NANOSCINTILLATORS-INDUCED PHOTODYNAMIC THERAPY: OVERCOMING LIGHT PENETRATION FOR TREATMENT OF DEEP LOCALIZED TUMORS

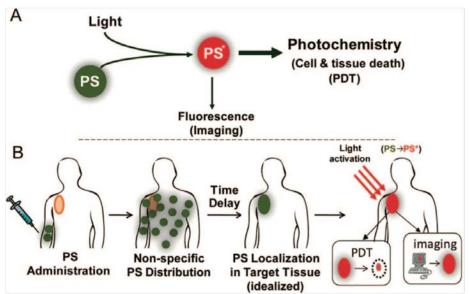
Anne-Laure Bulin, PhD Anne-laure.bulin@esrf.fr

Synchrotron radiation and Medical Research group, University of Grenoble Alpes

What is Photodynamic therapy?

• How could nanoscintillators help overcoming some of PDT's limitations?

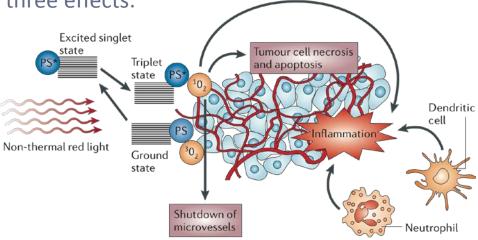
Some examples


• Where does the therapeutic effect come from ?

What is photodynamic therapy?

Photodynamic therapy (PDT)

Celli et al., Chem. Rev. 110 2010


- Photochemistry-based modality used as cancer treatment
- Requires the combination of two non-toxic components: a photosensitizer and light (+ oxygen)

How does PDT induce tumor death?

Combination of three effects:

Castano et al., Nat. Rev. Cancer 6 2006

- \Rightarrow Necrotic and apoptotic cell death
 - ⇒ Microvessels shutdown
 - ⇒ Immune response

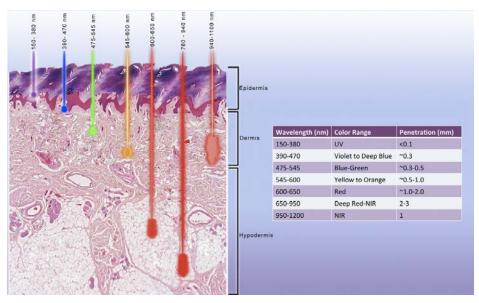
- Advantages of PDT:
- √ No dark toxicity
 √ Local effect (r_{singlet oxygen} < 0.02 µm

PDT in clinic

- Which targets?
 - Superficial tumors:

e.g.: non-melanoma skin cancer

Under investigation:


Endoscopically or easily accessible tumors:

e.g.: bladder, prostate, Head and Neck, Oesophagus cancers

e.g.: Biliary tract, Glioma, Pancreatic cancer

One of the main limitation to PDT

Avci et al., Semin Cutan Med. Surg 32:41-52 2013

- Limited penetration of light in tissues
 - Accessible tumors
 - Small tumors

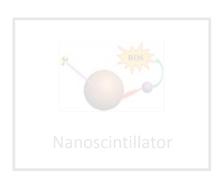
Overcoming the light penetration issue: using more penetrating radiations

NIR radiations that lie in the optical windows

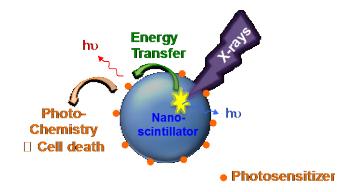
Penetrating X-rays

https://www3.epa.gov/radtown medical-xrays.html

NIR excitation of the PS


2-photon excitation of the PS

Need for nanotransducers to locally convert penetrating radiations into visible light



Up-converting nanoparticle

Nanoscintillators and X-rays to overcome shallow penetration of light in tissues

Nanoscintillator induced PDT: The concept

- A three-steps process:
 - The nanoscintillator absorb part of the X-ray radiation and down-convert the high-energy photons into visible light
 - 2. Energy is transferred from the nanoscintillator to the photosensitizer
 - 3. Excited photosensitizers induce photochemical reactions culminating in cell death
- For which pathology could this novel therapy be relevant?
 - Pathologies for which RT is part of the standard of care
 - Pathologies for which PDT demonstrated promises
 - Deep-seeded or large tumor masses

