
JavaScript and theHTML5 <canvas> Element

Apostolos Syropoulos
Xanthi, Greece

E-mail: asyropoulos@aol.com

Preface

This is a short introduction to JavaScript programming that has been designed for people
who want to learn how to create simple or not so simple animations with the HTML5
<canvas> element. The text assumes that the reader is familiar with certain basic things
(the use of a browser and a text editor), which I believe are common knowledge nowa-
days. This booklet is based on a pamphlet describing elements of JavaScript program-
ming. The pamphlet was given to pupils that attended an HTML class in a vocational
school. Originally, the text was in Greek. Later on, I translated it in English and I added
the introduction to HTML5 and the <canvas> element, while the rest of the text was
slightly updated.

The text starts with an introduction to HTML5, something quite necessary since
JavaScript code is part of HTML documents and affect their functionality. Then, I grad-
ually introduce JavaScript by starting with values and variables. Next, I introduce expres-
sions and operators and the basic commands of the language. JavaScript has many pre-
defined function (methods in object-oriented parlance) and some of them are very im-
portant for every programmer. These functions are presented next. Then, I show how
one can handle events that may happen on a web page (e.g., what should happen when
someone presses a button). The Document Object Model is the way to get access to the
various elements that make up a web page and the 8th chapter discusses it. In chapter 9,
I introduce two predefined classes that are quite useful. The last chapter shows how one
can create simple and not so simple animations with theHTML5 <canvas> element and
JavaScript.

Apostolos Syropoulos
Xanthi, Greece

December, 2018

1

Contents

1 HTML5 in aNutshell 4
1.1 What is HTML5? . 4
1.2 The Sturcture of an HTML5Document 5
1.3 Text and Alignment . 7
1.4 Decorations . 10
1.5 Links . 11
1.6 Lists and Tables . 12
1.7 PlayingMedia Files . 13
1.8 Forms . 14

2 What is JavaScript? 21

3 Values and Variables 24

4 Expressions andOperators 28
4.1 Arithmetic Operators . 29
4.2 Assignment Operators . 29
4.3 BooleanOperators . 30
4.4 String Operators . 30

5 Basic JavaScript Commands 31
5.1 The ifCommand . 31
5.2 The switchCommand . 32
5.3 The forCommand . 33
5.4 The do-whileCommand . 34
5.5 The whileCommand . 35
5.6 Labels . 35
5.7 The breakCommand . 36
5.8 The continueCommand . 36
5.9 Comments . 37

2

6 Predefined Functions 38
6.1 Function toString() . 38
6.2 The write and writeln Functions 39
6.3 Function eval . 40
6.4 Function isFinite . 40
6.5 Function isNaN . 41
6.6 Functions parseInt& parseFloat 41
6.7 Functions setInterval& setTimeout 41
6.8 Defining New Functions . 43
6.9 Anonymous Functions . 46

7 JavaScript Event Handling 47
7.1 Defining an Event Handler . 47
7.2 Using Event Handlers . 49

8 TheDocumentObjectModel 51

9 Predefined JavaScript Classes 54
9.1 Class Date . 54
9.2 The MathClass . 56

10 TheHTML5 <canvas> Element 58
10.1 A Simple Example . 58
10.2 A Simple Animation . 62
10.3 Simple Interactive Animation . 64
10.4 Stopping An Animation . 66
10.5 Moving Objects . 67
10.6 A Simple Simulation . 72

3

Chapter 1

HTML5 in aNutshell

In this chapter I will introduce the basics of the HTML5 markup language. JavaScript
code is part of an HTML document and affects its rendering and functionality.

1.1 What is HTML5?
HTML5 is the very recent version of theHyperText Markup Language. Amarkup is a se-
quence of characters that you insert at certain places in a text or word processing file to
indicate how the file should look when it is printed or displayed or to describe the doc-
ument’s logical structure. The following are some examples of textual markup that show
how one can specify boldface text in various markups.

• LATEXmarkup:
normal \textbf{bold} normal again

• troffmarkup:
normal

.ft B

bold

.ft R

normal again

• HTMLmarkup:
normal bold normal again

• Wiki markup:
normal '''bold''' normal again

The prefix hyper- generally means “above” or “beyond”, thus hypertext is something
that goes beyond the limitations of ordinary text (e.g., it can be non-sequential). Hyper-
text is text which contains links to other information. The term was coined by Theodor

4

Holm “Ted” Nelson around 1963. Software programs such as dictionaries and encyclo-
pedias have long used hypertext in their definitions allowing readers to quickly navigate
content. HyperMedia is a term used for hypertext which is not constrained to be text: it
can include graphics, video and sound, etc. TedNelson coined this term too.

Amarkup language is a set of rules specifying how tomarkup content so to control its
structure, formatting, or the relationship among its parts. The most widely used markup
languages are SGML, HTML, and XML. SGML (i.e., the Standard Generalized Markup
Language), is a language for defining markup languages. HTML is an “application” of
SGML. XML stands for eXtensible Markup Language and it was designed to store and
transport data. XML was designed to be both human- and machine-readable. HTML is
the de facto standard for the presentation of information over theWeb.

Tim Berners-Lee created what we call the Web while he was working at CERN. He
created HTML and the HyperText Transfer Protocol (HTTP) and designed and imple-
mented the first web browser. On October 1991 “HTML Tags” was made available. A
description of version 2.0 of HTML was published on November 1995. HTML 3.2 was
published on January 1997. HTML4.0 was published onDecember 1997. HTML5was
publishedonOctober 2014whileHTML5.1was publishedonNovember 2016. The lat-
est version of HTML5 is HTML 5.3 and its specification was published on 18 October
2018.

1.2 The Sturcture of anHTML5Document
An HTML5 document has a few sections that are used to present different kinds of in-
formation. The following few lines show these sections of a simple yet completeHTML5
document.

<!DOCTYPE html> ⟵ document type

<html> ⟵ beginning of document

<head> ⟵ beginning of head

<meta charset="UTF-8">

<title>Greetings</title> ⟵ the title

</head> ⟵ end of head

<body> ⟵ beginning of body

Hello World! ⟵ document contents

</body> ⟵ end of body

</html> ⟵ end of document

The arrows and what follows them are not part of the document. Ideally, one should use
an editor to type the markup, without the arrows and what follows them, and save the
content to a file whose name extension is html (e.g., Example.html). Then, one can open

5

Figure 1.1: A very simple HTML5 web page.

the filewith a browser and see the result, which should look like the screenshot in Fig. 1.1.

Let us examine each section of the document in some detail. Everything that ap-
pears in anHTML5 document that is enclosed in angle brackets is called an element. The
<head> element is a container for metadata (data about data). This element can contain
a number of other elements:

<title> Is used to specify the title of thedocument andappearson thebrowser’s toolbar.

<style> An element that is used to define style information for a single HTML5 page,
that is, typographic information (e.g., text justification, font selection, etc.).

<link> This element is used to load external files with style information.

<meta> An element is about meta-information that is used to specify which character
set is used, what this document is about, which are the keywords, which are the
authors, etc. Here are the various forms of this element:

<meta charset="encoding"> It is used to specify the character encoding of the
document (usually, Unicode’s UTF-8).

<meta name="description" content="description"> Used to provide a brief
description of a document’s contents (e.g., HTML5 examples).

<meta name="keywords" content="keywords"> Can be used to to specify the
keywords of the document (e.g., HTML5, CSS3).

<meta name="author" content="name"> The name of the author of this docu-
ment (e.g., James T. Kirk).

6

What isTextEncoding? Text in a computer system ismadeof characters. Each charac-
ter is represented internally using an encoding. There are many different character encod-
ings that have been used over the years in different locations. In one common encoding
the letter “é” is represented internally by the number 233 while in another encoding this
number represents the letter “щ”. Thuswhenoneprepares an emailmessageusing the first
encoding and the receiver’s computer system supports only the second encoding, quite
probably the message will be unreadable. To overcome this problem a consortium of
companies created the Unicode standard which provided support for all known scripts.
Unicode is an evolving standard as it includes ancient scripts and various symbols used
in mathematics, technology, etc. Initially, each character was represented by two bytes.
However, this representation did not work for Unix and Unix-like systems, since most
their source was written before the emergence of Unicode. Thus a variable length encod-
ing was devised by Ken Thompson and Rob Pike to allow the use of Unicode in Unix
systems. This encoding is called UTF-8 and it is know the most common encoding of
Unicode. When preparing a web page that contains some “uncommon” characters, one
should make sure that <meta charset="UTF-8"> is specified in order to make sure that
all the characters of a the document will be displayed correctly.

1.3 Text and Alignment
The element <p> is used to delimit paragraphs. For example, the markup

<p>This is a paragraph.</p>

shows how to delimit a paragraph. Note that the tag </p> is the closing tag while <p> is
the opening one. Clearly, most HTML5 elements follows this “practice”. To override the
default paragraph formatting one should use a style parameter:

For justified text use: <p style="text-align:justify">Justified

text</p>.

For centered text use: <p style="text-align:center">Centered

text</p>.

For right-aligned text use: <p style="text-align:right">Right-

aligned text</p>.

For left-aligned text use: <p style="text-align:left">Left-

aligned text</p>. The default paragraph alignment for a left-to-right writing
systems.

7

Figure 1.2: Paragraph alignment: justified (top), centered, right, and left-justified.

Figure 1.2 shows howFirefox renders anHTMLdocument whose body contains the fol-
lowing markup:

<p style="text-align:justify">Excellence...</p>

<p style="text-align:center">Excellence...</p>

<p style="text-align:left">Excellence...</p>

<p style="text-align:right">Excellence...</p>

Note that the tag
 should be used to force a line break in the visual output.
Headings are specified using the <h1>…<h6> tags. For example, themarkup that fol-

lows

<h1>Heading 1</h1>

<h2>Heading 2</h2>

⋮
<h6>Heading 6</h6>

is rendered by Firefox as shown in Fig. 1.3.

8

Figure 1.3: The six levels of headings.

Italics, Bold,… The tag is used to set text in bold face. For example, the markup
JavaScript will make the browser to render the word JavaScript in boldface.
Similarly, the <i> tag is used to set text in italic (slanted) face. To emphasize text we
use the tag. To get italic bold face, we use the <i> or the <i> tags and we
delimit the text with </i> and </i>, respectively. The <tt> tag sets text in a
monospaced font. We can use

<h3 style="font-family: MyFont">some text</h3>

in order to have the text of heading rendered using MyFont. The following is a rendering
of some font selection tags:

Exercise 1.3.1 Write down the HTML that creates the previous output. For the calli-
graphic text, use any font you like. Also, in order to enter the Greek text use a character
table application.

