
Implicit Clustered Deferred Shading

Kevin Örtegren∗

Blekinge Institute of Technology

Figure 1: CryTek Sponza scene with 1000 point lights.

Abstract

In this report, a CPU-based light culling technique is presented.
This method is designed for real-time applications that use large
amounts of dynamic point lights. The technique is unaffected by
depth discontinuities and is easily implemented into existing de-
ferred rendering pipelines. More than 95% of lighting calculations
are omitted, achieving an overall speed-up of up to 20 times running
the CryTek Sponza [Meinl 2010] scene with 1000 point lights.

CR Categories: D.2.8 [Software]: Software Engineering—
Metrics
I.3.7 [Computing Methodologies]: Computer Graphics—Three-
Dimensional Graphics and Realism

Keywords: clustered shading, lighting, light culling

1 Introduction

Dynamic lights are a crucial part of making a virtual scene seem
realistic and alive. Accurate lighting calculations are expensive and
have been a major restriction in real-time applications. Many tech-
niques have been developed to move the expensive per frame light-
ing calculations to an offline pass, where light maps are created and
used for rendering static objects. These techniques can not be ap-
plied to dynamic environments and, with destructible and dynamic
environments becoming more common in modern games, dynamic
lighting solutions must be applied instead. In recent years, many
new lighting pipelines have been explored and used in games to in-
crease the number of dynamic light sources per scene.
This paper presents a CPU-based variation of Clustered Shading
[Persson and Olsson 2013] , which is a technique that improves on
the currently popular Tiled Shading [Olsson and Assarsson 2011;
Swoboda 2009; Balestra and Engstad 2008; Andersson 2009] by
utilizing higher dimensional tiles. The view-frustum is divided into
3D clusters instead of 2D tiles and addresses the depth discontinu-
ity problem present in the Tiled Shading technique. The main goal
of this paper is to show how Clustered Shading can be implemented
in a traditional deferred rendering pipeline in a practical way to en-

∗e-mail: kevinortegren@gmail.com

able the use of many more lights per scene. Comparisons against
the traditional deferred rendering technique are made to establish
the level of lighting calculation reduction.

2 Related work

Clustered Shading is a new technique which has not been covered
to a large extent, nor has it been established in the game indus-
try as there are no commercially available games using the tech-
nique as of now. It was first introduced by [Olsson et al. 2012a] in
2012 and their recent work has also focused on Clustered Shading
[Olsson et al. 2012b]. Other, non-published works and presenta-
tions, are available from Intel who has released a demo application
on Forward Clustered Shading [F. 2014] and from Avalanche Stu-
dios who has presented a practical solution for Clustered Shading
in their game engine [Persson and Olsson 2013].

Tiled Deferred Shading is a widely used technique in game engines
today and was developed as a solution to the growing number of
dynamic lights in modern games. Attempts to solve the existing
problems of Tiled Deferred Shading have been made through the
years and have spawned a number of variations and extensions,
most notably 2.5D culling [Harada et al. 2013] which effectively
moves Tiled Shading towards 3D clusters.

3 Problem statement

The problem addressed in this paper is how to avoid doing unnec-
essary calculations with lights that are not affecting any geometry
or not influencing a specific fragment.

3.1 Traditional Deferred Shading

The deferred rendering full screen lighting pass is the
worst case solution in deferred shading as it calculates
numberOfFragments ∗ numberOfLights. This means
that if the scene contains 1000 lights, each fragment will do
lighting calculations based on all 1000 lights, even if none of
the lights affect a specific fragment. This is a massive waste of
computational resources and the premiss of this paper.

3.2 Tiled Deferred Shading

Tiled Deferred Shading divides the view-frustum into 2D tiles that
start at the closest geometry and extend to the furthest geometry in
each tile and assigns intersecting lights to the tiles. Each fragment
will perform lighting calculations based on the lights in the cor-
responding tile. This reduces the number of light calculations per
fragment significantly. The drawback of Tiled Deferred Shading
is the scene dependency due to depth discontinuities. When a tile
is based on geometry close the the viewer as well as geometry far
away in the distance, the tiles become very long and includes a lot
of empty space where lights are present. These lights, which do not
affect any geometry, will be included in the lighting calculations of
a fragment in that tile.