Nanoscintillators-induced PDT: examples in the literature

Spectroscopic proof-of-concept study

Bulin et al. J Phys Chem C, 2013

In vivo study

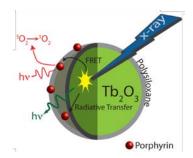
Chen et al. Nano Letters, 2015

Modelisation and estimation of the maximum efficiency

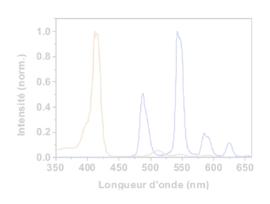
Morgan et al. Radiation Research, 2009

Bulin et al. Nanoscale, 2015

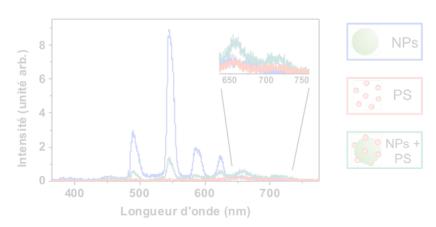
Spectroscopic proof-of-concept study



X-ray-Induced Singlet Oxygen Activation with Nanoscintillator-Coupled Porphyrins

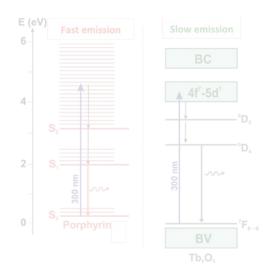

Anne-Laure Bulin, †, Charles Truillet, †, Rima Chouikrat, François Lux, Céline Frochot, David Amans, Gilles Ledoux, Olivier Tillement, Pascal Perriat, Muriel Barberi-Heyob, and Christophe Dujardin*,

Nanoscintillators to induce deep tissue PDT - proof of concept


• The system we investigated: Tb₂O₃@SiO₂ nanoparticles conjugated to a porphryin

Porphyrin synthesis: group of C Frochot @ LRGP Nanoparticle synthesis and conjugation: group of O Tillement @ ILM

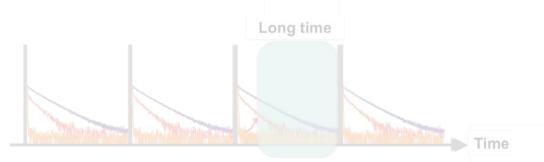
Proof of concept under X-ray irradiation:



➡ Existence of an energy transfer from the nanoscintillator to the photosensitizer upon X-rays irradiation

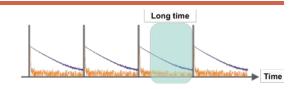
Characterization of the energy transfer

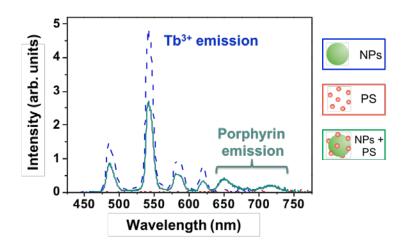
 UV excitation simulates the last step of the scintillation process



Time (ms)

X or γ E_p


 How can we use time resolved spectroscopy to demonstrate the existence of a transfer?



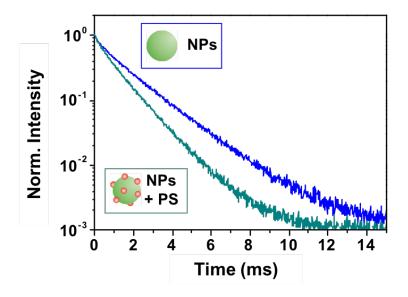
Norm. Int. (arb. units)

Characterization of the energy transfer

Spectra mesured at "long times"

→ Validation of the existence of an energy transfer

Which type of transfer is it ?


Energy Transfer (FRET

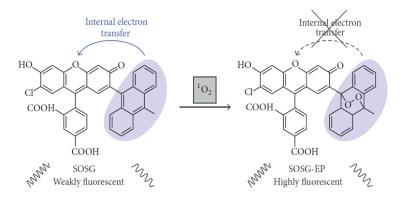
Transfer type	Emitter's decay
Radiative	
FRET	1

Characterization of the energy transfer

Measurements of the decay times using a 300 nm excitation laser

- → At least part of the energy transfer occurs as FRET
 - → The FRET transfer efficiency decreases as 1/r⁶
- **⇒** Emitter and acceptor have to be as close as possible (Small particles, short linkers, etc.)