9

1.4 Decorations
Simple Decorations To add a background color in a web page, use

<body style="background-color:#E6E6FA">

or
<body style="background-color:blue">

There are different ways to specify colors but HTML uses the so-called RGB scheme.
In this scheme a color is specified as a mixture of three basic colors: red, green, and blue.
Thus #RRGGBB is a color specificationwhere RR, GG, and BB is the amount of red, green, and
blue, respectively. Eachamountof color is specifiedbyahexadecimalnumber in the range
00 to FF (255). Adding background image(s) is a bit involved and I will say more about
it in a moment. The tag <img src="smiley.gif" alt="Smiley face" width="42"

height="42"> adds an image into a web page. The <hr> tag adds a horizontal line. Also,
to get colored text one should use

<p style="color:red">This is a paragraph.</p>

This will render the text in red. To have a heading set in blue using the Verdana typeface,
we should use something like the following:

<h3 style="font-family: Verdana; color:blue">Ερασμος</h3>

Wallpapers To add a wallpaper to a web page, one needs to use CSS, a language that
describes the style of an HTML document. In particular, it describes how HTML ele-
ments are to be displayed on screen, paper, or in other media. CSS stands for Cascading
Style Sheets. The code that follows takes care of everything!

<style>

html { height: 100%; }

body {

background-image: url("DSC_1260.JPG");

height: 100%;

background-position: center;

background-repeat: no-repeat;

background-size: cover;

}

p {

color: blue; font: 30px Verdana;

text-align: center;

}

</style>

10

Figure 1.4: A web page with a wallpaper.

specifies that a the image file DSC_1260.JPG should be used as wallpaper and it should
cover the whole page. Also, the image should be placed in the center of the web page and
it should not form some sort of tiling. Figure 1.4 shows visual output that was created
using the code above.

1.5 Links
Links allow users to click their way from page to page. Here is how to write down a link
in HTML:

link text

Here by clicking the link text our browser will transfer to a web page located at url in
a new browser tab. URL is an acronym for Uniform Resource Locator and is a reference
(an address) to a resource on the Internet. If we omit the target parameter, the new page
will be loaded on the current tab. Links can also be images, as you already know.

The followingmarkup shows how to create a bookmark:

<h2 id="C4">Chapter 4</h2>

And here is a link that will transfer to the bookmark we just defined:

Jump to Chapter 4

Exercise 1.5.1 Create a web page with both text and image links and bookmarks.

11

Figure 1.5: The three supported types of HTML5 lists.

1.6 Lists and Tables
HTMLprovide authors severalmechanisms for specifying lists of information. There are
three types of lists: unordered, ordered, and definition or description lists. In unordered
lists each item is prepented by a predefined or user-specified symbol:

<ul style="list-style-type: disc">

 éclair

 croissant

 kouign amann

Note that the possible list-style-type are disc (default), square, circle, and none.
Of course one can omit the style parameter and let the browser use default values. In an
ordered lists the items are prepended by consecutive numbers, letters, symbols, etc. The
following is an example of such a list.

<ol style="list-style-type: mongolian">

 Paris-Brest

 religieuse

 mille-feuille

Here the list-style-type can assumemany different values that include lower-greek,

12

lower-latin, katakana, hebrew, arabic-indic, armenian, etc. Alternatively, one can
specify a type as follows:

<ol type="type">

where type can be 1 to have items numberedwith numbers (default), A or a to have items
numberedwith uppercase or lowercase letters, respectively, and I or i to have items num-
bered with uppercase or lowercase roman numerals, respectively. Finally, description or
definition lists are used to describe or define a series of items. Below is a typical example
of such a list.

<dl>

<dt>Macarons</dt>

<dd>A meringue-like cookie</dd>

<dt>Opera cake</dt>

<dd>An elegant gâteau</dd>

</dl>

Figure 1.5 shows how these three lists are rendered by Firefox.
Tables are used to display information in tabular form. An HTML table is defined

by a <table> tag. Each table row is defined by a <tr> tag. A table header is defined by a
<th> tag. By default, table headings are rendered using a boldface font and centered. A
table data/cell is defined by a <td> tag. The <caption> tag defines a table caption. This
tag must be inserted immediately after the <table> tag. Here is the markup of complete
table:

<table>

<caption>Monthly savings</caption>

<tr>

<th>Month</th>

<th>Savings</th>

</tr>

<tr>

<td>January</td>

<td>$100</td>

</tr>

</table>

1.7 PlayingMedia Files
The<video> tag shouldbeused toplayvideos, suchas amovie cliporother video streams.
Currently, there are 3 supported video formats for the <video> element: MP4, WebM,

13

andOgg. Firefox supports all three formats. A simple example follows:

<video width="320" height="240" controls>

<source src="movie.mp4" type="video/mp4">

<source src="movie.ogg" type="video/ogg">

Your browser does not support the video tag.

</video>

The controls parameter adds video controls, like play, pause, and volume. To play audio
files, such as music or other audio streams, one should use the <audio> tag. Currently,
there are 3 supported audio formats for the <audio> element: MP3, WAV, and Ogg. A
simple example is shown below.

<audio controls>\\

<source src="song.ogg" type="audio/ogg">

<source src="song.mp3" type="audio/mpeg">

Your browser does not support the audio tag.

</audio>

1.8 Forms
An HTML form is a means by which a user can interact with a web site. Forms allow
users to send data to the web site. The data are processed by a cgi script and the result of
the operation is shown to the user. For example, when someonemakes purchase through
a web site and enters the details of her credit card, then the user sends data to some web
server. However, it is quite possible to process the data locally. In this second case, one
can use JavaScript to process the data. In what follows I will explain how to specify an
HTML form and what widgets can be used inside a form.

Typically an HTML forms starts with a <form> element like this:

<form action="/my-handling-form-page" method="post">

.

</form>

However, here we are interested in very simple forms like the following one:

<form name="form's name">

.

</form>

There are many and different widgets that one can use inside a form, but I am going to
present a few of them.

14

Figure 1.6: Two <input> elements: one of type password and one of type submit.

Single text input field This is a widget that allows a user to enter some text or anything
that can fit on a single line. The general form of this widget follows:

<input type="text" id="some-id" name="some-name"

value="I'm a text field">

Note that what makes this element a text field is the value of the type attribute. And if
you think there might be other types, then you have guessed correctly. The attributes id
and name are used to distinguish widgets. It is quite possible to use only one of these two
attributes and this holds true for all widgets. The attribute value is used to set an initial
value for a text field.

E-mail input field A variation of the <input> element that is used to get e-mail ad-
dresses from users:

<input type="email" id="email" name="email" multiple>

Password input field This variation of the <input> element is used to read passwords
and the likes. However, before typing anything into such a field, make sure encryption
is on (i.e., the browser is using the HTTPS protocol; not the HTTP protocol). Here is a
piece of HTMLmarkup to have the user enter a PIN:

<form>

Enter your PIN:

<input type="password" id="pin" name="userPIN"

minlength="4" maxlength="4" required>

<input type="submit">

</form>

Typically, a PIN consists of exactly four digits. This is why I have set minlength="4" and
maxlength="4". If you embed thismarkup in a single page, youwill seed that the text field
is a bit long. To make it shorter we can use the size="4" attribute. Also, if the attribute
required is present, then the user has to enter something. Note that here the submit type
creates a button that shouldbepressed to senddata to someweb server or toprocess them
locally. Figure 1.6 shows how Firefox renders the code above.

15

Figure 1.7: Supported HTML5 buttons. The window popped up after the first button
was pressed.

Although I tried tomake sure the user will enter four digits, still a user can enter four
letters to fool our system. In order to solve this problem we can use the pattern and the
title attributes as shown below:

pattern="d{4}" title="Only digist are allowed"

Thevalue d{4} is a regular expressionwhich is a tool to describe themost general formof
families of strings. However, I will not present themhere and the interested reader should
consult [2] or any other book or Internet site that describes them. The title attribute
specifies what should appear when the user enters at least one character that is not a digit.

Buttons There are two kinds of buttons: <input> elements of type button and the
<button> element. Both represent a clickable button. The first kind can appear only in
forms while the second can appear anywhere in a document that needs a button. The
submit button is a special kind of button. The following is an example of the first kind of
button:

<input type="button" value="Click me" onclick="alert('Ouch')">

When the user will click this button, then a window will pop up that will display the text
Ouch. Themarkup that follows is a typical example of a button of the second kind:

<button id="start" name="FormsOnly">start</button>

Naturally, one can customize buttons but this is something that can be done with CSS.

16

Figure 1.8: Using a datalist> element.

Figure 1.9: A <select> element with three visible options.

The <datalist> element The <datalist> element can be used to specify a list of pre-
defined options for an <input> element. The code below shows how to write down this
element and Fig. 1.8 shows how Firefox renders this code.

<form>

Which dessert do you like the most?

<input list="desserts" name="desserts">

<datalist id="desserts">

<option value="Clafoutis">

<option value="Éclair">

<option value="Norman Tart">

<option value="Plombière ice-cream">

<option value="Yule log">

</datalist>

</form>

The <select> element This element defines a drop-down list and the HTML code of
a typical example follows:

<select name="desserts">

<option value="clafoutis">Clafoutis</option>

<option value="eclair">Éclair</option>

<option value="normantart">Norman Tart</option>

17

Figure 1.10: A demonstration of checkboxes.

<option value="plombiere">Plombière ice-cream</option>

<option value="yule">Yule log</option>

</select>

One can have an option preselected by adding the attribute selected as shown below:

<option value="eclair" selected>Éclair</option>

Also, by changing the declaration of the list as follows

<select name="desserts" size="3">

we specify that three list elements will appear instead of one (see Fig. 1.9).

Checkboxes A checkbox is rendered as a square box that can be ticked. They allow
one to select one or more values for submission in a form. The following markup creates
a form that allows a user to select his/her favorite French desserts.

<form>

<fieldset>

<legend>What Are Your Favorite Desserts?</legend>

<input type="checkbox" name="_dessert" value="clafoutis">Clafoutis

<input type="checkbox" name="_dessert" value="eclair">Éclair

<input type="checkbox" name="_dessert" value="dariole">Dariole

<input type="checkbox" name="_dessert" value="calisson">Calisson

<input type="checkbox" name="_dessert" value="yule">Yule log

</fieldset>

</form>

18

Figure 1.11: A demonstration of radio buttons.