4 Methods

4.1 Algorithm

The basic steps of the algorithm are based on the SIGGRAPH pre-
sentation [Persson and Olsson 2013]. The algorithm is listed below
with details of each step in the following sections.

1. Render scene to G-Buffers.

2. Build cluster planes.

3. Assign lights to clusters.

4. Fill 3D cluster texture and light index list.

5. Shade in pixel/fragment shader full screen pass.

As with any deferred rendering technique, the scene must be ren-
dered to the G-Buffers. The only part used from the G-Buffers in
this technique is the depth buffer which means that forward render-
ing with a depth prepass could benefit from this technique as well.
The second step is where the planes that make up the view-frustum
3D cluster structure are calculated. The third step finds out which
lights affects which clusters. In the fourth step the index and offset
of every cluster are stored as well as a corresponding light index
list.

4.1.1 Build cluster planes

The planes make up the subdivision of the view-frustum and de-
cides the spacing in depth. The depth spacing is the spatial dis-
tribution of z-planes and can be modified after specific needs and
applications. For this paper, a uniform world space depth spacing
is used, see Figure 2 on page 2 for a top down view of a uniformly
spaced frustum. An important thing to note here is that building
the planes in world space requires them to be rebuilt every frame,
building the planes in view space does not. Building the planes in
view space will however introduce the need to transform all lights
to view space as well, which can be more expensive than rebuild-
ing planes at a certain number of lights. The outer planes are same
as the sides of the viewing frustum; near, far, right, left, top and
bottom planes.

4.1.2 Assign lights to clusters

Light assignment is the most important part of this algorithm as it
scales linearly with the number of lights. This is the part where ev-
ery cluster must find all the lights that influence it. All point lights
are represented as a sphere with a 3D position and a radius. The
solution presented here iterates over every plane to step-by-step re-
duce the frustum until a point light is contained in the smallest pos-
sible frustum with six cluster planes. For every iteration a sphere-

Figure 2: Top down 2D view of an assigned light. The black circle
represents a light sphere.

plane intersection is performed to see if the current plane has en-
tered the light sphere, this gives the plane on one side of the light.
After finding a plane, the iterations continue to find the second
plane, on the other side of the light sphere. This is performed three
times, one for each axis, and results in six planes that contain the
light. The clusters within the planes are thus affected by that light,
see algorithm Figure 2 on page 2 for a 2D overview of an assigned
light. This results in a worst case of numberOfXPlanes +
numberOfY P lanes+numberOfZP lanes sphere-plane inter-
sections per light. Algorithm 1 shows the pseudo code for the x-
plane reduction, the same applies for the y and z-planes. Each plane
is represented by a point on the plane, which in this case is the vir-
tual camera position for all the planes as they all go through there,
and a normalized plane normal. In the algorithm 1 listing xpn repre-
sents the x-plane normal, lr is the light radius, lp is the light position
and cp is the camera position. Variables lxp and rxp are the result
for the xplanes. They are indices to the the left x-plane and the
right x-plane for the currently processed light. Once the algorithm
has been run for x, y and z-planes the final result is six indices, as
mentioned earlier. These six indices are used to add the light to the
3D clusters.

4.1.3 Fill 3D cluster texture and light index list

As there are no real dynamic buffers on the GPU some extra data
structures and buffers have to be added to conserve memory. The
main problem is that there is no way of knowing how many lights
will be assigned to each cluster and it would be wasteful to allocate
a large amount of light slots for each cluster on the GPU. This is
where the light index list provides a solution. The light index list
acts as a pool for all the clusters combined and the clusters simply
points into the light index list and provides an offset. In Figure 3
on page 3 a), the first cluster (top left) points to element zero in the
index light list and there are two lights in that cluster, indicated by
the second element in that cluster. Using this approach a calculated
safe limit can be used when allocating memory for all clusters on
the GPU. Each element in the light index list points to a point light.
There is only one copy of every point light on the GPU, but multiple

Algorithm 1 Light assignment
1: for each light do
2: if light is inside outer frustum then
3: for each Xplane do
4: dist = xpn · (lp+ (−xpn ∗ lr)− cp)
5: if dist ≤ 0 then
6: lxp = Xplane− 1
7: for each remaining Xplane do
8: dist = xpn · (lp+ (xpn ∗ lr)− cp)
9: rxp = Xplane− 1

10: if dist ≤ 0 then
11: break
12: end if
13: end for
14: break
15: end if
16: end for
17: end if
18: end for

light indices can point to the same light. Point lights contain much
more data than a single index and this provides a memory efficient
solution.

