from company A′ is 0.2. The probability that a

19

20 CHAPTER 4. MARKOV MODELS

A A’0.8

0.6

0.2

0.4

Figure 4.1: Transition diagram

customer continues buying coffee from company A′ when he previously bought it from
A′ is 0.4. Then the probability that a customer buying coffee from company A′ starts
purchasing it from company A is 0.6. This situation is drawn in a transition diagram
in the figure 4.1:

The same information could be shown by a transition probability matrix (4.1), which
is a row-stochastic matrix with labels corresponding to the coffee companies A and A′.
The labels at the top represent the next state, and the right labels represent the current
state:

P =

A A′()
0.8 0.2 A

0.6 0.4 A′
(4.1)

In order for the chain to begin, we need an initial state distribution matrix (4.2),
that shows the probability distribution among states. In our example, it means how
many people buy coffee from company A and A′:

S0 =

A A′()
0.1 0.9 (4.2)

To calculate how the advertising plan will affect the customers after one week, we
multiply the initial state distribution matrix by the state probability matrix and we
get the matrix S1 (4.3), representing how many customers buys coffee from company
A and A′ after one week:

S1 =

A A′()
0.62 0.38 (4.3)

We see that the advertisement plan really worked out for the company A. However,
if we multiplied the matrix S0 (4.2) by the probability transition matrix P (4.1) enough

4.2. HIDDEN MARKOV MODELS 21

times, we would eventually get a stationary matrix (4.4):

Sn =

A A′()
0.75 0.25 (4.4)

The matrix Sn (4.4) is called a stationary, because it will stay the same if we
multiply it by the probability transition matrix any number of times. In our example
it means that after any number of weeks, the percentage of customers buying coffee
from the company A will be 0.75 at most.

4.1.2 Absorbing Markov chain

A Markov chain is regular, if it has at least one absorbing state and it is possible
to get from each non-absorbing state to at least one absorbing state in a finite num-
ber of steps [8]. A state is absorbing if once the state is entered, it is impossible to leave.

Let us introduce an exemplary situation where you are standing on a street S and
deciding whether you go to a restaurant A or B. If you enter the chosen restaurant,
you do not leave for the other one, neither you eat at both. This situation is displayed
in a following transition diagram in the figure 4.2:

S

A B

0.6 0.4
0 0

0

0

1 1

0

Figure 4.2: Transition diagram

The states A and B are the absorbing states. As you can see, there is a probability
of 1 that you will stay in them and 0 that you will go to any other state.

4.2 Hidden Markov models

Unlike Markov Chain, a Hidden Markov Model (HMM) is a Markov model in which the
state is not fully observable, rather it is only observed indirectly by noisy observations.
It is modeled for a process that has the Markov property. If the current state depends

22 CHAPTER 4. MARKOV MODELS

only on the previous state, we talk about first order HMM. Similarly, if the current
state depends on n previous states, it is a HMM with order n [9].

Let us provide an example in which we will explain the terms used with Hidden
Markov models:

Imagine yourself living on a continent A and having a friend on a different continent
B. Suppose there is no internet or news, so you cannot obtain information about
weather on the continent B directly. However, you and your friend are really close and
you call each other every day and talk about what you did during that day. You know
that all possible weather states that can be at the continent B are "sunny" (S) and
"rainy" (R). The transition from one state to another is a first order Markov process.
You also know the probabilities of transitions between the weather states, which can
be represented by a transition probability matrix discussed in previous sections of this
chapter.

A =

S R()
0.6 0.4 S

0.45 0.55 R
(4.5)

Your current observation of your friend behaviour indicates a correlation between
the weather and his activities. You know that when it is "rainy", he usually stays at
"home" (H) and when it is "sunny", he usually goes "out" (O). You know these activi-
ties happen with certain probabilities. These observations can be put in an observation
matrix, sometimes called emission probability matrix (4.6).

B =

H O()
0.3 0.7 S

0.7 0.3 R
(4.6)

The hidden states in this model are the states of the weather: "sunny" and "rainy".
You cannot observe them directly, but you monitor them obliquely.

You have monitored your friend for 4 days and you observed his behaviour as
followed: On the first two days, he stayed at home, then he went out and on the last
day, he stayed at home. To start with the computations, we need to know, in which
state we begin. You know that the continent has some probabilities of having sunny
or rainy weather, let us say there is a 50% probability of sunny and 50% probability

4.2. HIDDEN MARKOV MODELS 23

of rainy. This information is shown in the initial state distribution matrix (4.7):

π =

S R()
0.5 0.5 (4.7)

In addition to the introduced matrices A(4.5), B(4.6) and π(4.7), the following no-
tation is largely used for terms associated with Hidden Markov models [26]:
T is the length of the observation sequence
N is the number of states in the model
M is the number of observation symbols
Q = {q0, q1, ..., qN−1} is a distinct states of the Markov process
V = {0, 1, ...,M − 1} is a set of possible observations
O = (O0, O1, ..., OT−1) is an observation sequence
A = {aij} is a square matrix: aij = P (state qj at t+ 1| state qi at t)
B = {bj(k)} is a N ×M matrix: bj(k) = P (observation k at t| state qj at t)

Generally, a Hidden Markov model is defined by the matrices A,B and π and de-
noted as λ, such as λ = (A,B, π).

For our given example, we have:
T = 4

N = 2

M = 2

Q = {S,R}
V = {H,O}
.

Assume a generic state sequence of length 4: X = (x0, x1, x2, x3) with associated
observations: O = (O0, O1, O2, O3). A stated in the definition, π0 is therefore the
probability of beginning in the state x0. Moreover, the probability of firstly observing
O0 is bx0(O0). Finally, ax0,x1 is the probability of transitioning to the state x1 from the
state x0. Expanding these conclusions, the probability of the state sequence X is:

P (X,O) = πx0bx0(O0)ax0,x1bx1(O1)ax1,x2bx2(O2)ax2,x3bx3(O3)

To find out the most probable state sequence based on our observation sequence, we
compute the normalized probability (so that they all sum up to 1) of all state sequences
of length 4. There is 24 such sequences given that we have two states: H and O. We
listed them and the probability of each of them in the table 4.1.

24 CHAPTER 4. MARKOV MODELS

state sequence probability
HHHH 0.06332022499999998
HHHO 0.06274477499999999
HHOH 0.059754524999999996
HOHH 0.05943952499999998
OHHH 0.059867525
HHOO 0.065180475
HOHO 0.05964547499999996
OHHO 0.059417475
HOOH 0.06175822499999998
OOHH 0.06187522499999997
OHOH 0.05721022499999996
HOOO 0.06815677499999996
OHOO 0.06250477499999996
OOHO 0.062189774999999954
OOOH 0.06504952499999997
OOOO 0.07188547499999998

Table 4.1: Table of probabilities of each sequence

We have 4 positions and for each we summed the probabilities in the position of
the states H and O in the table 4.2.

position
0 1 2 3

P(H) 0.4999999999999999 0.4899999999999999 0.4884999999999999 0.4882749999999998
P(O) 0.4999999999999998 0.5099999999999998 0.5114999999999997 0.5117249999999998

Table 4.2: Table of probabilities of each state in every position

For each position, the HMM chooses the state with higher probability. We see that
the state sequence with the highest probability in a HMM sense is: HOOO.