The <fieldset> element makes it possible to group elements in a form. When one in-
cludes the attribute checked in one of the checkboxes, then this one is preselected. The
visual output of the markup above is shown in Fig. 1.10.

Radio Buttons Radio buttons can be created with <input> elements of type radio.
They are used in radio groups—collections of radio buttons describing a set of related
options. A user can select only one button. Radio buttons are usually rendered as small
circles that are filled or highlighted when selected. The following markup creates a form
that allows a user to select his/her favorite French dessert.

<form>

<fieldset>

<legend>What Is Your Favorite Dessert?</legend>

<input type="radio" name="_dessert" value="clafoutis">Clafoutis

<input type="radio" name="_dessert" value="eclair">Éclair

<input type="radio" name="_dessert" value="dariole">Dariole

<input type="radio" name="_dessert" value="calisson">Calisson

<input type="radio" name="_dessert" value="yule">Yule log

</fieldset>

</form>

The visual output of the markup above is shown in Fig. 1.11.

Text-areas An <textarea> element is rendered as a multi-line plain-text editing con-
trol. This should be used when one wants his/her users to enter a multi-line text (e.g., a

19

Figure 1.12: A formwith a text-area.

comment, a review, etc.). The following markup describes a form with a text-area and a
button that is supposed to submit the data to a web server.

<form>

<textarea id="recipe" name="recipe"

cols="40" rows="6">Recipe for Gougères:

</textarea>

<input type="submit" value="Submit your Recipe">

</form>

The visual output of the markup above is shown in Fig. 1.12.

20

Chapter 2

What is JavaScript?

JavaScript is an object-oriented programming language that was initially designed and
implemented byNetscape. The language is themost widely used language for client-side
scripting of web pages. HTML5 and all relatively older versions of HTML support the
<script> tag that allows the inclusion of JavaScript code into HTML code. JavaScript
can be used to make dynamicweb pages.

The <script> tag contains a number of JavaScript commands and its general form
follows:

<script>

JavaScript commands…

</script>

There is no limit to the number of <script> tags an HTML file may contain and, natu-
rally, there is no limit to the number of commands each tag may contain.

All modern browsers support client-side scripting but just in case someone uses a
browser that does not “understand” JavaScript, thenwe should use the <noscript> tag as
follows:

<script>

JavaScript commands…

</script>

<noscript>

Your browser does not support JavaScript!

</noscript>

If the JavaScript codewe are using is stored in an external file, thenwe have to use the
src attribute of the <script> tag:

…

21

Figure 2.1: How Firefox renders the complete HTML5 file of section 2.

<head>

<meta charset="UTF-8">

<title>My Page</title>

<script src="common.js">

</script>

</head>

<body>

…

Note that when using the src attribute, nothing should appear between the <script>

and </script> tags. Also, the file that contains the JavaScript code should have the .js
filename extension. Clearly, the file can be located on the server or to some remote loca-
tion. In what follows I give the complete contents of anHTML5 file and in figure 2.1 one
can see how the file is rendered by Firefox.

<!DOCTYPE html>

<html> <head>

<meta charset="UTF-8">

<title>Example</title>

</head>

<body>

<script>

document.write("Hello, net!")

</script>

<noscript>No JavaScript support. Sorry</noscript>

<p> That's all, folks.</p>

</body> </html>

The command document.write("Hello, net!") creates content that is added in the
body of the HTML page. The argument can be some text, as in this case, or HTML

22

markup. The sister command document.writeln("content") writes the content on a
new line so tomake the line of the resultingHTMLfile shorter. To force a new line in the
HTML file, one should use a command like the following one:

document.write("
")

23

Chapter 3

Values andVariables

For any concrete problemwe have to perform calculations and enumerations in order to
deliver a solution to it. Thusprogramming languages provide various data types that allow
users to represent data. A data type is a collection of all possible values of a certain kind
(e.g., numbers, fractions, vectors, etc.) plus various operators thatmap values of this kind
to other values of the same kind (e.g., the rational numbers and the operators +, −, ⋅, and
÷ form a data type). Usually, a programming language supports a fraction of the values of
a certain data type since, for example, not all integer numbers can be represented in the
finite memory of a computer.

JavaScript supports the following (primitive) data types:

• Numbers, that is, quantities like 41 or 3.14159.¹

• Boolean (logical) values, that is, the values true and false.

• Sequences of character like "Hello!" that are known as strings. Note that a string
must be enclosed in quotation marks. One can use either single or double quota-
tion marks, for instance, "John's girlfriend." or 'Mary came!'.

• The value null, which denotes a no value.

• The value undefined, which denotes an undefined value.

The values null and undefined are used mainly in comparisons. Data types in JavaScript
are dynamic, whichmeans that, for example, a number can be taken as string or vice versa.

In a sense, a variable is a name that is used to designate a value. For example, inmath-
ematics we write 𝜋 to designate the number 3.1415926535897…. In fact, a variable is the
name of some storage location (i.e., a little part of our computer’smemory)where a value

¹In continental Europe people use a comma to separate the whole part from the fractional part of a number. In the
US they use a period. Most programming languages follow the US convention.

24

is stored. However, variables are like the 𝑥 in the mathematical definition 𝑓(𝑥) = 3 + 𝑥.
In different words, a variable may designate different but not unrelated values during the
course of execution of a single program. For example, if we count objects and we use a
variable to hold the number of objects counted so far, the variable will hold different val-
ues at different moments.

The first character of the name of a variable must be a letter. For names that have
more than one letter, the remaining characters can be letters, digits, or the symbol _ (un-
derscore). For example, consider the list of “variable” names that follows:

interest myvar123 1var _notAvar A_Valid_Var

The 3rd and the 4th words cannot be used as variable names. In addition, the variable
names

brazuca Brazuca

are different because the language is case-sensitive, that is, the case of letter does matter.
There are three ways to introduce a variable into a program:

• Using an assignment statement that is written as variable = value. For example,
x=3.

• Using a declaration, that is, writing theword var and then thenameof the variable.
For example, var x. In this case the variable automatically is assigned the value
undefined.

• Using a combination of the previous twomethods, that is, var x=4;.

The command x=3 specifies that the variable xwill hold the number three. However, we
can assign more “involved” things to variables:

x=4; y=6

z=2*x; x=x+1

Note that the symbol “;” (semicolon) is used to terminate a command, nevertheless, it is
not necessary to add itwhen a command is the last commandon a line. Thefirst two com-
mands assign to variables x and y the values 4 and 6, respectively. In the third command,
variable z is assigned two times the value of the variable x. And in the fourth command,
the value of variable x is increased by one. Note that the symbol “=” does not denote
equality.

A comparison yields a Boolean value. For example, the comparison 3>4 yields the
value false while the comparison 4==5 yields the value true. The following table sum-
marizes the available comparison operators and it is assumed that x = 5 and var ywere
just executed.

25

Operator Description Comparing Returns
== equal to x == 8 false

x == 5 true

x == "5" true

y == undefined true

=== equal value and equal type x === 5 true

x === "5" false

!= not equal x != 8 true

y != undefined false

!== not equal value or not equal type x !== 5 false

x !== "5" true

x !== 8 true

> greater than x > 8 false

< less than x < 8 true

>= greater than or equal to x >= 8 false

<= less than or equal to x <= 8 true

An array is a special variable that can hold more than one value at a time. Each value
is assigned to an element of an array and one can refer to an array by its index. The picture
that follows depicts an array and its indices. Note that indices are consecutive integers
starting from zero.

Inorder to create anarrayonehas towrite thenameof the array, the symbol “=”, the values,
whichwill be stored to the array, separatedby commas in square brackets, and anoptional
semicolon:

coffees = ["French Roast", "Columbian", "Kona"];

If we want to print the first element of this array, we have to use the following command:

document.writeln(coffees[0])

If we add an empty element in the declaration of an array, then this element has the unde-
fined value. For example, in the declaration that follows

26

lang = ["Pascal", "Perl", ,"C", "Java"]

thefirst element, that is,lang[0], has thevaluePascal, the secondelement (i.e.,lang[1])
has the value Perl, the third element (i.e., lang[2]) has the undefined value, etc.

In natural sciences we use the scientific notation to write numbers that are either too
big or too small. In this notation we write numbers as 3.16 × 10, where 3.16 is called
the significand and 5 is just an exponent. It is straightforward to write numbers in the
scientific notation in JavaScript. First we write the significand and then either the letter e
or the letter E followed by the exponent. Thus the number 3.16 × 10 should be written
as 3.16e5 or as 3.16E5. In some cases we need to enter numbers in hexadecimal or octal
notation. Hexadecimal numbers have the number 16 as their basis and so they have 16
digits: the decimal digits 0–9, plus the letters A, B, C, D, E, and F. In order to write a
number in hexadecimal notation, we need to first type 0x or 0X and then the number, For
example, 0xABCD. Octal numbers are written with eight digits, that is, the digits 0–7. In
order to write an octal number we first write a zero and then digits of the number. For
example, 0777 is an octal number.

A string consists of simple ASCII characters, escape sequences, or Unicode charac-
ters. An escape sequence corresponds to a special character that cannot be entered con-
ventionally. Typically, an escape sequence is the character that marks the end of line, the
escape button, etc. Escape sequences consist of a backslash followed by a single letter
(e.g., \b). The escape sequences supported by JavaScript are:

Character Meaning
\b Βackspace
\f Form feed
\n New line
\r Carriage return
\t Tab
\' Apostrophe
\" Double quotationmarks
\\ Backslash

If wewant to enter a character that cannot be accessed fromour keyboard, we can use the
escape sequence \XXXwhere XXX is anoctal number denoting this character. For example,
the symbol©canbeaccessedwith the character\251. AllUnicode characters that cannot
be accessed from our keyboard, can be accessed with an escape sequence of the form
\uXXXX, where XXXX is a hexadecimal number that corresponds to a specific character.
For example, the escape sequence \u00a9 corresponds to the symbol ©.

27

Chapter 4

Expressions andOperators

An expression consists of an number of variables, values, and operators. The operators
denote some operation (e.g., addition, multiplication, string concatenation, etc.) and the
result of an expression is a value. Assignment commands first evaluate the expression
on the right of the = sign and then stores the computed result to the memory location
designated by the variable on the left of = sign. For example, the command

var x = 7+10

stores the number 17 to the storage location designated by variable x.
JavaScript supports a number of different operators:

• Assignment operators

• Comparison operators

• Arithmetic operators

• Bitwise operators

• Boolean operators

• String operators

• Special operators

We have already seen comparison operators but in what follows I am going to present all
other categories of operators.

