
On the tip selection algorithm. So, we want to defend against an at-
tacker who secretly builds a chain/subtangle, occasionally referencing the
main tangle to gain more height.

We are going to use the fact that the main tangle is supposed to have
more (active) hashing power, and therefore manages to give more cumulative
weight to more transactions than the attacker. The idea is to use a MCMC
(Markov Chain Monte Carlo) algorithm to select the two tips to reference.

Let Hx be the current cumulative weight of a site (i.e., a transaction rep-
resented on the tangle graph). For simplicity, assume that all own weights are
equal to 1; so, the cumulative weight of a tip is always 1, and the cumulative
weight of other sites is at least 2.

The algorithm is then described in the following way:

1. consider all transactions with cumulative weight between L and (say)
2L (where L is large, to be chosen);

2. place N particles independently there (N is not so big, say, 10 or so);

3. these particles will perform discrete-time random walks “towards the
tips” (i.e., transition from x to y is possible if and only if y approves x);

4. the two random walks that reach the tip set first will indicate our two
tips to approve;

5. the transition probabilities of the walks are defined in the following
way: if y approves x (we denote this y x), then the transition
probability Pxy is proportional to exp

(
− α(Hx −Hy)

)
, that is

Pxy = exp
(
− α(Hx −Hy)

)(∑
z:z x

exp
(
− α(Hx −Hz)

))−1

, (1)

where α > 0 is a parameter to be chosen (one can start e.g. with α = 1).

In patricular, note that this algorithm is “local”, one need not go to all the
way to the genesis to calculate things.

To see that the algorithm works as intended, consider first the “lazy
tips” (those that intentionally approve some old transactions to avoid doing
verification), see Figure 1. Observe that, even if the particle is in a site
approved by such a tip, it is not probable that the lazy tip would be selected,
since the cumulative weights difference will be very large, look at (1).

1

main tangle

parasite chain

good tips

lazy tips

Figure 1: On the tip selection algorithm. The two red circles indicate an
attempted double-spend.

Next, consider the following attack: the attacker secretly builds a chain
(a “parasite chain”) containing a transaction that empties his account to
another account under his control (indicated as the leftmost red circle on
Figure 1). At some point the attacker issues a transaction in the main tangle
(indicated as the other red circle), and waits until the merchant accepts it.
The parasite chain occasionally references the main tangle (hence the name)
and so its sites have good height/score (even better than those of the main
tangle), although the cumulative weight is not so big in that chain. Note also
that it cannot reference the main tangle after the merchant’s transaction.
Also, the attacker might try to artificially inflate the number of “his” tips
at the moment of the attack, as shown on the picture. The attacker’s idea
is to make the nodes reference the parasite chain, so that the “good” tangle
would become orphaned.

Now, it is easy to see why the MCMC selection algorithm with high
probability won’t select one of the attacker’s tips. Basically, the reason is
the same as why the algorithm doesn’t select the lazy tips: the sites of the
parasite chain will have a much smaller cumulative weight than the main
tangle’s sites they reference. Therefore, it is not probable that the random
walk will ever jump to the parasite chain (unless it begins there, but this is
not very probable too, since the main tangle contains more sites).

2

