
5.1 The Basic Protocol

Protocol 5.1 (oblivious transfer from errorless homomorphic encryption):

• Inputs: The sender S has a pair of strings (x0, x1) for input; the receiver R has a bit σ. Both
parties have the security parameter 1n as auxiliary input. (In order to satisfy the constraints
that all inputs are of the same length, it is possible to define |x0| = |x1| = k and give the
receiver (σ, 12k−1).)

• Assumption: We assume that the group determined by the homomorphic encryption scheme
with security parameter n is large enough to contain all strings of length k. Thus, if the
homomorphic encryption scheme only works for single bits, we will only consider k = 1 (i.e.,
bit oblivious transfer).

• The protocol:

1. The receiver R chooses two sets of two pairs of keys:

(a) (pk0
1, sk

0
1), (pk0

2, sk
0
2) ← G(1n) using random coins r0

G, and
(b) (pk1

1, sk
1
1), (pk1

2, sk
1
2) ← G(1n) using random coins r1

G

R sends (pk0
1, pk0

2) and (pk1
1, pk1

2) to the sender S.

2. Key-generation challenge:

(a) S chooses a random coin b ∈R {0, 1} and sends b to R.
(b) R sends S the random-coins rb

G that it used to generate (pkb
1, pkb

2).
(c) S checks that the public keys output by the key-generation algorithm G when given

input 1n and the appropriate portions of the random-tape rb
G equal pkb

1 and pkb
2. If

this does not hold, or if R did not send any message here, S outputs corruptedR and
halts. Otherwise, it proceeds.
Denote pk1 = pk1−b

1 and pk2 = pk1−b
2 .

3. R chooses two random bits α, β ∈R {0, 1}. Then:

(a) R computes
c1
0 = Epk1(α) c2

0 = Epk2(1− α)
c1
1 = Epk1(β) c2

1 = Epk2(1− β)

using random coins r1
0, r2

0, r1
1 and r2

1, respectively.
(b) R sends (c1

0, c
2
0) and (c1

1, c
2
1) to S.

4. Encryption-generation challenge:

(a) S chooses a random bit b′ ∈R {0, 1} and sends b′ to R.
(b) R sends r1

b′ and r2
b′ to S (i.e., R sends an opening to the ciphertexts c1

b′ and c2
b′).

(c) S checks that one of the ciphertexts {c1
b′ , c

2
b′} is an encryption of 0 and the other

is an encryption of 1. If not (including the case that no message is sent by R), S
outputs corruptedR and halts. Otherwise, it continues to the next step.

5. R sends a “re-ordering” of the ciphertexts {c1
1−b′ , c

2
1−b′}. Specifically, if σ = 0 then it

sets c0 to be the ciphertext that is an encryption of 1, and sets c1 to be the ciphertext
that is an encryption of 0. Otherwise, if σ = 1 then it sets c0 to be the encryption of 0,
and c1 to be the encryption of 1. (Only the ordering needs to be sent and not the actual
ciphertexts. Furthermore, this can be sent together with the openings in Step 4b.)

25

6. S uses the homomorphic property and c0, c1 as follows.

(a) S computes c̃0 = x0 ·E c0 (this operation is relative to the key pk1 or pk2 depending
if c0 is an encryption under pk1 or pk2)

(b) S computes c̃1 = x1 ·E c1 (this operation is relative to the key pk1 or pk2 depending
if c1 is an encryption under pk1 or pk2)

S sends c̃0 and c̃1 to R. (Notice that one of the ciphertexts is encrypted with key pk1

and the other is encrypted with key pk2.)

7. If σ = 0, the receiver R decrypts c̃0 and outputs the result (if c̃0 is encrypted under pk1

then R outputs x0 = Dsk1(c̃0); otherwise it outputs x0 = Dsk2(c̃0)). Otherwise, if σ = 1,
R decrypts c̃1 and outputs the result.

8. If at any stage during the protocol, S does not receive the next message that it expects to
receive from R or the message it receives is invalid and cannot be processed, it outputs
abortR (unless it was already instructed to output corruptedR). Likewise, if R does not
receive the next message that it expects to receive from S or it receives an invalid message,
it outputs abortS.

We remark that the reordering message of Step 5 can actually be sent by R together with the
message in Step 4b. Furthermore, the messages of the key-generation challenge can be piggybacked
with later messages, as long as they conclude before the final step. We therefore have that the
number of rounds of communication can be exactly four (each party sends two messages).

Before proceeding to the proof of security, we present the intuitive argument showing why
Protocol 5.1 is secure. We begin with the case that the receiver is corrupt. First note that if
the receiver follows the instructions of the protocol, it learns only a single value x0 or x1. This is
because one of c0 and c1 is an encryption of 0. If it is c0, then c̃0 = x0 ·E c0 = Epk(0 · x0) = Epk(0)
(where pk ∈ {pk1, pk2}, and so nothing is learned about x0; similarly if it is c1 then c̃1 = Epk(0) and
so nothing is learned about x1. However, in general, the receiver may not generate the encryptions
c1
0, c

1
1, c

2
0, c

2
1 properly (and so it may that at least one of the pairs (c1

0, c
2
0) and (c1

1, c
2
1) are both

encryptions of 1, in which case the receiver could learn both x0 and x1). This is prevented by
the encryption-generation challenge. That is, if the receiver tries to cheat in this way then it is
guaranteed to be caught with probability at least 1/2. The above explains why a malicious receiver
can learn only one of the outputs, unless it is willing to be caught cheating with probability 1/2.
This therefore demonstrates that “privacy” holds. However, we actually need to prove security
via simulation, which involves showing how to extract the receiver’s implicit input and how to
simulate its view. Extraction works by first providing the corrupted receiver with the encryption-
challenge bit b′ = 0 and then rewinding it and providing it with the challenge b′ = 1. If the
corrupted receiver replies to both challenges, then the simulator can construct σ from the opened
ciphertexts and the reordering provided. Given this input, the simulation can be completed in a
straightforward manner; see the proof below. A crucial point here is that if the receiver does not
reply to both challenges then an honest sender would output corruptedR with probability 1/2, and
so this corresponds to a cheatR input in the ideal world.

We now proceed to discuss why the protocol is secure in the presence of a corrupt sender. In this
case, it is easy to see that such a sender cannot learn anything about the receiver’s input because
the encryption scheme is semantically secure (and so a corrupt sender cannot determine σ from
the unopened ciphertexts). However, as above, we need to show how extraction and simulation
works. Extraction here works by providing encryptions so that in one of the pairs (c1

0, c
2
0) or (c1

1, c
2
1)

both of the encrypted values are 1. If this pair is the one used (and not the one opened) , then we

26