Why did we say in a HMM sense?

Another approach, to find out the sequence with the highest probability from the given
table could be dynamic programming (DP) . In the sense of dynamic programming,
we would choose a sequence of length 4 with the highest probability, which as we can
see from the table is the sequence OOOO. The optimal results for the HMM and DP
might differ, as they did in our case.

4.2. HIDDEN MARKOV MODELS 25

4.2.1 Algorithms used with HMM

HMM being a statistical model, it can be build a trained. There are various fields it is
used in and different methods it is built with. In general, there are three central issues
with Hidden Markov Model [13]:

1. The Evaluation Problem
Given the model and the sequence of visible and observable symbols, we are
looking for the probability that a particular sequence of states was generated
by the model [25]. This is solved by the Forward and Backward algorithms,
discussed later in this chapter.

2. The Learning Problem
Estimate the high level structure of the model (number of hidden states and
visible states). Once they are defined, estimate the transmission probability
matrix and emission probability matrix using the training sequence [25]. This is
done by the Forward-Backward Algorithm.

3. The Decoding Problem
Lastly, we can use the model to predict the hidden states which generated the
visible sequence [25]. This problem can be solved by Viterbi Algorithm [35].

In our case, we want to built a HMM for an existing process which will be introduced
later. We provide a description of the algorithms used for solving all of the above
problems.

Forward algorithm

Given the observation sequence O and the model λ = (A,B, π), find P (O|λ).

The first approach could be calculating all the probabilities of all the possibilities
of the non-observable states given the observation sequence O. However, as you can
imagine, that would be a tedious process. For a matrix with N hidden states and T
observations, there are NT operations needed. That would result in an exponential
algorithm with a time complexity O(NT), in the Big O Notation. Instead of this brute
force approach, HMM uses an ideology similar to dynamic programming, called for-
ward algorithm, or α-pass.

For t = 0, 1, ...T − 1 and i = 0, 1, ...N − 1 define αt(i) = P (O0, O1, ...Ot, xt = qi|λ)
as a probability of the partial observation sequence up to time t, where the underlying
Markov process is in the state qi at time t.

26 CHAPTER 4. MARKOV MODELS

We can compute at recursively:

1. Let α0(i) = πibi(O0) for i = 0, 1, ...N − 1.

2. Compute αt(i) =
∑N−1

j=0 (αt−1jaji)bi(Ot) for t = 1, 2, ...T − 1 and = 0, 1, ...N − 1.

3. Then from the definition of αt(i) we see that P (O|λ) =
∑N−1

i=1 αT−1(i).

This approach results in a way more efficient algorithm. α-pass has O(N2T) com-
plexity, which is way better than O(NT).

Backward algorithm

Given the model λ = (A,B, π) and an observation sequence O, find an optimal state
sequence for the underlying Markov process.

To avoid algorithms with extreme complexity, HMM uses the Backward algorithm,
or β-pass, to solve this problem. The Backward algorithm is analogous to the Forward
algorithm, but as the name suggests, it goes backwards.

Define βt(i) = P (Ot+1, Ot+2, ...OT−1|xt = qi, λ) recursively for t = 0, 1, ...T − 1 and
i = 0, 1, ...N − 1:

1. Let βT1(i) = 1 for all i = 0, 1, ...N − 1.

2. Compute βt(i) =
∑N−1

j=0 aijbj(Ot+1)βt+1j for t = T−2, T−3, ...0, i = 0, 1, ...N−1.

3. Define γt(i) = P (xt = qi|O, λ) for t = 0, 1, ...T − 1 and i = 0, 1, ..N − 1.

From the previous algorithm, the α-pass, we know that αt(i) calculates the proba-
bility up to time t. βt(i) measures the probability after time t. Then, γt(i) = αt(i)×βt(i)

P (O|λ) .
Then, it follows that qi is the state at the time t with the highest probability. γt(i) is
the maximum for qi taken over the index i.

Forward-Backward algorithm

Given an observation sequence O and the dimensions N and M , find the model
λ = (A,B, π). This problem is basically training the model to best fit the observed
data.

Let us define di-gammas as γt(i, j) =
αt(i)aijbj(Ot+1)βt+1j

P (O|λ) for t = 0, 1, ..T − 2 and
i, j ∈ {0, 1, ...N − 1}. The γt(i) and γt(i, j) are related by γt(i) =

∑N−1
j=0 γt(i, j) for

t = 0, 1, ...T − 2.

Given γ and di-gamma, we can verify that the model λ can be reestimated as:

4.2. HIDDEN MARKOV MODELS 27

1. Let πi = γ0(i) for i = 0, 1, ..N − 1.

2. Compute aij =
∑T−2

t=0 γt(i,j)∑T−2
t=0 γt(i)

for i, j ∈ {0, 1, ..N − 1}.

The numerator of this fraction gives the expected number of transitions from
state qi to state qj, while the denominator gives the expected number of transi-
tions from state qi to any state. This calculates the probabilities of the desired
values.

3. Compute bj(k) =
∑

t∈{0,1,..T−1}Ot=k γt(j)∑T−1
t=0 γt(j)

.

We are measuring the probability of the wanted value again. The nominator gives
the expected number of times the model λ is in the state qj with the observation
k. The denominator simply gives the number of times the model λ us in the state
qj with any observation.

The Forward-Backward algorithm, also known as the α− β-pass, works as follows:

1. Initialize the model λ = (A,B, π) by a guess or with some random values.

2. Compute: αt(i), βt(i), γt(i), γt(i, j).

3. Reestimate the model λ.

4. While P (O|λ) increases, repeat from the computational part (step 2.).

Whilst P (O|λ) could increase indefinitely by some negligible small amount, it is
recommended to set a minimal value of the differences between P (O|λ) beetween
the iteration, or to set a maximum number of iterations.

Viterbi algorithm

Given an observation sequence O and the model λ = (A,B, π), find the most probable
sequence of hidden states Q.

As finding all the possible scenarios of hidden states for the visible states and cal-
culating their probabilities would result in a problem with complexity O(NTT) a much
more efficient algorithm, Viterbi algorithm, is used with the complexity O(TM) [35].