28

4.1 Arithmetic Operators
An arithmetic operator takes one or two numerical values (either literals or variables) as
their operands and yields a single numerical value. The arithmetic operators +, -, *, /
are used to specify an addition, a subtraction, a multiplication, or a division, respectively.
Thus the expression (3+4-3*19)+4will evaluate to -46. In addition, JavaScript supports
the following operators:

Operator Explanation
x % y Yields the reminder of the integer division of x by y.
x++ Yields the value of x and then increases the value of x

by one.
x-- Yields the value of x and then decreases the value of x

by one.
++x Increases the value of x by one and yields this new

value.
--x Decreases the value of x by one and yields this new

value.
-x Yields the opposite of x.

Thus the values of the the variables defined as follows
var y = 25 % 5

var z = 27 % 5

are 0 and 2, respectively. Also, the following example explains the functionality of the
operators ++ and --:

var x=4,y=4

document.write(x-(y++))

//The result is 0, because the operator first yields the value
//and then increases the value of the variable.
document.writeln("
")

y=4

document.writeln(x-(++y))

//Thenumber -1 will appear on the web page, because the operator
//increases the value of the variable and then yields this value.

4.2 AssignmentOperators
An assignment operator stores the value that is on the right of the operator to the stor-
age location designated by the variable on the left of the operator. The basic assignment
operators are:

29

Operator Is shorthand for
x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

4.3 BooleanOperators
ABoolean operator is used with Boolean values or expressions. Recall that the result of a
comparison is a Boolean value. The Boolean operators supported by JavaScript are:

Operator Yields
x && y true only if both x and y evaluate to true

x || y true if either x or y evaluates to true

! x true if x evaluates to false, true otherwise

4.4 StringOperators
The concatenation operator + joins two strings and yields a new string. For example, the
operation "snow" + "mobile" yields the string "snowmobile". In addition, the operator
+= behaves similar to the one that is used to assign numerical values to variables. For
example, the following code

var x="la"; var y="lo";

x += y;

document.writeln(x);

prints the string "lalo".

30

Chapter 5

Basic JavaScript Commands

In general, a command is an instruction given by a user telling a computer to do some-
thing. Whenwriting a program, commands are put together by a programmer to achieve
a specific task. JavaScript provides a number of commands that can be used to achieve an
impressive number of things. The basic commands of the language are:

• Conditional commands: if...else and switch.

• Repetition commands: for, while, do...while, a labeled command (used in rep-
etition commands without being such a command), the break command and the
continue command.

• Comments.

Note that there aremore commands (e.g., exception handling commands and objectma-
nipulation commands) but we cannot cover the whole language in a short introduction.
Recall that the semicolon terminates commands and that the symbols “{” and “}” define
a block of commands that are considered as a single command.

5.1 The ifCommand
The command if has two forms:

if (condition){

commands

}

if (condition){

commands A

}

else{

commands B

}

Form (a) Form (b)

31

In the case of the first form of the command, the condition is checked and if it evaluates
to true, then the commands are executed. Otherwise, the whole command has not effect.
In the case of the second form, commands A are executed if condition evaluates to true.
If it evaluates to false, then commands B are executed. Of course we can omit the curly
brackets if we have a single command on either form and/or branch.

Example 5.1.1 The following command prints the string "okay!" simply because 3>2

evaluates to true.

if (3>2)

document.write("okay!")

else

document.write("problem!")

5.2 The switchCommand
In a sense, the switch command is like a generalized if command. The general form of
this command is shown below:

switch (expression){

case label1:

command1;

break;

case label2:

command2;

break;

…
default: commandN;

}

The language processor first finds which label matches with the value of the expression
and thenexecutes thecorrespondingcommand. Ifno labelmatches theexpression, then
commandN is executed, provided this branch is specified. If the defaultbranch is not spec-
ified and no labelmatches the expression, then the command has no effect. By omitting
the break commands we allow the language processor to execute all commands that fol-
low the first command whose label matches the expression.

Example 5.2.1 If the value of the variable expr is "Cherries", the command

switch(expr){

case "Oranges":

32

document.writeln("Oranges are $0.59 a kilo
");

break;

case "Apples":

document.writeln("Apples are $0.32 a kilo
");

break;

case "Cherries":

document.writeln("Cherries are $3.00 a kilo
");

break;

case "Bananas":

document.writeln("Bananas are $0.48 a kilo
");

break;

default:

document.writeln("Sorry, we are out of " + expr + "
");

}

will output the markup

Cherries are $3.00 a kilo

In case there were no break commands, then we would see the following in our web
browser:

Cherries are $3.00 a kilo
Bananas are $0.48 a kilo
Sorry, we are out of Cherries

5.3 The forCommand
Theforcommand isusedwhenweapriori knowthenumberof repetitions. We implicitly
use a counter whose value determines when the command terminates. This command
has the following general form:

for (initialization; condition; increment-decrement){

commands

}

It is possible to omit either the initialization part, the condition, or the increment-
decrement parts. However, even if we omit something we cannot omit the semicolons.
For example, the empty for command is written as follows:

for(;;){}

33

WARNING! This command never terminates! Let us see exactly what happens when a
for command is executed.

1. First the language processor executes the initialization part, provided it exists.
This command usually gives an initial value to a counter (i.e., a variable used to
count or enumerate things).

2. The condition is evaluated. If it is false, then the command terminates. If it is
true, then it proceeds with the commands are executed.

3. Actual execution of the commands.

4. The increment-decrement part is evaluated and execution continues with step 2.

Example 5.3.1 The code that follows computes the sum of the numbers from 1 to 100:

var sum = 0;

for(i=1; i<=100; i++){

sum += i;

}

document.write("<p> The sum 1+2+...+100 is equal to ")

document.write(sum); document.write("</p>")

Exercise 5.3.1 Use a for-command to compute the product of the numbers from 1 to
200.

5.4 The do-whileCommand
The do-while executes a number of commands and its general form is as follows:

do {

commands

} while (condition)

The commands are executed at least one time and then, the language processor evaluates
the condition. If it is false, execution stops. Otherwise, the commands are executed
again, the condition is re-evaluated, etc. Note that here we cannot omit the curly brack-
ets.

Example 5.4.1 The code that follows prints the integer numbers from one to fine:

34

i=0;

do{

i++;

document.writeln(i);

} while (i<=5);

If the value of variable iwas equal to six, then the commandwould print this number and
terminate.

5.5 The whileCommand
The while command is a repetition command similar to the do-while command and its
general form follows:

while (condition){

commands

}

Initially, if the condition evaluates to false, then the commands are not executed and the
command aborts execution.

Example 5.5.1 The code that follows prints the numbers from one to five:

i=1;

while (i<=5){

document.write(i); document.write(" ");

i++;

};

Example 5.5.2 The command that follows prints continuously the wordHello:

while(true){

document.write("Hello ");

}

5.6 Labels
A label is a mechanism to give a name to a command. This way we can refer to this com-
mand later on. For example, we use a label to name a repetition command and then using
the break and continue commands we can specify if the repetition command should
stop or continue. Here is how we add a label to a command:

35

label: command

Clearly, the name of a label cannot be the same as any word that has a predefinedmean-
ing like the word var.

Example 5.6.1 In this example, we name a while command:

Loop:

while(themark == true){

doSomething();

}

5.7 The breakCommand
The break command is used to prematurely terminate a repetition commandor a switch
command, as we have already seen. Repetition commands maybe nested (i.e., one com-
mandmay contain another command) and the breakmakes it possible to terminate pre-
maturely any repetition command. Themost general form of this command follows:

break or break label

Thesecond formof the command is used to terminate the command that has this specific
label label.

Example 5.7.1 The code that follows scans the array a to find the element that is equal
to the variable theValue and exists the repetition command if it finds it.

for (i=0; i < a.length; i++){

if (a[i] == theValue) {

break;

}

}

5.8 The continueCommand
The continue command is used to restart a repetition command or a labeled command.
In particular,

• When used in a repetition command, the continue command stops the execu-
tion a command sequence in the current iteration and continues execution of the
repetition commandwith a new repetition. Unlike the break command, the con-
tinue command does not abort execution of a repetition command. In a while

36

command, the language processor is forced to re-evaluate the conditionwhile in
a for command it performs again the increment-decrement part.

• If the continue command is followed by some label, the commandwith this label
is affected.

The command can be entered as follows:

continue or continue label

Example 5.8.1 In the code that follows there is a while command that contains a con-
tinue command. The former is executed when variable iwill become equal to three.

i = 0

n = 0

while (i < 5) {

i++

if (i == 3){

continue

}

document.write(n); document.write(" ")

n += i

}

This code will output the numbers 0, 1, 3, and 7.

Exercise 5.8.1 What is the output of the following commands?

var str = "";

loop1: for (var i = 0; i < 5; i++) {

if (i === 1)

continue loop1;

str = str + i;

}

document.write(str);

5.9 Comments
The symbols // start a comment and everything that follows these symbols until the end
of line is ignored by the language processor.

37

Chapter 6

Predefined Functions

A set is a collection of things (e.g., numbers, objects, people, etc.). A function is a relation
between the elements of two ormore sets. In particular, a function from a set𝐴 to a set 𝐵
maps every element of𝐴 to one and only one element of 𝐵. As an example, consider abs
thatmaps any integer number to its absolute value. Thus absmaps 3 to 3 and−3 to 3 or in
symbols: abs(3) = −3 and abs(−3) = 3, respectively. It is easy to see that abs is actually a
function. If we want to define this function mathematically, we have to write something
like abs(𝑥) = |𝑥|. Here the entity 𝑥 is called a parameter, while the number 5 in abs(5) is an
argument. In computer jargonwe say a function returns a value, which is the value that the
function maps to its argument. One can say that a function is a method that transforms
elements of one set to elements of another set. In this sense, JavaScript provides a number
of predefined functions (strictly speaking they aremethods, that is, functions attached to
objects but we have said nothing about objects so far). In what follows, I will present a few
basic functions.

6.1 Function toString()

This is a “function” that is used to get a string representation of an object. If one wants a
string representation of a number, then the best thing to do is to create a Number object
and then to generate a string from it. Here is how this can be done:

var x = new Number(19)

document.writeln(x.toString()+"
");

FunctiontoStringget anoptional argumentwhich is an integer in the range2 through36
specifying the base to use for representing the numeric value. For example, the following
code

var x = new Number(19)

38

document.writeln(19+"
");

document.writeln(x.toString("2")+"
");

document.writeln(x.toString("8")+"
");

document.writeln(x.toString("16")+"
");

will print the following:

19

10011

23

13

6.2 The write and writeln Functions
We have already demonstrated the use of these functions in a few examples so far. Thus
it should be clear that they produce strings. However, the strings can be either text or
HTML markup, which will be inserted there where the JavaScript code is executed. The
following codedemonstrates the use of these functions to generate both content and text.

