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In the course of building megabases, we often want to estimate the power
consumption of logistic robots, so that we can plan out how much space to leave
for roboports and how many robots are required. In this article, we discuss
several methods for estimating the power consumption of logistic robots.

1 Basic Case: Single Requester Chest, Single
Provider Chest

1.1 Roundtrip Power Consumption

The simplest use case of logistic robots is to deliver from a provider chest to
a requester chest. For this calculation, we assume that the provider chest is
always filled with more than enough items, and the items in the requester chest
are cleared (by, for instance, an inserter) at a constant rate. We list some of the
variables that can affect robot power usage:

robot speed: v
Robot speed can be viewed from the information box that appears when
you place your mouse over a robot in your inventory. This number in-
creases as you complete more worker robot speed research; for worker
robot speed 6, this number is 43.7km/h, or 12.15m/s.

distance: d
This is the distance between the requester and the provider chest, mea-
sured in tiles (or meters).

robot cargo size: s
The number of items a single robot can carry at once. We will assume
s = 4 since this is the cargo size when all relevant research has been
completed.

throughput: T
The number of items removed from the requester chest per unit time.

1



We first compute the power consumption P0 of a single moving robot. We
know that the robot has a drain of 3kW and consumes 5kJ per meter, so the
moving robot has power:

P0 = 3kW + (5kJ/m)v. (1)

Now we compute the throughput T0 of a single robot. The robot delivers
items in roundtrips between the two chests: it first goes to the requester chest
to pick up the items, then it goes to the provider chest to deliver the items,
then it goes back to the requester chest to repeat the process. The time t for a
round trip is thus:

t = 2d/v, (2)

and the throughput T0 of the robot is:

T0 = s/t =
sv

2d
. (3)

To reach a given throughput T , we need T/T0 robots for delivery, so the
total power consumption P is:

P =
T

T0
P0 =

2P0

sv
Td. (4)

We see that for fixed v and s, the power consumption is proportional to
throughput T and distance d.

1.2 Accounting For Robot Charge Time

When fully charged, a robot have 1500kJ of energy, so we expect the robot to
charge for 1.5s each time the robot’s energy is completely used up. The amount
of time for the robot to use up its energy is 1500kJ/P0, so the number of robots
required for a given throughput T should be multiplied this factor:

1500kJ/P0 + 1.5s

1500kJ/P0
= 1.003 + (0.005s/m)v. (5)

At worker robot speed 6, this factor is only 1.06375; even at worker robot speed
20, this factor is just 1.20025. We see that this factor is not very high; as long
as we have some redundancies in our design, this factor should not matter too
much.

The corrected total power consumption is thus:

P =
T

T0
P0 =

1500kJ/P0 + 1.5s

1500kJ/P0

2P0

sv
Td. (6)

Note that we didn’t account for the time for the robot to fly to a nearby
roboport, so the actual power consumption should be a bit higher than the
above formula. Placing the roboports on the path of the robots should reduce
that extra time to a minimum.
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1.3 Experiment

Now we test our calculations with creative mod. The experimental setup, shown
in Figure 1, includes:

• A passive provider chest, providing iron plates obtained from an infinite
chest.

• A requester chest, requesting 1000 iron plates.

• A stack inserter taking iron plates out of the requester chest into a void.

The throughput of stack inserter is T = 12/(26/60)s−1. The provider and
the requester chest are 32 tiles apart. Worker robot speed is at level 6, and the
cargo size is 4. The relevant variables are thus given by:

d = 32m (7)

v = 12.15m/s (8)

s = 4 (9)

T = 12/(26/60)s−1 (10)

Plugging these numbers into Equation (6), we have:

P = 2.47MW. (11)

Figure 2 shows the average power consumption of roboports in a 10-minute
span. Since roboports have a drain of 50kW, the power consumption due to
robot recharge is 2.9MW− 8 ∗ 0.05MW = 2.5MW. This number is very close to
our theoretical value.

2 Simple Case: Single Requester Chest, Multi-
ple Provider Chest

2.1 General Formula

To simplify our formulas a bit, we fix s and v, and let:

C =
1500kJ/P0 + 1.5s

1500kJ/P0

2P0

sv
, (12)

then Equation 6 simplifies to:

P = CTd. (13)

In Section 1, we assumed that there are always enough items in that single
provider chest that we have. However, if the requester chest consumes items
faster than what a single provider can provide, robots will move items from
multiple provider chests into the requester chest. Suppose the provider chests
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Figure 1: Experiment 1 setup

are labelled by i, the throughput of chest i is Ti, and the distance from chest i
to the requester chest is di, then the total power consumption is:

P = C
∑
i

Tidi. (14)

Also, the total throughput is:

T =
∑
i

Ti. (15)

Since requester chests always pick from the closest provider chest, the through-
put of the closer provider chests will be maxed-out before other chests; in other
words, the Ti of the closer chests will be equal to the throuput of whatever
entity that is putting items into chest i. Assuming di’s are all distinct, we can
order the provider chests by distance:

d1 < d2 < ... (16)
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Figure 2: Experiment 1 result

Let the maximum number of items provided per unit time for chest i be Si,
then for a given goal of total throughput T , the total power consumption is:

P = C(

n∑
i=1

Sidi + (T −
n∑
i=1

Si)dn+1), (17)

where n is the maximum integer such that:

T −
n∑
i=1

Si ≥ 0. (18)

2.2 Example: Iron Smelting

We consider the setup shown in Figure 3. Below an 8-beacon iron smelting
setup, two requester chests each requests 1000 iron plates, and the 5 loaders
consume T = 5 ∗ 40 = 200/s. (because the two requester chests are very close
they can practically be regarded as one chest) The throughput S of each smelter
is given by a standard calculation.
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v and s are the same as those given by Equation 8 and 9. Other relevant
numbers are listed below:

S = 1.2 ∗ 9.4/3.5 = 3.22286/s (19)

T = 200/s (20)

The number n of active smelters needed is:

n =
T

S
= 62.0567. (21)

Since logistic requests are fulfilled from the closest provider chests first, at
a fixed throughput T , the requests are fulfilled from provider chests within a
half disk of radius R. In our setup, provider chests are spaced horizontally gaps
of size ∆x = 3 and vertical gaps of size ∆y = 8. Assuming that iron plate
production is smoothed out over 3× 8 areas, we can now estimate R:

1

2
πR2 = n∆x∆y (22)

⇒ R =

√
(n∆x∆y)/(

1

2
π) = 30.7922m. (23)

So logistic requests are fulfilled from chests within a radius of 30.7922 tiles.
Now we estimate the power consumption:

P = CS
∑

(i∆x)2+(j∆y)2≤R2,j≥0

√
(i∆x)2 + (j∆y)2 (24)

≈ CS
∫

(u∆x)2+(v∆y)2≤R2,v≥0

dudv
√

(u∆x)2 + (v∆y)2 (25)

= CS
1

∆x∆y

∫
x2+y2≤R2,y≥0

d2~r |~r| (26)

= CS
1

∆x∆y

∫ π

0

dθ

∫ R

0

r2 dr (27)

= CS
1

∆x∆y

1

3
πR3 (28)

= 11467.6kW. (29)

We approximated the summation by an integral at step 2. Since the distance
function from a fixed point is convex, this approximation is likely to be lower
than the actual value due to Jensen’s inequaltiy.

Figure 4 shows the actual power usage of such a setup over a 10-minute
span. Correcting for roboport drain, the experimental value for robot power
consumption is P = 16.5MW−0.05MW∗80 = 12.5MW. This turns out to be a
bit higher than our theoretical value 11467.6kW, which may be due to error in
our integral approximation, error in the distance in Equation 24 (I didn’t count
the exact number of tiles), the time it takes for a robot to fly to a roboport for
recharge, and the fact that some bot trips carry less items than the cargo size
s. That said, this estimate is fairly good for practical purposes.
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Figure 3: Experiment 2 setup

3 General Case: Multiple Requester Chest, Mul-
tiple Provider Chest

3.1 Theory

Practical use cases for logistic bots usually involve multiple requester chests and
multiple provider chests. In the previous two sections, we assumed that all the
throughput of a single provider belong to a single requester; However, we cannot
assume these for the multiple requester chest case, since multiple requester can
compete for the throughput of a single provider. As in Section 2, we label the
provider chests by i, and furthermore we label the requester chests by j. Let
the average throughput from provider i to requester j be Tij and the distance
between the two chests be dij , we have:

P = C
∑
i,j

Tijdij . (30)
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Figure 4: Experiment 2 result

If the throughput goal for requester j is Tj , then we have constraints:

Tj =
∑
i

Tij . (31)

Also, let the maximum throughput for provider i be Si, then we have:

Si ≥
∑
j

Tij . (32)

Assuming that the total throughput of all providers is enough for fulfilling all
logistic requests over time, given Tj ’s and Si’s, how do we compute Tij ’s? The
difficulty here is that we don’t know the order in which the requesters make the
logistic requests. At a given tick, when a requester makes a request, it simply
takes items from the closest provider; when another requester makes a request
after the first one, it may have to take items from other providers, because
the first provider may be already emptied. If we have the order in which the
requesters request items, the bot trips becomes deterministic , and (in principle)
we can compute the Tij ’s.
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Now let us consider the robot trips over a time span of t. The maximum
number of items provided by provider i is Ni := Sit, and the number of items
delivered to requester j is Mi := Tjt. It takes a total of N :=

∑
j Tjt/s trips for

all logistic requests to be fulfilled. Let the order in which the bots make these
N requests be σ, then the total number of deliveries Dij from provider i to
requester j is determined. We write Dij(σ) to emphasize that Dij is a function
of σ.

