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Abstract:

We provide a method for constructing central idempotents in the bubble
algebra, and show how it can be split into direct sum of sub-algebras. We also give a
description of the structure of its center.
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Introduction

The bubble algebra T}, i, (8o, ..., 8m—1) Was introduced by Grimm and Martin[3],
and then its definition has generalized by using the definition of the partition algebra
and as result we obtain the multi-colour partition algebra Py, (8¢, ...,8m-1), See
Hmaida[5].

The generic representations of the bubble algebra has been studied by Grimm and
Martin[3], and they proved that it is semi-simple when none of parameters §; is a root
of unity. Also Jegan[7] showed how certain idempotents in the bubble algebra could
be use to simplify many problems on the algebra Ty, 1, (8o, ..., 8m—1) @S investigating
the homomorphisms between the cell modules of the algebra, since it is a cellular
algebra. Later, we, in [5], investigated the non-generic representations of the bubble
algebra and the generic ones of the multi-colour partition algebra, and showed that the
algebra P, i, (8o, ..., 8m—1) 1S non-semisimple over the complex field if and only if §;
is a non-negative integer less than 2n — 1 for some j € Z,,_,.

We generalized the technique that has been used in [5] and proved that the
representations of any finite-dimensional cellular algebra with idempotents that
satisfying specific conditions can be totally determined by the representations of its
idempotent sub-algebras, for more details see Hmaida[6].

The representation theory of a unital algebra over a field with a splitting modular
system is related to primitive central idempotents of its ordinary case. For example, a
decomposition of the identity into a sum of primitive central idempotents gives the
blocks of the algebra, see e.g. [1].

Our aim in this paper is to construct a family of central idempotents of the bubble
algebra and give a simple description of its center.

Basic Definitions

Before discussing the multi-colour partition algebra we shall introduce the
partition algebra P,,( ) and some of its subalgebra. Fix a natural number n, the
algebra P,,( §) generated by the set, which is denoted by #,, of all partitions of the
setnun’:={1,..,n}u{l,..,n}
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Each set partition can be represented by a graph: the graph is drawn in a
rectangle with n nodes on the top and n nodes on the bottom, the vertices that are in
the same part at the partition are represented as lines drawn inside the rectangle
connecting these vertices. will often label our nodes starting with 1 on the left to n on
the top edge and starting on the bottom edge with 1 on the left to n’. The diagram
representing a partition is not unique, since there are different ways to drawing the
edges. Two such diagrams are equivalent if they have the same connected
components.

We define a multiplication on this basis as follows. If A,B are partition
diagrams, the element AB is defined by stacking diagrams. In such a product of
diagrams closed loops may appear, we remove each loop and replace it by §. Figure
1 illustrates multiplication.
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Figure 1
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The Temperley-Lieb algebra is a sub-algebra of the algebra P,,( §), and the
diagrams representing partitions that spanning the Temperley-Lieb algebra TL, ()
are planar (non-crossing) and their parts all have size two. For example see Figure 2.
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Figure 2

The partition algebra was defined by Martin[8], and its representation theory
has been investigated by many people, for example Halverson and Ram[4], Martin [8]
and Martin and Woodcock [10]. Also, the representation theory of Temperley-Lieb
algebra is well known, see e.g. Martin [9] , Ridout and Saint [11] and Westbury [12].
3. The Multi-Colour Partition algebras

For any positive integer m, let €, ..., €,,_; be different colours where none of
them is white, and &, ..., §,,_1 be scalars corresponding to these colours.

We construct basis elements of the multi-colour partition algebra
Py m (80, ..., 6m—1) In similar way to the algebra P, (§). Define the set &, ,, ==
{(Ao, -, A— {40, .., A—1} € P,} and the set P,,, to be the union of sets
]‘[?;‘Ol?Ai where (Ag, ..., Am—1) € Pp 1y and Py, is the set of all set partitions of the set
A;.