<!DOCTYPE html>

<html> <head>

<meta charset="UTF-8">

<title>Example</title>

</head>

<body>

<p> Before JavaScript generated content</p>

<script>

for (i=0; i<10; i++) {

document.write("<p>"+ ((i+1).toString()) + ". Hello folks!</p>")

}

</script>

<noscript>No JavaScript support. Sorry</noscript>

<p> After JavaScript generated content</p>

</body> </html>

The (truncated) output of this code is shown below:

39

6.3 Function eval

The eval function evaluates its string argument, which is supposed to contain JavaScript
commands or expressions, and returns the result of the computation. For example, the
following code

var a = eval("3 * 2") + "
";

document.write(a)

will print the number six. In general, one should use this function with caution. A “real
world” usage example of function eval is presented in section 7.2.

6.4 Function isFinite

Function ifFinite examines its argument and if it is finite number, that is, if its argument
is not equal to Infinity (i.e., a global property that is a numeric value representing infin-
ity) or it is not NaN (i.e., a global property that is a value representing Not-A-Number),
then it returns true. Otherwise, it returns false. In the code that follows, we assign to a
variable a very large number through amechanism that we will explain in section 9.2 and
compare it against Infinity.

var maxNumber = Math.pow(10, 1000); // max positive number

if (maxNumber === Infinity)

document.write("Let's call it Infinity!");

The code will print Let's call it Infinity!.

40

6.5 Function isNaN

This function examines its argument and if it is not NaN, it returns true. Otherwise, it
returns false. For example, the code that follows

var x = '100F';

if (isNaN(x))

document.write('Not a Number!');

else

document.write(x * 1000);

will print Not a Number! because a string is not a number!

6.6 Functions parseInt& parseFloat

These functions are used to transform their string input into numbers. Function par-

seInt has a second optional argument which is the base in which the number is written.
For example, for binary numbers, the base should be 2. In the example that follows, the
browserwill show the420(thenumber120120 in the ternarynumeral system is thenum-
ber 420 in the decimal numeral system).

var x = "120120";

var parsed = parseInt(x, 3);

if (isNaN(parsed))

document.write("Not a Number")

else

document.write(parsed)

Similarly, function parseFloat takes as argument a string. Then it examines its argument
and if it is a float number (i.e., a number with a fractional part), it returns that number.
Otherwise, it returns NaN.

6.7 Functions setInterval& setTimeout

Functions setInterval and setTimeout are used to execute another function in spe-
cific time intervals or once after a specific number of seconds has passed, respectively.
These functions have been used to create animations with HTML5 <canvas> element
(see Chapt. 10) but not anymore as now the suggestedmethod uses a different function.
Typically, both functions return a value that has no use and which can assigned to some
useless variable. For instance, the command

41

var dummy = setInterval("function()", time)

will execute function every time centiseconds (i.e., time hundredths of a second). The
command

var dummy = setTimeout("function()", time)

executes function only once after time centiseconds. A typical use of function set-

Interval is the creation of a simple digital clock. The complete code is presented below
but since it uses some things we have not presented so far, the reader is advised to return
here after she has grasped the material in sections 6.8 and 9.1.

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Clock</title>

<script>

function printTime(){

now = new Date();

nowHours = now.getHours();

nowMinutes = now.getMinutes();

nowSeconds = now.getSeconds();

return ((nowHours<10)? "0" : "") + nowHours+":"+

((nowMinutes<10)? "0" : "") + nowMinutes+":" +

((nowSeconds<10)? "0" : "") + nowSeconds;

}

</script>

</head>

<body style="background-color: #87CEEB;">

<form name="clockForm">

<input type="text" name="clockText" value="">

</form>

<script>

function setTime(){

document.clockForm.clockText.value = printTime();

}

var dummy = setInterval("setTime()",100);

</script>

</body>

</html>

42

The screenshot that follows shows the output generated by the code just presented.

6.8 DefiningNew Functions
JavaScript, as all modern programming languages, allows its users to define their own
functions. In order to define a function we first type the word function and then

• the name of the function, which should be no different than a variable name;

• a sequence of parameters separated by comma surrounded by parentheses;

• the body of the function that is used to map the arguments to a value or values.
Typically, thebodycontainsmanycommandsand is surroundedbycurlybrackets.

The following code snippet defines a new function that doubles its argument. More pre-
cisely, it returns the square of its argument.

function square(number){

return number*number

}

Command return stops the execution of the code of the body and forces the function to
map its argument(s) to the value that follows this word. Nowwe can use the function we
have just defined:

x = square(3)

Clearly, this command assigns the number 9 to variable x.
Functions in JavaScript can be recursive, that is, they can be defined in terms of them-

selves. Thispracticallymeans that thebodyof the functions includes calls to the functions
that is being defined! At first this seems quite strange to say the least: How can a function

43

that has not been defined call itself ? Recursive functions are perfectly validmathematical
objects and they are very useful. Every recursive function includes a termination condition
and a recursion condition. For example, the factorial of a positive integer 𝑛 (denoted 𝑛!) is
defined to be the number 1 × 2 × 3 × ⋯ × (𝑛 − 1) × 𝑛 if 𝑛 ≥ 1 or 1 if 𝑛 = 0 or more
compactly as the recursive function that follows.

𝑛! =
0, if 𝑛 = 0
𝑛 × (𝑛 − 1)!, otherwise (6.1)

From this definition it should be clear that the termination condition is 𝑛 = 0. Let us see
how we can realize definition 6.1 as a recursive JavaScript function:

function factorial(n){

if ((n == 0) || (n == 1))

return 1

else{

result = (n * factorial(n-1))

return result

}

}

Now it is possible to compute the factorial of 5 with the following command:

document.writeln(factorial(5))

Exercise 6.8.1 Try to define the Fibonacci function

Fib(𝑛) =
1, if 𝑛 = 0 or 𝑛 = 1,
Fib(𝑛 − 1) + Fib(𝑛 − 2), otherwise.

as a JavaScript function.

Although I have explained how recursive functions are defined I have not really ex-
plained how they are actually computed. Instead of going into the full details, I have aug-
mented the definition above with a few output commands that make things easier to un-
derstand:

function factorial(n){

document.write("factorial has been called with n = ")

document.writeln((n.toString())+"
")

if (n == 1) {

return 1

}

44

else {

res = n * factorial(n-1)

document.write("intermediate result for "+ (n.toString()))

document.write(" * factorial(" + ((n-1).toString())+ "): ")

document.write((res.toString())+"
")

return res

}

}

Suppose we want to compute the factorial of 5, then this what this function will print.

It is worth noting that it is recommended to put function definitions in the <head>
of a web page. This way we will be absolutely sure they will be visible in the rest of the
HTML file.

Theargumentswepass to a function call correspond to theparameters that havebeen
used in the definition of a function. In simple words, if we have the following function
definition

function s(x1,x2,x3){…}

then in the function call s(1,3,2), parameters x1, x2, and x3 will be substituted by the
numbers 1, 3, and 2, respectively. However, we can use the predefined array arguments

to process function arguments. As expected, the first argument of a function is stored in
position 0 of the array, the second in position 1, etc. Thus in the case of our example, the
following expressions are all true:

arguments[0] == 1

arguments[1] == 3

arguments[2] == 2

The total number of arguments is equal to

45

arguments.length

Thisflexibility allows thedefinitionof functionswithvariablenumberof arguments. Typ-
ically, we specify the required parameters and name collectively the optional. In the exam-
ple that follows all parameters are optional.

function mySum(args){

result = 0

for (var i = 0; i<arguments.length; i++){

result += arguments[i]

}

return result

}

Clearly, this function computes the sum of its arguments. Thus the call

document.write(mySum(1,2,3,4,5))

will print the number 15.

Exercise 6.8.2 Assume that Math.pow(a,b) computes the expression ab. Define a func-
tion that will compute the expression 𝑥𝑛 +𝑥𝑛 +⋯+𝑥𝑛𝑘 , where 𝑛 is the first argument and
𝑥, … , 𝑥𝑘 the second argument, the third argument, etc.

6.9 Anonymous Functions
In JavaScript it is possible to define anonymous functions, that is, functions with no name.
To define such a function just omit the name of the function. A typical example of such a
function declaration follows:

var F = function (a,b){return a+b;};

document.write(F(3,5))

Anonymous functions can be used to definemethods in new class definitions. However,
I do not plan to talk about class definitions.

46

Chapter 7

JavaScript EventHandling

Most JavaScript applications handle events. These are things that can happen on the
screen of a browser. Once an event happens, scripts can be notified and respond accord-
ingly. For instance, if a user clicks a button on a web page, a script might respond to that
action by displaying an information box. Table 7.1 shows the various events supported
by JavaScript and what triggers them.

7.1 Defining an EventHandler
In order to define an event handler we need something that will trigger an event. As we
showedpreviously there aremany things that can trigger events. And these events happen
when the user tries to interact with certainHTML components. Themost natural way to
handle an event is to specify in the tag that specifies a component what will happen if a
certain event happens. But let us be more practical.

In order to define an event handler we add its name inside a tag followed by an equal
sign (=), followed by JavaScript code that will be invokedwhen the event associated with
the event handler happens. The JavaScript code should be enclosed in double quotation
marks. If, for some reason, we need to have double quotationmarks inside the code, then
we simply replace themwith single quotationmarks.