Reactive oxygen species generated

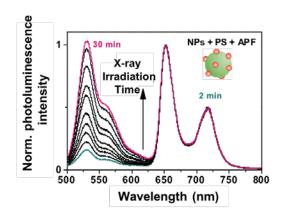

Using 2 chemical probes that are sensitive to singlet oxygen and other ROS

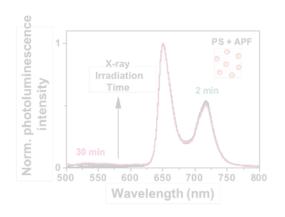
APF (3'-p-(aminophenyl) fluorescein)

Price et al, Photochem. Photobiol., 5, 2009

⇒ Sensitive to both •OH and ${}^{1}O_{2}$ ⇒ ${}^{1}O_{2}$ quenched by NaN₃

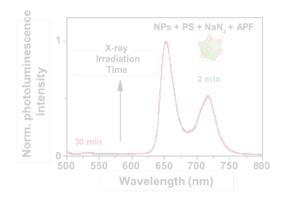
Sensor Green (SOSG)




Kiesslich et al, Biomed. Research International, 2013

 \Rightarrow Sensitive only to ${}^{1}O_{2}$

Reactive oxygen species generated


Results obtained with the APF

Increase of the APF signal when the PS is conjugated onto the nanoscintillator

What if we add NaN₃?

The APF photoluminescence increase was due to the generation of ¹O₂

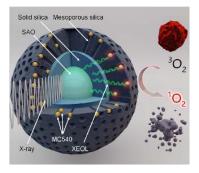
Summary on the spectroscopic study

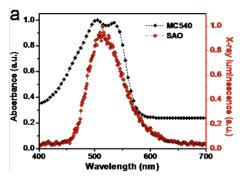
• X-ray-induced excitation of the porphyrin through energy transfer

• Characterization of the energy transfer – at least partially as FRET

As a consequence of this energy transfer: generation of singlet oxygen

Need to proceed to more biological experiments to validate the efficiency demonstrated in solution

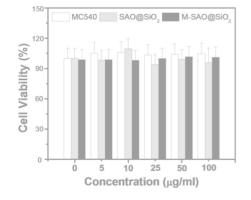

In vitro and in vivo study reporting a beneficial effect of X-PDT



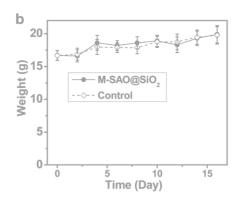
Nanoscintillator-Mediated X-ray Inducible Photodynamic Therapy for In Vivo Cancer Treatment

Hongmin Chen, $^{\dagger,\ddagger,\$,\parallel}$ Geoffrey D. Wang, † Yen-Jun Chuang, $^{\perp}$ Zipeng Zhen, †,‡ Xiaoyuan Chen, $^{\nabla}$ Paul Biddinger, $^{\parallel}$ Zhonglin Hao, $^{\#}$ Feng Liu, $^{\perp}$ Baozhong Shen, $^{\$,\parallel}$ Zhengwei Pan, $^{\perp}$ and Jin Xie*, †,‡

• The system we investigated: SrAl₂O₄:Eu²⁺ nanoparticles conjugated to merocyanine 540



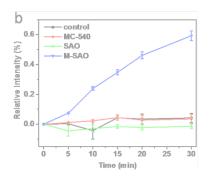
Toxicity


In vitro

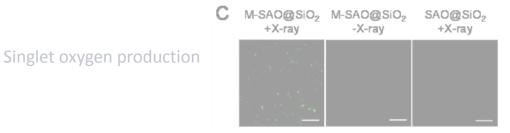
MTT assay (mitochondrial activity)

After 24h incubation

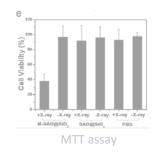
In vivo
Mice weight (n=5)
Intra-tumoral injection of 50μL
2.5 mg M-SAO@SiO₂/mL or PBS