To begin with, we repeat these two steps for all given observations:

1. At first, we need to calculate the highest probability along a single path for first
t observations which ends at state i.
ωi(t) = maxq1,··· ,qT−1

p(q1, q2, · · · , qT=i, o1, o2, · · · , oT |λ)

28 CHAPTER 4. MARKOV MODELS

2. At each step t, we need to find the state with maximal ωi(t) in order to find the
sequence of the hidden states.

ωi(t+ 1) = maxi

(
ωi(t)aijbjkO(t+1)

)
Once we are done, we need to:

1. Firstly, we will identify the last hidden state by maximum likelihood.

2. Lastly, we will backtrack the process to find the sequence of hidden symbols with
the highest probability

4.2.2 Hidden Markov models and Hankel matrices

It is known that a necessary condition for a stochastic process to have a HMM is that
an associated Hankel matrix should have finite rank [34]. Even though this condition is
necessary, it is not sufficient, which is proved in [6]. Therefore, we are not always able
to construct a HMM of a process that has a Hankel matrix of a finite rank. However,
it is proved [34] that for the processes whose Hankel rank is finite, it is always possible
to construct a quasi-realization of such a process.

Chapter 5

Implementation

This chapter contains the implementation part of our work. In the first section, we
introduce the technologies we chose to work with. The second section includes the
problems we dealt with and our specific solutions. The last section sums up results
regarding implementation.

5.1 Technologies

In this section, we discuss the technologies used in the development. We emphasize
the reasons why we decided to use these technologies and what their benefits are.

5.1.1 The Rust programming language

The main reason we chose Rust as the programming language for this work is summed
up at the beginning of The Book [16], a nicknamed book about Rust. It says that The
Rust programming language helps you write faster, more reliable software [16], which
is something that every developer wants. We find this programming language really
amusing, as it balances out the oftentimes frustrating challenges it produces with the
excitement it provides. Another benefit the language has is that the Rust programming
language is fundamentally about empowerment: no matter what kind of code you are
writing now, Rust empowers you to reach farther, to program with confidence in a wider
variety of domains than you did before [16].

Figure 5.1: Ferris the Rustacean, unofficial mascot of Rust [33]

29

30 CHAPTER 5. IMPLEMENTATION

By choosing Rust as our programming language, we followed its strict ownership
discipline and we avoided accidents with unsafe code. Rust provides easy expressing
common C++ idioms in a safe way. We also did not have to deal with pointer invali-
dation as any related problems are solved by default. [15] Rust is also considered to be
a green programming language, meaning it has low energy consumption. Compared to
other programming languages, Rust is also blazing fast [1]. In an analysis of how energy
memory, time relates rust performed very well in the executed tests. The results are
shown in figure 5.2. Its type system and runtime guarantee the absence of data races,
buffer overflows, stack overflows, and accesses to uninitialized or deallocated memory
[19].

Figure 5.2: Normalized global results for Energy, Time, and Memory [24]

5.1.2 Library ndarray

In our work, we need to operate with matrices in multiple ways. This library provides
an n-dimensional general container for elements [32]. It also implements operations on
them. There are many other libraries that provide the implementation of n-dimensional
matrices and operations on them, such as numpy, which provides Rust interfaces for
NumPy C APIs [30]. We chose ndarray because it was recommended in the Rust

5.2. GENERATING CATALAN NUMBERS 31

Cookbook [7], which is a collection of simple examples that demonstrate good practices
to accomplish common programming tasks, using the crates of the Rust ecosystem [7].

5.2 Generating Catalan numbers

As already mentioned in chapter 1, Catalan numbers can be generated in multiple
ways. We implemented four of them and analyzed their complexities and expressed
them in the Big O Notation.

5.2.1 From recurrent formula

The following function is a recursive function where the argument n decreases by 1.
Therefore the function is called n times and the complexity is O(n).

fn catalan_numbers_recursive(

n: i64

) -> i64 {

match n {

0 => 1,

_ => catalan_numbers_recursive(n - 1) * 2 * (2*n - 1) / (n + 1)

}

}

5.2.2 From Pascal triangle

To evaluate the Catalan numbers from the Pascal triangle, we first need to build the
Pascal triangle. We see that we call the function fill_triangle in the loop twice.
Therefore the complexity of this function is O(n× 2n), which is O(n2).

fn from_pascal_triangle(n: i64) {

let mut pct = vec![1; n:usize + 2];

for i in 1..(n + 1) {

fill_triangle(&mut pct, i);

pct[i + 1] = pct[i];

fill_triangle(&mut pct, i + 1);

println!("{}", pct[i + 1] - pct[i]);

}

}

32 CHAPTER 5. IMPLEMENTATION

fn fill_triangle(

pct: &mut Vec<i64>,

mut i: i64) {

loop {

if i == 1 { break; }

pct[i] = pct[i] + pct[i - 1];

i -= 1;

}

}

5.2.3 Using an iterator

To get the nth term, we iterate from 1 to n. Therefore the complexity is O(n).

struct Catalan {

curr: i64,

n: i64,

}

impl Iterator for Catalan {

type Item = i64;

fn next(&mut self) -> Option<i64> {

self.curr = self.curr * 2 * (2 * self.n - 1) / (self.n + 1);

self.n += 1;

Some(self.curr)

}

}

5.2.4 From the direct formula

Even though calculating the nth Catalan number from the direct formula may seem to
be O(1), we have to loop over n because of the factorial in it. Therefore the complexity
is O(n).

5.3. MATRIX OPERATIONS 33

fn cn_nonrecursive(

n: i64

) -> i64 {

let mut cn = 1;

for i in 0..n {

cn *= 2 * n - i;

cn /= i + 1;

}

return cn / (n + 1);

}

5.3 Matrix Operations

Even though the library ndarray provides most of the functionalities we need, to
simplify some operations, we had to implement the following two functionalities by
ourselves to fit our needs.

5.3.1 Horizontal stacking

Horizontal stacking is stacking arrays column wise. Acoording to scipy documentation,
it is equivalent to concatenation along the second axis, except for 1-D arrays where it
concatenates along the first axis [2]. The library ndarray provides the following func-
tion which stacks given arrays along the given axis [32].

stack<'a, A, D>(

axis: Axis,

arrays: &[ArrayView<'a, A, D>]

) -> Result<Array<A, D>, ShapeError>

Therefore, we used it for horizontal stacking accordingly. However, the given arrays

might not have compatible shape, thus we need to return a Result.