The element d = (d, ..., dm—1) € ]'[{’;gl?Ai is represented by the same diagram
as the partition U," d; after colouring it as follows. We use the colour G; to draw all
the edges and the nodes in the partition d;. A diagram represents an element in 7, ,, is
not unique. We say two diagrams are equivalent if they represent the same tuple of
partitions. The term multi-colour partition diagram will be used to mean an
equivalence class of a given diagram. For example, the diagrams in Figure 3 are
equivalent.
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Figure 3

We define the following sets for each element d € H}’;BIPAL.:
top(d) = (Ao N1, .., Ay N 1),  bot(d) = (Ag N1, ..., Ay N T).

The composite of two diagrams is defined if the two diagrams have the same
number of end points. In this case the composite is zero unless the colours match up
precisely. If they do match up the composite is a multi-colour partition which is
obtained by linking the diagrams together as for the partition algebra and replacing
any G; loop appearing inside the diagram by the scalar §; times the rest of the
diagram. See the following graph.
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A planar multi-colour partition in the set #,,, is a multi-colour partition
represented by a diagram that does not have edge crossings in the same colour. The
bubble algebra is generated by the set

Tnm = {d € P, m|d is planar and all blocks of size 2}.

As all diagrams that represent multi-colour partitions are obtained from
colouring diagrams in the monoid #,, such that all nodes in a part of a partition and
their edges which connect them have the same colour. Thus we can determine a multi-
colour diagram by knowing its top and its bottom and the uncoloured image of it. For
example, let D be the diagram

U

A

'khy .
(1,1,1,0)

which can be denoted by D, ’);’;y, e use the elements of Z7,_, to represent the
deferent colours. In this example 1 represents the blue and red is represented by zero.
By using this notation, the identity of the algebras P, ,,(8y,...,0,-1) and
Trnm(80) ) 6m-1) 1S Xxezn_, 1x, Where 1, is the coloured image of id € &, &,, is
the symmetric group on n letters, where the node i is only connected to i’ with an
¢, -edge.

The diagrams of shape id id € &,, are orthogonal idempotents, since

_ 1,, ifx =
Lely = {O, otherwise, 1)

for all x,y € Z}_,. Thus we have a decomposition of the identity as a sum of
orthogonal idempotents. Also, from the graphical visualization, it is evident that
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One of the coloured copies of D is
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Tz 0, otherwise, Z27* 0, otherwise,
where x,y,z € Z%,_, and D) € P,.
Theorem 3.1.4 in [7] shows that
1xTn,m (60: L) 6m—1)1x = TL)LO (60)® ®TL)lm_1 (6m—1), (3)
and Theorem 2.34 in [5] similarly shows that
1x]P)n,m(60» L 6m—1)1x = ]P)Ao (60)® ®le_1 (Sm—l)a (4)

where A; = #{x;|x; = i}, for all x € Z3,_,. The previous isomorphisms can be proved
by using a map sending any tuple of diagrams in tensor product of algebras to the
multi-colour partition diagram formed by drawing these diagrams in one frame one by
one with put in consideration the distribution of colours in 1, T, ,,,(80, ..., Om—1)1x
using different colours such that the diagram from T'Ly,(8;) is drawn in the colour €;.
Similarly for 1,P;, , (8¢, ) O—1) 1.

The elements 1, and 1,, are conjugate if and only if A; = A’; foreach 0 < i <m —
1, where A; = #{x;|x; = i} and A’; = #{y;|y; = i}, for more details see Theorem 2.33
in [5].

Central Idempotents in The Bubble Algebra

Let T,," (8o, 61) be the subspace of T, ,(8, &) that is spanned by all the
diagrams in 75, , which have an even number of blue-nodes on the top face. Since
making an arc needs two nodes on the same face, thus the number of blue-nodes on
the bottom face of the diagrams in T, ,* (8o, 8;) will be also an even number.
Similarly, define T, ,™ (8, 6;) to be the subspace of T, ,(5,, ;) that is spanned by
all the diagrams in 7;, , which have an odd number of blue-nodes on the top face.