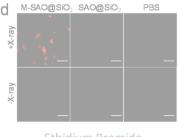


Singlet oxygen production



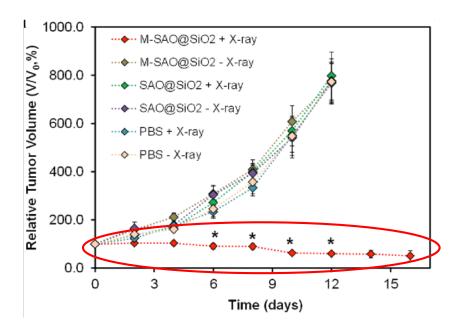
The change in fluorescence intensity (ex/em: 504/525nm) is related to the amount of ${}^{1}O_{2}$ that was generated

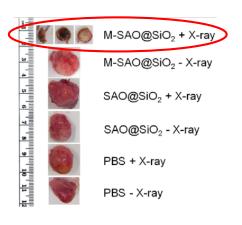

 In solution – upon X-ray irradiation

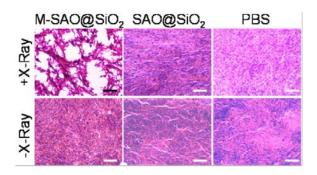


In vitro

Induced cell death




ethidium Bromide – confocal microscopy


 \Rightarrow The Generation of ${}^{1}O_{2}$ requires the combination of SAO + MC540 + X-rays \Rightarrow It is associated to a decrease of the cell viability

Demonstrating the efficiency in vivo

Tumor volume calculated using:
 length x (width)²/2

⇒ Confirmation of a strong effect when M-SAO nanoparticles are combined with X-rays

Estimating the maximum efficiency

RADIATION RESEARCH 171, 236–244 (2009) 0033-7587/09 \$15.00 © 2009 by Radiation Research Society. All rights of reproduction in any form reserved.

Nanoscintillator Conjugates as Photodynamic Therapy-Based Radiosensitizers: Calculation of Required Physical Parameters

Nicole Y. Morgan,^{a,1} Gabriela Kramer-Marek,^{b,c} Paul D. Smith,^a Kevin Camphausen^b and Jacek Capala^b

^a Laboratory of Bioengineering and Physical Science, NIBIB, and ^b Radiation Oncology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892; and ^c A. Chelkowski Institute of Physics, University of Silesia, Universytecka 4, 40-007 Katowice, Poland

Nanoscale

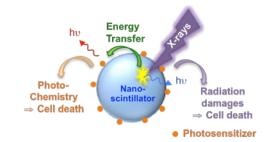
PAPER

View Article Online
View Journal

Cite this: DOI: 10.1039/c4nr07444k

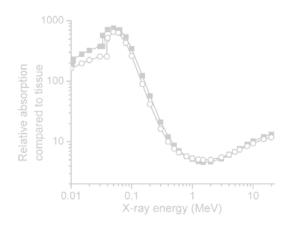
Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect†

Anne-Laure Bulin, ^a Andrey Vasil'ev, ^b Andrei Belsky, ^a David Amans, ^a Gilles Ledoux ^a and Christophe Dujardin* ^a


Theoretical achievable efficiency – a first estimation

RADIATION RESEARCH 171, 236–244 (2009) 0033-7587/09 \$15.00 © 2009 by Radiation Research Society. All rights of reproduction in any form reserved.

Nanoscintillator Conjugates as Photodynamic Therapy-Based Radiosensitizers: Calculation of Required Physical Parameters


Nicole Y. Morgan, a.1 Gabriela Kramer-Marek, b.c Paul D. Smith, Kevin Camphausen and Jacek Capalab

*Laboratory of Bioengineering and Physical Science, NIBIB, and *Radiation Oncology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892; and *A. Chelkowski Institute of Physics, University of Silesia, Universytecka 4, 40-007 Katowice, Poland

 How much singlet oxygen can be generated through energy transfer between nanoscintillator/photosensitizer?

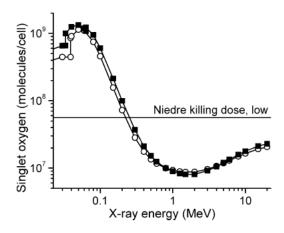
 $N(^{1}O_{2}) = Absorption . Light Yield . Transfer . Efficiency (^{1}O_{2})$

FIG. 1. The absorption of nanoparticle cores relative to an equal volume of soft tissue for LuI_3 (\blacksquare) and LaF_3 (\bigcirc). Absorption coefficients for atomic elements and soft tissue taken from ref. (20).

