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description of the structure of its center. 

 

Keywords: Temperley-Lieb algebra, multi-colour partition algebras and central 

idempotenets. 

 

 

Introduction 

      The bubble algebra 𝕋n,m(δ0, … , δm−1) was introduced by Grimm and Martin[3], 

and then its definition has generalized by using the definition of the partition algebra 

and as result we obtain the multi-colour partition algebra ℙn,m(δ0, … , δm−1), see 

Hmaida[5].  

     The generic representations of the bubble algebra has been studied by Grimm and 

Martin[3], and they proved that it is semi-simple when none of parameters δi is a root 

of unity. Also Jegan[7] showed how certain idempotents in the bubble algebra could 

be use to simplify many problems on the algebra 𝕋n,m(δ0, … , δm−1) as investigating 

the homomorphisms between the cell modules of the algebra, since it is a cellular 

algebra. Later, we, in [5], investigated the non-generic representations of the bubble 

algebra and the generic ones of the multi-colour partition algebra, and showed that the 

algebra ℙn,m(δ0, … , δm−1) is non-semisimple over the complex field if and only if δi 

is a non-negative integer less than 2n − 1 for some j ∈ ℤm−1.  

    We generalized the technique that has been used in [5] and  proved that the 

representations of any finite-dimensional cellular algebra with idempotents that 

satisfying specific conditions can be totally determined by the representations of its 

idempotent sub-algebras, for more details see Hmaida[6].  

    The representation theory of a unital algebra over a field with a splitting modular 

system is related to primitive central idempotents of its ordinary case. For example, a 

decomposition of  the identity into a sum of primitive central idempotents gives the 

blocks of the algebra, see e.g. [1].  

    Our aim in this paper is to construct a family of central idempotents of the bubble 

algebra and give a simple description of  its center. 

  

Basic Definitions 

Before discussing the multi-colour partition algebra we shall introduce the 

partition algebra ℙ𝑛( 𝛿) and some of its subalgebra. Fix a natural number n, the 

algebra ℙ𝑛( 𝛿) generated by the set, which is denoted by 𝒫𝑛, of all partitions of the 

set 𝑛 ∪ 𝑛′ ≔ {1, … , 𝑛} ∪ {1′, … , 𝑛′}.  
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Each set partition can be represented by a graph: the graph is drawn in a 

rectangle with n nodes on the top and n nodes on the bottom, the vertices that are in 

the same part at the partition are represented as lines drawn inside the rectangle 

connecting these vertices. will often label our nodes starting with 1 on the left to 𝑛 on 

the top edge and starting on the bottom edge with 1′ on the left to 𝑛′. The diagram 

representing a partition is not unique, since there are different ways to drawing the 

edges. Two such diagrams are equivalent if they have the same connected 

components. 

We define a multiplication on this basis as follows. If 𝐴, 𝐵 are partition 

diagrams, the element 𝐴𝐵 is defined by stacking diagrams. In such a product of 

diagrams closed loops may appear, we remove each loop and replace it  by 𝛿. Figure 

1  illustrates multiplication.  

 

Figure 1 

The Temperley-Lieb algebra is a sub-algebra of the algebra ℙ𝑛( 𝛿), and the 

diagrams representing partitions that spanning the Temperley-Lieb algebra 𝑇𝐿𝑛(𝛿) 

are planar (non-crossing) and their parts all have size two. For example see Figure 2. 

 

Figure 2 

The partition algebra was defined by Martin[8], and its representation theory 

has been investigated by many people, for example Halverson and Ram[4], Martin [8] 

and Martin and Woodcock [10].  Also, the representation theory of Temperley-Lieb 

algebra is well known, see e.g. Martin [9] , Ridout and Saint [11] and Westbury [12]. 

3. The Multi-Colour Partition algebras 

     For any positive integer 𝑚, let ℭ0, … , ℭ𝑚−1 be different colours where none of 

them is white, and 𝛿0, … , 𝛿𝑚−1 be scalars corresponding to these colours. 

    We construct basis elements of the multi-colour partition algebra 

ℙ𝑛,𝑚(𝛿0, … , 𝛿𝑚−1)  in similar way to the algebra ℙ𝑛( 𝛿). Define the set Φ𝑛,𝑚 ≔
{(𝐴0, … , 𝐴𝑚−1)|{𝐴0, … , 𝐴𝑚−1} ∈ 𝒫𝑛} and the set 𝒫𝑛,𝑚 to be the union of sets 

∏𝑖=0
𝑚−1𝒫𝐴𝑖

 where (𝐴0, … , 𝐴𝑚−1) ∈ Φ𝑛,𝑚 and 𝒫𝐴𝑖
 is the set of all set partitions of the set  

𝐴𝑖.     