<tag event_handler="JavaScript Code">

For instance, if we have defined a function called compute, we can use it every time the
user presses a button and we can activate it as shown below:

<input type="button" value="Calculate"

onClick="compute(this.form)">

Of course we could write a series of commands but obviously it is easier to call a func-
tion that will process the event. However, the function must know which component

47

Ev
en

t
O

bj
ec

ts
Aff

ec
te
d
By

Tr
ig
ge

re
d…

Ev
en

th
an

dl
er

C
ha

ng
e

Te
xt

fie
ld

s,
te
xt

ar
ea

s,
an

d
lis

ts
Th

eu
se

rj
us

tc
ha

ng
ed

its
va

lu
e

on
Ch

an
ge

C
lic

k
Al

lk
in

ds
of

bu
tto

ns
Th

e
us

er
pr

es
se

d
th

e
rig

ht
bu

tto
n

of
th

e
m

ou
se

w
hi

le
th

ec
ur

so
ri

so
n
ab

utt
on

on
Cl

ic
k

K
ey

D
ow

n
D
oc

um
en

ts,
im

-
ag

es
,

hy
pe

rli
nk

s,
an

d
te
xt
-a
re
as

Th
e

us
er

pr
es

se
d

a
ke

y
an

d
ke

ep
s

it
pr

es
se

d
on

Ke
yD

ow
n

K
ey

Pr
es

s
Sa

m
e

as
th

e
pr

ev
io

us
ca

se
Th

eu
se

rh
as

ju
st

pr
es

se
d
ak

ey
on

Ke
yP

re
ss

K
ey

U
p

Sa
m

e
as

th
e

pr
ev

io
us

ca
se

Th
eu

se
rr

el
ea

se
d
ak

ey
on

Ke
yU

p

M
ou

se
D
ow

n
D
oc

um
en

ts,
bu

tto
ns

,
an

d
hy

pe
rli

nk
s

Th
eu

se
rp

re
ss
ed

th
el

eft
m

ou
se

bu
tto

n
on

Mo
us

eD
ow

n

M
ou

se
M

ov
e

N
on

e
Th

eu
se

rh
as

m
ov

ed
th

em
ou

se
on

Mo
us

eM
ov

e

M
ou

se
O

ut
Te

xt
ar
ea

s,
hy

pe
rli

nk
s,

et
c.

Th
e

us
er

m
ov

es
th

e
m

ou
se

ou
tsi

de
an

ar
ea

on
Mo

us
eO

ut

M
ou

se
O

ve
r

H
yp

er
lin

ks
Th

eu
se

rm
ov

es
th

em
ou

se
ov

er
ah

yp
er
-

lin
k

on
Mo

us
eO

ve
r

M
ou

se
U
p

D
oc

um
en

ts
an

d
hy

pe
r-

lin
ks

Th
eu

se
rh

as
re
lea

se
d
th

em
ou

se
bu

tto
n

on
Mo

us
eU

p

Ta
bl
e7

.1
:E

ve
nt

ss
up

po
rte

d
by

Ja
va

Sc
rip

t.

48

Figure 7.1: Output generated by the form described in section 7.2

triggered the event (better: which component is responsible for this event). And this is
exactly the reason why we pass the expression this.form as argument to the function.
The symbol this is the button and the symbol form is the name of the form to which the
button belongs.

7.2 Using EventHandlers
In the form that is shown in Fig. 7.1 one can enter in the first text field an arithmetic ex-
pression (e.g., 4+7*8), and then, after pressing the button and making the right choice,
you can see the result in the second text field. The code that produces the form is shown
below:

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>On-line calculator</title>

<script>

function compute(f){

if (confirm("Are you sure?"))

f.result.value = eval(f.expr.value)

else

alert("Please come back again!")

}

</script></head>

<body>

<form>

Enter an expression:

49

<input type="text" name="expr">

<input type="button" value="Calculate"

onClick="compute(this.form)">

Result:

<input type="text" name="result" size=15>

</form>

</body></html>

The function that is defined in the head of the web page takes only on argument that hap-
pens to be a form. The function uses themethod confirmof the window class. By pressing
the button a dialog box pops up and the user has to chose between OK and Cancel. If the
user presses OK, the function confirm returns true and the expression in the first text field
is evaluated and the result is printed in the second text field. Otherwise, a window pops
up containing a message that informs the user to come back again (try it!). In fact, the
function call

alert("message");

creates a (little) window that contains the message.

50

Chapter 8

TheDocumentObjectModel

When a browser loads a web page, then it creates internally a Document Object Model
(DOM) of the page. The DOM reflects the structure of the web page and includes all
relevant information. In different words, it hierarchically represents the page so that pro-
grams can change the document structure, style, and content. In order to understand
what HTML hierarchy means consider the complete source file on page 22. Then, the
screenshot that follows shows the structure of this file:

All DOM related information is stored to object document. This is something predefined
that takes its value once a web page has been read by the browser.

When a web page is loaded and document has been initialized, then the next logical
question is: How do we get access to the various components of a web page? There are
five methods but we are going to discuss only the first three methods.

Select Element by ID All HTML elements can have an id attribute that has as value

51

some string. However, this value must be unique within a HTML document. For
example, here is an element with an id attribute:

<h1 id="myHeader">Hello World!</h1>

Inorder toget access to this elementwecanusemethodgetElementById andhere
is how:

var a = document.getElementById("myHeader");

Select Element byNAME A few HTML elements (e.g., elements, forms, and el-
ements of a form) can have a name attribute. The value of this attribute is a string
and there is no need to be unique in any way. The following shows a form element
with a name attribute:

Name: <input type="text" name="fullname">

To refer to this element one should use the getElementsByNamemethod:

var b = document.getElementsByName("fullname");

Select Element by TYPE Sometimes we want to select all elements of a specific type in
order to process them collectively. For example, consider the following form:

<form id="myform" action="" method="get"

style="text-align:center;">

.......................

<button type="button" id="b1" name="myButton">5</button>

.......................

<button type="button" id="b5" name="myButton">-5</button>

</form>

Then, if we want to have an array that will hold all buttons, we should use the
getElementsByTagNamemethod as shown below:

var buttons = document.getElementsByTagName('button');

52

Example 8.0.1 Suppose we have an element and we want to change its value after ten
seconds. The code that follows shows exactly how this can be done.

<!DOCTYPE html>

<html> <head>

<meta charset="UTF-8">

<title>Example</title>

</head>

<body>

<h1 id="xx">Hello User!</h1>

<script>

setTimeout(function(){

document.getElementById("xx").innerHTML =

"Bye User!";},

10000);

</script>

</body> </html>

Here we see how one can use anonymous functions. In this case there was absolutely no
reason to define a function that will be used only once. Also, note that in order to set the
new value of the element we use the innerHTML property. In newer versions of theDOM
specification the innerHTML property sets or returns the HTML content (inner HTML)
of an element.

Exercise 8.0.1 Modify the script so that prints two times the original text of the header.
Hint. To get the value of an HTML element use

var x = document.getElementById("xx").innerHTML;

53

Chapter 9

Predefined JavaScript Classes

JavaScript is an object oriented language. Objects are instances of classes and a class is
entitywith attributes andmethods. The attributes are values that characterize each object
while themethods allow themodification of attributes and/or access to them. Naturally,
we need amechanism to create new instances of a class. We are not going to discuss how
these ideas are implemented in JavaScript butwe are going todiscuss how touse instances
of class Date and Math.

9.1 Class Date
JavaScript predefines the Date class that should be used to compute dates, find proper-
ties about dates, etc. In addition, class Date can be used to perform time related compu-
tations. A date is represented by an integer that is equal to the number of milliseconds
since January 1, 1970, 00:00:00UTC(UTC stands forUniversal TimeCoordinated also
known as “Zulu” Military Time), with leap seconds ignored. Currently, JavaScript can ex-
press any date and time, to millisecond precision, within 100million days before or after
01/01/1970. Thismeans that the JavaScript clockwill not cause us any problemuntil the
year 275,755 A.D.

In order to create a new object one should use any of the following commands:

var x = new Date();

var x = new Date(milliseconds);

var x = new Date(datestring);

var x = new Date(year, month, day, h, min, sec, ms);

The first command assigns to x a new Date object corresponding to the current date and
time. The second command computes the date from the number ofmilliseconds that are
passed as argument. A datestring has the following general form:

54

YYYY-MM-DDTHH:mm:ss.sssZ

Thepartsof thedate strings are theyear, themonth(01 for January and12 forDecember),
the day of the month with values from 01 to 31, the letter T separates the date from the
time, thenumberof complete hours that havepassed sincemidnight as twodecimal digits
from00 to 24, the number of completeminutes since the start of the hour as two decimal
digits from 00 to 59, the number of complete seconds since the start of theminute as two
decimal digits from00 to 59, a dot, the number of completemilliseconds since the start of
the second as three decimal digits, and Z is the time zone offset specified as Z (for UTC)
or either + or - followed by a time expression HH:mm. For example, the current time when
these pages were written was:

2018-01-18T21:48:43+2

In the fourth case, one shouldbe careful andhaveonmind that themonth is 0-basedwhich
means that January is assumed to be the 0th month and December the 11th. Obviously,
we can choose not to specify some of the arguments.

There are four kinds of methods that can be used to process dates.

• Methods like setHours, setMonth, etc., that should be used to alter the hours,
month, etc., of a date.

• Methods like getHours, getMonth, etc., that should be used to get the hours, the
month, etc., of a date as integers.

• Methods liketoDateString, toTimeString that return strings representing aDate
structure, the date part of a Date, and the time part of a Date, respectively.

• The methods now(), parse(), and UTC() that return the current time in millisec-
onds since 01/01/1970, parse a string representing a date and return its represen-
tation in milliseconds, and return the millisecond representation of the specified
UTC date and time, respectively.

Example 9.1.1 The code that follows

var x = new Date();

document.writeln("<table>")

document.writeln("<tr><td>Day:</td><td>"+x.getDay()+"</td></tr>")

document.writeln("<tr><td>Day:</td><td>"+x.getDay()+"</td></tr>")

document.writeln("<tr><td>Month:</td><td>"+x.getMonth()+"</td></tr>")

document.writeln("<tr><td>Year:</td><td>"+x.getYear()+"</td></tr>")

document.writeln("<tr><td>Year:</td><td>"+x.getFullYear()+"</td></tr>")

55

Figure 9.1: Output generated by the code presented in example 9.1.1.

document.writeln("<tr><td>Date:</td><td>"+x.toDateString()+"</td></tr>")

document.write("<tr><td>ISO Date:</td><td>")

document.writeln(x.toISOString()+"</td></tr>")

document.writeln("<tr><td>Time:</td><td>"+x.toTimeString()+"</td></tr>")

document.writeln("</table>")

will create a table that is shown in Fig. 9.1.

9.2 The MathClass
The predefined class Math provides methods and attributes that are useful in mathemat-
ical calculations. For example, the attribute PI is the constant 𝜋 = 3,1415…. So if one
wants to compute the area of a disk, shemight use the expression Math.PI*r*r. Similarly,
one can use the mathematical functions presented below. For example, the expression

document.write(Math.sin(1.5707963267949))

will print the sine of 90∘. Note that all angles are expressed radians.¹ Also, one does not
need to create an object of Math to use the functions and attributes described here. The
following table describes some of the functions that the class Math defines.

¹If μ is the measure of an angle in degrees, then the measure in radians is: (Math.PI/180)*μ.