In the course of the game, the order σ gets randomized, so the expected
value for Dij is:

E(Dij) =
1

N !

∑
σ

Dij(σ). (33)

The average throughput can be thus computed via:

Tij = E(Dij)s/t =
s/t

N !

∑
σ

Dij(σ). (34)

We expect Tij to reach a limit when we take t → ∞. With this Equation we
can compute the power consumption of logistic robots with Equation 30.

Equation 34 is hard to be used directly. We suspect that there are ways to
approximate this result using the combinatorial and statistical structure of the
problem, but we won’t try that in this article.

3.2 Example: 2 Requester and 2 Providers

Figure 5 shows the setup for experiment 3. The two providers and the two
requesters are 16 tiles apart horizontally, and the vertical distance between
providers and requesters is 16 tiles; also, the provider and requester near the
middle are 16 tiles apart horizontally. All chests have throughput of exactly 1
stack inserter.

To compute the power consumption, we can directly apply Equation 34 with
N = 2: if left requester requests first, then right requester will have to request
from right provider, so the total bot distance is 16

√
5 × 2; if right requester

requests first, then left requester will have to request from right provider, so the
total bot distance is 16(

√
10 +

√
2). Assuming the same s and v as in Section

2, we now plug these into Equation 30 to get:

S = 12/(26/60) (35)

P = CS
1

2
((16
√

5× 2) + (16(
√

10 +
√

2))) (36)

= 5594.29kW. (37)

The result of experiment 3 is given in Figure 6: the actual power consumption
was P = 8.1MW−0.05MW∗81 = 5.55MW. This is very close to our theoretical
value. Note that this experiment may not be a strong confirmation for Equation
34, since the difference in total distance between the two orderings is rather low.
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Figure 5: Experiment 3 setup

3.3 Example: Loading Iron Plates from Smelter

Figure 7 shows the setup for experiment 4. In this experiment, we made a
8-beacon iron smelting site with 5 rows and 108 columns. A total of 108 re-
quester chests are directly below the provider chests, and the iron plates in each
requester chest is being consumed by a yellow belt. (So Tj = 13.333/s.) The
provider chests and requester chests together form a rectangular grid of 6×108.
The lowest row of provider chests are 8 tiles from the row of requester chests, so
the distance between a requester chest and the provider chests directly above it
are 8, 16, 24, 32, 40 tiles.

For this example, we do not actually compute the power consumption using
Equation 30 and 34 (because we don’t know how to do it), but rather give a
lower bound on the power consumption. Assuming that each requester chest
only takes items from provider chests directly above it, then to reach throughput
goal Tj = 13.333/s, it must take from Tj/S = 13.333/(1.2 ∗ 9.4/3.5) = 4.13712
provider chests; the bottom 4 rows of provider chests are thus drained com-
pletely, and items will be taken out of the top row of provider chests occasionally.
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Figure 6: Experiment 3 result

The power consumption for a single requester chest is thus:

Pj = C(S ∗ (8 + 16 + 24 + 32) + (Tj − 4 ∗ S) ∗ 40) = 768.852kW. (38)

The total power consumption thus computed is:

P = 108Pj = 83036kW. (39)

In reality, the requester chests do not request only from providers directly
above it. That said, to satisfy the iron plate consumption of all requesters,
all 4 bottom rows plus a bit of the top row of providers will be drained. The
shortest distance from a provider to the row of requesters is distance between
the provider and the requester directly below it. Any delivery that does not
follow a vertical path will result in a total power consumption higher than P ,
so we see that P is indeed a lower bound on the power consumption. It is also
not hard to find an ordering σ such that Equation 30 gives the power P we just
calculated.

The result of experiment 4 is given in Figure 8; the actual robot power
consumption is P = 103MW− 0.05MW ∗ 170 = 94.5MW. This result is higher
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than our lower bound 83036kW by 14%, which is pretty much expected. We
see that the lower bound is actually not too far from the actual value, so it can
still be a useful estimate for planning purposes.

Figure 7: Experiment 4 setup

12



Figure 8: Experiment 4 result
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