The element 𝑑 = (𝑑0, … , 𝑑𝑚−1) ∈ ∏𝑖=0
𝑚−1𝒫𝐴𝑖

 is represented by the same diagram 

as the partition ∪𝑖=0
𝑚−1 𝑑𝑖 after colouring it as follows. We use the colour ℭ𝑖 to draw all 

the edges and the nodes in the partition 𝑑𝑖. A diagram represents an element in 𝒫𝑛,𝑚 is 

not unique. We say two diagrams are equivalent if they represent the same tuple of 

partitions. The term multi-colour partition diagram will be used to mean an 

equivalence class of a given diagram. For example, the diagrams in Figure 3 are 

equivalent. 
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Figure 3 

    We define the following sets for each element 𝑑 ∈ ∏𝑖=0
𝑚−1𝒫𝐴𝑖

: 

𝑡𝑜𝑝(𝑑) = (𝐴0 ∩ 𝑛, … , 𝐴𝑚−1 ∩ 𝑛),      𝑏𝑜𝑡(𝑑) = (𝐴0 ∩ 𝑛′, … , 𝐴𝑚−1 ∩ 𝑛′). 

The composite of two diagrams is defined if the two diagrams have the same 

number of end points. In this case the composite is zero unless the colours match up 

precisely. If they do match up the composite is a multi-colour partition which is 

obtained by linking the diagrams together as for the partition algebra and replacing 

any ℭ𝑗  loop appearing inside the diagram by the scalar 𝛿𝑗 times the rest of the 

diagram. See the following graph. 

 

A planar multi-colour partition in the set 𝒫𝑛,𝑚 is a multi-colour partition 

represented by a diagram that does not have edge crossings in the same colour. The 

bubble algebra is generated by the set 

𝒯𝑛,𝑚 = {𝑑 ∈ 𝒫𝑛,𝑚|𝑑 is planar and all blocks of size 2}. 

As all diagrams that represent multi-colour partitions are obtained from 

colouring diagrams in the monoid 𝒫𝑛, such that all nodes in a part of a partition and 

their edges which connect them have the same colour. Thus we can determine a multi-

colour diagram by knowing its top and its bottom and the uncoloured image of it. For 

example, let 𝐷 be the diagram  

 
One of the coloured copies of 𝐷 is  

 

which can be denoted by 𝐷(1,0,1,1)
(1,1,1,0)

, we use the elements of ℤ𝑚−1
𝑛  to represent the 

deferent colours. In this example 1 represents the blue and red is represented by zero. 

By using this notation, the identity of the algebras ℙ𝑛,𝑚(𝛿0, … , 𝛿𝑚−1) and 

𝕋𝑛,𝑚(𝛿0, … , 𝛿𝑚−1) is ∑𝑥∈ℤ𝑚−1
𝑛 1𝑥,  where 1𝑥 is the coloured image of 𝑖𝑑 ∈ 𝔖𝑛, 𝔖𝑛 is 

the symmetric group on n letters,  where the node 𝑖 is only connected to 𝑖′ with an 

ℭ𝑥𝑖
-edge. 

     The diagrams of shape id 𝑖𝑑 ∈ 𝔖𝑛 are orthogonal idempotents, since 

1𝑥1𝑦 = {
1𝑥,   𝑖𝑓 𝑥 = 𝑦,

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
                                                                 (1) 

for all 𝑥, 𝑦 ∈ ℤ𝑚−1
𝑛 . Thus we have a decomposition of the identity as a sum of 

orthogonal idempotents. Also, from the graphical visualization, it is evident that  
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1𝑥𝐷𝑧
𝑦

= {
𝐷𝑧

𝑦
,   𝑖𝑓 𝑥 = 𝑦,

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
    and   𝐷𝑧

𝑦
1𝑥 = {

𝐷𝑧
𝑦

,   𝑖𝑓 𝑥 = 𝑧,
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

                               (2) 

where 𝑥, 𝑦, 𝑧 ∈ ℤ𝑚−1
𝑛  and 𝐷𝑧

𝑦
∈ 𝒫𝑛. 

