Lecture - 16,17

Thursday, 1 September 2016 (14:25-15:15; 17:10-18:30)

Longest Streak problem

Assume that we toss a fair coin n times and generate a binary string accordingly : if the toss results in a Head we note a 0 and a 1 if we get a Tail. This way we obtain a binary string of length n.

Definition 1. A streak is defined as the sub-string of all consecutive 0's. The length of a streak is given by the number of 0's that make up the streak.

Question : Given a string of length n generated by the above experiment, what is the expected length of the longest streak?

The aim of this lecture was to show that, if s is the expected length of the longest streak, then we would show :

$$
\begin{gathered}
s=\Omega(\log n) \text { and } s=O(\log n) \\
\therefore s=\Theta(\log n)
\end{gathered}
$$

Observation 1 :

Firstly, we will provide an upper bound on the expected length of the longest streak.
We begin by defining a random variable L to denote the length of the longest streak in a string of length n. Let L_{j} be the event that we get a string where the longest streak length is precisely j. Therefore, by the definition of expectation, it is $E[L]$ that we desire to compute which can be written as:

$$
E[L]=\sum_{j=1}^{n} j \cdot \operatorname{Pr}\left(L_{j}\right)
$$

We define another event $A_{i, k}$ as the obtaining a string which has a streak of length k starting from the $i^{\text {th }}$ index of the given string.
Thus, we can say that $\operatorname{Pr}\left(A_{i, k}\right)=\frac{1}{2^{k}}$. When we assume the streak length to be $2 \operatorname{logn}$ we see that :

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i, k}\right)=\operatorname{Pr}\left(A_{i, 2 \log n}\right)=\frac{1}{2^{2 \log n}}=\frac{1}{n^{2}} \tag{1}
\end{equation*}
$$

Now, we can compute the probability that we obtain a streak of length $k=2 \operatorname{logn}$ at some point in the string as :

$$
\begin{array}{rlr}
\operatorname{Pr}\left(\bigcup_{i=1}^{n-k} A_{i, k}\right) & \leq \sum_{i=1}^{n-k} \operatorname{Pr}\left(A_{i, k}\right) & \because \text { Union Bound } \\
& =\sum_{i=1}^{n-k} \frac{1}{n^{2}} & \\
& \leq \frac{1}{n} &
\end{array}
$$

We shall bear in mind the above result and use it later on. Let is reconsider the expected value of longest streak length.

$$
\begin{aligned}
E[L] & =\sum_{j=1}^{n} j \cdot \operatorname{Pr}\left(L_{j}\right) \\
& =\sum_{j=1}^{2 \log n-1} j \cdot \operatorname{Pr}\left(L_{j}\right)+\sum_{j=2 \log n}^{n} j \cdot \operatorname{Pr}\left(L_{j}\right) \\
& \leq\left(2 \log (n) \sum_{j=1}^{2 \log (n)} \operatorname{Pr}\left(L_{j}\right)\right)+\left(n \sum_{j=2 \operatorname{logn} n}^{n} \operatorname{Pr}\left(L_{j}\right)\right) \\
& \leq 2 \log (n) \cdot 1+n \cdot \frac{1}{n}
\end{aligned}
$$

The last inequality holds from the fact that:

$$
\begin{aligned}
& \sum_{j=1}^{n} \operatorname{Pr}\left(L_{j}\right)=1 \\
\therefore & \sum_{j=1}^{2 \log n} \operatorname{Pr}\left(L_{j}\right) \leq 1
\end{aligned}
$$

Additionally, the probability of finding a string having the longest streak of length $2 \operatorname{logn}$ or more is denoted by :

$$
\sum_{j=2 \log n}^{n} \operatorname{Pr}\left(L_{j}\right)=\operatorname{Pr}\left(\bigcup_{i=1}^{n-k} A_{i, k}\right) \leq \frac{1}{n}
$$

from the previous definition.

Thus, we have shown that the expected length of the longest streak is $E[L]=O(\log n)$, i.e the expected length is bounded above by order $\log n$.

Now, we will work towards showing that in fact $E[L]$ is bounded below by $\Omega(\log n)$.
Let us assume the string to be broken into slabs of length s, such that we have the string partitioned into a total of $\frac{n}{s}$ slabs.

The probability that a streak is present in a given slab $=\frac{1}{2^{s}}$.
Let us assume the slab size to be $s=\frac{\log n}{2}$. Therefore, the probability that a streak is present in a given slab $=\frac{1}{2^{\frac{\log n}{2}}}=\frac{1}{\sqrt[2]{n}}$.

The probability that a streak is not present in a given slab $=1-\frac{1}{\sqrt{n}}$.
The probability that a streak is not present in any of the slabs of the given string $=\left(1-\frac{1}{\sqrt{n}}\right)^{\frac{2 n}{\log _{n}}}$

$$
\begin{aligned}
& =\left(1-\frac{1}{\sqrt{n}}\right)^{\frac{2 \cdot \sqrt{n} \cdot \sqrt{n}}{\log n}} \\
& \approx e^{\frac{-2 \sqrt{n}}{\log n}} \\
& \geq \frac{1}{e^{\log n}} \\
& =\frac{1}{n}
\end{aligned}
$$

The last inequality follows from the fact that $\frac{2 \sqrt{n}}{\log n} \geq \log n$. Therefore, we can say that a streak of length $\frac{\log n}{2}$ is present in at least one of the slabs $=1-\mathrm{O}\left(\frac{1}{n}\right)$. Since we are considering streaks only within a slab, we are discounting on streaks that could lie across slabs. Hence, the probability that there is a streak of length at least $\frac{\log n}{2}$ anywhere in the string is greater than the above probability. Thus

$$
\sum_{j=\frac{l o g n}{2}}^{n} \operatorname{Pr}\left(L_{j}\right) \geq 1-O\left(\frac{1}{n}\right)
$$

Thus, we have:

$$
\begin{aligned}
E[L] & =\sum_{j=1}^{\frac{\log n-1}{2}} j \cdot \operatorname{Pr}\left(L_{j}\right)+\sum_{j=\frac{\log n}{2}}^{n} j \cdot \operatorname{Pr}\left(L_{j}\right) \\
& \geq \sum_{j=\frac{\log n}{2}}^{n} j \cdot \operatorname{Pr}\left(L_{j}\right) \\
& \geq \frac{\log n}{2}\left(1-O\left(\frac{1}{n}\right)\right) \\
& \geq \frac{\log n}{2}
\end{aligned}
$$

This allows us to conclude that the expected length of longest streak is also bounded below by $O(\log n)$.