To keep all the data tightly packed on the GPU some sacrifices must
be made on the CPU side. When performing the light assignment
on the CPU, all the clusters must store their own light indices tem-
porarily to avoid having to sort anything or dynamically allocate
more memory when filling the light index buffer. Most of the time
there is much more system RAM than video RAM in a system and
this trade-off ensures the high performance requirement when as-
signing lights.

Figure 3: a) Represents a 3D texture with two components per cell.
b) The light index list. c) The buffer containing point light data.

4.1.4 Shade in pixel/fragment shader full screen pass

To light a fragment in the shader program it first needs to find which
cluster it has to fetch light from. This is done by sampling the
depth buffer from the previous G-Buffer pass. The depth tells the
fragment which z-index the cluster has and then the screen position
of the fragment tells it what x and y-index the cluster has. To extract
the x and y coordinates in an efficient manner a power of two sized

x and y cluster width and height is used. In that case a simple bit
shift operation is needed to find the x and y coordinate in the 3D
texture. Once the 3D coordinate for the cluster has been calculated,
it is only a matter of lighting the fragment with the point lights in
that cluster.

4.2 Experiment

The testing and data gathering for this paper using the de-
scribed implementation was performed on a laptop running a Core
i7-3630QM CPU at 2.4GHz, 8GB DDR3 RAM and a Nvidia
GTX660m on a Windows 8.1 64bit operating system. The imple-
mentation uses DirectX 11 from the Windows 8 SDK. The scene is
the CryTek Sponza model. The G-Buffer contains a normal texture,
a position texture, a diffuse texture and a depth texture. The reso-
lution of the back buffer is 1536x768 to keep all the clusters even
in size, even though resolutions that are not divisible by a power of
two are no problem at all. The lighting model used is the per frag-
ment Phong shading model but without the specular calculation.

5 Result

The implementation provides an efficient light culling and shading
technique with good results. As can be seen in Figure 4 on page 3
there are less than 50 lights affecting each fragment when having
1000 lights in the scene. Using traditional deferred shading without
light culling results in 1000 lights per fragment.

The VRAM column shows the theoretical overhead memory
needed on the GPU to perform Clustered Shading. This does not
include the point light data.

Figure 4: The color grading describes the number of light calcula-
tions per fragment. Black is 0 lights and white is 50 lights.

clusters Shading Light assignment Total VRAM
24x12x16 8.12ms 1.04ms 9.16ms 137kB
24x12x32 6.08ms 2.2ms 8.28ms 273kB
24x12x64 5.97ms 3.13ms 9.1ms 546kB

No clustering 156ms - 156ms 0kB

Table 1: Results from 1000 lights

clusters Shading Light assignment Total VRAM
24x12x16 0.53ms 0.1ms 0.63ms 27kB
24x12x32 0.5ms 0.14ms 0.64ms 54kB
24x12x64 0.5ms 0.28ms 0.78ms 109kB

No clustering 1.6ms - 1.6ms 0kB

Table 2: Results from 10 lights

6 Discussion

The results in tables 2 and 1 show a dramatic decrease in shad-
ing time in both 10 lights and 1000 lights. The traditional deferred
shading scales linearly with the number of lights and is 18.8 times
slower than the best cluster setup. At 10 lights it is only 2.5 times
slower than the best clustering setup. The scenarios from the result
section only differ in the number of z-planes, causing the cluster
structure to produce more and thinner clusters. This is why there is
a diminishing result at higher number of z planes. There are always
lights affecting a fragment and no matter how small the cluster is
those lights will still be used when shading. This is a drawback of
the static cluster structure size of this technique. In [Olsson et al.
2012a] they present alternative clustering techniques that are more
flexible and adaptive which results in better shading times, but that
gained shading time is lost in light assignment and other surround-
ing steps. The balance between light assignment and shading time
is very hard to pin point as they both depend on the number and
position of lights in the viewing frustum.