    Theorem 3.1.4 in [7] shows that 

1𝑥𝕋𝑛,𝑚(𝛿0, … , 𝛿𝑚−1)1𝑥 ≅ 𝑇𝐿𝜆0
(𝛿0)⨂ ⋯ ⨂𝑇𝐿𝜆𝑚−1

(𝛿𝑚−1),               (3) 

and Theorem 2.34 in [5] similarly shows that  

1𝑥ℙ𝑛,𝑚(𝛿0, … , 𝛿𝑚−1)1𝑥 ≅ ℙ𝜆0
(𝛿0)⨂ ⋯ ⨂ℙ𝜆𝑚−1

(𝛿𝑚−1),                   (4) 

where 𝜆𝑖 = #{𝑥𝑗|𝑥𝑗 = 𝑖}, for all 𝑥 ∈ ℤ𝑚−1
𝑛 . The previous isomorphisms can be proved 

by using a map sending any tuple of diagrams in tensor product of algebras to the 

multi-colour partition diagram formed by drawing these diagrams in one frame one by 

one with put in consideration the distribution of colours in 1𝑥𝕋𝑛,𝑚(𝛿0, … , 𝛿𝑚−1)1𝑥 

using different colours such that the diagram from 𝑇𝐿𝜆𝑖
(𝛿𝑖) is drawn in the colour ℭ𝑖. 

Similarly for 1𝑥ℙ𝑛,𝑚(𝛿0, … , 𝛿𝑚−1)1𝑥. 

    The elements 1𝑥 and 1𝑦 are conjugate if and only if 𝜆𝑖 = 𝜆′𝑖 for each 0 ≤ 𝑖 ≤ 𝑚 −

1, where 𝜆𝑖 = #{𝑥𝑗|𝑥𝑗 = 𝑖} and 𝜆′𝑖 = #{𝑦𝑗|𝑦𝑗 = 𝑖}, for more details see Theorem 2.33 

in [5]. 

 

Central Idempotents in The Bubble Algebra 

     Let 𝕋𝑛,2
+(𝛿0, 𝛿1) be the subspace of 𝕋𝑛,2(𝛿0, 𝛿1) that is spanned by all the 

diagrams in 𝒯𝑛,2 which have an even number of blue-nodes on the top face. Since 

making an arc needs two nodes on the same face, thus the number of blue-nodes on 

the bottom face of the diagrams in 𝕋𝑛,2
+(𝛿0, 𝛿1) will be also an even number. 

Similarly, define 𝕋𝑛,2
−(𝛿0, 𝛿1) to be the subspace of 𝕋𝑛,2(𝛿0, 𝛿1) that is spanned by 

all the diagrams in 𝒯𝑛,2 which have an odd number of blue-nodes on the top face. 

  

Lemma 1. [ 5, Lemma 5.11]. For any 𝑛 ≥ 1, we have 

𝕋𝑛,2(𝛿0, 𝛿1) ≅ 𝕋𝑛,2
+(𝛿0, 𝛿1) ⨁𝕋𝑛,2

−(𝛿0, 𝛿1) , 
as an algebra. 

We can generalize the previous lemma, to get a decomposition of the bubble 

algebra with more colours. For example, in the case of three colours see the next 

lemma. 

 

Lemma 2. For any 𝑛 ≥ 1, we have 

𝕋𝑛,3(𝛿0, 𝛿1, 𝛿2) ≅ 𝕋𝑛,3
++ ⨁𝕋𝑛,3

+− ⨁𝕋𝑛,3
−+⨁𝕋𝑛,3

−−, 

as an algebra, where 𝕋𝑛,3
++ be the subspace of 𝕋𝑛,3(𝛿0, 𝛿1, 𝛿2), or simply 𝕋𝑛,3, that is 

spanned by all the diagrams in 𝒯𝑛,3 which have an even number of both blue-nodes 

and red-nodes on the top face.  𝕋𝑛,3
+−  be the subspace of 𝕋𝑛,3 that is spanned by all 

the diagrams in 𝒯𝑛,3 which have an even number of blue-nodes and an odd number of 

red-nodes on the top face(conversely 𝕋𝑛,3
−+). 𝕋𝑛,3

−− be the subspace of 𝕋𝑛,3 that is 

spanned by all the diagrams in 𝒯𝑛,3 which have an odd number of both blue-nodes and 

red-nodes on the top face.  
 



 وم الأساسية والحيويةــالعلت حول نظريات وتطبيقا المؤتمر السنوي الأول 
The First Annual Conference on Theories and Applications of Basic and Biosciences 

 كلية العلـــوم جامعـــة مصراتـــة تنظمّـــه وتشـــرف علــيه:

 2017سبتمبــر  09السبـــت 

 

 

342 
 

Proof. This come from the fact any diagram in 𝒯𝑛,3 will be in 𝕋𝑛,3
++ or 𝕋𝑛,3

+− or 

𝕋𝑛,3
−+ or 𝕋𝑛,3

−−.  Furthermore, it is clear that their intersection is zero and the 

product of any two diagrams from different spaces always will be zero.                                                                

∎  
     There are many techniques to computing the central elements and the idempotents 

in an algebra. In the case of the algebras ℙn,m and 𝕋n,m , we will use the ones of the 

algebras ℙ𝑛( 𝛿) and 𝑇𝐿𝑛(𝛿) to construct the central idempotents of the algebras ℙ𝑛,𝑚 

and 𝕋𝑛,𝑚. 