Lemma 1. [ 5, Lemma 5.11]. Forany n > 1, we have
Th,2(80,61) = Tn,2+(60; 81) ®T,, (60,61) ,
as an algebra.
We can generalize the previous lemma, to get a decomposition of the bubble
algebra with more colours. For example, in the case of three colours see the next
lemma.

Lemma 2. Forany n > 1, we have
Tn,3(60’61’ 52) = Tn,3++ @Tn,3+_ e9’11‘11,3_+69’]I‘n,3__v

as an algebra, where T, ;** be the subspace of T,, 5(8y, 81, ;), or simply T,, 5, that is
spanned by all the diagrams in 7;, 3 which have an even number of both blue-nodes
and red-nodes on the top face. T, 5~ be the subspace of T,, ; that is spanned by all
the diagrams in T3, 3 which have an even number of blue-nodes and an odd number of
red-nodes on the top face(conversely T, ;~*). T, 3~ be the subspace of T,, 5 that is
spanned by all the diagrams in 73, ; which have an odd number of both blue-nodes and
red-nodes on the top face.
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Proof. This come from the fact any diagram in 7;, 5 will be in T, 3™ or T, 37~ or
Tns " or T,3~ . Furthermore, it is clear that their intersection is zero and the
product of any two diagrams from different spaces always will be zero.
|

There are many techniques to computing the central elements and the idempotents
in an algebra. In the case of the algebras P, , and T, ,, , we will use the ones of the
algebras P,,( ) and TL,,(6) to construct the central idempotents of the algebras P, ,,,
and T, ,.

Let A be an algebra, we will the notation Z(A) to donate the center of the algebra
A.

Theorem 3. For any n > 1, we have
Z(Tym) € Xxerr,_,Z(TLy,,(80))® - ®Z(TLy,,, ,(Gm-1)),
Z(Ppm) € Yxerr, ,Z(Py,,(80))® -+ ®Z(Py, . , (Gm-1)),
where A, ; = #{x;|x; = i}.
Proof. Let e = Y4ep,,, Az be an element in the center of the algebra Py, ,,. Now
since 1,a = a, al,, = a whenever top(a) = x and bot(a) =y, otherwise they will
be zero, therefore
top(a) = bot(a) whenever a, # 0.
But then a € 1top(0() [P)n,mltop(a)-
Now if rewrite e as following e = Yyezn €y = Yxezn_, LaeP mtop(@=x Ga®, thus
ey € 1P, 1, and since e in Z( Py, ,,) SO e, € Z( 1P, ,1,) and by using equation
4) we are done. Similarly for the first relation.
|

Now if we let e=3X,ezm  ex =Xrern | Yaer,mtop@=xda® be central

idempotent in the algebra P, ,,,, hence
e’ = ZxEZ?n_l(ex)zi

as the product on %, ,,, will vanish, if the colours do not match. Hence e will be an
idempotent as long as e, is an idempotent in the algebra 1,P,,,1, for each x
(similarly for T, ,,,). Hence to construct a central idempotent in P,, ,,, we start with
pick up a central idempotent in the algebra P; (80)® - ®P; . (6pm—4) for some x
and check what are the rest of idempotents that satisfy D}e, = e, D¥ where u # x.

5. Example
Let n = 2, from Lemma 1 the algebra T,, , is isomorphic to

QRS S S he L

tq ﬂ .o L) J“‘t'd'b

The central idempotents in TL, are

and the central idempotent in TL; is

-—
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When we start with the element

[
.

=
-

1]

Al 500

Yy
L 3

we get

But the only element that satisfy the opposite is
I to1 v

l {l} O

so the next element is central idempotent of T, , :
H_l U+[' 1w
A vb 00

By following the same steps we find all the central idempotents of T, ,:

JESUR A 9

1 I' 1w 1w .[" I
— + — + = "
Oy b ISR At

1Y [ 1wV
H d, .ff e 00
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