34 CHAPTER 5. IMPLEMENTATION

fn hstack_from_stack<A, D>(

arrays: &[ArrayView<A, D>]

) -> Result<Array<A, D>, ShapeError>

where

A: Copy,

D: RemoveAxis,

{

if arrays[0].ndim() == 1 {

stack(Axis(0), arrays)

} else {

stack(Axis(1), arrays)

}

}

5.3.2 Boolean masking

Boolean masking is a way of quantifying a sub-collection of a collection. It is an ar-
ray of Boolean values based on some Boolean condition. In the Forward-Backward
algorithm, in which we will use the Boolean masking, we want to create a hard mask,
which is an array with the same dimensions as the one we are masking. We will only
be masking one-dimensional arrays, therefore we used the ndarray mapv function.

fn create_hard_mask_for_1d(

arr: &Array1<i32>,

i: i32

) -> Array1<bool> {

arr.mapv(|x| x == i)

}

Then, we needed to apply the mask on an array and return a new array. We will
be masking a two-dimensional array with a vector. That means we want to apply the
given mask on each element of the given two-dimensional array. Same as before, the
given mask might not be compatible with the inner elements of the two-dimensional
array arr.Therefore we return a Result again.

5.3. MATRIX OPERATIONS 35

fn apply_mask_for_2d(

arr: &Array2<f64>,

mask: &Array1<bool>

) -> Result<Array2<f64>, ShapeError> {

let res_columns = mask.iter().filter(|x| **x == true).count();

let mut b = Array2::from_elem((arr.nrows(), res_columns), 0.0);

let mut k = 0;

for i in 0..arr.nrows() {

for j in 0..arr.ncols() {

if mask[j] {

b[[i, k]] = arr[[i, j]] as f64;

k += 1;

}

}

k = 0;

}

Ok(b)

}

5.3.3 Applying element-wise operation

This functions is not part of the algorithm, but it helps us to eliminate values that
would cause and underflow error [14]. We scaled those values using natural logarithm.
The natural logarithm function ln() can be used in Rust on floats and reals. The
parameter arr is an ArrayView of f64 with the dimension D. We called the ndarray
function mapv to apply the function ln() on each element of arr.

fn element_wise_logn<A, D>(

arr: &ArrayView<A, D>

) -> Array<A, D>

where

A: Copy+Float,

D: RemoveAxis,

{

arr.mapv(|x| {x.ln()})

}

36 CHAPTER 5. IMPLEMENTATION

5.4 Hidden Markov Model algorithms

For building the model, we implemented Forward Algorithm, Backward Algorithm and
Forward-Backward Algorithm. We also implemented Viterbi Algorithm for predicting
the sequence of hidden states, given the observation sequence. All these algorithms
were described in chapter 4 and can be found in the appendix.

Chapter 6

Experiments

In this chapter, we focus on working with data related to Catalan numbers and using
it with Hidden Markov Models. We deliver the description of the data we chose to
experiment with, the process and its results. Each section of this chapter is therefore
dedicated to one kind of data we decided to work with.

The first step was to choose the data to build a Hidden Markov Model from. We
chose sequences of symbols that are mentioned in chapter 1 in examples with Catalan
numbers. These sequences will be our training data. Those are mostly sequences of two
symbols, that are somehow (explained in chapter 1) enumerated by Catalan numbers.

The next step was to generate several of the possible sequences for a chosen number
n. This way we get sequences of the same length (2n) and with the same characteristics
(f.e. number of 0’s never exceeds number of 1’s). This will be the observation sequence
for our Hidden Markov Model.

Then we create a sequence of hidden states for this sequence. We refer to it as to
the original sequence of hidden states, because it is based on the observed data. These
hidden states and their meaning will be further explained in each subsection. For each
kind of data, we might experiment with different hidden states.

Using the Forward-Backward Algorithm described in chapter 4, we build a new
Hidden Markov Model from each of the sequence in each section. There will be as
many models as there are sequences.

In the next step, we use Viterbi Algorithm with each of the models to predict the
sequence of the hidden states. This way we get a predicted sequence of hidden states
for each of the Hidden Markov Models built with the observation sequence.

Each section is then summarized and the results are discussed in the last part of it.
We also look at the behaviour of the models and examine possible similarities between
the predicted hidden states that may arise. We repeated the experiment for different
n′s.

37

38 CHAPTER 6. EXPERIMENTS

6.1 Lattice paths of n R’s and n U’s

This example and even its proof was already discussed in depth in chapter 2. An
illustration of an RU path is shown in figures 2.1 and 2.2.

6.1.1 Choosing the data to study the lattice paths

To begin with, we pick n to be 100. We will generate various sequences of n R’s and
n U’s such that the number of U’s never exceeds the number of U’s.

The total number of such sequences of length 2n is Cn. Out of curiosity, we used
one of our algorithms described in chapter 5 to obtain the value of C100. We found out
that

C100 = 896519947090131496687170070074100632420837521538745909320.

As this number is really high, it would be difficult to generate all Cn sequences of length
2n, build a Hidden Markov Model for each of them and study the data. Working with
large amount of data might bring more results, however, it requires a different approach.
We study smaller examples and rather examine possible connection of Hidden Markov
Models and Catalan numbers. Any further study may be discussed in subsequent work.

We decided to define the hidden states for the observable states as follows. First,
we label an observed symbol with 1 if it is a state in which the number of R’s and U’s
is the same. This mean that the RU path touched the diagonal y = x. Otherwise we
will mark the observed symbol as 0.

6.1.2 Experimenting with the lattice paths

First, we randomly generated an RU paths of lengths 100 and labeled the states with
1 when the number of R’s and U’s was the same and 0 otherwise. The generated
observation sequences and their hidden states are shown in figures 6.1 and 6.2 for
n = 100.

6.1. LATTICE PATHS OF N R’S AND N U’S 39

['R' 'U' 'R' 'R' 'U' 'U' 'R' 'U' 'U' 'R' 'U' 'R' 'U' 'R' 'U' 'R' 'U'

'R' 'R' 'U' 'R' 'R' 'R' 'U' 'U' 'R' 'U' 'U' 'R' 'U' 'R' 'U' 'R' 'U'

'U' 'R' 'U' 'R' 'R' 'R' 'R' 'U' 'R' 'U' 'U' 'U' 'U' 'R' 'R' 'R' 'U'

'U' 'R' 'U' 'U' 'U' 'R' 'R' 'U' 'R' 'R' 'U' 'R' 'R' 'R' 'R' 'R' 'R'

'U' 'R' 'R' 'R' 'R' 'U' 'U' 'R' 'R' 'R' 'U' 'R' 'U' 'U' 'U' 'U' 'U'

'U' 'R' 'U' 'U' 'R' 'U' 'U' 'R' 'R' 'R' 'U' 'U' 'U' 'R' 'U' 'U' 'R'

'R' 'U' 'R' 'R' 'R' 'R' 'R' 'U' 'U' 'U' 'U' 'R' 'U' 'U' 'R' 'R' 'U'

'U' 'R' 'R' 'U' 'U' 'U' 'R' 'R' 'U' 'U' 'U' 'U' 'U' 'U' 'R' 'U' 'R'