    Let 𝐴 be an algebra, we will the notation 𝑍(𝐴) to donate the center of the algebra 

𝐴.  

 

Theorem 3. For any 𝑛 ≥ 1, we have 

𝑍( 𝕋𝑛,𝑚) ⊆ ∑𝑥∈ℤ𝑚−1
𝑛 𝑍(𝑇𝐿𝜆𝑥,0

(𝛿0))⨂ ⋯ ⨂𝑍(𝑇𝐿𝜆𝑥,𝑚−1
(𝛿𝑚−1)), 

𝑍( ℙ𝑛,𝑚) ⊆ ∑𝑥∈ℤ𝑚−1
𝑛 𝑍(ℙ𝜆𝑥,0

(𝛿0))⨂ ⋯ ⨂𝑍(ℙ𝜆𝑥,𝑚−1
(𝛿𝑚−1)), 

where 𝜆𝑥,𝑖 = #{𝑥𝑗|𝑥𝑗 = 𝑖}. 

Proof. Let 𝑒 = ∑ 𝑎𝛼𝛼𝛼∈𝒫𝑛,𝑚
 be an element in the center of the algebra ℙ𝑛,𝑚. Now 

since 1𝑥𝛼 = 𝛼, 𝛼1𝑦 = 𝛼 whenever 𝑡𝑜𝑝(𝛼) = 𝑥 and 𝑏𝑜𝑡(𝛼) = 𝑦, otherwise they will 

be zero, therefore 

𝑡𝑜𝑝(𝛼) = 𝑏𝑜𝑡(𝛼) whenever 𝑎𝛼 ≠ 0. 

But then 𝛼 ∈ 1𝑡𝑜𝑝(𝛼)ℙ𝑛,𝑚1𝑡𝑜𝑝(𝛼).  

Now if rewrite 𝑒 as following 𝑒 = ∑ 𝑒𝑥𝑥∈ℤ𝑚−1
𝑛 : = ∑ ∑ 𝑎𝛼𝛼𝛼∈𝒫𝑛,𝑚,𝑡𝑜𝑝(𝛼)=𝑥𝑥∈ℤ𝑚−1

𝑛 , thus 

𝑒𝑥 ∈ 1𝑥ℙ𝑛,𝑚1𝑥 and since 𝑒 in 𝑍( ℙ𝑛,𝑚) so 𝑒𝑥 ∈ 𝑍( 1𝑥ℙ𝑛,𝑚1𝑥) and by using equation 

(4) we are done. Similarly for the first relation.                                                                    

∎ 

     Now if we let 𝑒 = ∑ 𝑒𝑥𝑥∈ℤ𝑚−1
𝑛 = ∑ ∑ 𝑎𝛼𝛼𝛼∈𝒫𝑛,𝑚,𝑡𝑜𝑝(𝛼)=𝑥𝑥∈ℤ𝑚−1

𝑛  be central 

idempotent in the algebra ℙ𝑛,𝑚, hence  

𝑒2 = ∑ (𝑒𝑥)2
𝑥∈ℤ𝑚−1

𝑛 , 

as the product on 𝒫𝑛,𝑚 will vanish, if the colours do not match. Hence 𝑒 will be an 

idempotent as long as 𝑒𝑥 is an idempotent in the algebra  1𝑥ℙ𝑛,𝑚1𝑥 for each 𝑥 

(similarly for 𝕋𝑛,𝑚). Hence to construct a central idempotent in ℙ𝑛,𝑚, we start with 

pick up a central idempotent in the algebra  ℙ𝜆0
(𝛿0)⨂ ⋯ ⨂ℙ𝜆𝑚−1

(𝛿𝑚−1) for some 𝑥 

and check what are the rest of idempotents that satisfy 𝐷𝑥
𝑢𝑒𝑥 = 𝑒𝑢𝐷𝑥

𝑢 where 𝑢 ≠ 𝑥. 

 

5. Example 

Let 𝑛 = 2, from Lemma 1 the algebra 𝕋𝑛,2 is isomorphic to 

 
The central idempotents in 𝑇𝐿2 are  

 
 

and the central idempotent in 𝑇𝐿1 is  
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When we start with the element   

 
we get  

 

But the only element that satisfy the opposite is  

 

so the next element is central idempotent of 𝕋𝑛,2 : 

 

By following the same steps we find all the central idempotents of 𝕋𝑛,2: 
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