One thing to note is that the light assignment time does not increase
linearly. This is because of the light assignment algorithm and how
it iterates over planes when reducing the frustum. For the light as-
signment to increase linearly all the lights would have to be all the
way back at the far plane, as the iteration starts from the near plane
and works its way back. A way to increase the efficiency of the light
assignment would be to use a binary frustum reduction method. In-
stead of iterating from one side to another the intersection could be
performed like binary search, jumping to the middle plane and find-
ing out which way to jump next by using the existing distance. Bi-
nary frustum reduction coupled with threading of the three different
plane phases of the light assignment could yield a significant speed
up. The most significant improvement to the shading time would
be to achieve a tighter cluster fit when assigning lights. Around 20-
30% of clusters are incorrectly assigned due to the nature of fitting
a sphere in a collection of frustums [Persson and Olsson 2013].

As can be seen in Figure 4 on page 3 there are no depth discontinu-
ities present, even with the camera placed partially behind a pillar.
The small pillar in the distance is shaded using a different clus-
ter from the background, where as a Tiled Shading implementation
would use all the lights between the pillar and the background.

7 Conclusion

Large amounts of dynamic lights are becoming the norm in modern
games. Many techniques have emerged and are used to effectively
increase the number of lights per scene. The technique presented in
this paper is fast, light weight and easy to implement. As a bonus
it runs on the CPU which allows it to run on older hardware that
do not have access to the latest GPUs. Compared to Tiled Shading,
this approach has the advantage of not being dependent on the scene
depth discontinuities and provides stable performance.

8 Future work

As discussed there are some ways of increasing the efficiency of
the light assignment and increase the number of clusters to achieve
better shading times. With an implicit clustering structure the bot-
tleneck will soon become the data transfer between CPU and GPU
if the clusters are small enough and the number of lights increases.
This leads the future of this technique towards the GPU. It is a
highly parallelizable algorithm and the only real problem is how
to store and manage the memory for fast access when shading. A
GPU version of this implicit clustering structure is something that
will be looked into.

Other light types and shapes must be supported for the technique to
become widely accepted. Especially now with the current surge of
area lights in game engines.

References

ANDERSSON, J. 2009. Parallel graphics in frostbite-current &
future. SIGGRAPH Course: Beyond Programmable Shading.

BALESTRA, C., AND ENGSTAD, P.-K. 2008. The technology of
uncharted: Drake’s fortune. In Game Developer Conference.

F., M., 2014. Forward Clustered Shading. https:
//software.intel.com/en-us/articles/
forward-clustered-shading. [Online; accessed
09-January-2015].

HARADA, T., MCKEE, J., AND YANG, J. C. 2013. Forward+:
A step toward film-style shading in real time. GPU Pro 4: Ad-
vanced Rendering Techniques 4, 115.

MEINL, F., 2010. The Atrium Sponza Palace, Dubrovnik. http:
//www.crytek.com/cryengine/cryengine3/
downloads. [Online; accessed 09-January-2015].

OLSSON, O., AND ASSARSSON, U. 2011. Tiled shading. Journal
of Graphics, GPU, and Game Tools 15, 4, 235–251.

OLSSON, O., BILLETER, M., AND ASSARSSON, U. 2012.
Clustered deferred and forward shading. In Proceedings of
the Fourth ACM SIGGRAPH/Eurographics conference on High-
Performance Graphics, Eurographics Association, 87–96.

OLSSON, O., BILLETER, M., AND ASSARSSON, U. 2012. Tiled
and clustered forward shading. In SIGGRAPH ’12: ACM SIG-
GRAPH 2012 Talks, ACM, New York, NY, USA.

PERSSON, E., AND OLSSON, O., 2013. Practical clustered de-
ferred and forward shading. SIGGRAPH Course: Advances in
Real-Time Rendering in Games.

SWOBODA, M. 2009. Deferred lighting and post processing on
playstation 3. In Game Developer Conference.

https://software.intel.com/en-us/articles/forward-clustered-shading
https://software.intel.com/en-us/articles/forward-clustered-shading
https://software.intel.com/en-us/articles/forward-clustered-shading
http://www.crytek.com/cryengine/cryengine3/downloads
http://www.crytek.com/cryengine/cryengine3/downloads
http://www.crytek.com/cryengine/cryengine3/downloads

