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During speech processing, human listeners can separately analyze lexical and intonational cues to arrive
at a unified representation of communicative content. The evolution of this capacity can be best
investigated by comparative studies. Using functional magnetic resonance imaging, we explored whether
and how dog brains segregate and integrate lexical and intonational information. We found a left-
hemisphere bias for processing meaningful words, independently of intonation; a right auditory brain
region for distinguishing intonationally marked and unmarked words; and increased activity in primary
reward regions only when both lexical and intonational information were consistent with praise. Neural
mechanisms to separately analyze and integrate word meaning and intonation in dogs suggest that this

capacity can evolve in the absence of language.

Various species rely on similar acoustic cues from vocaliza-
tions to infer inner states (7, 2). Human vocal comprehen-
sion also uses association of arbitrary sound sequences with
meaning. Lexical items (words) are the basic building blocks
of human languages but are hardly ever found in nonhuman
vocal communicative systems, even though several species
are capable of learning and discriminating arbitrary sound
sequences (3, 4), associating vocalizations with specific
meanings (4, 5), or producing human-like lexical items after
extensive training (6).

Lexical processing in humans is lateralized to the left
hemisphere (LH) of the brain (7). According to acoustic the-
ories, this is caused by LH bias for rapidly changing signals
(8), which is not unique to humans (9). In contrast, func-
tional theories assume LH bias for lexical representations of
meaning, independent of acoustics (10). Nonhuman neural
evidence for lexical processing is scarce. LH bias for broadly
defined meaningfulness has been found for processing fa-
miliar, conspecific sounds (17-13). The comparison of hu-
man and nonhuman neural mechanisms for processing
spoken words may reveal how speech-related hemispheric
asymmetries and lexical representations emerged during
evolution.

Dogs present an ideal model for such investigations.
Domestication has increased dogs’ abilities to engage in
acoustic communication with humans (14), they are more
receptive than wolves to human vocal signals (75), and their
behavior is more easily brought under human vocal control
(16, 17). Dogs can recognize (up to ~1000) words as discrim-
inative stimuli to retrieve different objects (I8), and they
process acoustic cues from human and dog vocalizations in
overlapping auditory brain regions (19). A recent behavioral
study found orienting asymmetries in dogs that listened to
artificially manipulated spoken commands, providing indi-
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rect evidence of LH bias when the salience of meaningful
phonemic cues increased and RH bias when the salience of
intonational or speaker-related vocal cues increased (20).

We applied functional magnetic resonance imaging to
disentangle lexical versus intonational processing in awake
dogs (19) (fig. S1). Verbal praises were used as stimuli be-
cause (i) human languages signal praise both lexically (“Well
done!”) and intonationally [higher pitch and pitch range,
specific pitch contour (21)]; (ii) verbal praises are often used
in dog-directed speech as social rewards; and (iii) neural
evidence on reward processing mechanisms is well estab-
lished (22, 23). Primary reward regions (the mesolimbic do-
pamine system), consisting of the ventral striatum (VS) and
dopamine neurons of the ventral tegmental area and sub-
stantia nigra (VTA-SN) (24, 25), consistently respond more
strongly to reward than to nonreward signals in humans,
and this is also the case in dogs (26).

We manipulated lexical information (marked, praise
word; unmarked, neutral word) and intonation (marked,
praising tone; unmarked, neutral tone) separately. Experi-
mental conditions involved every combination of word type
and intonation (Fig. 1A): praise words in praising intonation
(Pp), praise words in neutral intonation (Pn), neutral words
in praising intonation (Np), and neutral words in neutral
intonation (Nn). For praise words, we selected Hungarian
expressions used by all test dog owners for praising. For
neutral words, we used Hungarian conjunction words of
similar frequency. Typically, praise but not neutral words
are spoken with praising intonation, and only Pp is used to
address dogs. We assumed that Pp is meaningful to dogs
whereas Nn is not, and that praise words thus contain lexi-
cal cues but neutral words do not.

We hypothesized that if dogs maintain lexical represen-
tations, neural reward responses would depend on both lex-
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ical and intonational information. In contrast, if dogs do not
segregate lexical information from intonation, neural re-
ward responses would be modulated only by intonational
cues. LH bias for lexical processing would be consistent with
functional theories, no lateralization for lexical cues and RH
bias for intonational cues would support the acoustic ac-
count, and LH bias for Pp (and perhaps Nn) relative to Pn
and Np would argue for a role of familiarity.

Vocal stimuli from the dogs’ female trainer were record-
ed. We used this single individual’s voice, which was simi-
larly well known to every dog, because speaker familiarity
affects dogs’ reactions to verbal utterances (27). Stimuli with
praising intonation had a higher and more varying pitch,
but no systematic acoustic differences were found between
praise and neutral words (Fig. 1B). Non-Hungarian listeners
scored intonationally but not lexically marked stimuli as
more praising (28).

To assess overall lateralization, we used a bootstrapping
approach with multiple cutoff thresholds (29) (Fig. 1C and
table S1). Cortical responses for lexically marked (Pp and
Pn) but not unmarked (Np and Nn) words were LH-
lateralized. LH bias for lexically marked words was persis-
tent across thresholds. There were no intonational or lexi-
cal-intonational effects. In a previous study (19), we found
no lateralization bias for nonspeech human sounds. These
findings support the functional account (10, 20) and suggest
that dog brains maintain intonation-independent lexical
representations of meaning. Lateralization for Pp could also
be related to its higher frequency in dog-directed speech,
but Pn, though rare, elicits a similar LH bias, making a fa-
miliarity-based account improbable.