56

Method Description
abs Absolute value
sin, cos, and tan Sine, cosine, and tangent
acos, asin, and atan Inverse trigonometric functions
exp and log Raise to the power of 𝑒 and natural log-

arithm
ceil Returns the minimum integer that is

greater than or equal to its argument
floor Returns the minimum integer that is

less than or equal to its argument
min and max Returns the minimum or maximum of

its arguments, respectively
pow Raises the first argument to the a power

equal to the second argument
round Rounds its arguments to the closest in-

teger
sqrt Returns the square root of its argument

57

Chapter 10

TheHTML5 <canvas>Element

The <canvas> element together with the audio and video elements are the things that
make HTML5 shine! This element has many applications: interactive movies, games,
diagrams, charts, etc. One can create whole sites with the <canvas> element but this is
something most people do not recommend. There is no need to use Flash and Action
Script anymore! The <canvas> element is open source technology and it is natively sup-
ported by all major browsers. In what follows I will present how canvas can be used for
2D graphics. For 3D graphics we needWebGL, which will not be covered here.

10.1 A Simple Example
The <canvas> element provides a surface where one can draw, paint, etc., using the Java-
Script programming language. Therefore, playing with the <canvas> element is very use-
ful for someone who wants to master this language. Let us start with a simple example
that draws a triangle on the computer screen (see Fig. 10.1).

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Canvas Example</title>

</head>

<body>

<canvas id="canvas1" width="200" height="200">

Your browser doesn't support "canvas".

</canvas>

<script>

var c = document.getElementById('canvas1'); // 1

58

Figure 10.1: A triangle drawn with HTML5’s <canvas> element.

var ctx = c.getContext('2d'); // 2

ctx.beginPath(); // 3

ctx.moveTo(100,10); // 4

ctx.lineTo(150,140); // 5

ctx.lineTo(60,110); // 6

ctx.closePath(); // 7

ctx.fillStyle = 'lime'; // 8

ctx.strokeStyle = 'purple'; // 9

ctx.lineWidth = 4; // 10

ctx.fill(); // 11

ctx.stroke(); // 12

</script>

</body>

</html>

Herewe set upa canvas, that is adrawing area,whosewidth andheight is 200 pixels. What
goes between <canvas> and </canvas> appears on your browsers tab if the canvas ele-
ment is not supported. The canvas gets a unique identification (i.e., canvas1) so to refer
to it from the JavaScript code. Using the DOM, JavaScript gets access to the canvas in
line 1 of the code. Thus variable c is an internal representation of the canvas. The call
c.getContext('2d') returns a drawing context. This simply means we can use variable
ctx to draw on the canvas. In general, the inclusion of these two lines is necessary in or-
der to do anything useful on a canvas. When drawing on a canvas we specify shapes by
paths that consists of line segments. When specifying these line segments we only write
down their ebd points, since the beginning is always the end of the previous segment.
Each point is determined by its coordinates. The canvas elements uses a peculiar coordi-
nate system where the point (0, 0) = (𝑥min, 𝑦min) is located on the upper left corner of a
canvas. The 𝑦 coordinate growswhile going downwardswheareas the 𝑥 coordinate grows
while going rightwards. Thus the point (𝑥max, 𝑦max) is located at lower-right corner of the
canvas (see Fig .10.2). It should be clear that there are no negative coordinates.

The call ctx.beginPath() is used to specify the start of the path that will be used to

59

(𝑥min = 0, 𝑦min = 0)
•

(𝑥max, 𝑦max)
•

Figure 10.2: The coordinate system of the canvas element.

draw the triangle. The call ctx.moveTo(x,y) makes point (x, y) part of the path, never-
theless, nothing will be drawn between the previous point and the new point. The com-
mand ctx.lineTo(w,z) draws a line segment from the previously specified point or the
end of previously specified line segment to (w, z). The call ctx.closePath() draws a line
segment from the current point back to the starting point of the path. The attibutes fill-
Style, strokeStyle, and lineWidth are use to set the color of the area surrounded by a
path, the color of the path itself, and the width of the lines that make up the path. Colors
canby enteredbyname, as in this case, or by specifying the amount of red, green, andblue
as in the following example:

ctx.fillStyle = "#FF0000";

The commands ctx.fill() and ctx.stroke() are used to fill the area surrounded by a
path with the color specified and to draw the path with line segments of specified width
and color, respectively. Of course, the commands presented so far are not the only draw-
ing commands. In what follows I will briefly describe the rest of these commands.

There are three methods related to rectangles:

fillRect(x, y, width, height) Fills a rectangular areawith the default color (black)
or a color that is specified with fillStyle.

strokeRect(x, y, width, height) Draws a rectangle with the default color (black)
or the color specified with strokeStyle and width specified with lineWidth.

clearRect(x, y, width, height) Clears the specified rectangular area, making it ful-
ly transparent.

rect(x, y, width, height) Adds a rectangular path to a currently open path. The
top-left corner of the rectangular path is at (x, y) and has width and height.

60

As an example consider the commands on the left that draw the shape on the right:

ctx.fillRect(25, 25, 100, 100);

ctx.clearRect(45, 45, 60, 60);

ctx.strokeRect(50, 50, 50, 50);

To draw arcs or circles, we use the arc or arcTomethods.

arc(x, y, r, θ, φ, anticlockwise) Draws an arc which is centered at (x, y)with ra-
dius equal to r starting at θ and ending at φ going in the given direction indicated
by the Boolean value anticlockwise (defaulting to clockwise).

arcTo(x1, y1, x2, y2, radius) Draws an arc with the given control points and ra-
dius, connected to the previous point by a straight line.

Bézier curves are used in the design of computer fonts and animation. Typically, a
Bézier curve consists of a starting point (P), an ending point (P𝑛), and one, two, three,
etc., control points (P, P,…). A quadratic Bézier curve, that is a curve that has one
control point, is described by the following formula:

B(𝑡) = (1 − 𝑡)P + 2(1 − 𝑡)𝑡P + 𝑡P, 𝑡 ∈ [0, 1].

A qubic Bézier curve, that is a curve that has two control points, is described by the fol-
lowing formula:

B(𝑡) = (1 − 𝑡)P + 3(1 − 𝑡)𝑡P + 3(1 − 𝑡)𝑡P + 𝑡P, 𝑡 ∈ [0, 1].

In order to draw a quadratic Bézier curve on a canvas on should use the method

quadraticCurveTo(cp1x, cp1y, x, y)

Here (cp1x, cp1y) are the coordinates of the control point while the starting point is the
pointwhere the drawing pen is located and (x, y) is the ending point. Cubic Bézier curves
can be drawn with the following method:

bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y)

Here (cp1x, cp1y) and (cp2x, cp2y) are the coordinates of the first and the second control
point, respectively, while (x, y) are coordinates of the ending point and the starting point
is the point where the drawing pen is located before the execution of this method.

61

Figure 10.3: A bouncing ball animation. The red square encloses the canvas area.

10.2 A Simple Animation
A canvas can be also used to create animations and, more generally, computer games.
Since creating computer games is quite involved, we will focus on the creation of simple
animations. The examples will demonstrate the capabilities the canvas offers to anyone
wishing to create simple or complex animations. Basically, animation is impelmented by
a call to function

requestAnimationFrame(animationFunction);

whereanimationFunction is a userdefined function thatdescribedwhathappens at each
animation step (i.e., what goes in each frame of the animation) and includes this function
call at the end of the function definition. I will start with the code that produces a bounc-
ing ball, that is, a ball that moves back and forth on a straight line inside a frame (see
Fig. 10.3).

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Bouncing Ball</title>

<style>

#canvas { border: 5px solid red}

</style>

</head>

<body>

<canvas id="canvas" width="400" height="400"</canvas>

<script>

var canvas = document.getElementById('canvas');

var ctx = canvas.getContext('2d');

var x = 200, y = 20, value = 5, sign = 1;

62

requestAnimationFrame(animationFunction);

function animationFunction() {

ctx.clearRect(0, 0, canvas.width, canvas.height);

ctx.beginPath();

ctx.arc(x,y,20,0,2*Math.PI);

ctx.fillStyle = "blue";

ctx.fill();

y += value*sign;

if (y == 380)

sign = -1

else if (y == 20)

sign = 1

requestAnimationFrame(animationFunction);

}

</script>

</body>

</html>

The canvas is enclosed in a red square because of the following style declaration:

#canvas { border: 5px solid red}

In order to realize this animation, I have implemented a very simple “algorithm”: First
draw a circle whose center is at (200, 20) and whose radius is 20, then wait for a bit, clear
the drawing area and redraw an identical circle at (200, 25), etc. When the 𝑦-coordinate
becomes equal to 380, this means that the circle touched the lower edge of the canvas
and it is time to go up. When 𝑦-coordinate becomes equal to 20, this means that the cir-
cle touched theupper edgeof the canvas and it is time to godown. I haveused the variable
sign to control the direction to which the ball shouldmove. As was noted above, anima-
tion starts when JavaScript starts the execution of the following function call:

requestAnimationFrame(animationFunction);

First of all, function animationFunction clears the drawing area. Then, it draws a circle
centered at (x, y). Next, it changes the value of variable 𝑦 by adding to it the result of
the multiplication value*sign. After this, it checks whether there is a reason to change
the value of variable sign from 1 to −1 or vice versa. In the end of the code there is the
following recursive call

requestAnimationFrame(animationFunction);

63

Figure 10.4: An interactive bouncing ball animation. The buttons control the animation.

This is necessary to let the animation process repeat itself. Naturally, this animation never
stops. However, it would be interesting to be able to stop animation.

Exercise 10.2.1 Modify the code above so that the ball moves horizontally and starts
from (20, 200).

10.3 Simple Interactive Animation
In order tomake the animation code of the previous sectionmore interesting, we can add
some kind of interaction. The easiest thing to do is to add two buttons that will start and
stop the animation. Figure 10.4 shows the new version of the animation web page.

Since themaindifference between the twowebpages lies in the JavaScript code, Iwill
present only the new parts of the code.

<button id="start">start</button>

<button id="stop">stop</button>

.

<script>

.

var requestId;

//

function start() {

if (!requestId)

requestId=window.requestAnimationFrame(animateFunction);

}

//

function stop() {

if (requestId) {

window.cancelAnimationFrame(requestId);

64

requestId = undefined;

}

}

//

function animateFunction() {

requestId = undefined;

.

start();

}

//

document.querySelector("#start").addEventListener('click',

function() { start(); });

//

document.querySelector("#stop").addEventListener('click',

function() { stop(); });

</script></body></html>

Variable requestId is used to internally control the animation. When its value is unde-
fined, then animation commences; otherwise, it stops. Functions start and stop are
used to start and stop the animation, respectively. More specifically, the command

requestId=window.requestAnimationFrame(animateFunction)

assigns to variable requestId a value that is returned by the callback. This value is used
to stop the animation with the command

window.cancelAnimationFrame(requestId);

And since the animation associated with the value of requestId has been canceled, this
variable is assigned the value undefined.