Theoretical achievable efficiency – a first estimation

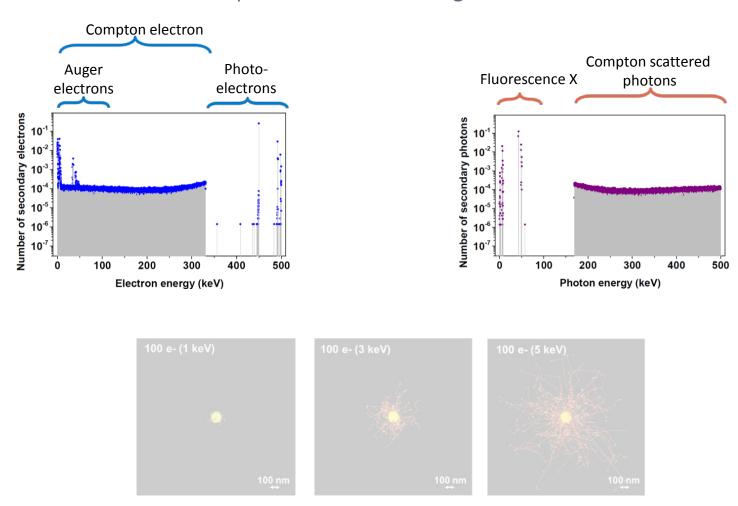
 \bullet Number of singlet oxygen molecules generated in a 10 μm -diameter cell

Parameters:

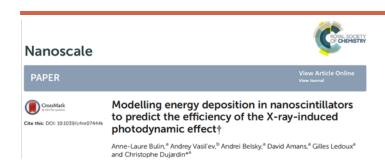

- dose: 60 Gy,

- nanoparticles occupy 5% of the cell volume

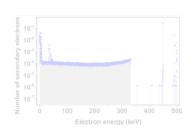
- Light yield: 0.5*(5.4.105 photons/MeV)

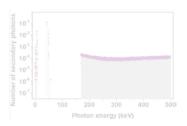

- ϕ_{FRFT} = 0.75 and

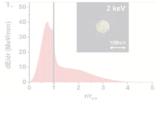
- $\phi_{\text{singlet oxygen}}$ =0.89

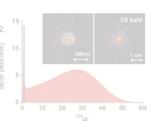

Limitation of this first estimation

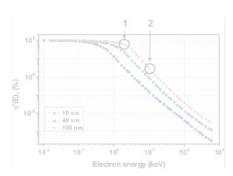
Interaction of a 500keV photon in a scintillating material

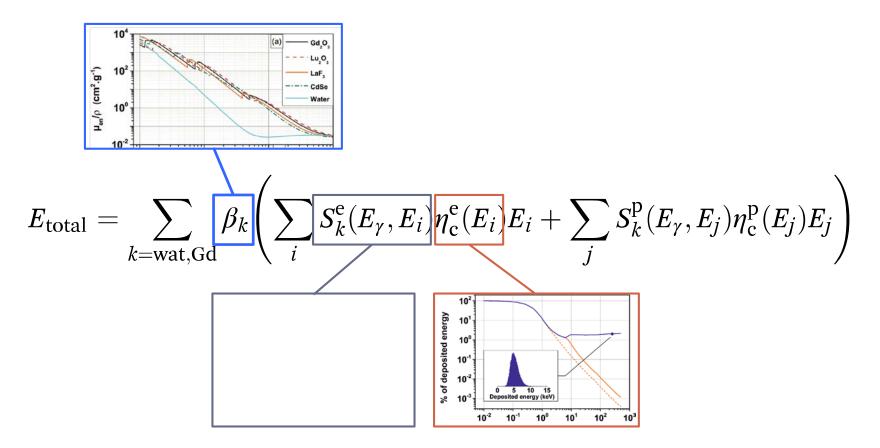

▶ It becomes crucial to consider the nano-size of the particles

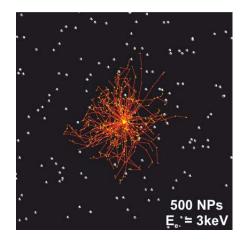

GEANT4 for the simulation of the energy deposited in nanoparticles




Investigating the amount of singlet oxygen molecules that can be excited considering the geometry of the nanoparticles


- GEANT4 (GEometry ANd Tracking): Monte Carlo toolkit to simulate particles/matter interactions
- A two steps program:
- Establish the spectra of the secondary particles (electrons and photons) generated during the primary interaction
- Quantify the fraction of energy deposited by each secondary particle within the nanoparticle