'R' 'U' 'R' 'R' 'U' 'U' 'U' 'U' 'U' 'R' 'R' 'R' 'R' 'R' 'R' 'U' 'R'

'U' 'R' 'U' 'U' 'R' 'R' 'U' 'U' 'U' 'R' 'U' 'R' 'U' 'R' 'R' 'R' 'R'

'R' 'R' 'R' 'U' 'R' 'R' 'U' 'U' 'R' 'U' 'R' 'R' 'U' 'U' 'R' 'R' 'U'

'R' 'R' 'U' 'R' 'R' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U']

Figure 6.1: Observed symbols (RU path) for n = 100

[0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0

0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0

0 1]

Figure 6.2: Hidden states

We used the data to build a HMM. First, we read the observation sequence, and
randomly initialized transition probability matrix and emission probability matrix. As
we have only two states, we set the initial probability to be 0.5 for each. We build the
HMM using the forward_backward_algorithm function with 10000 iterations. The
higher the number of iterations is, the more similar will the resulting models be with
differently initialized properties.

Before checking the actual results, we will describe what the model should look like
based on the data we have. The output of the forward_backward_algorithm function
is a pair of two matrices: the transition probability matrix and the emission probability
matrix. As we have two observable states and two hidden states, their size will be 2×2

each. First, consider the transition probability matrix. We have two hidden states, 0
and 1, to be at at some step t. If we are in state 0 at the step t, it means that the
number of R’s and U’s is not equal. What is the probability that at the step t + 1,
we will be in the state 1, which means the number of R’s and U’s is be equal? As we
see in the data in figure 6.2, there is not many 1’s. Why is that so? When we create

40 CHAPTER 6. EXPERIMENTS

a random sequence of n R’s and n U’s, the higher the n, the less often we will hit the
point where the number of R’s is the same as U’s. Assume that the sequence has a
point at which the number of R’s is the same as the number of U’s except for the last
element. We split the sequence at the point where the number of R’s is equal to the
number of U’s, we will call it m. This way, we would split a sequence of n R’s and n
U’s of length 2n into two sequences of length m and 2n −m. We know that the first
sequence, of length m has the same number of R’s and U’s and the second sequence
of length 2n −m has also the same number of R’s and U’s. As the first sequence of
length m is a sub-sequence of the original sequence of the length 2n, it holds the same
properties and is basically an RU path of m

2
R’s and m

2
U’s. So there is Cm

2
ways to

reorder the sequence of length m to preserve the property of having the same number
of R’s and U’s, because every RU path has the same number of R’s and U’s. We also
know that there is Cn RU paths of the original length 2n. Catalan numbers grow
exponentially even though the length of the grid does not. So the difference between
the number of RU paths that touch the diagonal and those that do not (except for the
ending point) will also increase exponentially.

So, now we know that there is less RU paths of length 2n that touched the diagonal
at some point than those that did not touch it. Thus if we are at the state 0 in the step
t (the number of R’s is different that the number of U’s), there is a higher probability
that they will not be equal in the step t + 1 too. If we are at the state 1 in the step
t (the number of R’s is the same as the number of U’s) then by adding either R or U
we will get a sequence of uneven number of R’s and U’s. Therefore the probability of
transitioning from state 1 to state 1 is 0.

For the emission probability matrix, when we are emitting 1 (the number of R’s
is equal to number of U’s), there will be a 100% probability for that symbol to be U .
The reason is that the RU path always starts with R (otherwise it would cross the
diagonal) and at every point, the number of U’s must not exceed the number of R’s.
If we were emitting 0 (the number of R’s is not equal to number of U’s), there should
be a slightly higher probability for that symbol to be R. The reason is based again on
the property of the sequence. Only by adding the symbol U to the sequence can make
the sequence have equal number of R’s and U’s, leaving us with fewer U’s to create a
sequence where the number of R’s and U’s would not be equal.

We can see the resulting HMM defined by a transition probability matrix and emis-
sion probability matrix in the figure 6.3. We see that our predictions about the matrices
were correct.

6.1. LATTICE PATHS OF N R’S AND N U’S 41

[[0.9538923352396265, 0.04610766476037175],

[0.9999999999999997, 0.0000...]],

shape=[2, 2], strides=[2, 1], layout=C (0x1), const ndim=2

[[0.5247381328434142, 0.4752618671565857],

[0.0000..., 0.9999999999999998]],

shape=[2, 2], strides=[2, 1], layout=C (0x1), const ndim=2

Figure 6.3: HMM

To continue our experiment, we will use the matrices from figure 6.3 as an input to
our viterbi_algorithm function to obtain the predicted sequence of hidden states us-
ing the Viterbi algorithm from chapter 5. In the figure 6.4 we see the returned sequence.

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Figure 6.4: Predicted sequence of hidden states

6.1.3 The result of experimenting with the lattice paths

Our idea to create the hidden states based on the RU path touching the diagonal did
not work well. There was probably too little number of those "touches" and they did
not appear in any specific pattern. Another problem is that at each point, we knew the
actual number of R’s and U’s based on all previous elements in the sequence. However,
we created a Hidden Markov model of a constant order, which is not able to look at all
the previous states. This way our data were labeled all with the same hidden state, 0.
As we mentioned before, the higher the number n is, the bigger the difference between
the number of states marked as 0 (the number of R’s and U’s is not the same) and the
number of states marked as 1 (the number of R’s and U’s is equal). Therefore this way
of labeling the data is not a good idea.

42 CHAPTER 6. EXPERIMENTS

6.2 Arrangements of integers

In this section, we will work with arrangements of integers 1, 2, ...2n in which the odd
integers occur in increasing order, the even integers occur in increasing order and for
all k, where 1 ≤ k ≤ n 2k − 1 appears before 2k. For example, for n = 3, there is
C3 = 5 possibilities to reorder a sequence 1, 2, 3, 4, 5, 6:

• 1, 2, 3, 4, 5, 6

• 1, 3, 5, 2, 4, 6

• 1, 3, 2, 5, 4, 6

• 1, 2, 3, 5, 4, 6

• 1, 3, 2, 4, 5, 6

6.2.1 Choosing the data to study the arrangements of integers

We generated one of the possible Cn arrangements of length 2n and considered the
following hidden states. We labeled an item of the sequence as 1 if it was larger than
the previous item or 0 otherwise.

If we build our model based on this data, it would have 2n states, since each number
appears in the sequence only once. The probability of transitioning from k-th element
to k + 1 where k ∈ {1, 2, ..., 2n} would be 100%. In a book by Ralph P. Grimaldi
[11], a bijection from this occurrence of Catalan numbers to another one is shown by
replacing even numbers with 1 and odd numbers with −1. To simplify our data, we
also applied this replacement, however, we preserved the meanings of the hidden states.