In the simplest case the call document.querySelector(selector) returns the first
element within the document that matches the selector, which is a CSS-style element
id (i.e., an element id prefixed with the symbol #). And this is exactly why we use the
"#start" and "#stop" selectors. Once the element is selected, we need to associate an
event-handler with it. In our case, buttons can be clicked and so we call method addE-

ventListener as follows:

addEventListener('click', function() { start(); });

There are many events: the abord event is fired when the loading of a resource has been
aborted, the blur event is fired when an element has lost focus, the input event is fired
when the value of an <input>, <select>, or <textarea> element is changed, the keydown

65

event is fired when a key is pressed down), the mousedown event is fired when a pointing
device button is pressed on an element, etc. Note that for each elementdown event there
is an elementup event.

10.4 Stopping An Animation
Suppose we want to create an animation that stops automatically. For example, we can
have two objects on the top of a canvas and let them move diagonal until they reach the
bottom of the canvas. The screenshot that follows shows exactly how this simple idea
would look like:

The JavaScript code that follows implements the intended functionality:

var x = 10, y = 10, value = 5;

requestAnimationFrame(animateFunction);

function animateFunction() {

ctx.clearRect(0, 0, canvas.width, canvas.height);

ctx.fillStyle = "#FF0000";

ctx.fillRect(x, y, 40, 40);

ctx.fillStyle = "#00FF00";

ctx.fillRect(360-x, y, 40, 40);

x += value

y += value

if (y < 360)

requestAnimationFrame(animateFunction);

}

Note that here the animation repeats only if a certain condition ismet. Otherwise, it sim-
ply stops. The following is the non-recommended way to stop animations:

66

Figure 10.5: Using images in animation.

if (y == 360)

cancelAnimationFrame();

requestAnimationFrame(animateFunction);

A natural questions is this: Assume we want to use an image instead of a drawing, so
how can replace the circle with the image of a ball? The first thing that has to be done is
to have the image loaded into some variable. For this we create an object of class Image,
that should appear at the default initial position. Thus the first two lines that follow are
standard.

var img = new Image();

img.addEventListener('load', function() {

ctx.drawImage(img, x, y);}, false);

img.src = "./ball.png";

Thethird lineof the code is used to actually load the external image into the variable. Note
that now we can use the method

ctx.drawImage(img, x, y);

to draw the image. This places the upper-left corner of the image at (x, y). Figure 10.5
shows th result of replacing a drawing with an image.

10.5 MovingObjects
The first step in the construction of a simple game is the ability to move objects using
certain keys (e.g., the arrow keys). For example, a good exercise would be to create an

67

page where the user canmove an object (i.e., an image) on a canvas using the arrow keys.
Let us start with the definition of some useful variables:

var x = 10, y = 10; //initial position

var activeKey = ""; // the key currently pressed

var img = new Image(); // loading an image

.

var dx = 0, dy = 0; // horizontal and vertical direction

var speed = 100; // pixels per second

All these variables are related with the following “equations”

x += dx / 60 * speed;

y += dy / 60 * speed;

that compute the new position of the moving object. Let us see how we can handle the
use of the arrow keys.

First we need to specify what should happen when the user presses an arrow key and
keeps it down. If and when the key is released, the script must act accordingly. Let us see
what should happen in the first case.

document.addEventListener('keydown', function(e) {

if (activeKey == e.key) return;

activeKey = e.key;

if (activeKey == "ArrowLeft")

dx = -1;

else if (activeKey == "ArrowUp")

dy = -1;

else if (activeKey == "ArrowRight")

dx = 1;

else if (activeKey == "ArrowDown")

dy = 1;

});

Herewe register an eventhandler for thekeydown event. Theargument to the anonymous
function is an event and e.key returns the name of the key just pressed. In each case we
specify the value of variable that specifies the direction on the horizontal or the vertical
axis. In JavaScript we need to specify what should happen when a key is released or else
the object will continue moving on the same direction.

68

document.addEventListener('keyup', function(e) {

switch (e.key) {

case "ArrowLeft":

case "ArrowRight":

dx = 0;

break;

case "ArrowUp":

case "ArrowDown":

dy = 0;

break;

}

activeKey = "";

});

Literally this means that if ones releases the left or right arrow key, then the image should
stop moving and this is why variable dx becomes equal to zero. Similarly, if the user re-
leases the down or the up arrow key, then variable dy should become equal to zero. What
is left is to explain how to implement the function that realizes the animation. First we
need to clean the canvas:

function fun(){

ctx.fillStyle = "#00FF00";

ctx.fillRect(0, 0, 400, 400);

Next, we need to compute the new position of the object:

var xnew = x + dx / 60 * speed;

var ynew = y + dy / 60 * speed;

It is quite possible that the new positionmay fall outside the area of the canvas and, natu-
rally, this is something one needs to prevent. First let us see how compute the new posi-
tion when the left arrow key is pressed:

if (activeKey == 'ArrowLeft') {

if (xnew >= 0)

x = xnew;

else if (xnew < 0)

x = 0;

}

If the new position is on the left of the point (0, 𝑦), thenwe shouldmake the new position
the point (0, 𝑦). Otherwise, the new position is the one just calculated. Obviously, one
should handle the use of the up arrow key in a similar way:

69

Figure 10.6: Amoving Pacman.

if (activeKey == 'ArrowUp') {

if (ynew >= 0)

y = ynew;

else if (ynew < 0)

y = 0;

}

.

ctx.drawImage(img, x, y);

requestAnimationFrame(fun);

}

The last thing to do is to draw the object in the new position andmove to the next step.
Let us make things a bit more complicated and assume that we want also to animate

the moving object. For example, we could replace the ball with something like a pacman
(see Fig. 10.6). In this case the first thing we need to do is to load eight images—two for
each direction. This can be done with the following code:

var images = new Array();

for(i=0; i<8; i++) {

images[i] = new Image();

images[i].addEventListener('load',

function() { ctx.drawImage(img, x, y); },

false);

images[i].src = './smallpacman'+i.toString()+'.png';

}

Herewe use an array to hold the images and for each array elementwe do exactly whatwe
did when we were loading one image. The images that this code loads are shown below.

70

Exercise 10.5.1 Create a web page that will show eight icons as in the previous screen-
shot.

The next step is to write the code that will display on a specific direction (e.g., up)
the two “faces” one after the other continuously. This way we animate themoving object.
Here is what should happen when we press the right arrow key:

if (activeKey == 'ArrowRight') {

if (xnew <= 360)

x = xnew;

else if (xnew > 360)

x = 360;

image_index++;

if (image_index % 2 == 0)

image_index = 0;

else

image_index = 1;

}

Variable image_index is used to choose the correct image. First we increase its value by
one and thenwe checkwhether it is an even or an odd number andwe assign it the values
zero and one, respectively. This way we make sure only the first images are chosen when
the right arrow is pressed. When the user presses the up arrow key, we do something
similar as the following code reveals.

image_index++;

if (image_index % 8 == 0)

image_index = 6;

else

image_index = 7;

Exercise 10.5.2 Write the code thatwill handle the caseswhere the left anddownarrows
are pressed. (Hint. Check out the screenshot with the eight faces).

Finally, the selection process should not happen when no key is pressed. Thismeans that
one of variables dx and dy is equal to zero:

71

Figure 10.7: A simple simulation application.

if (dx !=0 || dy != 0) {

.

}

Note that the expression dx !=0 || dy != 0 is equivalent to the expression

!(dx == 0 && dy == 0)

10.6 A Simple Simulation
Suppose we want to create a simple simulation application of a free falling ball as shown
in Fig. 10.7. Clearly, the first thing we need to do is to design the user interface.

<canvas id="mycanvas" width="200" height="700">

</canvas>

<label>Choose Height</label>

<input type="range" min="20" max="94" value="20" id="BallHeight">

72

<button id="runapp">Run Simulation</button>

In this case, I amusingan slidebarbecause it is easier tochooseaheightwith it thanwriting
the desired height. The slidebar is described by the <input type="range"...>markup.
The attribute value is used to set the initial value of the slidebar. The tag <label> is used
to label controls. Let me now present the JavaScript code. The first thing one types are
the variables that will be used:

var height = 700; //canvas height

var h, a = 0.1, v, ballAbsorption = 0.8;

var Hslider = document.getElementById("BallHeight");

There is no reason to repeat how the image of the ball is loaded so let us skip it. Variable
Hsliderwill be used to read the value the user has selected:

function init() {

h = 7*Hslider.value;

v = 0;

}

When the user pushes the button, the following code is executed:

document.querySelector("#runapp").addEventListener('click',

function() { init(); requestAnimationFrame(animateFunction); });

An finally here is the code that impements the animation:

function animateFunction() {

if (h <= 0 && v > 0) {

v *= -1 * ballAbsorption; // bounding with less velocity

if (v > -0.1 && v < 0.1)

cancelAnimationFrame();

}

// Move the ball

v += a; // accelerating

h -= v; // falling (if v < 0)

ctx.fillRect(0, 0, 200, 700);

ctx.drawImage(img, 80, height - h - 40);

requestAnimationFrame(animateFunction);

}

Exercise 10.6.1 Explain what does function animateFunction do?

73

Acknowledgement

I would like to thank Kyriaki Athanassiadou for proof-reading a draft of this text and thus
helping me improve its linguistic quality.

74

Bibliography

[1] Flanagan, D. JavaScript: The Definitive Guide, 6th ed. O’Reilly Media, Sebastopol,
CA, USA, 2011.

[2] Friedl, J. Mastering Regular Expressions. O’Reilly Media, Sebastopol, CA, USA,
2006.

[3] Fulton, S., and Fulton, J. HTML5 Canvas, 2nd ed. O’Reilly Media, Sebastopol,
CA, USA, 2013.

[4] Geary, D. CoreHTML5 2DGame Programming. PrenticeHall, Upper Saddle River,
NJ, USA, 2015.

[5] McCabe, P. Create Computer Games: Design and Build Your Own Game. JohnWiley
& Sons, Inc., Hoboken, NJ, USA, 2018.

[6] Sarris, S. HTML5Unleashed. SAMS, Indianapolis, IN, USA, 2014.

75