GEANT4 for the simulation of the energy deposited in nanoparticles

Quantification of the energy deposited within Gd₂O₃ nanoparticles by an incoming X-ray photon of a given energy

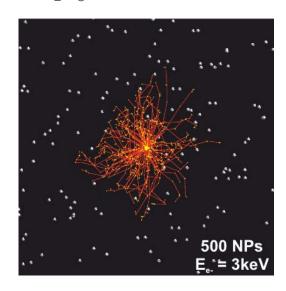
_{nano} = Energy deposited in NP / Primary photon energy

GEANT4 for the simulation of the energy deposited in nanoparticles

Parameters of the program:

- Total tumor volume
- Occupation ratio
 - C = Volume occupied by NPs / Total volume
- NPs characteristics (material diameter)

$$N_{^{1}\mathrm{O}_{2}} = \eta_{\mathrm{nano}} \times \boldsymbol{\Phi}_{\mathrm{scinti}} \times E_{\gamma} \times \boldsymbol{\Phi}_{\mathrm{transfer}} \times \boldsymbol{\Phi}_{\Delta}$$


Regarding the therapeutic effect:

- \Rightarrow Energy deposited within the nanoparticle: likely to induce PDT
- ⇒ Energy deposited around the nanoparticle: local dose enhancement

GEANT4 – quantification of the total deposited energy – Therapeutic effect

• For one photon that interacts with the tumor volume (Gd₂O₃/water):

$C = 2 \cdot 10^{-3}$	10 nm		100 nm		
E _γ (keV)	Gd ₂ O ₃		Water	Gd ₂ O ₃	Water
100 keV	0.23		25.50	0.91	24.93
200 keV	0.30		49.67	0.79	49.20
300 keV	0.51		85.37	0.92	84.97
400 keV	0.79		127.45	1.13	127.10
500 keV	1.10		173.85	1.41	173.52
$C = 7 \cdot 10^{-3}$	10 nnı		100 nm		
100 keV	0.95		38.49	2.12	37.36
200 keV	1.21		59.62	1.94	59.07
300 keV	1.84		90.99	2.47	90.55
400 keV	2.70		130.26	3.29	129.81
500 keV	3.71		174.93	4.28	174.29

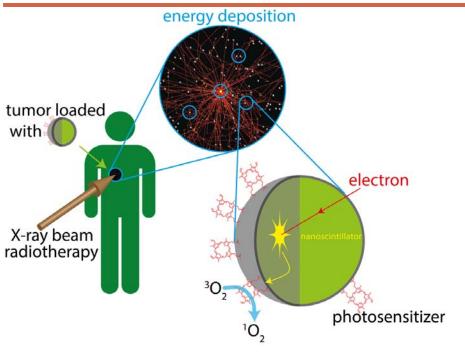
• Therapeutic effect:

PDT activation:

$$N_{^{1}\mathrm{O}_{2}} = \eta_{\mathrm{nano}} \times \Phi_{\mathrm{scinti}} \times E_{\gamma} \times \Phi_{\mathrm{transfer}} \times \Phi_{\Delta}$$

44 $^{1}O_{2}$ molecules activated per 500 keV photon interacting with a tumor loaded with 10 nm NPs of $Gd_{2}O_{3}$ with $C = 7.10^{-3}$

Radiation Dose Enhancement:


For the same volume with water only:

 E_{dep} (100 keV) \approx 15 keV E_{dep} (500 keV) \approx 173 keV

⇒ Stronger effect for low energy photons

A complex therapeutic combination

Deep-tissue PDT induced during radiation therapy: a combination of various effects

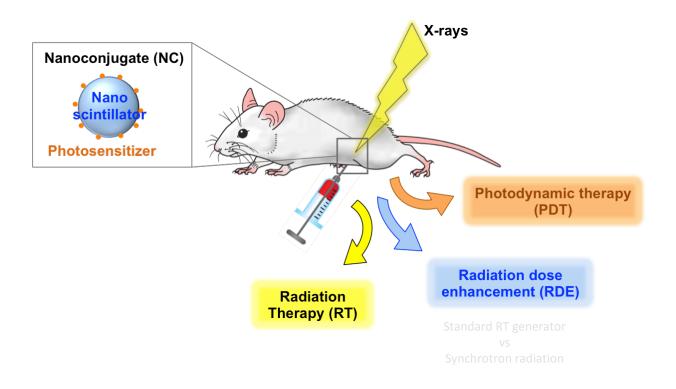
Much more than "just" PDT!