6.2.2 Experimenting with the arrangements of integers

To begin with, we generated a sequence from 1 to 2n for n = 100. The generated data
is displayed in figure 6.5.

6.2. ARRANGEMENTS OF INTEGERS 43

[1 3 5 7 2 9 11 13 15 17 4 19 21 23 25 27 6

29 31 33 8 10 35 37 12 39 14 41 43 16 18 45 47 20

49 51 22 53 24 26 55 57 59 61 28 30 32 63 34 65 67

69 71 73 36 75 38 77 79 81 40 42 83 85 44 46 48 50

52 54 87 56 89 58 60 91 93 62 64 66 68 70 95 72 97

74 76 99 78 101 80 82 84 103 86 105 107 109 88 90 92 111

113 94 96 115 117 119 121 98 123 100 102 104 125 106 108 110 112

114 116 127 129 118 120 131 133 122 135 137 139 141 143 145 147 149

124 151 153 126 128 155 130 157 132 159 161 134 163 165 167 169 136

138 171 173 140 175 177 179 142 181 183 185 187 144 146 148 189 150

152 154 191 156 158 193 160 195 197 162 199 164 166 168 170 172 174

176 178 180 182 184 186 188 190 192 194 196 198 200]

Figure 6.5: Observed symbols (arrangement of integers)

Then we replaced an even element with 1 and an odd element with −1. The trans-
formed data are shown in figure 6.6.

[-1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 -1

-1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 -1 1 1 -1 -1 -1 -1 1 1

1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 1 1

1 -1 1 -1 1 1 -1 -1 1 1 1 1 1 -1 1 -1 1 1 -1 1 -1 1 1

1 -1 1 -1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 -1 1 1 1 -1

1 1 1 1 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1

-1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 -1 1

-1 -1 -1 -1 1 1 1 -1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

Figure 6.6: Transformed observed symbols

As seen in the figure 6.7, we labeled the elements from figure 6.5 with 1 if it was
greater than its predecessor or 0 otherwise.

44 CHAPTER 6. EXPERIMENTS

[1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1

1 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0

1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0

0 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0

1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

Figure 6.7: Hidden states

The next step was to input these data to our forward_backward_algorithm func-
tion. The output matrices for the model are shown in figure 6.8.

[[0.5380553484464966, 0.4619446515535038],

[0.48842075330828444, 0.5115792466917161]],

shape=[2, 2], strides=[2, 1], layout=C (0x1), const ndim=2

[[0.4388792976416454, 0.5611207023583543],

[0.5643828300326317, 0.43561716996736854]],

shape=[2, 2], strides=[2, 1], layout=C (0x1), const ndim=2

Figure 6.8: HMM

We finished the process of this experiment with using the model to predict the hid-
den states on its own. We used the matrices from figure 6.8 along with the transformed
sequence of observable sequence as an input to our viterbi_algorithm function. The
output is shown in the figure 6.9.

[1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1

1 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0

1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0

0 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0

1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

Figure 6.9: Predicted sequence of hidden states

6.3. COMPLETE ROOTED BINARY TREES ON 2N + 1 VERTICES 45

6.2.3 The result of experimenting with the arrangements

From the generated data, the Hidden Markov model we built was able to learn to
output the hidden states correctly. Unlike the model from the previous section, this
model could predict the state s only by looking at s − 1. The hidden state of the
observable state s was always defined only by the previous state s− 1, it did not need
to look any further nor did the distance change. We conclude that we can use Hidden
Markov model on an arrangement of integers (each element transformed to 1 if it is
even, −1 if it is odd) to predict, whether the integer on the s-th position is greater
than its predecessor on the position s− 1 or not.

6.3 Complete rooted binary trees on 2n + 1 vertices

In this section, we will work with complete rooted binary trees on 2n+ 1 vertices. To
begin with, we recapitulate the properties of such trees, to better understand what we
are dealing with. A binary tree is a tree in which every node has at most two children.
A complete binary tree is a tree in which every node, except for the leaves has exactly
two children. A complete rooted binary tree is a tree with one node singled out that
is called the root of the tree. Therefore the tree we will work with will have 2n + 1

vertices, where the 1 stands for the root. We traverse these trees by going first left and
then right if the node has children.

6.3.1 Choosing the data to study such binary trees

Once again we generated a sequence that corresponds to a complete rooted binary tree.
We will label a vertex in a sequence of vertices as 1 if it is a leaf (meaning it has no
children) or 0 otherwise. The hidden states of the sequence will be a sequence of 1’s
and 0’s defined as follows.

To illustrate the process, consider the rooted ordered binary tree displayed in figure
6.10.

R

L1 R1

L2 R2 L3 R3

Figure 6.10: Complete rooted binary tree on 7 vertices

46 CHAPTER 6. EXPERIMENTS

The sequence representing this tree would be: R,L1, L2, R2, R1, L3, R3. The leaves
in this tree are the nodes L2, R2, L3 and R3. Therefore the original sequence of hidden
symbols is 0, 0, 1, 1, 0, 1, 1.

Another complete rooted binary tree with 7 vertices could be the tree shown in
figure 6.11.

R

L1 R1

L2 R2

L3 R3

Figure 6.11: Another complete rooted binary tree on 7 vertices

Following the same rules, the sequence representing this tree would be the sequence:
R,L1, L2, R2, L3, R3, R1. For this sequence, we would label the nodes 0, 0, 1, 0, 1, 1, 1
to obtain the original sequence of hidden symbols in the same way as before.

To avoid the same problem we faced in the previous chapter, we need to find a
simpler (much less than 2n + 1 symbols) labeling for vertices to prevent the model
having 2n+ 1 states. Simply we labeled left children as 0, right children as 1 and the
root as 1. For the second complete rooted binary tree shown in figure 6.11, the new
observation sequence would be 1, 0, 0, 1, 0, 1, 1.

6.3.2 Experimenting with such binary trees

We generated a sequence of 1’s and 0’s of length 2n + 1. The generated sequence can
be seen in figure 6.12.

6.3. COMPLETE ROOTED BINARY TREES ON 2N + 1 VERTICES 47

[1 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1

0 1 1 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0

0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0

1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1

0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0

1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1]

Figure 6.12: Observed symbols (sequence of nodes)

We continued with labeling the data as described in the previous section. The orig-
inal sequence of hidden symbols is shown in figure 6.13.

[0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0

1 1 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0

0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1

1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0

0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1

1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1]

Figure 6.13: Hidden states

As before, we continued with running our forward_backward_algorithm function
with the sequence from figure 6.12 as input. The resulting Hidden Markov model is
displayed in figure 6.14.