To investigate regional effects, we performed random-
effects tests, focusing on two sets of brain areas: (i) auditory
regions responsive to speech (Fig. 1D and table S2), localized
functionally, and (ii) primary reward regions, VS and VTA-
SN (24, 25), defined anatomically (30). We tested for sepa-
rate effects of lexical (Pp + Pn versus Np + Nn) and intona-
tional (Pp + Np versus Pn + Nn) processing and for
combined effects of lexical-intonational processing in three
ways: an interaction test [(Pp versus Pn) versus (Np versus
Nn)], a simple contrast or “integration” test (Pp versus Pn +
Np + Nn), and a conjunction test [(Pp versus Pn)n(Pp versus
Np)].

Within auditory regions, we found intonation effects but
no lexical or lexical-intonational effects. Intonation effects
were only evident in the right middle ectosylvian gyrus (R
mESG), with stronger responses for words with neutral in-
tonation, independent of word meaning (Fig. 1E and table
S3). We then modeled acoustic variation across stimuli, us-
ing parametric modulators. We found that R mESG activity
negatively covaried with fundamental frequency (F0), paral-
leling findings of higher sensitivity to lower pitch in the
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near-primary auditory cortex in humans (3I), macaques
(32), and dogs (19). There was no intonation or FO effect in
the left homolog region (L mESG) but also no significant
hemispheric bias (2, 28). Unlike in human studies, we found
no effect of FO change (33) (table S3). In whole-brain condi-
tion-dependent functional connectivity analyses with audi-
tory subregions as seeds, an intonation effect (stronger
correlation for praising intonation) was only found between
the R mESG (as the seed) and R caudate nucleus (CN; Fig.
1F and table S4). Connectivity results suggest a human-
analog functional link between auditory and reward regions
for processing praising intonation (34). The R mESG in dogs
is thus involved in processing acoustic cues that are relevant
for emotional intonation in both speech and nonspeech
human and dog vocalizations (19). Analogously, emotional
intonation processing in humans involves mechanisms that
are not specific to speech (35-37).

In primary reward regions, we found combined lexical-
intonational effects but no separate lexical or intonational
effects. Pp elicited stronger neural responses than any other
condition in the dopamine nuclei of the VTA-SN and in the
CN (within the VS) (Fig. 2A and table S3). Dog reward re-
gions thus respond most strongly to verbal praises when
both lexical and intonational information fit. To further il-
lustrate these findings, we calculated the maximal response
for each voxel within the reward masks: Pp had the highest
percentages in both the VS (Pp, Pn, Np, and Nn: 71.3, 6.2,
8.6, and 13.9%) and the VTA-SN (96.0, 0.0, 0.0, and 4.0%)
(Fig. 2B). Similarly to humans, dogs appear to integrate lexi-
cal and intonational cues in speech to evaluate meaning in
nonauditory brain regions (38).

We discovered three neural mechanisms of speech pro-
cessing in dogs. First, there was a LH bias for processing
meaningful words, independently of intonation. Second,
acoustic cues of affective speech intonation were processed
independently of word meaning in R mESG, and intona-
tional markedness increased functional connectivity be-
tween auditory and caudate regions. Third, dogs relied on
both word meaning and intonation when processing the
reward value of verbal utterances. All three findings reveal
functional analogies between dog and human brain mecha-
nisms (2, 7, 19, 34, 38). We suggest that in a suitable ontoge-
netic environment, lexical representations can arise and be
separated from acoustics, even in a nonprimate mammal. In
dogs, specific selective forces during domestication could
have also supported interspecific communicative and learn-
ing skills (17), but rapid evolution of speech-related hemi-
spheric asymmetries is unlikely (39). Lateralized lexical
processing does not appear to be a uniquely human capacity
that follows from the emergence of language, but rather a
more ancient function that can be exploited to link arbitrary
sound sequences to meanings. What makes lexical items
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uniquely human is thus not the neural capacity to process
them, but the invention of using them.
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Fig. 1. Distinct neural patterns for lexical and intonation processing in dog brains. (A) Experimental
conditions. (B) Acoustic variation of stimuli. (C) Hemispheric lateralization test. Lateralization indices (LI)
are shown across thresholds (connecting lines) and overall (horizontal bars). Positive values, left
hemisphere. (D) Dog auditory regions responsive to speech (table S2). The color bar shows the range for
one-sample t-test scores (12 degrees of freedom) for the speech (Pp + Pn + Np + Nn) > silence contrast.
(E) Random-effects tests in auditory regions. (F) Functional connectivity tests. Random-effects test
results are superimposed on an axial (z) slice [whole-brain familywise error (FWE)—corrected P < 0.05];
table S4]. N =13; ***P < 0.001; **P < 0.01; *P < 0.05; error bars, SEM.
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Fig. 2. Integration of lexical and intonational cues of praising in primary reward regions of dog
brains. (A) Parameter estimates for the two activated brain areas from the integration test (small-volume
FWE-corrected P < 0.05; table S3). Follow-up paired t tests, *P < 0.05. Error bars, SEM. (B) VS and VTA-
SN masks overlaid on sagittal (x), coronal (y), and axial (z) slices, with voxels color-coded to indicate
which condition elicited the maximal response.
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