A-L Bulin and C Dujardin, Atlas of Science 2016

- Radiation therapy
 - PDT
- Synergy between low dose PDT and radiation therapy?
 A study to be published, biological perspective
 - Radiation dose enhancement effect
 - UV-induced damages

Muller et al. UV scintillating particles as radiosensitizer enhance cell killing after X-ray excitation Radiotherapy and Oncology, in press, 2018

Nanoscintillators-induced PDT during (synchrotron) radiation therapy:

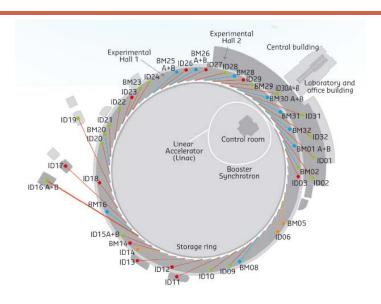

in vitro and in vivo investigations

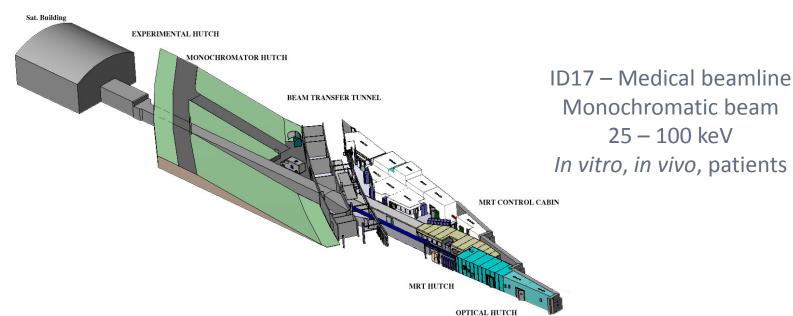
- The ongoing program -

Targets:

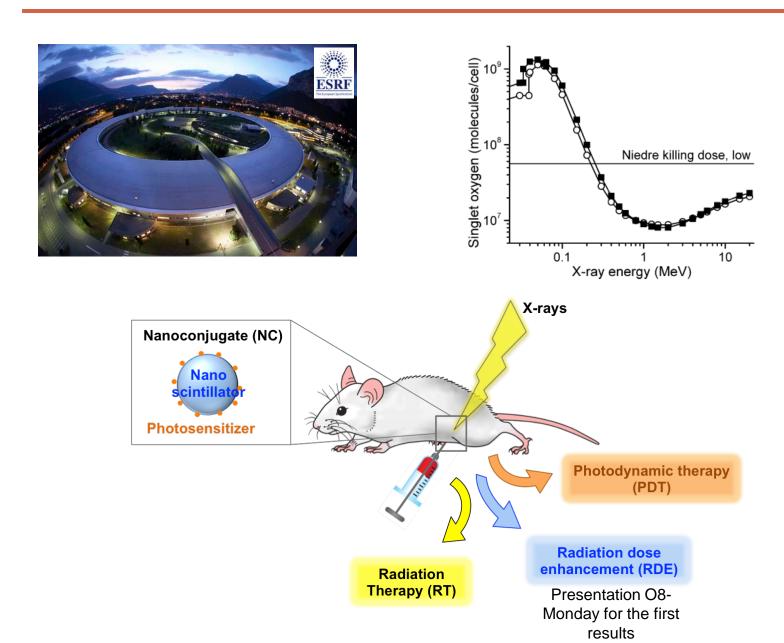
\Rightarrow Glioblastoma

⇒ Ovarian cancer





http://www.hipec.com


The ongoing study using synchrotron radiation (ESRF)

The ongoing study using synchrotron radiation (ESRF)

Acknowledgements

- Hélène Elleaume
- Jean-Luc Ravanat
- Lucie Sancey
- Frédéric Chaput
- Mans Broekgaarden
- Carlotta Figliola

Inserm

Funding sources

Thank you for your attention!

17th Biennial Congress of the International Photodynamic

Association June 28-July 3, 2019, Marriott Hotel, Cambridge Conference Chair: Tayyaba Hasan

Membership: www.internationalphotodynamic.com/membership/ Email: tayyaba@ipaboston2019.org

Please join us!