[[0.4839714123823383, 0.5160285876176615],

[0.43789676727408944, 0.5621032327259106]],

shape=[2, 2], strides=[2, 1], layout=C (0x1), const ndim=2

[[0.4547717955206335, 0.5452282044793664],

[0.5338397222179014, 0.46616027778209845]],

shape=[2, 2], strides=[2, 1], layout=C (0x1), const ndim=2

Figure 6.14: HMM

The next step was to use this model to predict the hidden states of the sequence.
We did this by running our viterbi_algorithm function described in chapter 5. The
output sequence is visible figure 6.15.

48 CHAPTER 6. EXPERIMENTS

[0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0

1 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1

1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1

0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0

1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1

1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0]

Figure 6.15: Predicted sequence of hidden states

Unfortunately, the predicted sequence of hidden states is not the same as the orig-
inal one. However, we noticed a relationship between the elements of the sequences
representing complete rooted binary trees. Consider an element v of the sequence rep-
resenting a complete rooted binary tree. v is therefore a node of a tree (root, some
other node’s left or right child) and assume v is not a leaf. The tree is complete, hence
v must have two children, left one and right one. In the sequence representing the
binary tree, the next element after v must be its left child. Consider the opposite case,
if v were a leaf. Then, it has no children, so the next element of the sequence will not
be a successor of node v, but it must be from another branch of the tree. We traverse
the tree from left to right, thus the branch in which v was (can be only one node) must
be a left branch of some predecessor of v, let us call it w. After traversing the left
subtree of w (the one where v is) we traverse the right subtree of w. The right children
of w is the root of the right subtree of w. We know that the root of the subtree exists,
because the whole tree is a complete tree and the left subtree of w consisted of at least
one node, v. From these observations, we conclude that in a complete rooted binary
tree represented by a sequence of 0’s (for left children) and 1’s (for right children and
root) any node (either 0 or 1) is a leaf if the next element of the sequence is a right
children (1) of some node.

However, Hidden Markov models are supposed to calculate the state s based on the
state s−1. What we want is to know the state s based on the state s+1, which seems
like the opposite. Therefore we decided to reverse the observed symbols and rerun the
whole experiment.

The new sequence of observed symbols is shown in figure 6.16.

6.3. COMPLETE ROOTED BINARY TREES ON 2N + 1 VERTICES 49

[1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0

1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0

1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1

0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0

0 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0

0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1]

Figure 6.16: Reversed observed symbols (sequence of vertices)

To match the new observation sequence, we also had to reverse the original sequence
of hidden states. The result can be seen in figure 6.17.

[1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1

0 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1

0 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0

1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0

0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1

0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0]

Figure 6.17: Reversed sequence of hidden states

We created a new Hidden Markov model, displayed in figure 6.18.

[[0.48417259341878344, 0.5158274065812162],

[0.4336225846482268, 0.5663774153517732]],

shape=[2, 2], strides=[2, 1], layout=C (0x1), const ndim=2

[[0.452332414425285, 0.547667585574715],

[0.5355601042313677, 0.46443989576863226]],

shape=[2, 2], strides=[2, 1], layout=C (0x1), const ndim=2

Figure 6.18: HMM

Then we continued with the experiment by predicting the hidden states with our
viterbi_algorithm function from chapter 5. The results are shown in figure 6.19.

50 CHAPTER 6. EXPERIMENTS

[1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1

0 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1

0 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0

1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0

0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1

0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0]

Figure 6.19: Predicted sequence of hidden states

6.3.3 The result of experimenting with such binary trees

The data we chose to work with were chosen well as the results of the experiment are
in the end successful. Unlike in the two previous sections, this time we had to reverse
the data. This way, the Hidden Markov model displayed in 6.18 was able to learn to
label the hidden states correctly. We conclude that we can use Hidden Markov model
to find leaves in complete rooted binary trees represented by a reversed sequence of 1’s
and 0’s where 0 stands for left children and 1 for right children and a root.

6.4 Result

In this chapter, we chose three situations, in which the Catalan number occur. The
chosen examples were from distinct field, as we wanted to have different samples as
the data. We studied the data, transformed it (if it was necessary) and constructed a
Hidden Markov model from it. Then we used the model to predict the hidden states of
the observation symbols. We were able to construct the model in all the cases, however,
the model was able to learn to predict the hidden states correctly only in two of the
three cases. In the end, we think the whole experiment was successful, because even
the unsuccessful case led us to new findings and we were able to learn from it to do
better in the other two experiments.

Conclusion

The goal of this thesis was to look for a connection between the Catalan numbers and
the Hidden Markov models. In order to do so, we worked our way from the Catalan
numbers discussed in the first chapter. We looked at their history and the formula. We
continued by examining the various occurrences of the Catalan numbers. In order to
be able to create connections to other fields, we looked at the Catalan numbers rather
as one phenomenon in whose occurrences we could find the bijections between, then
separate examples. From Catalan numbers we moved to the next part where we talked
about the Hankel matrices. To get to the Hidden Markov models, we studied from
Markov chains through Markov models.

Then we put these areas together and implemented algorithms for building Hidden
Markov models and working with them. We chose the Rust programming language for
the implementation and we ran into several obstacles during the development process
(some of which related to the implementation language we chose). However, we were
able to resolve them all and learn from them. We described and summarized the results
of this thesis in the final chapter. We chose three quite distinct of occurrences of Cata-
lan numbers to experiment with. We ended up with both successful and unsuccessful
results.

Dealing with only a few examples and experimenting with them, we realized that
the Catalan numbers provide numerous possibilities to be studied. We hope that this
thesis will not only provide a new unusual view on the Catalan numbers from the angle
of Hidden Markov models, but also motivate others to study this sequence as well. By
tightening a gap between Catalan numbers and a concrete statistical model, Hidden
Markov model, we hope to narrow the gaps between Catalan numbers and other field,
as the results, one has the opportunity to come up with, can be surprising.

51

52 Conclusion

Bibliography

[1] Cosmin Cartas. Rust – the programming language for every industry. ECONOMY
INFORMATICS JOURNAL, 19, 2019.

[2] The SciPy community. Scipy documentation, 2018. Accessed online on 18th
of March 2020 at https://docs.scipy.org/doc/numpy/reference/generated/
numpy.hstack.html.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 2009.

[4] Aleksandar Cvetkovic, Predrag Rajkovic, and Milos Ivkovic. Catalan numbers, the
hankel transform and fibonacci numbers. Journal of Integer Sequences, 5, 2002.

[5] Tom Davis. Catalan numbers, 2010. Accessed online on 18th of November 2019
at http://www.geometer.org/mathcircles/.

[6] S. Dharmadhikari and M. Nadkarni. Some regular and non-regular functions of
finite markov chains. The Annals of Mathematical Statistics, 41, 1970.

[7] Vigneshwer Dhinakaran. Rust Cookbook. Packt Publishing, 2017.

[8] Michael Dougherty, Christopher French, Benjamin Saderholm, andWenyang Qian.
Hankel transforms of linear combinations of catalan numbers. Journal of Integer
Sequences, 14, 2011.

[9] Przemyslaw Dymarski. HIDDEN MARKOV MODELS, THEORY AND APPLI-
CATIONS. InTech, 2011.

[10] Ralph P. Grimaldi. Discrete and combinatorial mathematics. Pearson Education,
Inc., 2004.

[11] Ralph P. Grimaldi. Fibonacci and catalan numbers : an introduction. John Wiley
& Sons, Inc., 2012.

[12] Vladimir Grujic. Generating functions of graph-catalan numbers. Mathematics
Subject Classification, 2016.

53

https://docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html
http://www.geometer.org/mathcircles/

54 BIBLIOGRAPHY

[13] hmmlearn documentation. Accessed online on 10th of December 2019 at https:
//hmmlearn.readthedocs.io/en/latest/tutorial.html.

[14] J. Jeong, S. Choi, and C. Kim. A method to solve overflow or underflow errors
resulting from activation functions in convolutional neural networks. Information
(Japan), 2017.

[15] Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Safe sys-
tems programming in rust: The promise and the challenge, 2020. Accessed
online on 1st of May 2020 at https://www.semanticscholar.org/paper/

Safe-Systems-Programming-in-Rust%3A-The-Promise-and-Jung-Germany/

55601b2f884cf4e1bebc4fb409044ca0d3bb20e8.

[16] Steve Klabnik and Carol Nichols. The Rust Programming Language. William
Pollock, 2018.

[17] Kyu-Hwan Lee and Se-jin Oh. Catalan triangle numbers and binomial coefficients.
Contemporary Mathematics, 2018.

[18] Desainte-Catherine M. and X. G. Viennot. Enumeration of certain young tableaux
with bounded height. Combinatoire Énumérative, 1986.

[19] Nicholas D. Matsakis and Felix S. Klock. The rust language. Ada Lett., 34(3),
2014.

[20] M. E. Mays and J. Wojciechowski. A determinant property of catalan numbers.
Discrete Math. 211, 14, 2000.

[21] Mersenne numbers. Accessed online on 14th of December 2019 at https://oeis.
org/A000225.

[22] S.P. Meyn and R.L Tweedie. Markov chains and stochastic stability. Springer,
1993.

[23] Igor Pak. History of catalan numbers. Department of Mathematics, UCLA, 2014.

[24] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Fer-
nandes, and João Saraiva. Energy efficiency across programming languages: how
do energy, time, and memory relate? International Conference of Software Engi-
neering, 2017.

[25] Lawrence Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77, 1898.

https://hmmlearn.readthedocs.io/en/latest/tutorial.html
https://hmmlearn.readthedocs.io/en/latest/tutorial.html
https://www.semanticscholar.org/paper/Safe-Systems-Programming-in-Rust%3A-The-Promise-and-Jung-Germany/55601b2f884cf4e1bebc4fb409044ca0d3bb20e8
https://www.semanticscholar.org/paper/Safe-Systems-Programming-in-Rust%3A-The-Promise-and-Jung-Germany/55601b2f884cf4e1bebc4fb409044ca0d3bb20e8
https://www.semanticscholar.org/paper/Safe-Systems-Programming-in-Rust%3A-The-Promise-and-Jung-Germany/55601b2f884cf4e1bebc4fb409044ca0d3bb20e8
https://oeis.org/A000225
https://oeis.org/A000225

BIBLIOGRAPHY 55

[26] Mark Stamp. A revealing introduction to hidden markov models. Department of
Computer Science, San Jose State University, 2018.

[27] Tanja Stojadinovic. The catalan numbers. THE TEACHING OF MATHEMAT-
ICS, 18, 2015.

[28] Ulrich Tamm. Some aspects of hankel matrices in coding theory and combinatorics.
Electronic Journal of Combinatorics, 8, 2002.

[29] Toshiki Teramura. Crate ndarray_linalg, 2018. Accessed online on 26th of Febru-
ary 2020 at https://docs.rs/ndarray-linalg/0.12.0/ndarray_linalg/.

[30] Toshiki Teramura and Yuji Kanagawa. Crate numpy, 2018. Accessed online on
7th of March 2020 at https://docs.rs/numpy/0.7.0/numpy/.

[31] Anders Tolver. An introduction to Markov chains. University of Copenhagen,
2016.

[32] Jim Turner. Crate ndarray, 2018. Accessed online on 26th of February 2020 at
https://docs.rs/ndarray/0.13.0/ndarray/.

[33] Karen Rustad Tölva. Ferris the Rustacean, 2018. Accessed online on 18th of
March 2020 at https://rustacean.net/.

[34] M. Vidyasagar. The realization problem for hidden markov models: The complete
realization problem. In Proceedings of the 44th IEEE Conference on Decision and
Control, Dec 2005.

[35] A. J. Viterbi. Viterbi algorithm. Scholarpedia, 4, 2009. revision #91930.

https://docs.rs/ndarray-linalg/0.12.0/ndarray_linalg/
https://docs.rs/numpy/0.7.0/numpy/
https://docs.rs/ndarray/0.13.0/ndarray/
https://rustacean.net/

	Introduction
	The origin of Catalan numbers
	History
	China
	Europe
	The rest of the world

	Modern times
	The name
	Eugene Charles Catalan
	The first mention

	The formulas

	Various encounters with Catalan numbers
	Hankel matrices and Catalan numbers
	Hankel matrices
	Hankel transform
	Catalan numbers step in
	Hankel transform of Catalan numbers in relation with other specific matrices

	Markov models
	Markov chain
	Regular Markov chain
	Absorbing Markov chain

	Hidden Markov models
	Algorithms used with HMM
	Hidden Markov models and Hankel matrices

	Implementation
	Technologies
	The Rust programming language
	Library ndarray

	Generating Catalan numbers
	From recurrent formula
	From Pascal triangle
	Using an iterator
	From the direct formula

	Matrix Operations
	Horizontal stacking
	Boolean masking
	Applying element-wise operation

	Hidden Markov Model algorithms

	Experiments
	Lattice paths of n R's and n U's
	Choosing the data to study the lattice paths
	Experimenting with the lattice paths
	The result of experimenting with the lattice paths

	Arrangements of integers
	Choosing the data to study the arrangements of integers
	Experimenting with the arrangements of integers
	The result of experimenting with the arrangements

	Complete rooted binary trees on 2n+1 vertices
	Choosing the data to study such binary trees
	Experimenting with such binary trees
	The result of experimenting with such binary trees

	Result

	Conclusion

